Dynamics and correlations in heavy-ion collisions at intermediate energies

G. Verde, INFN Catania/GANIL

FAZIA & INDRA collaborations

Special acknowledgements: D. Dell'Aquila (NSCL-MSU) D. Gruyer (LPC Caen)

Intermediate energies and symmetry E

Interplays $E_{sym} \leftrightarrow$ Nuclear structure

S. Typel et al., Journal of Physics: Conf. Ser. 420 (2013) 012078

Interplays $E_{sym} \leftrightarrow$ Nuclear structure

Dynamics and structure

- Nuclear structure properties in low density matter: HIC as a perfect site
 - Study the properties of the medium: density, temperature, EoS → HBT, Femtoscopy
 - Unbound states decays

Dynamics and structure

- Nuclear structure properties in low density matter: HIC as a perfect site
 - <u>Study the properties of the medium: density</u>, <u>temperature</u>, EoS → HBT, Femtoscopy

– Unbound states decays

Two-particle correlations: final state interaction probes of density of the medium

Particle emitting sources extended in phase-space

- \rightarrow Sizes, space-time extent of source
- → Relative contributions from early pre-equilibrium emissions and late evaporative decays
- → Space-time profiles: probes for transport models

Correlation function:

$$1 + R(q) = \frac{Y_{coinc}(q)}{Y_{evt\ mixing}(q)}$$

Femtoscopy: two-proton correlations

Physical correlations

- Final State Interactions: Coulomb
 + Nuclear
- Quantum statistics (if identical)
- Phase-space, ...

Intensity interferometry / Femtoscopy

Fragment emission time-scales

IMF-IMF Correlation Functions

IMF: Z>2

Compact thermal source (T, $\beta_{coll'}$...)

N-body Coulomb trajectories Source radius and emission times: \mathbf{R}_{s} , $P(t) = (1/\tau) \cdot \exp(-t/\tau) \rightarrow \tau$

Dynamics and structure

- Nuclear structure properties in low density matter: HIC as a perfect site
 - Study the properties of the medium: density, temperature, EoS → HBT, Femtoscopy
 - <u>Unbound states decays</u>

Thermal model of in-medium resonance decays

Particle emitting sources extended in phase-space

States of ⁸B \rightarrow p+⁷Be

Correlation function:

$$1 + R(E_{rel}) = \frac{Y_{coinc}(^{7}Be, p)}{Y_{evt\ mixing}(^{7}Be, p)}$$

Structure properties: spin

p-⁷Be correlation function

$$1 + R(E_{rel}) = \frac{Y_{coinc}({}^{7}Be,p)}{Y_{evt\,mixing}({}^{7}Be,p)} \propto \sum_{i} (2J_{i} + 1) \left[\frac{\Gamma_{i}/2}{(E^{*} - E_{i})^{2} + \Gamma_{i}^{2}/4} \right]$$

States of ⁸B \rightarrow p+⁷Be

Xe+Au E/A=50 MeV central collisions (LASSA data)

W.P. Tan et al. Phys. Rev. C69, 061304 (2004)

Recent results from INDRA/FAZIA experiments

- Nuclear structure properties in low density matter: HIC as a perfect site
 - <u>Study the properties of the medium: density</u>, <u>temperature</u>, EoS → dynamics of HIC

– Unbound states decays

In-medium fragmentation and correlations

INDRA 4p multi-detector

angular coverage $\approx 90\% (4\pi)$ 336 *independent cells* telecopes C₃F₈ gas chamber – Si (300 mm) – CsI (5-14cm)

 $^{36}Ar + ^{58}Ni$ $^{\wedge}$ a conjugate

E/A=32, 40, 52, 63, 74, 84, 95 MeV

Role of projectile structure on dynamics \rightarrow in-medium clustering

In-medium jet fragmentation

Ar+Ni E/A=32, 40, 52, 63, 74, 85, 95 MeV - Central INDRA @ GANIL

Forward dissipative transparency

L. Francalanza et al. (2016) **Zimanyi School 2016**

"In-medium jet" fragmentation: time-scales

³⁶Ar + ⁵⁸Ni central (INDRA)

