

Technical Information Manual

Revision n. 15 1 July 2013

N1470

PROGRAMMABLE HV POWER SUPPLY

NPO: 00112/07:N1470.MUTx/15

CAEN will repair or replace any product within the guarantee period if the Guarantor declares that the product is defective due to workmanship or materials and has not been caused by mishandling, negligence on behalf of the User, accident or any abnormal conditions or operations.

CAEN declines all responsibility for damages or injuries caused by an improper use of the Modules due to negligence on behalf of the User. It is strongly recommended to read thoroughly the CAEN User's Manual before any kind of operation.

CE

CAEN reserves the right to change partially or entirely the contents of this Manual at any time and without giving any notice.

Disposal of the Product

The product must never be dumped in the Municipal Waste. Please check your local regulations for disposal of electronics products.

MADE IN ITALY: We stress the fact that all the boards are made in Italy because in this globalized world, where getting the lowest possible price for products sometimes translates into poor pay and working conditions for the people who make them, at least you know that who made your board was reasonably paid and worked in a safe environment. (this obviously applies only to the boards marked "MADE IN ITALY", we can not attest to the manufacturing process of "third party" boards).

TABLE OF CONTENTS

1	General description	5
	.1 Overview	5
2	Technical specifications	6
	.1 Packaging	6
	.2 Power requirements	6
	.3 Front and back panel	8
	.4 Front panel connections	10
	2.4.1 Local control section	10
	2.4.2 Channel control section	10
	2.4.3 HV Status control section	11
	2.4.3.1 Alarm signal	11
	2.4.3.2 Interlock signal	11
	2.4.4 Remote communication control section	12
	.5 Rear panel connections	13
	2.5.1 HV Channel Output	13
	.6 Imon Zoom	13
	.7 Technical specifications table	14
3	Operating modes	15
	.1 Programmable parameters	15
	3.1.1 Boards parameters	15
	3.1.2 Channel settings	16
	.2 Local Control	16
	3.2.1 HV connection	17
	3.2.2 Module settings	18
	3.2.3 Channel settings	19
	3.2.3.1 Group Settings	22
	3.2.3.2 Smileys	24
	.3 Remote Control	25
	3.3.1 Serial Links	25
	3.3.1.1 USB communication	25
	3.3.1.2 RS232 communication	26
	3.3.1.3 RS485 communication	26
	3.3.1.4 Ethernet communication	27
	3.3.2 Communication Control	28
	3.3.2.1 Remote Control: Main Menu	28
	3.3.2.2 Remote Control: General Menu	28
	3.3.2.3 Remote Control: Channels Menu	28
	3.3.2.4 Remote Control: firmware upgrade	29
	3.3.2.5 Remote Control: format EEPROM	30
	.4 USB - R5485 Communication Protocol	30
	3.4.1 Command Format	30
	3.4.2 FOITIAL OF RESPONSE SUITING	31
	3.4.3 MONTOR continuations related to the Channels	31
	3.4.3.1 Meaning of STATUS bits (value read in decimal Format)	32 22
	3.4.4 1 Maaning of Roard Alarm hits	აპ იი
	3.4.4.1 IVIEDING UI DUDIU AIDITI DIS	პპ იი
	3.4.5 SET commanda related to the module	აპ ^
	Jeternal Softingo	42 عد
4	Internal Jettings	33 วะ
		აე აუ
	12 Internal Switches	31
	4.2.1 LOUAL BUS TETTITIATION	/ک حد
	4.2.2 R3400 - R3232 CUIIVEISIUII	3/

LIST OF FIGURES

Fig. 1.1: Mod. N1470 Series Programmable HV Power Supply	. 5
Fig. 2.1: Backplane NIM connector	. 7
Fig. 2.2: Mod. N1470 series front panel	. 8

Fig.	2.3: Mod. N1470 series back panel (std., A, B)	9
Fig.	2.4: Local control panel	10
Fig.	2.5: Channel control panel and Kill scheme	10
Fig.	2.6: N1470 HV Status control panel	11
Fig.	2.7: N1470 ALARM electrical scheme	11
Fig.	2.8: N1470 ALARM TTL configured	11
Fig.	2.9: N1470 INTERLOCK electrical scheme	11
Fig.	2.10: Remote communication control and RS485 I/O - RS232 IN electrical scheme	12
Fig.	2.11: HV Channel panel and test point electrical scheme	13
Fig.	3.1: Welcome screen	16
Fig.	3.2: Channel OFF status screen	17
Fig.	3.3: Channel ON status screen	17
Fig.	3.4: Channel KILL status screen	17
Fig.	3.5: Mode settings status screen	18
Fig.	3.6: Mode settings access screen	18
Fig.	3.7: Mode settings edit screen	18
Fig.	3.8: Channel settings edit screen	19
Fig.	3.9: Channel VSET select screen	19
Fig.	3.10: Channel VSET access screen	19
Fig.	3.11: Channel VSET digit selection screen	19
Fig.	3.12: Channel VSET digit access screen	20
Fig.	3.13: Channel VSET digit adjust screen	20
Fig.	3.14: Channel VSET digit confirm screen	20
Fia.	3.15: Channel VSET confirm screen	20
Fia.	3.16: Channel VSET de-select screen	21
Fig.	3.17: Channel KILL screen	21
Fia.	3.18: Channel EXIT screen	21
Fig.	3.19: Group selection	22
Fia.	3.20: Group active	22
Fia.	3.21: Group VSET access screen	22
Fig.	3.22: Group VSET digit selection screen	22
Fia.	3.23: Group Channel VSET digit access screen	23
Fia.	3.24: Group VSET digit adjust screen	23
Fia.	3.25: Group VSET digit confirm screen	23
Fia.	3.26: Channel VSET de-select screen	23
Fia.	3.27: Group EXIT screen	24
Fig.	3.28: USB communication diagram	25
Fia.	3.29: RS232 communication diagram	26
Fia.	3.30: RS485 communication diagram	26
Fia.	3.31: Ethernet communication diagram.	27
Fig.	3.32: RS232 port cable adapter	27
Fia.	3.33: Main Menu	28
Fig.	3.34: Board Status Menu	28
Fig.	3.35: Channels Menu	29
Fig.	3.36: PC keyboard	29
Fig	3 37: Channels group setting	29
Fia	3.38: Firmware Upgrade Menu/1	30
Fig	3.39: Firmware Upgrade Menu/2	30
Fin	3.40: Format EEPROM Menu	30
Fin	4.1: Side cover removal instructions	35
Fig.	4 2. Polarity selection instructions	36
Fig.	4.3: Din switch position	37
· '9.	No. Die ownen boordon	51

LIST OF TABLES

Table 1.1: Available items	5
Table 2.1: Power absorption	6
Table 2.2: Interlock operation	12
Table 2.3: Mod. N1470 series channel technical specifications	14
Table 3.1: Smilevs list	24

1 General description

1.1 Overview

Fig. 1.1: Mod. N1470 Series Programmable HV Power Supply

The Mod. N1470 provides 4 independent High Voltage channels in a single width NIM mechanics. Two and one channel versions (N1470A and N1470B) are also available.

