The Sixth Workshop on Hadron Physics in China and Opportunities in US

July 21-July 24, 2014 (Lanzhou, China)

Results/Programs from IMP and THU — Some GEM R&D works and the CEE spectrometer

Zhigang XIAO Tsinghua University

Collaborators:

IMP: Limin Duan and his group, Zhiyu Sun, Guoqing Xiao USTC: Ming Shao, Junfeng Yang, Lei Zhao

THU: Yan Huang, Yi Wang Zhi Deng...

CCNU: Nu Xu SINAP: Yugang Ma, Fei Lu DUKE/THU: Haiyan Gao...

1 GEM activities at THU and IMP

Introduction and Experimental Setup

Non-uniformity effects of the inter-foil distance of GEM detector

Assembly of Large area GEM detector

2 The CEE experiment

Introduction

Conceptual design

Progress of the R&D studies

3 Summary

GEM detector demands from SOLID

He-3

Target

GEM

→JLAB 12 GeV upgrade
→Nearly whole space coverage in C.M.
→Multi-subsystems including GEM, Cerenkov, MRPC

→About 1.5T central field by solenoid
→Measuring high energy electron and hadrons

Physical goal of SOLID: Semi-inclusive eN process to detect the TMDs of nucleons.

target angle hadron angle

 About 200 scientist from about 50 institutes from 8 countries.
 From China: USTC, CIAE, PKU, THU, LZU, IMP, HSU, SDU etc.

Calorimeter

6 lays of large area GEM detector

Calorimeter

Cherenkov (Heavy)

Cherenkov (Light)

- Large GEM detector is demanded in SOLID
- Possible demand in CEE for its TPC read out.

Small GEM detector test

1D GEM detector

• Electronics CASA-GEM board

CASA-GEM board

Gain	2~40mV/fC
Dynm. Rng.	0~1000fC
Shap. time	20~80ns
INL	<1%
Power	10 (11) mW/ch for Anode (Cath.) ch.
ENC	<2000e (Anode., Input Cap: 50pF), <3000e (Cathode, Input Cap: 100pF)

• 2-D read out

Readout Board Dimension

0 0 0 and a second desedenteredenter 0 0 0 0 0 Contraction of in i fan i fan i fan i CASE AND AND Contraction of the local division of the loc In the second **Design of Readout**

Extracted from the lowest foil

• 1-D readout

Strip: W=100+100 μm

Experimental Setup

X:500 800 1100 1400 1700 2000 2300(mv)

The latest setup

Adjustable thick Slit

> Precise movable platform

VME DAQ

Acknowledgement: 96 channels peak sensitive ADC from Prof. Boqiang Ma's group (PKU)

Cluster size analysis

• Using larger strip distance/width to save cost, however, strip width can not go beyond a certain value.

Cluster size (2rd moment analysis)

 x_i is the position of fired strip a_i is the amplitude of signal \overline{x} is the mean position

FWHM: X: 22% Y:25% total: 22%

Spatial Resolution with Fe-55

Spatial Resolution with Fe-55

Spatial resolution

strip width(μm)	δ _{exp} (μm)	δ _{theo} (μm)
200	56±15	58
X:446 Y:625	204 ± 13	221
446	159 ± 22	129

$$\delta_{\text{theo}} = \frac{w}{\sqrt{12}}$$

$\mathbf{P}_{\mathbf{r}}$ Non-uniformity effects of the inter-foil distance

• Why this study?

Extra spacer to extend the gap at one side

Gain variation vs. distance change

• The gain exhibits a linear dependence on the relative change of the distance.

1% distance variation causes approximately 1.2% variation in gain.

Effects on Cluster size and spatial resolution

• Cluster size shows insignificant effect.

Neither does the spatial resolution

• Spatial resolution shows neither dependence on the distance changing

Larger area GEM detector assembling

Scheme of the triple GEM 45cm*45cm

• Larger area GEM detector being assembled and debugged.

Larger area GEM detector assembling

- Clean room of Prof. Limin Duan's group in IMP.
- Debug going on.

The CEE experiment

- GEM activities at THU and IMP
 Introduction and Experimental Setup
 Non-uniformity effects of the inter-foil distance of GEM detector
 Assembly of Large area GEM detector
- 2 The CEE experiment

Introduction

Conceptual design

Progress of the R&D studies

3 Summary

To understand the nuclear equation of state

IE

Symmetry energy at supra-saturation density

- In the hadron phase, the iso-vector part of the nuclear potential, namely the symmetry energy, is a key point.
- \rightarrow Nuclear and astrophysics input

- Neutron Star—a remote cool dense nuclear object
- Proton fraction in neutron star M-R relation D-Urca process Core-crust transition density etc...