"In-medium jet" fragmentation: time-scales

BLOB (P. Napolitani, M. Colonna)

t=100 fm/c

40

30

20

10

0

-10

-20

-30

-40

z

Backward 1.2 0 -10 slow 1+R(9.0 9.0 -20 Forward -30 -40 36 Ar+ 58 Ni, E/A=40 MeV, b_{mod} ≤ 0.3 0.4 -50 A11 fast 0.2 VII $> v_{cm}$ < 0.01 0.02 0.03 0.04 0.05 0.070.08 0.09 0.1 V_{red} (units of c)

³⁶Ar + ⁵⁸Ni

E/A=40 MeV

L. Francalanza, G. V. et al.

Recent results from INDRA/FAZIA experiments

- Nuclear structure properties in low density matter: HIC as a perfect site
 - Study the properties of the medium: density, temperature, EoS → dynamics of HIC

- <u>Unbound states decays</u>

Two-alpha thermal model? Ar+Ni, E/A=32-95 MeV – central $\longrightarrow {}^{8}Be \rightarrow \alpha + \alpha$ INDRA @ GANIL

$$1 + R(q_{rel}) = \frac{Y_{coinc}(\alpha, \alpha)}{Y_{evt \, mixing}(\alpha, \alpha)}$$

$$R(q_{rel}) = R_{coul}(q_{rel}) + R_{nucl}(q_{rel})$$

$$Y_{nucl}(E^*) = \frac{N}{\pi} e^{-E^*/T} \sum_{i} (2J_i + 1) \left[\frac{\Gamma_i/2}{(E^* - E_i)^2 + \Gamma_i^2/4} \right]$$

Nuclear structure: spin, branching ratios, resonance position

D. Dell'Aquila, PhD thesis

Two-alpha thermal model

Ar+Ni, E/A=32-95 MeV – central $\longrightarrow {}^{8}Be \rightarrow \alpha + \alpha$ INDRA @ GANIL $Y_{nucl}(E^{*}) =$

D. Dell'Aquila, PhD thesis

Two-alpha thermometer

Ar+Ni, E/A=32-95 MeV – central $\longrightarrow {}^{8}Be \rightarrow \alpha + \alpha$ INDRA @ GANIL $Y_{nucl}(E^{*}) =$

Thermal mechanism cannot describe unbound state population for α 's

D. Dell'Aquila, PhD thesis

Parent decay and resonance generation by Final State Interactions

Primary parent decay (thermal)

> Quantitative estimate of dynamical FSI vs Thermal decay yields **in progress**

 Providing alpha density estimates in dilute medium

In-medium three-alpha correlations: decay of ¹²C states

¹²C+²⁴Mg E/A=53 and 95 MeV INDRA data

¹²C (Chimera and INDRA data)

¹²C(Hoyle) \rightarrow ⁸Be+ $\alpha \rightarrow (\alpha + \alpha) + \alpha$

¹²C (Hoyle) $\rightarrow \alpha + \alpha + \alpha$

A. Raduta et al., Phys. Lett. B 705, 65 (2011) F. Grenier et al., Nucl. Phys. A811, 233 (2008)

Strong contributions from 3α direct decay mode?

≠ all studies with direct reactions (no medium) on isolated12C states: 100% sequential decay mode of the Hoyle state

D. Dell'Aquila, I. Lombardo, G. Verde et al., Physical Review Letters 119, 132501 (2017)

In-medium resonance decays in HIC

FAZIA (Four-pi A- and Z-Identification Array)

Fully digital electronics: particle identification directly from digitalization of Si and CsI(Tl) signals → almost online available

→ Wide dynamic range (100 keV- GeV)

Some preliminary N α -X correlations

FAZIA-INDRA @ GANIL (2019-2020)

- 12 Blocks (192 telescopes)
- full Z & A identification of $1 \le Z \le 25$ at $\theta \le 14^\circ$

^{40,48}Ca+^{40,48}Ca ^{58,64}Ni+^{58,64}Ni E/A=30-90 MeV ... other systems

In-medium investigations

- HIC provide hot and dilute medium with plenty of unbound states (free in just one single experiment)
 - Study dynamics and EoS
 - Study structure properties: spins, branching ratios (sequential vs direct), etc.... *in-medium structure*
- Modification of structure properties? Difficult to probe
 - Study medium properties (ex. Thermal model, IMF-IMF correlations, ...): T, Q, Esym, ...
 - Multi-particle correlations to isolate resonance decays: thermal models Vs. FSI approaches → density and temperature effects?
- Future perspectives
 - INDRA-FAZIA campaigns at GANIL

Welcome to submit proposals and collaborate (experiment and theory)