Each channel can provide a $\pm 8kV$ max voltage, a 3 mA max current and a 9 W max power (8 W max power when output voltage is larger than $\pm 3 kV$).

Channels have common floating return (common return insulated from the crate ground); HV outputs are delivered through SHV connectors.

The HV output RAMP-UP and RAMP-DOWN rates may be selected independently for each channel in the range $1\div500$ V/s in 1 V/s steps.

Safety features include:

• OVERVOLTAGE and UNDERVOLTAGE warning when the output voltage differs from the programmed value by more than 2% of set value (minimum 10V).

• Programmable VMAX protection limit

• OVERCURRENT detection: if a channel tries to draw a current larger than its programmed limit, it enters TRIP status, keeping the maximum allowed value for a programmable time (TRIP), before being switched off

• Channels can be enabled or disabled individually through the Interlock logic.

Module control can take place either locally, assisted by a Graphic color display (not available on Mod.N1470AR) or remotely, via USB, RS232 or RS485 (not available on Mod.N1470AL); the RS485 port allows to build a N1470s' daisy chain network (up to 32 modules); in this case the SW1470 Control Software is necessary.

The Mod. A1480 is an optional DC Input Power Equalizer which allows to use a different input power distribution on the N147x modules (see § 2.2).

Table 1.1: Available items

Code	Item	Description	
WN1470B08AAC	N1470B	1Ch Programmable Power Supply 8kV	
WN1470A08AAC	N1470A	2Ch Programmable Power Supply 8kV	
WN1470ALCLAC	N1470AL	2Ch Programmable Power Supply 8kV Local Control (LOW COST)	
WN1470ALCRAC	N1470AR	2Ch Programmable Power Supply 8kV Remote Control (LOW COST)	
WN1470X08AAC	N1470	4Ch Programmable Power Supply 8kV	
WA1480XAAAAA	A1480	DC Power Input Equalizer for N147X Family	
WPERS0147001	Customization	Imon Zoom x10	
WSW1470XAAAA	SW1470	N147X Control Software	

2 Technical specifications

2.1 Packaging

The Mod. N1470 boards are housed in single width NIM modules.

2.2 Power requirements

The following table resumes the power absorption in the 3kV/3mA, 4kV/2mA and 8kV/1mA ranges.

Table 2.1: Power absorption

Board type	N1470					
Channel	without A1480	ithout A1480			with A1480	
configuration	Max n° CH ON ¹	Current (±12V)	Current (±6V)	Max n° CH ON	Current (±6V)	Current (±12V)
3kV/3mA	3 CH	2.80 A	<10mA	4 CH	4.30 A	1.85 A
4kV/2mA	4 CH	2.84 A	<10mA	4 CH	3.50 A	1.52 A
8kV/1mA	4 CH	3.16 A	<10mA	4 CH	3.90 A	1.68 A
Board type	N1470A, AL, A	AR			•	
Channal	without A1480			with A1480		
configuration	Max n° CH ON	Current (±12V)	Current (±6V)	Max n° CH ON	Current (±6V)	Current (±12V)
3kV/3mA	2 CH	1.92 A	<10mA	2 CH	2.32 A	1.04 A
4kV/2mA	2 CH	1.54 A	<10mA	2 CH	1.86 A	0.86 A
8kV/1mA	2 CH	1.58 A	<10mA	2 CH	1.90 A	0.85 A
Board type	N1470B					
	without A1480			with A1480		
Channel configuration	Max n° CH ON	Current (±12V)	Current (±6V)	Max n° CH ON	Current (±6V)	Current (±12V)
3kV/3mA	1 CH	1.09 A	<10mA	1 CH	1.28 A	0.62 A
4kV/2mA	1 CH	0.89 A	<10mA	1 CH	1.05 A	0.52 A
8kV/1mA	1 CH	0.98 A	<10mA	1 CH	1.17 A	0.57 A

WARNING: if the A1480 is not installed, $\pm 6V$ power supplies are required only by older versions of the N1470; such boards can be recognized by the presence of power pins 10 and 11 on the backplane NIM connector (see figure 2.1). If the A1480 is not installed, new versions operate only with $\pm 12V$ power supplies.

 $^{^{1}\ {\}rm The\ maximum\ number\ is\ considered\ with\ channels\ at\ FULL\ LOAD}$

PIN	FUNCTION				
1	+3 Yolts				
2	-3 Yolts			\sim	\sim
3	SPARE			()	\odot
4	RESERVED			TOP	~
5	COAXIAL				
6	ÇÇAXAL			(16)	(34)
7	COAXIAL COAXIAL		്ക	\circ_e	
<u>×</u>	+200 YOIS D.C.			Can V	~~
- 9	SPARE		(20.53	$\mathbb{U}_{\mathcal{I}}$	කම
-14-					9
12	-0 Y OIS RESERVED		0.	(18) 🗸	(36)
12	CARRY NO 1		1 2 62	$_{ m b}$ \sim (30) 🎞 .
14			$ a^{\circ} $	്ക്	(37)
15	BESEBVED		196	1970	20
16	+12 Yolts		1 13	' a `	<u> </u>
17	-12 Yolts		/~~\	20	<u>~</u>
18	SPARE		17.1	$\setminus - $	
19	RESERVED		[5	ക്ര	38 j
20	SPARE		レート	9	~
21	SPARE		_	~	_
22	RESERVED			(22)	\sim
23	RESERVED		6 6	$1 \simeq 1$	20
24	RESERVED		I V ° J	$l \approx \lambda$	"J
25	RESERVED			23	~_~
-26	SPARE		-	\sim	\sim
27	SPARE		$ \land \rangle$	(24)/	\sim
- 28	+24 YOIS		17	$1 \sim 1$	40)
29			\sim 2	ς Σ	
30	CARRY NO 2			(25),	
32			(14	$j \sim 0$	321 ~
22			ത്	26	- UU
24	POWER BET GND		$ \nabla_{R}$	586	33)
37	RESET		เลฃ	്ക്	്ക
36	GATE		ƳG	ω	Q
37	SPARE				4
38	COAXIAL	GROUDD	L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	' . .
39	COXXIAE	PE GG P	- ()	()	()
40	COAXIAL			\sim	<u> </u>
41	117 Y A.C (NEUT.)		\sim		
42	HIGH QUAL . GND		BE	EAR YE	W
G	GROUND GUDE PIN			105	
		-		الأخري	
				<u>ا_ا</u>	

