Experimental constraints on the nuclear equation-of-state from heavy-ion collisions

Sherry Yennello Texas A&M University

Science Magazine's Breakthrough of the Year 2017:

LIGO, Virgo, and partners make first detection of gravitational waves and light from colliding neutron stars

Atomic nuclei & Neutron star (two vastly different systems)

A heavy nucleus (like ²⁰⁸Pb) is 18 orders of magnitude smaller and 55 orders of magnitude lighter than a neutron star !

Yet bounded by a common entity, the nuclear Equation Of State (EOS) !

Nuclear Equation of State

A. Steiner et al, Phys. Rept. 411 (2005) 325

Experimental constraints on the nuclear equation-of-state from heavy-ion collisions

Observables sensitive to the EOS ?

Neutron-skin thicknesses Pygmy resonances Fragment isotope distribution, isotopic & isobaric yield ratios Isospin distillation/fractionation, relative n & p densities Isospin transport / diffusion / migration Nuclear stopping & NZ equilibration Pre-equilibrium emission Particle - particle correlation Light cluster production **Collective Flow** Neck emission **Fusion vs Deep Inelastic reactions** Subthreshold particle production

Transverse Collective Flow

Low beam energy

negative scattering dominated by the attractive mean field

High beam energy

positive scattering dominated by repulsive nucleon-nucleon collisions

Experiment

Beam Energy: 35 MeV/nucleon Reactions: ⁷⁰Zn+⁷⁰Zn, ⁶⁴Zn+⁶⁴Zn, & ⁶⁴Ni+⁶⁴Ni

NIMROD-ISiS Array

NIMROD - ISiS

- 228 modules
 - Si/CsI
 - Some Si/Si/Csl
 - Ion Chambers
- 14 rings
- 3.6°-167°
- Neutron Ball

S. Wuenschel et al. NIMA doi:10.1016/j.nima.2009.03.187 Symposium on Intermediate-energy Heavy Ion Collisions (iHIC2018), April

Collective Transverse Flow

Directed/Transverse/Sideward Flow

Examination of space-momentum correlation of particle emission in the reaction plane.

IMF Transverse Flow

Symposium on Intermediate-energy Heavy Ion Collisions (iHIC2018), April 7-11, 2018

TEXAS A&M UNIVERSITY

Studying density dependence of symmetry energy : Multifragmentation

M.B. Tsang et al, Phys. Rev. Lett 68 (2001) 5023 Symposium on Intermediate-energy Heavy Ion Collisions (iHIC2018), April 7-11, 2018

Symmetry energy and the scaling parameter α

Decrease in Asymmetry energy (Expt. Observation)

Decrease in E_{sym} related to thermal expansion

a)

10

b)

10

c)

10

d)

10

8

8

6

8

6

8

4

-10

-15

4

peripheral

 $\rho/\rho_0 = 1$

0.9

0.8

B.A. Li et al., PRC 74 (2006) 034610

Isospin Transport

iBUU ⁷⁰Zn + 64 Zn *b* = 7 fm collision: density contour plots in XZ plane

Non equilibration with Isotopically resolved fragments / ratios: Yennello, PLB321(94), Johnston, PLB 371 (1996), B.A. Li, PRC52(1995)

Isospin Tracer Method Rami, et al, PRL84 (2000)

$$R_{i} = \frac{2\delta_{i} - \delta_{NR} - \delta_{NP}}{\delta_{NR} - \delta_{NP}}$$

where $\delta_{i} = I_{i} = \frac{(N_{i} - Z_{i})}{(N_{i} + Z_{i})}$

Diffusion coefficient connected to symmetry potential L Shi & P Danielewicz, PRC68 (2003)

Measured isospin diffusion in Sn+Sn Tsang, PRL92 (2004)

Partial Equilibration

Consistent with the work of Tsang (PRL92 (2004)) in seeing partial equilibration and Johnston (PLB 371 (1996)) and Li (PRC52(1995)) in the effect of beam energy on equilibration

Equibration calculation

Method from Keksis, Phys. Rev. C 81, 054602 (2010).

Theoretical calculations

- Isospin-dependent Boltzmann-Uehling-Uhlenbeck (iBUU) transport code
 - Momentum dependent interaction
 - Mean-field model using test-particles
 - Developed method of looking at properties of the hot QP
 - » This allows us access to conditions and effects right after transport occurs

The N/Z of the QP and the amount of equilibration depends on the symmetry energy

Proj, Tgt and

composite system

L. May, PhD 2015

Detect PLF directly

Expanding Deformed

Compared to Constrained Molecular Dynamics (CoMD-II) model: *M. Papa et al. PRC* 64, 24612, (2001).

9Be

Kohley et al. PRC 88, 041601(R) (2013). Symposium on Intermediate-energy Heavy Ion Collisions (iHIC2018), April 7-11, 2018

Purple area new constraints extracted from ³²Mg RIB experiment. 120 100 L (MeV) 80 60 40 20 29 30 31 32 33 34 35 $E_{sym}(\rho_0)$ (MeV)

Anna Poulsen https://oxidantshappencomics.wordpress.com/

Projectile-like

Target-like

Anna Poulsen https://oxidantshappencomics.wordpress.com/

Equilibration Chronometry

Characterizing neutron-proton equilibration with sub-

zeptosecond resolution

Binary breakup of a projectile

Private communication , Zhang & Ko

Ternary breakup in n-rich systems: Sensitivity to Esym

 132 Sn + 64 Ni , E/A = 10 MeV, b = 7 fm 3 events, t = 500 fm/c

E

Sifting through the remnants

pp correlation function

L. W. CHEN, C. M. KO, B. A. LI, Phys. Rev. C, 69, 054606, (2004).

Experiment

- Forward Array Using Silicon Technology (FAUST)
- 68 Si-CsI(TI) Telescopes
- LCP Detection
- Systems: Asymmetry

z1826g03b2fm_FAUST_mom350 Proton-Proton Correlation Function

Constraining the Symmetry Energy at Supra-Saturation Densities with Measurements of Neutron and Proton Elliptic Flows

SPIRIT TPC @ SAMURAI

Constrain the Asymmetry Energy at high density through measurement of

- ➤ π-/π+, n/p, 3H/3He
- Differential Flow and Particle Yield Ratios
- ¹⁰⁸Sn+¹¹²Sn, ¹³⁰Sn+¹²⁴Sn @ E/A ≥ 200 MeV

- Many proposed observables
- Various data sets
- Need to understand differences in model predictions
- New observables with increased power to discriminate welcome

Summary

Demorest, Nature 2010

Many Thanks

All the members of SJYGroup The operations staff at the Texas A&M Cyclotron Institute DOE, Welch Foundation & State of Texas

018), April 7-11, 2018

