

Nucleon-Nucleon Short Range Correlations

Zhihong Ye (叶志鸿) Medium Energy Group, Argonne National Lab iHIC2018, Tsinghua University, 04/08/2018 – 04/10/2018

Outline

- > Nucleon-Nucleon Interaction
- Short Range Correlations (SRC)
- Measuring SRC
- > SRC vs EMC
- **Future Opportunities**
- > Summary

Mean Field Theory (Shell Model):

• Nucleons move independently in an average field induced by the surrounding nucleons;

Mean Field Theory (Shell Model):

- Nucleons move independently in an average field induced by the surrounding nucleons;
- Independent Particle Shell Model (IPSM):

 $h_{IPSM} | \varphi_{\alpha} \rangle \approx (p^2 / 2m + \overline{V} + ...) = \varepsilon_{\alpha} | \varphi_{\alpha} \rangle$ No NN interaction Terms!

• Occupying energy shells below Fermi Momentum (k_F) and Energy (ϵ_F).

However, IPSM has its limitations, such as NN interaction at short distance, Nuclear magnetic moments, Highly Excitation States, High Density Nuclear Matter.

Realistic Nucleon-Nucleon Interactions:

- Nucleons are weakly interacting in their normal distances
- Far more complicated interactions at short distance (both strong attractive and strong repulsive)
- *ab initio* calculations: many-body system + special potential:

$$H = \sum_{i} T(i) + \sum_{i < j} V^{(2)}(i, j) + \sum_{i < j < k} V^{(3)}(i, j, k) + \dots, \quad H \psi_A = E \psi_A$$

Missing Strength:

Proton knocked out experiments showed that nucleons with momenta lower then k_F (~200MeV/c) don't occupy all the nuclear orbits.

Missing Strength:

- Nucleon-nucleon (NN) distance can be small Strong attraction and repulsion at <1 fm
- Nucleons can carry much higher momenta ($k > k_F$)

Mean Field

Zero (or tiny) total momentum for NN pairs:
 A real ground state, not an excited state.

Short Range Correlations (SRC)

Key Features:

- Involve 2-nucleons (2N-SRC),
 - 3-nucleons (3N-SRC) and more;
- The nucleons are largely overlapped
- ✓ Proton radius ~ 0.85 fm (charged & magnetic)
- ✓ Neutron radius ~ 0.86 fm (magnetic)
- ✓ Inter-nucleon separation in nuclear matter (A->infinity) ~1.6 fm

Short Range Correlations (SRC)

Key Features:

- Involve 2-nucleons (2N-SRC), 3-nucleons (3N-SRC) and more;
- The nucleons are largely overlapped

- 2N-SRC and 3N-SRC in heavy nuclei: similar to ²D and ³H/³He.
- Similar shape for High momentum tails: scaling behavior at k>kF
- Extremely high density configurations:
 connect to EMC effect, quark degrees of freedom,
 Inner Structure of Neutron Stars, etc.

From Exclusive Measurements:

✓ Back-to-back scattering between the knocked-out nucleon and the spectator nucleon

A(p, p'pN)A-2 reaction at EVA (AGS E850), BNL

From Exclusive Measurements:

 \checkmark Theoretical calculation shows n-p pairs have stronger strength.

From Inclusive Electron-Nucleus Scattering:

- Incoming electrons scatter on nuclei and only measure the scattered electrons.
- Important quantities:

Four Momentum Transfer of the virtual photon.

$$Q^2 = 4E_0 E' sin^2(\theta/2)$$

Borrow and extend the definition of x_{bi} in DIS:

 $x = \frac{Q^2}{2m_p v}$

(x>1 if more than one nucleon involve in the interaction)

- Three processes \rightarrow Three type of D.O.F.
- (1) $x = \frac{Q^2}{2m_A v} \equiv 1$: "Elastic" \rightarrow Interact with the whole nucleus,
- (2) $1 < x = \frac{Q^2}{2m_p v} < A$: "Quaselastic" → Interact with a nucleon moving inside the nucleus
- (3) $x = \frac{Q^2}{2m_p v} < 1$: "Inelastic" \rightarrow Interact with components inside a nucleon

х

2

> From Inclusive Electron-Nucleus Scattering:

• Decompose the QE cross section in a SRC picture:

One nucleon: Two nucleons: Three nucleons:

$$(x \sim 1) \qquad (1.3 < x < 2) \qquad (x > 2)$$

$$\sigma_A(x, Q^2) = \sum_{j=1}^A \frac{A}{j} \sigma_j(x, Q^2) = A\sigma_{1N}(x, Q^2) + \frac{A}{2}a_2(A)\sigma_{2N}(x, Q^2) + \frac{A}{3}a_3(A)\sigma_{3N}(x, Q^2) \dots$$

a_j(A) ---the probability of a nucleon in a jN-SRC.

