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Microscopic Theory of Pion Production and Sidewards Flow in Heavy-Ion Collisions
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Nuclear collisions from 0.3 to 2 GeV/nucleon are studied in a microscopic theory based on
Vlasov’s self-consistent mean field and Uehling-Uhlenbeck’s two-body collision term which
respects the Pauli principle. The theory explains simultaneously the observed collective flow and
the pion multiplicity and gives their dependence on the nuclear equation of state.
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FIG. 2. Pion multiplicity for central collisions (b < 2.4
fm) of Ar+KCI. The data (Ref. 6, circles) are compared to
the present theory in the ‘‘cascade mode’’ (crosses) and to
the same theory with compression energy and phase-space
Pauli blocking included (triangles).



Near-threshold pion production with high energy
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radioactive beams (IBUU) B. A. Li, PRL 88, 192701 (2002)
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- yield is sensitive to the symmetry energy E, (p) since they
are mostly produced 1n the neutron-rich region, with softer one
(x=1) giving more 7 than stiffer one (x=-1).




Conflicting results on symmetry energy from charged pion ratio
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Transport model predictions for pion production in HIC

» Centrality dependence Kolomeitsev et al., J. Phys. G 31, S741 (2005)
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= Results from different transport models can differ by ~ 2.



» Rapidity distributions: Impact parameter b = 1fm,
Delta width I', = 120 MeV
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= Results from different transport models can differ by ~ 2,
particularly at midraipidy.



* Transverse momentum spectra

Impact parameter b = 1fm, Rapidity |y_,, | <0.5,
Delta width [, = 120 MeV
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= Results from different transport models can differ by ~ 2,
particularly at low energy collisions.



In-medium threshold effects on pion production
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* pn — pA°
Initial-state potential: U +U
Final-state potential: U +U,=U +U /3+2/3U;

— difference 1n initial and final potentials:
(U,-U,)/3>0 in neutron-rich matter

— reduced production threshold

= First studied by Ferini, Colonna, Gaitanos and D1 Toro (NPA 762,
147 (2005)) 1n a relativistic transport model



Relativistic Vlasov-Uehling-Uhlenbeck model Ko, NPA 495,

321 (1989)

Mean-field potential H = \/ m*? + p*? + gwwo + g,(p3)o

Collisional integral C[f] includes nucleon-nucleon elastic scattering NN — NN based
on empirical cross sections as well as inelastic scattering NN — NA and its inverse
reaction NA — NN using cross sections from the one-boson exchange model of

Huber and Aichelin [NPA 573, 587 (1994)]

Delta resonances satisfy a similar RVUU equation with mean-field potentials related
to those of nucleons via their 1sospin structures in terms of those of nucleons and pions
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Medium modification of Delta production threshold

Threshold energy for NN — NA (1+2 — 3+4) 1s determined by requiring the kinetic
momenta of final nucleon and Delta are zero in the frame where their total kinetic
momentum vanishes (p; +p, =0)

Vo =\ (m3 + 55+ mj +59)2 — [ S + B2

where XH* 1s vector self energy of nucleon or Delta. Since the initial energy of the
two nucleons 1s

Voin = V(E] + 30 + E5 + 35)% — [3) + B,

difference between the initial and threshold energies in static nuclear matter
(Z=0, p;'~0) is

VSin — Vi >~ Ef + B3 + 3] + 35 —mi —mj — X3 — ¥}
In nonrelativistic limit
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Pion production in Au+Au collisions at E =400 AMeV
and b= 1fm
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= Deltas are produced during high density stage and decay to pions

as the matter expands.
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Proton longitudinal and transverse rapidity distributions
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Pion longitudinal and transverse rapidity distributions
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= Discrepancy in t* at small y; due to neglect of pion in-medium effects?
[Xiong, Ko & Koch, PRC 47, 788 (1993)] 15



In-medium threshold effects on /" ratio
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* [n-medium threshold effects increase the total pion yield, the
m/m" ratio, and reverse the effect of symmetry energy.



Effects of in-medium Delta production cross sections
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= Reproducing total pion yield requires density-dependent Delta

production cross section oyn—na(p) = onn—na(0)exp(—1.65p/po),
similar to those by Larionov and Mosel, NPA 728, 135 (2003) and
Prassa et al., NPA 789, 311 (2007).
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Effects of energy conservation on chemical equilibrium in

hot dense symmetric nuclear matter
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Zhang & Ko, PRC 97,
014910 (2018)

Nucleons, Deltas and pions
in a box at T= 60 MeV,

p = 0.24 fm~3,

p;= 0.096 fm~3

® Including potentials in
the energy conservation
during collisions keeps
correct equilibrium
distributions.

= Treating collisions as in
free space, as done in
all transport models,
leads to equilibrium
distributions without
potential effects.
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Pion in nuclear matter  Brown & Weise, PR 22, 279 (1975)

= P1on p-wave selfenergy
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N .
al £\ g
II)(w,k) = (fA kK*F*(k)p 20)0 2 3
3\m_ W -w,
k2
szZmA +m, —my
Including short-range repulsion N N R R
. 0.0 1.0 2.0 3.0 4.0 5.0 6.0
through the Migdal parameter /s
g ~0.3
. * Leads to a softening of the
" (w,k) = 1, : pion dispersion relation
1-g'II)" /k
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Pion medium effects on HIC dynamics

Xiong, Ko & Koch, PRC 47, 788 (1993)
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" Including pion in-medium dispersion relations has little
effect on the time evolutionof density, pion and delta
numbers.
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dN/(pE)dp (arb.)

