

2014年中国物理学会秋季会议

哈尔滨工业大学 9月11-14日, 2014

Recent status and plans for symmetry energy studies

肖志刚 清华大学物理系

Experimental Nuclear Physics Group

1. 费米能区至亚GeV能区核反应与核物质状态 方程实验研究;

PLB06', PLB08', PRL09', JPG09', PRC09', 10', NPA10', PRC14', EPJA14', CPC12'.....

2. 基于CIAE 在束γ阵列的核谱学研究;

¹³⁸Nd (PRC13'), ⁹⁹Tc(PLB), ¹³⁸Pm(EPJA), ¹²⁹Xe

3. 围绕大科学工程的探测器研发

NIM13', 13', NED14', CPC13', 14'

4. 国际合作: Sπirit TPC/SOLID/FOPI/KTH/iThemba/STAR

(..... PRL112(2014)202502)

http://qm.phys.Tsinghua.edu.cn/enpg

- Introduction: EOS of asymmetric nuclear matter
- Experimental Results relevant to $E_{sym}(\rho)$ at $\rho < \rho_0$
- **R&D** for the HIRFL-CSR External target Experiment (CEE)
- **Summary**

Symmetry Energy:

Energy cost to convert protons to neutrons in nuclear medium

L.W. Chen, C.M. Ko and B.A. Li, Phys. Rev. C72, 064309 (2005); C76, 054316 (2007).

Astrophysics connection \rightarrow Proton fraction \rightarrow M-R relation $\rightarrow \rho_c$ for D-Urca \rightarrow Transition density

 Phy. Rep. 442(2007) 109;
 NPA777(2006)479

 PRC76(2007),025801;
 PRC75(2007)

 015801
 PRC75(2007)

 PRC74 (2006),035802;
 Astro. J. 676 (2008)

 1170
 Phy. Rep. 411(2005) 325;

Nuclear Physics connection
→ Nuclear Binding Energy
→ 3 body force
→ Tensor force
→ Collision dynamics...

Probe list for sub-saturation density E_{sym}

At sub-saturation densities

- → Global nucleon optical potential in n/p-A collisions or (p,n) reactions
- → Neutron Skin thickness of Pb-208 (PREX experiment at JLAB)
- \rightarrow Isospin scalaring and isospin fractionaiton in multifragmentation
- \rightarrow Isospin diffusion
- \rightarrow n/p ratio of fast and pre-equilibrium nucleons
- \rightarrow N/Z composition of the emitted fragments
- \rightarrow GDR strength
- \rightarrow Correlation function
- $\rightarrow \dots$

```
S_0 = 32.5 \pm 2.5 \text{ MeV} L = 55 \pm 25 \text{ MeV}
```


The European Physical Journal

volume 50 · number 2 · february · 2014

Using fission to study the long time effect of $E_{sym}(\rho)$

M. Gui et al., Phys. Rev. C 48, 1791 (1993).

Experimental Set Up

- 35 MeV/u Ar+ Au.
- Trigger: 2 fold fragments .AND. 1 LCP
 - 2 fold fragments .AND. 1 Proj.-like

- 1) Six PPAC covering $\sim 1/3$ whole space
- 2) All about 30 cm to the target
- 3) 3 Si-CsI and 3 Si-Si-CsI (158,127,80) telescopes
- 4) One 12-unit Si-BGO hodoscope

TABLE I: The parameters of the 6 LCP telescopes								
Tele. No.	1	2	3	4	5	6		
$d \ (mm)$	12.0	10.2	10.4	14.0	14.0	14.0		
L (cm)	11.5	11.5	11.5	26.0	21.6	28.5		
θ (°)	158	155	127	80	59	44		
ϕ (°)	-90	90	90	-145	-139	-133		
$\Delta E_1 \ (\mu m)$	50	50	50	50	50	50		
$\Delta E_2 \ (\mu m)$	400	/	400	400	/	/		
$E_{\rm CsI} \ (\rm mm)$	40	40	40	40	40	40		

Fission Distribution

1) Relative velocity peaks at 2.4 (Viola systematics), and showing slight asymmetry 2) At low and high V_{add} , the relative velocity exhibits different manner

LCPs in coincidence with fission

Double angular ratio of particle yield

• Model independently, particles emitted at smaller angle are more neutron rich

• Smaller angle emitted particles experience more dynamical contribution

Energy spectra analysis vs mass asymmetry

Minimum χ^2 analysis

Energy spectra vs. LMT

Minimum χ^2 analysis

• Error bars are large for the FF source.

IQMD calculations

1)Along the whole decay chain, the average N/Z decreases with time.