 \rightarrow Density dependence not fixed

 $(N/Z)_{svs}$

→ HIRFL-CSR energy is preferential E_{sym}(ρ) studies
 •Because ρ ~ 2ρ₀ density achievable

Esym(ρ) at supra-saturation studies at HIRFL-CSR

Pre-CEE collaboration

6/??/2013 15:56:00

Central Field0.5 THom. Region~1 m×0.9 m×1.2 m³Uniformity1%Total Size~2.5×3×4 m³Total Weight~200 Ton

Prototype of a superconductive magnet (Made in IMP, for FAIR)

า เอเน_บเอ

TPC: Conceptual Design

		~1.1 m× 0.9 m
, Ε	Pad. number	~10000
	Pad size	~9 mm × 1.1 mm
TPC: B//E Particle bending due to B Ionized electrons drift due to E Collect signal when e arrive	Max. drift leng.	~ 50 cm
	Working gas	90% Ar + 10% CH ₄
	E Field	150V/cm
	dE/dx range	Z<=6, π,p,d,t,He-C
	Double track res.	2.5 cm
	Max. Multi.	200
Post (Readout Electron	ics)(Readout Pad	Plane) (Wires)
Cathode Place		(Beam Window
	B, E TPC: B//E Particle bending due to B Ionized electrons drift due to E Collect signal when e arrive (Readout Electron Collect for the second Collect for the second	B, E Pad. number Pad size Pad size Max. drift leng. Working gas E Field dE/dx range Double track res. Max. Multi. (Readout Electronics) (Readout Pade (Side Panels)

TOF (time of flight): Conceptual Design

MRPC:

→Very high V over gaps between glasses in stack;

→ Ionization and avalanche occurs

→Collect the induced signal from pad

T0+TOF	
Time resolution	<80 ps
Occupancy	<10%
Total Area	12m ²
# channels	3000

PID for TPC+iTOF

Forward MWDC conceptual design

Coverage and PID with MWDC+eTOF

Silicon Pixel conceptual design

R&D the Si pixel detector

- 2) Spatial Resolution < 0.5mm!
- 3) Further test at IMP planned in Sept. 2014

R&D of MWDC array

Conventional electronics

FLADC for timing measurement

Spatial Timing Relation Calibration

 $oldsymbol{\circ}$

2 Correct the STR till the residue distribution is optimized.

MWDC array performance

Yi Han, XZG et al, Chin. Phys. C, to be published.
100cm*100cm MWDC array constructed.
40cm *40cm MWDC array in construction.
Day one beam test, ~May 2015.

3-D track finding and reconstruction in MWDC

1 To fit the drift length measured by X, U and V wires by minimizing the $\chi 2$

$$\chi^2 = \sum_{i} \frac{[x_i - (a'\cos\alpha_i + c'\sin\alpha_i)z_i - (b'\cos\alpha_i + d'\sin\alpha_i)]^2}{[1 + (a'\cos\alpha_i + c'\sin\alpha_i)^2](\delta d_i)^2}$$

3 Then the parameters of the straight track can be derived.

3D residue distribution from Geant 4 simulation. (include track finding)

Manufactory of large MWDC

Wiring: Frame=1.6m×1.6m。

Wire Frame/Tension Preset

Soldering Wire and Frame

A Large MWDC to be completed

Leak rate Test

Installed for Beam Test

R&D-MRPC

"Observation of the Antimatter Helium-4 Nucleus"

by STAR Collaboration

Nature, 473, 353(2011).

180

Momentum		500MeV	600MeV	800MeV
Pion sample	#1	56	47	45
	#2	51	48	40
	#3	46	48	45
Proton sample	#1	29	32	36
	#2	28	30	35
	#3	31	31	35

Production and QC of large MRPC by THU

Summary and acknowledgement

\rightarrow GEM R&D for SOLID:

1 GEM R&D has been started in THU in collaboration with Prof. Duan from IMP. The performance of the small GEM prototype is demonstrated good. Using a novel method, the non-uniformity effects of the inter-foil distance is studied. Large area GEM detector assembly is ongoing.

\rightarrow CEE at HIRFL-CSR:

2 The conceptual design of the CEE is presented. R&D work for most of the sub-systems have been well started. Performance of MWDC and MRPC have been tested and meet the requirement of CEE.

Acknowledgement:

Funding: 1. NSFC, 2. Tsinghua University Initiative Scientific Research Program.

Thank You for your attention!