Fig. 2.1: Backplane NIM connector

2.3 Front and back panel

Fig. 2.2: Mod. N1470 series front panel

Fig. 2.3: Mod. N1470 series back panel (std., A, B)

2.4 Front panel connections

Local control section² 2.4.1

Fig. 2.4: Local control panel

NAME: MONITOR TUNE

TYPE: 1" OLED DISPLAY (96x64) ROTARY SWITCH

FUNCTION:

Local settings monitoring Parameter and Mode setting

Channel control section 2.4.2

Fig. 2.5: Channel control panel and Kill scheme

NAME:	TYPE:	FUNCTION:
HV_EN/OFF/KILL	3 POS. SWITCH	Channel Enable and turning OFF/KILL ³
ON	RED LED	HV On enabled
REMOTE KILL	AMP 280370-2	The channel is KILLED either as the +/- contacts are open
		or as a +4÷6Vdc voltage is fed to pin - (see note)
+	GREEN LED	Positive polarity
-	YELLOW LED	Negative polarity

 ² Not available on Mod. N1470AR
 ³ OFF: Channel turned off according to RAMP DOWN setting; KILL: Channel turned off at fastest available rate

2.4.3 HV Status control section

Fig. 2.6: N1470 HV Status control panel

NAME:	TYPE:	SIGNAL:	FUNCTION:
ON	RED LED		HV On enabled (at least one channel ON)
ALARM	RED LED/ AMP 280371-2.	Out	Alarm status signaled (active LOW)
INTERLOCK	RED LED/ AMP 280371-2	In	Interlock signal
2.4.3.1	Alarm signal		
	VB 4 + 3 - 2 GND 1		—■ +5V

Fig. 2.7: N1470 ALARM electrical scheme

As an Alarm condition is detected (see § 3.4.3.1 and § 3.4.4.1) pins 2 and 3 (- and +) are closed; the contact can be used to switch an external device supplied by an external source, otherwise the VB and GND references can be used to provide a TTL compatible level on pin 2 and 3.

In the first case (externally supplied device) the maximum allowed ratings are:

- Maximum voltage between + and -: 12V
- Maximum sink current across + and -: 100mA

In the latter case, in order to produce a TTL compatible Alarm Out, pin 3 (+) must be connected with pin 4 (VB) and pin 1 (GND) with pin 2 (-); see the diagram below:

2.4.3.2 Interlock signal

A schematic diagram of the Interlock input is shown in the figure above, where the diode is part of optocoupler stage.

Interlock means that channels are hardware disabled. The interlock operation is explained by the following table:

Table 2.2: Interlock operation

CONFIGURATION \downarrow	INTERLOCK MODE (§ 3.1.1) \rightarrow	OPEN	CLOSE
leave contact open		INTERLOCK	ENABLED
voltage level (0÷1V, ~5mA	current) between pin 2 and pin 3	INTERLOCK	ENABLED
short circuit pin 1 with pin 2	2, and pin 3 with pin 4	ENABLED	INTERLOCK
voltage level (4÷6V, ~5mA	current) between pin 2 and pin 3	ENABLED	INTERLOCK

The front panel Interlock LED is ON when the INTERLOCK is enabled; as INTERLOCK is enabled, channels are <u>turned off</u> at the fastest available rate, regardless the RAMP DOWN setting.

2.4.4 Remote communication control section⁴

Fig. 2.10: Remote communication control and RS485 I/O – RS232 IN electrical scheme

NAME:	TYPE:	FUNCTION:
IN	AMP 280371-2	RS485 Input ⁵ ; adaptable to RS232 standard (see also § $4.2.2$)
OUT	AMP 280371-2	RS485 Output
USB	B TYPE USB	USB2.0 compliant realized via USB \leftrightarrow RS232 $$ FT232BM converter $$

⁴ Not available on Mod. N1470AL

 $^{^{5}}$ RS 485 Serial Port Interface allows to control up to 32 modules connected by a twisted pair cable; the first and last modules must be terminated, see § 4.2.

FUNCTION:

2.5 Rear panel connections

2.5.1 HV Channel Output

Fig. 2.11: HV Channel panel and test point electrical scheme

NAME: TYPE:

MON	AMP 280371-2	Vout/lout Test point
OUT	SHV RADIALL R317580	HV Channel Output
	Impedance: 50 Ohm	
	Frequency range: 0 – 2 GHz	
	VSWR: <1.20 + 0.3 F (GHz) – (plug and jack)	
	Test voltage: 10kV DC - 1mn (unmated connectors)	
	12kV DC – 1mn (mated pairs)	
	Current rating: 10 A	
ON	Red LED	HV Channel ON
The t	est points allow to monitor the Channel Output	t Voltage and Current according to the
follow	ving conversion:	
VMO	N: Voltage level (1V = 2kV ±1% readout; sam	ne polarity as channel)
IMON	I: Voltage level (1V = 660 µA ±3% readout; p	positive, 0÷5 V range)

2.6 Imon Zoom

Imon Zoom is an optional feature that allows to monitor the channel current with an increased resolution (10x) in the 0 – 300 μ A range; if the Imon Zoom is installed, by selecting Imon Range = LOW (see § 3.1.2), the output current is monitored with 5nA resolution (instead of 50 nA), in the 0 – 300 μ A range. It is important to notice that, if Imon Range = LOW is selected, and the channel draws a current larger than 300 μ A, then Overcurrent is signalled.