Pion medium effects on pion p; spectrum

Xiong, Ko & Koch, PRC 47, 788 (1993)
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* [ncluding pion in-medium
effects does not affect the total
pion yield but enhances the
production of pions of low
kinetic energies
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Pion potential effects on charged pion ratio

Xu & Ko, PRC 81, 024910 (2010); Xu, Chen, Ko, L1 & Ma, PRC 87, 067601
(2013): Thermal model — Including both pion s- and p-wave interactions,
which have opposite effects, decreases the n-/n" ratio.

Hong and Danielewicz, PRC 90, 024605 (2014): pPBUU — @/nt " ratio 1s
insensitive to stiffness of symmetry energy after including pion s-wave

potential.

Guo, Yong, Liu & Zuo, PRC 91, 054616 (2015): IBUU — pion s- and p-wave
potentials and symmetry potential have opposite effects. (p-wave potential
essentially vanishes in this study because of average over the pion and Delta-
hole branches.)

Feng, EJPA 53, 30 (2017): LQMD — similar to Guo et al.
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Pion in nuclear matter (l)

= Pion s-wave selfenergies: Kaiser & Weise, PLB 512, 283 (2001)

0 b 0bblo

H_(pn ’pp) = :On[TJr;V _TJT-}-V]_ pp[TJT;V +Tyr;r\’] + H;rel(pn ’pp) + Hg:or (pn ’pp)
0" (p,.0,) =11"(p,.0,)

Ho(pn ’pp) = _(pp +pn)Tn'-]|-V + HO

cor(pn ’pp)

Isospin even and odd niN-scattering matrices extracted from energy
shift and width of 1s level in pionic hydrogen atom

T'=1847tm and T =-0.045fm

At normal nuclear density p=0.165 fm=3 and isospin asymmetry 6=0.2
such as in Pb,

U =T1/2m.) U_=14MeV, U . =-1MeV, U , =6 MeV



Pion in nuclear matter (II) Brown & Weise, PR 22, 279 (1975)

= Pion p-wave selfenergy
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* Leads to a softening of the
pion dispersion relation

* 7 has a more softened dispersion
relation than " 1n neutron-rich
matter 24



Pion energy in asymmetric nuclear matter
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®= Pion branch is lower in energy and thus more important.
= 7t is lower than rt and thus reduced r/mt* ratio, opposite
to that due to stiffness of symmetry energy.
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Charged pion ratio in Au+Au @ 400A MeV (l)
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Charged pion ratio is increased by threshold effect, reduced by s-wave
potential, increased by p-wave potential, leading to a somewhat lager ratio
compared to that without any medium effects.

Reproducing FOPI data requires a small symmetry energy slope parameter
L comparable with the constraints from nuclear structure and reactions as
well as neutron star properties.



Charged pion ratio in Au+Au @ 400A MeV (li)
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" Threshold effect enhances charged pion ratio at E,;,, < 50 MeV.
" Pion potentials suppresses the ratio for E,,, < 70 MeV but enhances it for larger E...
" Including both medium effects enhances the ratio by 2 at E,,, = 250 MeV.



Charged pion ratio in Sn+Sn @ 300A MeV
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= Charged pion ratio is larger in collisions of more neutron-rich nuclei.
" The ratio decreases with energy of pion.



Time evolution of effective charged pion numbers
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» Both effective mand m* numbers (including those in Delta
resonances remain unchanged after maximum compression

(chemical freeze out), due to constancy of entropy per particle
(Xu & Ko, PLB 772, 290 (2017)).
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Beam energy dependence of pion in-medium effect

Xu, Chen, Ko, Li & Ma, PRC 87, 067601 (2013)
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" Assuming pion, nucleon, and Delta in thermal equilibrium at maximum compression.
* Pion in-medium effect decreases the n/n* ratio, and the effect is larger at lower
collision energies.



Summary

* Nuclear symmetry energy affects the /" ratio in HIC (B. A. Li).
However,

= Results depend on the transport model used in a study.

* In-medium threshold effects increase the total pion yield and the n-/n*

ratio, and reverse the effect of symmetry energy (Ferini et al, Song and Ko).
= Charged pion ratio is reduced by pion s-wave potential and increased
by pion p-wave potential. The net effect is a reduction of the ratio if
keeping the total pion number unchanged. (Xu et al., Zhang and Ko).
On the other hand,
= Essentially all transport models do not include potential effect in scattering,
leading thus to incorrect equilibrium pion abundance.
= Both symmetry energy effect and medium effect depend on pion kinetic energy.
— Require better theoretical modeling of pion production in HIC to extract
information on the stiffness of nuclear symmetry energy at high density from the

ratio of charged pions.

— Comparison study of transport models for pion production is essential!