 $\sigma_{j}\left(A\right)$ --- the cross section of an electron scattering on a nucleon in jN-SRC.

QE cross sections are linked to momentum distributions by y-Scaling:

An open question: Where (in x, or in p) do 2N-SRCs lose dominance and give way to 3N-SRCs?

Previous Results (2N-SRC):

2N-SRC plateau for heavy nuclei to D2 or He3 have been observed by multiple experiments.

Previous Results (3N-SRC):

Some questions related to 3N-SRC yet to be answered:

- ► A smooth transition from 2N-SRC to 3N-SRC?
- A scaling behavior, like 2N-SRC, for momentum distributions of different nuclei?
- A small central momentum of 3N-SRC cluster, like pairs in 2N-SRC?

Need very high yield experiments to measure 3N-SRC; Only inclusive measurements at JLab so far!

CLAS & Hall-C (E02-019) don't agree in the 3N-SRC region:

- \succ CLAS shows 3N-SRC at x>2.2
- > E02-019 doesn't have a clear plateau
- ➤ CLAS: $Q^2 \approx 1.6 \text{ GeV}^2$, E02-019: $Q^2 \approx 2.7 \text{ GeV}^2$
- Large error bars at 3N-SRCs for E02-019

E08-014 Experiment in Hall-A using HRS (2011)

E08014 Results:

Z. Ye, et. al. arXiv1712.07009, appear on Phys. Rev. Letter soon

- ✓ Consistent results in 2N-SRC region
- ✓ Fast rise-up at x>2, and no indication of 3N-SRC plateau
- ✓ Agree with E02-019 data (within errors), and disagree with CLAS results

> 3N-SRC or not?

The 3N-SRC "plateau" is due to the large bin migration because the CLAS's poor momentum resolution.

> Isospin Dependence of SRC from Inclusive Scattering:

⁴⁸Ca to ⁴⁰Ca Cross Section Ratio from E08-014

Preliminary→ More precise absolute thickness of Ca40 needed

- Naïve prediction: R=0.92 if isospin-independent, or $R \approx 1$ if n-p pairs dominated.
- Consistent with a recent theoretical calculation ($R \approx 1$)

(M. Vanhalst, et. al., PRC 84, 031302 (2011), PRC 86, 044619 (2012)

New experiment -> E12-11-112 using H3/He3: 40% difference

Tritium Experiments: <u>E12-11-112:</u> using inclusive electron quasi-elastic scattering on H3/He3

Spokespeople:John Arrington, Donal DayDoug Higinbotham, Zhihong YeThesis Students:Shujie Li, and Nathaly
(University of New Hampshire)

- ✓ Isospin dependence:
 - ✓ Better precision: extract ratio R(T=1/T=0)
 - ✓ Much smaller FSI (inclusive)
 - \checkmark Larger difference (40%) between two assumptions

if np dominance: $R \approx 1$

if isospin independent:

$$R = \frac{\sigma_{He3/3}}{\sigma_{H3/3}} = \frac{(2\sigma_p + \sigma_n)/3}{(\sigma_p + 2\sigma_n)/3} \xrightarrow{\sigma_p \approx 3\sigma_n} 1.4$$

- ✓ Determine isospin dependence for A>3 nuclear corrections
- ✓ Absolute cross sections and ratios; Test *ab initio* calculations

Took first part (QE) of the data in December 2017; Will take rest of data in Fall 2018.

Tritium Experiments:

E12-14-011: Exclusive SRC

Spokespeople: L. Weinstein, O.Hen, W. Boeglin, S. Gilad

- He3/H3 ratio for proton knockout
- \rightarrow n/p ratio in 3H (No neutron detection Required)
- np-dominance at high-Pm implies n/p ratio $\rightarrow 1$
- n/p at low Pm enhanced

- Map out difference between proton and neutron distribution up to (and slightly beyond) Fermi momentum
- Start data-taking in few days (April 2018)!

The Tritium Experiments in Hall-A at Jefferson Lab (Dec. 2017- Dec. 2018)

SRC vs EMC

What is EMC Effect?

- ★ EMC Effect: is the surprising observation by European Muon Collaboration (EMC) that: The DIS cross section ratios (or F2 ratio) of heavy nuclei to Deuteron show a linear slope in the range of 0.3≤x≤0.7.
- It indicates that the quark density functions in a free nucleon is different from one in heavy nuclei (strong Adependence)
- ✤ No theory can successfully explains this phenomena

Is there a Medium Modification Effect? Does a nucleon change its shape when it is placed in different nuclei?

SRC vs EMC

Connection?

"slope" in EMC:

 \rightarrow how difference a nucleon in a nucleus compared with one in the Deuterium.

<u>a₂ in SRC:</u>

 \rightarrow Probability of two nucleons to be correlated.