2.7 Technical specifications table

Table 2.3: Mod. N1470 series channel technical specifications

Output channels:	Positiv	e or Negative Polarity (re	quires internal setting, se	ee § 4.1)
Output ranges:		8 kV /	′ 3 mA	
Max. Ch. Output Power:		9 W(Vs 8 W(Vs	et ≤ 3 kV) et > 3 kV)	
Vset / Vmon Resolution:		200	mV	
Iset / Imon Resolution:	lf li	IMON RANGE = High is a f IMON RANGE = Low is	selected resolution is 50 selected resolution is 5 r	nA nA
Vmax:	Absolute maximum HV value Vset. Output volta	0 ÷ 8 level that the channel is age cannot exceed the pr	100 V allowed to reach, indepo eset value Vmax. The ac	endently from the preset scuracy is $1 \% \pm 5 V$
Vmax resolution:		±´	1 V	
Alarm output:		Open collector, 100 mA	A maximum sink current	
Interlock input:		LOW: <1V; current	~5mA; HIGH: 4÷6 V	
Ramp Up/Down:		1÷500 Volt/s	, 1 Volt/s step	
Trip:	Max. time an "overcur current generator; outp programmed value. "Ov "trip". Output voltage w rate, depending on Pov trip= INFINITE, "overcu TRIP range: 0 ÷ 999.9 s	rent" is allowed to last (s out voltage varies in or vercurrent" lasting more t ill drop to zero either at wer Down setting; in bo rrent" lasts indefinitely. s; 1000 s = Infinite. Step =	seconds). A channel in " der to keep the output han set value (1 to 9999 the Ramp-down rate of th cases the channel is = 0.1 s	overcurrent" works as a current lower than the) causes the channel to r at the fastest available put in the OFF state. If
Vmon vs. Vout Accuracy: 6		±0.02% of rea	ad value ±2V	
Vset vs. Vmon Accuracy: ⁶		±0.02% of rea	ad value ±2V	
Imon vs. lout Accuracy: 6	I	If IMON RANGE = High: f IMON RANGE = Low: ±	±2% of read value ±2μΑ 2% of read value ±200n	A A
Iset vs. Imon Accuracy: ⁶	I	If IMON RANGE = High: f IMON RANGE = Low: ±	±2% of read value ±2µA 2% of read value ±200n	A A
	<10mVpp	3kV/200µA		
Voltago Binnlos ⁷	<15mVpp	4kV/200µA	6kV/200µA	8kV/200µA
vonage rippie.	<25mVpp	3kV/3mA	4kV/2mA	
	<30mVpp	6kV/1mA	8kV/800µA	
Humidity range:		0 ÷	80%	
Operating temperature:		0 ÷ 4	45°C	
Storage temperature:		-10 ÷	70°C	
Vout / Temperature coefficient:		max. 50	ppm / °C	
Vout /voltage coefficient:		max 2	ppm/V	
Imon / Temperature coefficient:	max 10	0ppm/C°; max 300ppm/C	° with Imon X10 zoom (c	optional) ⁸
Long term stability Vout vs. Vset:	;	± 0.02% (after one week	@ constant temperature	e)

 ⁶ From 10% to 90% of Full Scale Range
 ⁷ Measured with: 1m cable length; 2nF capacitance, 100MHz band width
 ⁸ Typical data for IMON X10: Imon-Zoom Offset = ±100nA; ppm/C° Imon-Zoom <300ppm/°C; Imon leakage +5nA/2kV

3 Operating modes

CAUTION: N1470 MUST BE USED ONLY IN CRATES WITH FORCED COOLING AIR FLOW!

Module control can take place either locally, or remotely, via USB or RS485 (see § 3.3).

3.1 Programmable parameters

3.1.1 Boards parameters

General board parameters (CONTROL can be operated both in LOCAL and REMOTE mode; other monitor and settings are allowed in LOCAL mode only; see § 3.2.2) include:

Parameter:	Function:	Display:
Power (Monitor)	Module power supply status	M POWER O OK O U EXIT
Termination (Monitor)	Local Bus termination status (ON/OFF)	M POWER O OK U TERM U OFF
HV Clock (Monitor)	Sync clock frequency (200±10 kHz correct value)	POWER O OK S HUCK (KH2) L 199 S
Local Bus Baud Rate (Monitor/Set)	9600, 19200. 38400, 57600, 115200 Baud	M POWER O OK 9 U LBUS BAUD S600
Local Bus Address (Monitor/Set)	Local Bus address for remote communication (0÷31)	M POWER O DK 9 U LBUS ADDR U QQ
USB Baud Rate (Monitor/Set)	9600, 19200, 38400, 57600, 115200 Baud	M POWER O OK 9 U USB BAUD E 9600
INTERLOCK (Monitor/Set)	CLOSED / OPEN OPERATION (see § 2.4.3)	M POWER O DK O U INTERLOCK CLOSED
CONTROL	REMOTE: the module is controlled remotely; local monitor is allowed; LOCAL/REMOTE switch is enabled	
(monitor/Set)	LOCAL: the module is controlled locally; remote monitor is allowed	E LOCAL

3.1.2 Channel settings

For each channel the following parameters can be programmed and monitored either locally or remotely (see § 3.2.3):

Parameter:	Function:	Unit:	Display:
Vmon	High Voltage Monitored value	Volt	1 UMON (U) 9 0000.0 0 EXIT F
Imon	Current Monitored value	μΑ	1 UMON (V) 9 0000.0 9 IMON (JA) F 0000.00
V _{set}	High Voltage programmed value	Volt	1 UMON (U) 9 0000.0 0 USET (U) F 3500.0
I _{set}	Current Limit programmed value	μΑ	1 UMON [U] 9 0000.0 9 ISET [UA] F 0310.00
MaxV	Absolute maximum High Voltage level that the channel is allowed to reach (see § 0)	V	1 UMON (U) 9 0000.0 9 MAXU (U) F 8100
Ramp-Up	Maximum High Voltage increase rate	V/s	1 UMON (U) 9 0000.0 9 RUP (V/S) F 500
Ramp-Down	Maximum High Voltage decrease rate	V/s	1 UMON (U) 9 0000.0 9 RDINN (V/S) F 500
Power Down	Power Down mode after channel TRIP	KILL or RAMP	1 UMON (U) 9 0000.0 9 PDWN F KILL
Trip	Maximum time an "overcurrent" is allowed to last expressed in seconds (see § 0)	S	1 UMON (U) 0760.0 1 IMON (UR) 0245.40
Imon Range ⁹	Current Monitor Zoom 10x (optional)	High or Low	

3.2 Local Control

Insert the unit inside a powered NIM crate, and switch it ON. At the power the Display shows for a few seconds the following screen.

Fig. 3.1: Welcome screen

At this point the module is ready to be operated locally. The TUNE ROTARY SWITCH (see § 2.4.1) is lit up as long as Local Control is enabled.

⁹ This feature is available as optional; code WPERS0147001 N14XX Customization - Imon Zoom

3.2.1 HV connection

Verify the channels polarity (polarity setting is explained in § 3.4) checking that the polarity LEDs are switched on according to the programmed configuration (see § 2.4.2); verify the HV_EN/OFF/KILL 3 POS. SWITCH of each channel is set to OFF; the Display will show the following message in the left lower row:

Fig. 3.2: Channel OFF status screen

now connect the HV cable linking the outputs to the loads to be supplied and enable the HV outputs switching the HV_EN/OFF/KILL 3 POS. SWITCH in the HV_EN position; the Display will show the following message in the left lower row:

Fig. 3.3: Channel ON status screen

The KILL position of the HV_EN/OFF/KILL 3 POS. SWITCH allows to turn off the module at the fastest available rate; the Display will show the following message in the left lower row:

Fig. 3.4: Channel KILL status screen

3.2.2 Module settings

Module settings are general board settings; turn the TUNE ROTARY SWITCH until this screen is shown:

Fig. 3.5: Mode settings status screen

Push the TUNE ROTARY SWITCH in order to access MODULE parameters; the MODULE frame becomes red:

Fig. 3.6: Mode settings access screen

The TUNE ROTARY SWITCH allows to select the parameter to be set; turn the ROTARY SWITCH until such parameter is displayed (for example CONTROL), then select it by pushing the ROTARY SWITCH (the parameter is shown with a red frame as long as it is active):

NOD	POWER OK	٩
ULU	CONTRO)L. 7L

Fig. 3.7: Mode settings edit screen

Select the desired value by turning the TUNE ROTARY SWITCH and confirm it by pushing the switch itself.

