

System Size and Beam Energy Effects on Probing the Nuclear Symmetry Energy with Pion Ratio

Ming Zhang Department of Physics, Tsinghua University

Collaborators

THU: Zhi-Gang Xiao Texas A&M: Bao-An Li SJTU: Lie-Wen Chen IMP: Gao-Chan Yong

International Conference on Nucleus-Nucleus Collisions Aug, 18, 2009 Beijing

Outline

Brief Introduction on nuclear symmetry energy

> π^{-}/π^{+} probe to $E_{sym}(\rho)$ at high densities

Main results and discussions

Conclusion and further experiments

EOS of Asymmetric Nuclear Matter and Symmetry Energy

$E(\rho,\delta) = \frac{E(\rho,0) + E_{sym}(\rho)\delta^2 + O(\delta^4), \quad \delta = (\rho_n - \rho_p)/\rho$

$$E_{\rm sym}(\rho) \equiv \frac{1}{2} \frac{\partial^2 E(\rho, \delta)}{\partial \delta^2}$$

Most progress has been made to constrain the behavior of density dependence of symmetry energy at sub-saturation densities while little is know at supra-saturation densities!

A Conservative Conclusion about Symmetry Energy at Sub-saturation Densities

- Isospin diffusion experiment at MSU
- ✓ Neutron skin in ²⁰⁸Pb from hadronic probes
- Isoscaling in heavy-ion reactions
- Isospin dependence of giant monopole resonance

$$31.6(\rho / \rho_0)^{0.69} \leq E_{sym}(\rho) \leq 31.6(\rho / \rho_0)^{1.05}$$

B.A. Li, L.W. Chen and C.M. Ko, Phys. Rep. 464 (2008) 113

A Promising Probe at Super-saturation Densities π^{-}/π^{+} ratio

Isobaric Model

 $\pi^{-}/\pi^{+} = (5N^{2}+NZ)/(5Z^{2}+NZ) \approx (N/Z)^{2}_{dens}$

 Δ (1232) resonance model in first chance NN scattering (neglect re-scattering and re-absorption)

Thermal Model

$$\frac{\pi^-}{\pi^+} \propto \exp[2(\mu_n - \mu_p)/kT]$$

 $\mu_{n} - \mu_{p} = (V_{asy}^{n} - V_{asy}^{p})\delta - V_{Coul} + kT\{\ln\frac{\rho_{n}}{\rho_{p}} + \sum_{m}\frac{m+1}{m}b_{m}(\frac{1}{2}\lambda_{T}^{3})^{m}(\rho_{n}^{m} - \rho_{p}^{m})\}$

An Isospin and Momentum Dependent Transport Model

IBUU04

The isospin and momentumdependent mean- field potential (MDI) is followed by:

$$U(\rho, \delta, \mathbf{p}, \tau) = A_u(x) \frac{\rho_{\tau'}}{\rho_0} + A_l(x) \frac{\rho_{\tau}}{\rho_0} + B\left(\frac{\rho}{\rho_0}\right)^{\sigma} (1 - x\delta^2) - 8x\tau \frac{B}{\sigma + 1} \frac{\rho^{\sigma - 1}}{\rho_0^{\sigma}} \delta\rho_{\tau'} + \frac{2C_{\tau,\tau}}{\rho_0} \int d^3 \mathbf{p}' \frac{f_{\tau}(\mathbf{r}, \mathbf{p}')}{1 + (\mathbf{p} - \mathbf{p}')^2 / \Lambda^2} + \frac{2C_{\tau,\tau'}}{\rho_0} \int d^3 \mathbf{p}' \frac{f_{\tau'}(\mathbf{r}, \mathbf{p}')}{1 + (\mathbf{p} - \mathbf{p}')^2 / \Lambda^2}.$$
 (1)

C. B. Das, S. Das Gupta, C. Gale, B. A. Li PRC67(2003) 034611

The parameter x above is introduced to mimic the density dependence of symmetry energy.

π^{-}/π^{+} Probe the Behavior of Symmetry Energy at Supra-saturation Densities

 π^{-}/π^{+} Probe the Behavior of Symmetry Energy at Supra-saturation Densities

A rather soft nuclear symmetry energy is more favored to FOPI data!!!

Z.G. Xiao, B.A. Li, L.W. Chen, G.C. Yong and M. Zhang, Phys. Rev. Lett. 102 (2009) 062502

Probing the Behavior of Symmetry Energy with the Same Neutron/proton Ratio but Different Masses

$$\mathbf{R} = (\pi^{-}/\pi^{+})_{x=1} / (\pi^{-}/\pi^{+})_{x=0}$$

- 1. The π^{-}/π^{+} ratio increases with decreasing the beam energy and exceeds the isobar model prediction.
- 2. The sensitivity R decreases as the beam energy increases.
- **3.** The sensitivity R increases from light to heavy system at a fixed beam energy.

Probing the Behavior of Symmetry Energy with the Same Neutron/proton Ratio but Different Masses

The sensitivity **R** is related to the degree of *isospin fractionation* !

Definition: the participant region is more neutron-rich (poor) if the value of the symmetry energy at high densities is lower (higher).

 ✓ Lower beam energy and lager system size can result in a higher central density, a much longer duration of the reaction thus a larger isospin fractionation.

Therefore, results suggest that heavy systems with larger N/Z are preferential to constrain the behavior of symmetry energy at supra-saturation densities with pion ratio near the threshold of pion production in experiment.

Quantitative Relation between Degree of Isospin Fractionation and Sensitivity

To the first order of approximation, we define the quality R_{π} - R_{isob} to describe the degree of isospin fractionation.

Conclusion and Further Experiment

Heavy colliding systems are recommended in experiment to probe the behavior of symmetry energy at supra-saturation densities with the beam energy near the threshold of pion production.

External Target Facility at HIRFL-CSR in China provide good opportunities to study EOS of asymmetric nuclear matter at sub-GeV energy regime.

External Target Facility — Phase I - II Complex at HIRFL-CSR

POSSIBLE PHYSICS

RIB Physics $\sqrt{\text{EOS}}$ of Asymmetric Nuclear Matter High Baryon Density Matter