Fomin et al, PRL 108 (2012) Jlab E02-019

SRC vs EMC

Data contributed by JLab:

- Egiyan, *et al.* (2006 PRL, Hall B)
- J. Seely, *et al.* (2009, Hall C)
- N. Fomin, *et al.* (2012, Hall C) And SLAC data

L. Weinstein et al, PRL 106, 052301 (2011) J. Arrington et al., PRC 86, 065204 (2012) O. Hen et al, PRC 85, 047301 (2012)

Understanding how EMC connects to SRCs will be one of the major studies in 12 GeV.

Future Opportunities

More New SRC & EMC Experiments at 12GeV@JLab:

□ Hall-A: (MARATHON experiment using Tritium)

- E12-10-103: Measurement of the F2n/F2p, d/u Ratios and A=3 EMC effect in Deep Inelastic Scattering off the Tritium and Helium Mirror Nuclei.
- Finished data takin in early April 2018!

Hall-C:

- E12-06-105: Inclusive Scattering for Nuclei at x>1 in the Quasielastic and deeply inelastic regimes.
- E12-10-008: Detailed studies of the nuclear dependence of F2 in light nuclei.
- E12-11-107: In Medium Nucleon Structure Functions, SRC, and the EMC Effect.
- E12-10-003; E12-06-107. etc...

Future Opportunities

More New SRC & EMC Experiments at 12GeV@JLab:

□ Hall-A: (MARATHON experiment using Tritium)

- E12-10-103: Measurement of the F2n/F2p, d/u Ratios and A=3 EMC effect in Deep • Inelastic Scattering off the Tritium and Helium Mirror Nuclei.
- Finished data takin in early April 2018!

Hall-C:

E12-06-105: Inclusive Scattering for Nuclei at x>1 in the Quasielastic and deeply inelastic regimes.

L: 1 x1035cm-2s-1 p/e, polarized

EicC-II

HERing 5-10 GeV

C: 1.5-2.0 km

EicC

- E12-10-008: Detailed studies of the nuclear dependence of F2 in light nuclei.
- E12-11-107: In Medium Nucleon Structure Functions, SRC, and the EMC Effect. •
- E12-10-003; E12-06-107. etc...

EIC(C) will also provide a powerful tool:

- Open up new channels to study the Nucleon-Nucleon force at the Quark level, such as SIDIS. \checkmark
- ✓ Will reach much higher Q2 (to isolate 3N-SRC)
- ✓ Direct exclusive measurement of high momentum nucleons from 3N-SRC breakup
- However, Full detector coverage and high luminosity needed! Rate could be an issue

L: 1 x1033 cm-2s-1

1-2.5 MW primar

proton beam fron

CiADS-linac

Summary

- Mean-Field Theory only explains 80% of the nucleon strength in a nucleus; 20% are from strong N-N interaction at short-distance.
- SRCs are important to understand high momentum components of the nucleon momentum distribution
- Study the property of high density matter from the 2N–SRC and 3N-SRC clusters
- > Experimental study with electron-scattering learns a lot on 2N-SRC but little on 3N-SRC.
- The Connection to the EMC effect provides a new way to learn the NN interaction at the quarkgluon level
- Many new experiments at 12GeV JLab, and EIC;
- > Possible opportunities using high energy proton beam to perform quasi-elastic scattering on nuclei

Backup Slides

► Isospin Dependence: • Nucleons interact thought exchanging one pion: Parity = 1 → lowest state, L = 0, S = 1/2 + 1/2 = 1. • The force at <1 fm is from the tensor component:</p> $-S_{12} = -3(\vec{\sigma}_1 \cdot \hat{r})(\vec{\sigma}_2 \cdot \hat{r}) + (\vec{\sigma}_1 \cdot \vec{\sigma}_2)$ = $\sigma_1 \sigma_2 > 0 \Rightarrow Always repulsive$ = $-3 \sigma_1 \sigma_2 \Rightarrow Attractive$

• Proton and Neutron carry different isospin (T):

Proton \rightarrow T= 1/2, Neutron \rightarrow T= -1/2

Isospin Singlet: T = 0, n-p pairs \rightarrow Stable!

Isospin Triplet: T = 1, p-p (T_z =1), n-p (T_z =0), and n-n (T_z =-1)

So the nature of the attractive tensor force favor the n-p pairs!

Future Opportunities

Using pA scattering to study Nucleon-Nucleon Interaction

- The pA data firstly showed the direct back-to-back np scattering after breaking up 2N-SRC
- However, at low CM energy (0.15 GeV/c), the count rate was very low (one count per week, 18 counts in total)
- Beam protons have Small deBroglie wavelength:

 $\lambda = \frac{hc}{pc} = 2\pi \times 0.197 \ GeV \cdot \frac{fm}{5GeV} \sim 0.2 fm$

Hence, large momentum transfer is possible with wide angle scattering Cross section is large

- QE pp scattering have a very strong preference for reacting with forward high momentum protons
- With 5 GeV/c proton, the Cross-Section becomes larger.

Δ