3.2.3 Channel settings

In order to operate Output Channel settings:

Turn the TUNE ROTARY SWITCH until the channel number to be set is displayed in the left upper row (for example Channel 0)

Push the TUNE ROTARY SWITCH: at this point the frame of the left upper row (channel number) becomes red and the channel is selected

Fig. 3.8: Channel settings edit screen

Turn the TUNE ROTARY SWITCH until the parameter to be set (for example VSET) is displayed in the right lower row

Fig. 3.9: Channel VSET select screen

Push the TUNE ROTARY SWITCH: at this point the parameter is selected, its frame is shown in red and its name in blue; it is now possible to change the parameters value

Fig. 3.10: Channel VSET access screen

Turn the TUNE ROTARY SWITCH until the value digit to be edited is shown in blue, the parameter name in yellow

Fig. 3.11: Channel VSET digit selection screen

Push the TUNE ROTARY SWITCH: at this point the value digit becomes yellow and can be edited

Fig. 3.12: Channel VSET digit access screen

Turn the TUNE ROTARY SWITCH until the digit reaches the desired value

Fig. 3.13: Channel VSET digit adjust screen

Confirm it by pushing the TUNE ROTARY SWITCH, the edited digit returns blue

Fig. 3.14: Channel VSET digit confirm screen

Once all the digits are set to the desired value, turn the TUNE ROTARY SWITCH until the parameter name returns blue

0	VMON	[V]
1	0000	.0
Q	VSET	[V]
F	1258	.0

Fig. 3.15: Channel VSET confirm screen

Push the TUNE ROTARY SWITCH in order to de-select the parameter, the frame returns to blue

0	VMON	[V]
0	0000.	0
Q	VSET	[V]
F	1258.	.0

Fig. 3.16: Channel VSET de-select screen

It is now possible to set another parameter; note that the POWER DOWN and IMRANGE setting has not digits to be edited, but two options, TRIP/KILL and HIGH/LOW respectively:

Fig. 3.17: Channel KILL screen

In order to access another channel, the EXIT parameter has to be selected

Fig. 3.18: Channel EXIT screen

Now by turning the TUNE ROTARY SWITCH another channel number to be set can be selected.

If CONTROL MODE (see § 3.1.1) is set to REMOTE, the left lower row reports DIS (Disabled), since the channel can be accessed only via the serial links (see § 3.3.1). If the INTERLOCK MODE is changed while one channel is ON, the channel is turned OFF and the left lower row reports ILK (Interlock); if the channel is OFF, it can not be turned ON, until it is enabled according to the Interlock logic (see § 3.1.1).

3.2.3.1 Group Settings¹⁰

Group settings allow to broadcast the same parameter value to all channels. In order to operate Group settings:

Turn the TUNE ROTARY SWITCH until ALL is displayed in the left column

A L	UMON 14)]
L CI	0000.0	

Fig. 3.19: Group selection

Push the TUNE ROTARY SWITCH: at this point the frame of the left column becomes red and the GROUP is selected. Turn the TUNE ROTARY SWITCH until the parameter to be set (for example VSET) is displayed in the right column (all four channels values).

A	USET [V]	
L	1100.0	
L	1100.0	
~	1100.0	
1	1100 0	
H	1100.0	

Fig. 3.20: Group active

Push the TUNE ROTARY SWITCH: at this point the parameter is selected, its frame is shown in red and its name in blue (only one value common to all channels; pre-set value is picked from Channel 0); it is now possible to change the parameters value.

A	
LC	USET 1100.0
Ň	I

Fig. 3.21: Group VSET access screen

Turn the TUNE ROTARY SWITCH until the value digit to be edited is shown in blue, the parameter name in yellow

Fig. 3.22: Group VSET digit selection screen

¹⁰ Mod. N1470B <u>has not</u> group settings; Mod. N1470A has group settings, 2 channels values are displayed

Push the TUNE ROTARY SWITCH: at this point the value digit becomes yellow and can be edited

Fig. 3.23: Group Channel VSET digit access screen

Turn the TUNE ROTARY SWITCH until the digit reaches the desired value

Fig. 3.24: Group VSET digit adjust screen

Confirm it by pushing the TUNE ROTARY SWITCH, the edited digit returns blue

Fig. 3.25: Group VSET digit confirm screen

Once all the digits are set to the desired value, turn the TUNE ROTARY SWITCH until the parameter name returns blue. Push the TUNE ROTARY SWITCH in order to de-select the parameter, the frame returns to blue; when the parameter is not active, the parameter status of the four channels is shown.

A	USET [U]	
L	1300.0	
L	1300.0	
~	1300 0	
5	1000.0	
Н	1200.0	

Fig. 3.26: Channel VSET de-select screen

In order to go to individual channel settings, the EXIT parameter has to be selected

Fig. 3.27: Group EXIT screen

3.2.3.2 Smileys

Three types of Smileys in the display indicate:

Table 3.1: Smileys list

Smiley	Meaning
۲	OK Status
•	WARNING Status
8	ALARM Status

3.3 Remote Control

Module control can take place remotely, via USB or RS485; the latter allows to build a N1470s' daisy chain network. The CAEN NIM8301 7U 12 Slot Smart Fan Unit 300/600 W Crate allows also to communicate with the module via Ethernet.

3.3.1 Serial Links

3.3.1.1 USB communication

Fig. 3.28: USB communication diagram

The module is provided with a USB2.0 compliant interface (see § 2.4.4). The N1470 can be programmed via PC by connecting the PC USB port with the N1470 USB B-type port; the featured controller, the FT232BM chip requires drivers freely available at <u>www.ftdichip.com</u> (Drivers section); the site also provides installation instructions for all OS's (Documents section)

The connection can be performed via terminal emulator, such as HyperTerminal, configured as follows:

- baud rate 9600 (the same set on the N1470! See § 3.2.2)
- Data bits: 8
- Parity: none
- stop bit: 1
- Flow control: Xon Xoff

It is also possible to build a daisy chain of up to 32 N1470's, with the first module connected to the PC USB port and the subsequent ones daisy chained through the COMM IN/OUT, as explained in § 3.3.1.3; in this case communication with the chained modules is achieved through the USB - RS485 Communication Protocol, see § 3.4. All modules must be assigned a LOCAL BUS ADDRESS (see § 3.1.1) different from one another and the last one must be terminated (see § 4.2.1).