→ The neutron richness of the emitted particles is enhanced at the beginning of the emission.
 2) The isospin composition N/Z exhibits an obvious dependence on E_{sym}(ρ) till very late stage.
 3) The effect of the symmetry energy remains equally significant in the fission.
 → Scission point can be a clock to investigate the effect of E_{sym}(ρ).
 R.S.Wang, Y. Zhang, XZG et a., PRC89 (2014) 064613

Further improved experiment

- <u>Complete in June 2014.</u>
- 1. Improved PID by using H.Q. telescopes
- 2. Lower energy threshold
- 3. More Detectors(> 5 positions)

PPAC Performance

Telescope Performance

• Isotope identification achieved in most of the telescopes \rightarrow More angles

Above saturation: Very uncertain

Why the energy region below 0.5 GeV/u is favored?

M. Zhang, XZG et al, PRC80(2009)034616 F. Fu, XZG, PLB 666(2008)359

E_{sym}(ρ) at supra-saturation studies at HIRFL-CSR

Pre-CEE collaboration

R&D works: Simulations

- **G4 Simulations:**
- [©] Physics Simulations /design
- **©** G4 simulation platform
- **©** Performance requirements
- **©** Tracking with MWDC
- © TOF design and performance

.

Forward MWDC conceptual design

MWDC:

E field is formed in cell **Track leaves ionizations Deduce drift length from t**_d **Construct track from multi cells**

MWDC	

Transv. Hit resolution	0.3 mm
# of layers	3*3
# of channels	3000
Total area	8 m²
Momentum	5%
Resolution	

R&D of MWDC array

Spatial Timing Relation Calibration

 $oldsymbol{\circ}$

2 Correct the STR till the residue distribution is optimized.

MWDC array performance

3-D track finding and reconstruction in MWDC

$$\sum_{i}^{1} \sum_{i} (z_{i}(\cos\alpha_{i})^{2}a' + (\cos\alpha_{i})^{2}b' + z_{i}\sin\alpha_{i}\cos\alpha_{i}c' + \sin\alpha_{i}\cos\alpha_{i}d' - x_{i}\cos\alpha_{i}) = 0$$

$$\sum_{i} (z_{i}^{2}\sin\alpha_{i}\cos\alpha_{i}a' + z_{i}\sin\alpha_{i}\cos\alpha_{i}b' + z_{i}^{2}(\sin\alpha_{i})^{2}c' + z_{i}(\sin\alpha_{i})^{2}d' - x_{i}z_{i}\sin\alpha_{i}) = 0$$

$$\sum_{i} (z_{i}\sin\alpha_{i}\cos\alpha_{i}a' + \sin\alpha_{i}\cos\alpha_{i}b' + z_{i}(\sin\alpha_{i})^{2}c' + (\sin\alpha_{i})^{2}d' - x_{i}\sin\alpha_{i}) = 0$$

3 Then the parameters of the straight track can be derived.

With the multiple scattering effect, the reconstruction vertex is at the order of 2 mm.

Manufactory of large MWDC

Assembly of larger area MWDC Development of FLADC-based DAQ Day one Beam time:

2015, March

Soldering Wire and Frame

Leak rate Test

Wire Frame/Tension Preset

A Large MWDC to be completed

• In 35 MeV/u 40Ar+197Au collisions:

 \rightarrow LCPs are measured in coincidence with fission events

- →Smaller angle products, with more contribution from dynamic emissions, are more neutron rich. A hierarchy from t to d and p are observed for the early emissions, later emissions exhibit the inverse trend.
- →Effect of the symmetry energy persists to very late stage. Process with long time scale is sensitive to the underlying effect of the symmetry potential. The time dependent N/Z of the light charged particles can be used as a new probe to $E_{sym}(\rho)$.
- For the HIRFL-CSR External target Experiment:

 \rightarrow R&D on going well

 \rightarrow Hope to have the chance to contribute to the $E_{sym}(\rho)$ studies.

Acknowledgements

Collaborators

THU: R. S. Wang, Y. Zhang, H. Yi, L. M. Lv, Y. Huang. W. J. Cheng. H. J. Li, M. Lin, Z. Zhang
IMP: G. M. Jin, L. M. Duan, R. J. Hu, H. R. Yang, Y. P. Zhang, J. S. Wang, P. Ma, Y. J. Zhou,
Y. Y. Yang, S. L. Jin
CIAE: Y. X. Zhang, Q. H. Wu

ATC: J. L. Tian MSU: B. Tsang

CCNU: N. Xu, F. Liu SINAP: F. Lu, Y. G. Ma CCNU: M. Shao, L. Zhao, J. F. Yang IMP: Z. Y. Sun, G. Q. Xiao

Funding: NSFC, Tsinghua University Initiative Scientific Research Program

Thank You for your attention!