3.3.1.2 RS232 communication

Fig. 3.29: RS232 communication diagram

In order to control the module via RS232 it is necessary to use the module's COMM IN port (refer to § 2.4.2 for RS232 signals) and to follow adaptation instructions (see § 4.2.2). The connection can be performed via terminal emulator, such as HyperTerminal, configured as follows:

- baud rate 9600 (the same set on the N1470! See § 3.2.2)
- Data bits: 8
- Parity: none
- stop bit: 1
- Flow control: Xon Xoff

It is also possible to build a daisy chain of up to 32 N1470's, with the first module connected to the PC RS232 port and the subsequent ones daisy chained through the COMM IN/OUT, as explained in § 3.3.1.3; in this case communication with the chained modules is achieved through the USB - RS485 Communication Protocol, see § 3.4. All modules must be assigned a LOCAL BUS ADDRESS (see § 3.1.1) different from one another and the last one must be terminated (see § 4.2.1).

3.3.1.3 RS485 communication

Fig. 3.30: RS485 communication diagram

The COMM IN / OUT connectors implement a RS485 type LOCAL BUS which allows to build a 32 modules daisy chain. This can be achieved through the following steps:

- Connect the connector OUT of a module to corresponding the IN connector of the next one
- Assign to each module a different address (LOCAL BUS ADDR); see § 3.1.1
- Ensure that the LOCAL BUS BIT RATE is the same for all modules; see § 3.1.1
- Terminate the first and the last module in the chain (see § 4.2)

The module control can be done in one of the following ways:

- o by connecting a RS485 controller to the first module's COMM IN port
- o by connecting a RS485 controller to the last module's COMM OUT port

Communication with the chained modules is achieved \underline{only} through the USB - RS485 Communication Protocol, see § 3.4.

3.3.1.4 Ethernet communication

Fig. 3.31: Ethernet communication diagram

It is possible to communicate via Ethernet with one or more daisy chained N1470 modules through the NIM8301 Fan Unit¹¹. Communication via Ethernet is possible only through the USB - RS485 Communication Protocol. The single module or the first module of the daisy chain must be connected to the Fan Unit RS232 port through the cable adapter (see figure below) connected to the N1470 COMM IN port; SW[200, 201] switch placed on the Microcontroller board inside the module must be set to Adaptation ON (see § 4.2.2).

Fig. 3.32: RS232 port cable adapter

¹¹ The CAEN Mod. NIM8301 is a 7U (5+2) full size NIM crate (19"-12 slot) available with pluggable 300W and 600W power supplies, ventilated by pluggable 2U fan unit. Remote control and monitoring take place through CAN bus, Ethernet, USB and RS232 interfaces.

3.3.2 Communication Control

In order to launch the communication, type *CAEN* and then <Enter>. As the communication is established, the Main Menu will be displayed.

3.3.2.1 Remote Control: Main Menu

# # # #	# ## # # # #	## ## ## !##	## ### ## ##		+ ++ +++		ŧ	### ##	### ## ## #	 		## ## ## ##	 	
C	A.E	.Ν.	N1470	4	CH	8KV	ЭmА			V1.0	0		Addr	08
В	8 O A	RD	ΜE	Ν	U									
D F G U	Display Display/Modify channels Format Reformat EEPROM General General board status Update Firmware Update													
Q)uit				Ak	band	on p	rog	ram					
S	Gelec	t Ite	em											

Fig. 3.33: Main Menu

Type **D** to set/monitor channels parameters Type **F** to format the EEPROM Type **G** to monitor board status Type **U** to upgrade the firmware Type **O** to perform the current offset calibration Type **Q** to exit the program

3.3.2.2 Remote Control: General Menu

By typing ${f G}$ it is possible to access the General Menu which includes the board's general settings.

C.A.E.N. N1470 4 Ch HV	Power Supply V1.00 Addr 00
Serial Number	: 35
Boot firmware Version	: 1.0
Local Bus Termination	: 0FF
Interlock Active	: CLOSED
Internal Supply	: 0K
Over Power	: NO
HV Clock [200 KHz]	: 199 KHz
Press 'I' to change Inte	erlock Mode or any key to quit.

3.3.2.3 Remote Control: Channels Menu

By typing **D** it is possible to monitor and set all the channels parameters listed in § 3.1.2

C.A.E.N. N1	L470 4 CH 8KV 3mA	V1.00	Addr 08	
	ChØ	Ch1	Ch2	Ch3
Polarity Vmon Imon Status	0000.0 V 0000.00 mA	+ 0000.0 V 0000.00 uA	0000.0 V 0000.00 uA	0000.0 V 0000.00 uA
Power Vset Iset Maxv Ramp Up Ramp Down Trip Power Down	0ff 1000.0 V 2751.55 uH 8100 V 500 V/S 500 V/S Inf. S Kill	0ff 2005.0 V 0997.00 uA 8100 V 500 V/S 500 V/S Inf. S Kill	0ff 4000.0 V 1000.00 uA 8100 V 500 V/S 500 V/S Inf. S Kill	0ff 2000.0 V 2112.00 uA 8100 V 500 V/S 500 V/S Inf. S Kill
_Group Mode	Reset Alarm	Quit		

Fig. 3.35: Channels Menu

In order to change one parameter: point the parameter with the arrow keys (see figure below), and type the desired value, confirm by pressing <Enter>; Power and Power Down can be changed using the <Space> bar.

Fig. 3.36: PC keyboard

When one parameter is active, by typing G it is possible to make a "group setting", i.e. broadcast the same value to all channels (the parameter becomes active on all channels, see figure).

C.A.E.N.	N1470 4 Ch HV Power	Supply	V1.00	Addr	00	
	Ch0	Ch1		Ch2	Ch3	
Polarity Vmon Imon Status	+ 0000.0 V 0000.00 uA Dis	0000.0 0000.00 Dis	V uA	+ 0000.0 0000.00 Dis	V 0000.0 uA 0000.00 Dis)V JuA
Power Vset	0ff 1100.0 V 2000.00	0ff 1100.0	V	0ff 1100.0	0ff V <u>1100.0</u>	V
Maxv Ramp Up Ramp Down Trip Power Down	8100 V 500 V/S 500 V/S Inf. S n Kill	8100 8100 500 500 Inf. Kill	UH V V/S V/S S	8100 500 500 500 Inf. Kill	V 8100 V/S 500 V/S 500 V/S 500 S Inf. Kill	V V/S V/S S
Imon Rang Group Mode	e High e Reset Alarm	High Quit		High	High	ì

Fig. 3.37: Channels group setting

Type **Q** to exit the Menu.

3.3.2.4 Remote Control: firmware upgrade

By typing **U** it is possible to access the firmware upgrade menu:

C.A.E.N. N1470 4 CH 8KV 3mA V1.00 Firmware Update. Are you sure ? [y/n] _

Fig. 3.38: Firmware Upgrade Menu/1

If <y> is typed, then the following menu is shown:

Fig. 3.39: Firmware Upgrade Menu/2

At this point it is necessary to upload the updated firmware. If "HyperTerminal" is used it is necessary to perform "Transfer" and "Send Text File" operations by selecting the file "N1470.xxx"

3.3.2.5 Remote Control: format EEPROM

By typing **F** it is possible to access the format EEPROM menu:

C.A.E.N. N1470 4 CH 8KV 3mA V1.00

```
Format EEPROM. Are you sure ? [y/n]
```

Fig. 3.40: Format EEPROM Menu

After the FORMAT command, all the channels have the following settings:

Vset = 0 VIset = 300 µA Ramp Up / Down = 50 V/s Trip = 10 s MaxV = 8100 V Power Down = Kill

Module setting: Interlock Mode = Active CLOSED

3.4 USB - RS485 Communication Protocol

The following Protocol allows to communicate with up to 32 daisy chained modules. The Protocol is based on commands made of ASCII characters strings. The protocol requires firmware revision 1.0.1 or greater.

3.4.1 Command Format

The Format of a command string is the following :

\$BD:**,CMD:***,CH*,PAR:***,VAL:***.**<CR, LF >

The fields that form the command are :

BD : 0..31 module address (to send the command)
CMD : MON, SET
CH : 0..4 (4 for the commands related to all Channels)
PAR : (see parameters tables)
VAL : (numerical value must have a Format compatible with resolution and range)

3.4.2 Format of response string

Format response in case of error

String	Function (Units)	
#BD:**,CMD:ERR	Wrong command Format or command not recognized	
#BD:**,CH:ERR	Channel Field not present or wrong Channel value	
#BD:**,PAR:ERR	Field parameter not present or parameter not recognized	
#BD:**,VAL:ERR	Wrong set value (<min or="">Max)</min>	
#BD:**,LOC:ERR	Command SET with module in LOCAL mode	

Each string is terminated by < CR, LF >

Format response in case of correct command

String	Function (Units)	
#BD:**,CMD:OK	command Ok	
#BD:**,CMD:OK,VAL:***	command Ok *** = value for command to individual Channel	
#BD:**,CMD:OK,VAL:*;*;*;*	command Ok *;*;*;* = values Ch0,1,2,3 for command to all Channels	

Numerical value Field **'VAL'** has Format compatible (comma and decimal part) with the resolution and the range related to the parameter. Each string is terminated by **< CR**, **LF >**

3.4.3 MONITOR commands related to the Channels

The following table contains the strings to be used to handle monitor commands related to the Channels.

The 'X' in the Field 'Channel' can be set in the '0..(N-1)' range¹².

When 'X=N' the module returns the values of the parameter of all N Channels.

String	Function (Units)	
\$BD:xx,CMD:MON,CH:X,PAR:VSET	Read out VSET value (XXXX.X V)	
\$BD:xx,CMD:MON,CH:X,PAR:VMIN	Read out VSET minimum value (0 V)	
\$BD:xx,CMD:MON,CH:X,PAR:VMAX	Read out VSET maximum value (8000.0 V)	
\$BD:xx,CMD:MON,CH:X,PAR:VDEC	Read out VSET number of decimal digits	
\$BD:xx,CMD:MON,CH:X,PAR:VMON	Read out VMON value (XXXX.X V)	
\$BD:xx,CMD:MON,CH:X,PAR:ISET	Read out ISET value (XXXX.XX µA)	
\$BD:xx,CMD:MON,CH:X,PAR:IMIN	Read out ISET minimum value ($0\ \mu\text{A}$)	
\$BD:xx,CMD:MON,CH:X,PAR:IMAX	Read out ISET maximum value (3000.00 μA)	
\$BD:xx,CMD:MON,CH:X,PAR:ISDEC	Read out ISET number of decimal digits	
\$BD:xx,CMD:MON,CH:X,PAR:IMON	Read out IMON value (XXXX.XX µA)	
\$BD:xx,CMD:MON,CH:X,PAR:IMRANGE	Read out IMON RANGE value (HIGH / LOW)	

 $^{^{12}}$ **N** is the number of channels

String	Function (Units)
\$BD:xx,CMD:MON,CH:X,PAR:IMDEC	Read out IMON number of decimal digits (2 HR, 3 LR)
\$BD:xx,CMD:MON,CH:X,PAR:MAXV	Read out MAXVSET value (XXXX V)
\$BD:xx,CMD:MON,CH:X,PAR:MVMIN	Read out MAXVSET minimum value (0 V)
\$BD:xx,CMD:MON,CH:X,PAR:MVMAX	Read out MAXVSET maximum value (8100 V)
\$BD:xx,CMD:MON,CH:X,PAR:MVDEC	Read out MAXVSET number of decimal digits
\$BD:xx,CMD:MON,CH:X,PAR:RUP	Read out RAMP UP value (XXX V/S)
\$BD:xx,CMD:MON,CH:X,PAR:RUPMIN	Read out RAMP UP minimum value (1 V/S)
\$BD:xx,CMD:MON,CH:X,PAR:RUPMAX	Read out RAMP UP maximum value (500 V/S)
\$BD:xx,CMD:MON,CH:X,PAR:RUPDEC	Read out RAMP UP number of decimal digits
\$BD:xx,CMD:MON,CH:X,PAR:RDW	Read out RAMP DOWN value (XXX V/S)
\$BD:xx,CMD:MON,CH:X,PAR:RDWMIN	Read out RAMP DOWN minimum value (1 V/S)
\$BD:xx,CMD:MON,CH:X,PAR:RDWMAX	Read out RAMP DOWN maximum value (500 V/S)
\$BD:xx,CMD:MON,CH:X,PAR:RDWDEC	Read out RAMP DOWN number of decimal digits
\$BD:xx,CMD:MON,CH:X,PAR:TRIP	Read out TRIP time value (XXXX.X S)
\$BD:xx,CMD:MON,CH:X,PAR:TRIPMIN	Read out TRIP time minimum value (0 S)
\$BD:xx,CMD:MON,CH:X,PAR:TRIPMAX	Read out TRIP time maximum value (1000.0 S)
\$BD:xx,CMD:MON,CH:X,PAR:TRIPDEC	Read out TRIP time number of decimal digits
\$BD:xx,CMD:MON,CH:X,PAR:PDWN	Read out POWER DOWN value (RAMP / KILL)
\$BD:xx,CMD:MON,CH:X,PAR:POL	Read out POLARITY value ('+' / '-')
\$BD:xx,CMD:MON,CH:X,PAR:STAT	Read out Channel status value (XXXXX)

3.4.3.1 Meaning of STATUS bits (value read in decimal Format)

Bit	Function
Bit $0 \rightarrow ON$	1 : ON 0 : OFF
Bit 1 \rightarrow RUP	1 : Channel Ramp UP
$Bit 2 \to RDW$	1 : Channel Ramp DOWN
$Bit\ 3\toOVC$	1 : IMON >= ISET
Bit 4 \rightarrow OVV	1 : VMON > VSET + 250 V
Bit 5 \rightarrow UNV	1 : VMON < VSET - 250 V
$Bit 6 \to MAXV$	1 : VOUT in MAXV protection
Bit 7 \rightarrow TRIP	1 : Ch OFF via TRIP (Imon >= Iset during TRIP)
Bit $8 \rightarrow \text{OVP}$	1 : Power Max Power Out > 9.3W for VOUT \leq 3KV Power Out > 8.2W for VOUT > 3KV
Bit 9 \rightarrow OVT	1: TEMP > 105°C
Bit 10 \rightarrow DIS	1 : Ch disabled (REMOTE Mode and Switch on OFF position)
Bit 11 \rightarrow KILL	1 : Ch in KILL via front panel
Bit $12 \rightarrow ILK$	1 : Ch in INTERLOCK via front panel
Bit 13 \rightarrow NOCAL	1 : Calibration Error
Bit 14, 15 → N.C.	

3.4.4 MONITOR commands related to the module

The following table shows the strings to be used to handle monitor commands related to the module.

String	Function (Units)
\$BD:xx,CMD:MON,PAR:BDNAME	Read out module name (N1470)
\$BD:xx,CMD:MON,PAR:BDNCH	Read out number of Channels present (4, 2, 1)
\$BD:xx,CMD:MON,PAR:BDFREL	Read out Firmware Release (XX.X)
\$BD:xx,CMD:MON,PAR:BDSNUM	Read out value serial number (XXXXX)
\$BD:xx,CMD:MON,PAR:BDILK	Read out INTERLOCK status (YES/NO)
\$BD:xx,CMD:MON,PAR:BDILKM	Read out INTERLOCK mode (OPEN/CLOSED)
\$BD:xx,CMD:MON,PAR:BDCTR	Read out Control Mode (LOCAL / REMOTE)
\$BD:xx,CMD:MON,PAR:BDTERM	Read out LOCAL BUS Termination status (ON/OFF)
\$BD:xx,CMD:MON,PAR:BDALARM	Read out Board Alarm status value (XXXXX)

3.4.4.1 Meaning of Board Alarm bits

Bit	Function
Bit 0 \rightarrow CH0	1 : Ch0 in Alarm status
Bit 1 \rightarrow CH1	1 : Ch1 in Alarm status
Bit 2 \rightarrow CH2	1 : Ch2 in Alarm status
Bit 3 \rightarrow CH3	1 : Ch3 in Alarm status
Bit 4 \rightarrow PWFAIL	1 : Board in POWER FAIL
Bit 5 \rightarrow OVP	1 : Board in OVER POWER
Bit 6 \rightarrow HVCKFAIL	1 : Internal HV Clock FAIL (≠ 200±10kHz)

3.4.5 SET commands related to the Channels

The following table contains the strings to be used to handle set commands related to the Channels.

The 'X' in the Field 'Channel' can be set to the '0..(N-1)' values. When 'X=N' the command is issued to all N Channels.

String	Function (Units)
\$BD:xx,CMD:SET,CH:X,PAR:VSET,VAL:XXXX.X	Set VSET value
\$BD:xx,CMD:SET,CH:X,PAR:ISET,VAL:XXXX.XX	Set ISET value
\$BD:xx,CMD:SET,CH:X,PAR:MAXV,VAL:XXXX	Set MAXVSET value
\$BD:xx,CMD:SET,CH:X,PAR:RUP,VAL:XXX	Set RAMP UP value
\$BD:xx,CMD:SET,CH:X,PAR:RDW,VAL:XXX	Set RAMP DOWN value
\$BD:xx,CMD:SET,CH:X,PAR:TRIP,VAL:XXXX.X	Set TRIP time value
\$BD:xx,CMD:SET,CH:X,PAR:PDWN,VAL:RAMP/KILL	Set POWER DOWN mode value
\$BD:xx,CMD:SET,CH:X,PAR:IMRANGE,VAL:HIGH/LOW	Set IMON RANGE value ¹³
\$BD:xx,CMD:SET,CH:X,PAR:ON	Set Ch ON
\$BD:xx,CMD:SET,CH:X,PAR:OFF	Set Ch OFF

¹³ parameter 'IMRANGE' can be changed only on modules featuring IMON zoom (optional)

3.4.6 SET commands related to the module

String	Function (Units)	
\$BD:xx,CMD:SET,PAR:BDILKM,VAL:OPEN/CLOSED	Set Interlock Mode	
\$BD:xx,CMD:SET,PAR:BDCLR	Clear alarm signal	

4 Internal Settings

4.1 Polarity selection

The output polarity is independently selectable for each channel. Note that the polarity is indicated by two LEDs for each channel on the front panel. In order to change the polarity:

- Wear Antistatic Gloves
- Switch off the unit
- Wait for the complete discharge of the capacitors.
- Lay down the unit, right side up
- Remove screws 1, 2, 3, 4, 5, 6, see figure (red):

0	<u>o</u>	0
1	2	3
	(Å	
	æ	
	G	
4	5	6
0	0	0

Fig. 4.1: Side cover removal instructions

- Lift the side cover gently
- At this point it is possible to change the channel polarity: refer to the following figure (the blue arrow indicates diode bridge box placed to configure channel as POSITIVE).
- During this operation pay attention not to bend the pins, as they are plugged completely in their sockets

Fig. 4.2: Polarity selection instructions

- In order to choose the POSITIVE POLARITY, plug the diode bridge box, with the + symbol towards the connector side.
- In order to choose the NEGATIVE POLARITY, plug the diode bridge box, with the symbol towards the connector side.
- Always pull and plug the diode bridge box by holding it on the handle pointed by the arrow in Fig. above.
- Once settings are done, put the right side cover back in place with screws 1, 2, 3, 4, 5, 6.

4.2 Internal switches

Fig. 4.3: Dip switch position

4.2.1 Local Bus termination

The SW[1..3] switch placed on the Microcontroller board inside the module (behind the *Remote communication control section*, see § 2.4.4), allows to terminate the Local Bus for daisy chain purposes (see § 3.3.1); dot NOT visible = Termination ON.

4.2.2 RS485 – RS232 conversion

The SW[200, 201] switch placed on the Microcontroller board inside the module, allows to adapt RS485 signals to RS232; dot visible = Adaptation ON.