Recent activities and perspectives at RIBF

H. Sakurai

RIKEN Nishina Center for Accelerator-based Science

Press conference on the name of 113th, December 1st, 2016

RI Beam Factory

RI Beam Factory

World's First and Strongest K2600MeV Superconducting Ring Cyclotron

400 MeV/u Light-ion beam 345 MeV/u Uranium beam

World's Largest Acceptance 9 Tm Superconducting RI beam Separator

~250-300 MeV/nucleon RIB

RI Beam Production at BigRIPS Since 2007

Physics with Exotic Nuclei

Shell Evolution : magicity loss and new magicity

Neutron Correlation in the vicinity of the Drip-line

R-process path: Synthesis up to U

EOS: asymmetric nuclear matter SN explosion, neutron-star, gravitational wave

Physics with Exotic Nuclei

Shell Evolution : magicity loss and new magicity

Neutron Correlation in the vicinity of the Drip-line

R-process path: Synthesis up to U

EOS: asymmetric nuclear matter SN explosion, neutron-star, gravitational wave

Isobe et al. at NIC2016

Heavy RI Collision program @RIKEN-RIBF

- Experimental project to give a constrain on the density dependent symmetry energy main for higher dense region.
- Systematic measurement in same Z but different N system realized with heavy RI beam.
 - $\rho \sim 2\rho_0$ nuclear matter at RIBF energy (E/A=300MeV).

Art from Heaven $S\pi RIT$ on Earth

400

300

200

100

-100

-200

-300

-400

200

(mm) ×

Isobe et al. at NuSYM16

United States: C. Anderson, J. Barney, Z. Chajecki, G. Cerizza, P. Danielewicz, J. Estee, M. Famiano, U. Garg, W. Lynch, A. McIntosh, P. Morfouace, C. Santamaria, H. Setiawan, R. Shane, M. B. Tsang, T. Tsang, S. Tangwancharoen, G. Westfall, S. Yennello, M. Youngs

Japan: H. Baba, K. Ieki, T. Isobe, M. Kaneko, T. Murakan, Nakai, N. Nakatsuka, M. Nishimura, S. Nishimura, Taketani China: F. Lu, R. Wang, Z. Xiao, Y. Zhang

United Kingdom: M. Chartier, R. Lemmon, W. Powell

France: E. Pollacco

Italy: G. Verde

Korea: B. Hong, G. Jhang, Y. J. Kim, H. S. Lee, J. W. Lee

Poland: P. Lasko, J. Lukasik, P. Pawlowski, K. Pelczar

NP1512-RIBF79R1 Zenihiro et al Proton elastic scattering of ¹³²Sn with ESPRI

To extract the neutron skin thickness of unstable nuclei w/ large δ from proton elastic scattering in inverse kinematics

BigRIPS

¹³²Sn (p, p) at 200 MeV/u

SCRIT Facility for e+RI scattering

First elastic scattering from ¹³²Xe Tsukada et al., PRL118, 262501 (2017)

Luminosity of $10^{27}/(\text{cm}^2\text{s})$ was achieved at the e-beam current of 250mA.

Efficiency improvement More high power beam 10W->1kW $-> 10^{29}/cm^{2}/s$

Measurement of Giant Monopole Resonance in 132Sn

BigRIPS

RIBF113: S. Ota et al.

and and a second

Is the neutron star soft?

<= symmetry term of EoS <= isospin incompressibility K, as a baseline

$$\mathcal{E}(\rho, \alpha) = \mathcal{E}(\bar{x}_0, \alpha) + \frac{1}{2} [(1 + 3\bar{x}_0)^2 \mathcal{E}''(\bar{x}_0, \alpha)] \bar{x}^2 +$$

$$\equiv \varepsilon_0(\alpha) + \frac{1}{2} K_0(\alpha) \bar{x}^2 + \cdots,$$

$$K_0(\alpha) = K_0 + K_{\tau} \alpha^2 + \mathcal{O}(\alpha^4)$$

$$K_A \sim K_{\text{vol}}(1 + cA^{-1/3}) + K_{\tau}[(N - Z)/A]^2 + K_{\text{Coul}} Z^2 A^{-4/3},$$

Measure K_A as a function of $[(N-Z)/A]^2$

Ex(MeV)

Element Number Zero: Tetra-neutron system

"Nucleus made only of neutrons" Benchmark for ab initio calculations NN, NNN, NNNN... interactions T=3/2, 2 interactions ?? T=1/2 d+p K. Sekiguchi et al., Phys.Rev. C 83, 06100 (2011); Phys. Rev. C89, 064007 (2014)
A high statistics experiment was conducted June 2016.

Clear strength with 4.9σ significance level $E_{4n} = 0.83 \pm 0.65 \text{ (stat.)} \pm 1.25 \text{ (syst.)} \text{ MeV}$ Upper limit of $\Gamma = 2.6 \text{ MeV} \text{ (FWHM)}$ Cross section: 3.8 nb (integrated up to $\theta_{CM} < 5.4$ degree) Energy resolution: 1.2 MeV Uncertainty of calibration: $\pm 1.3 \text{ MeV}$ Background : 0.02 events/2MeV

60

Many-neutron systems: search for superheavy ⁷H and its tetraneutron decay

⁸He(p,2p)⁷H -> ³H+⁴n

- MINOS liquid H target :
 - \rightarrow high luminosity (*statistics*)
 - \rightarrow proton angles (*resolution*)
- DALI Nal crystals :
 - \rightarrow proton energies (*efficiency*)
- SAMURAI :

→ triton momentum (resolution & correlations)

• NEBULA + NeuLAND :

 \rightarrow 3/4 neutron momenta (*efficiency, resolution & correlations*)

$$\label{eq:FWHM} \mathsf{FWHM} \ \sim \left\{ \begin{array}{cc} 5 & \mathsf{MeV} \ (2p) \\ 150 & \mathsf{keV} \ (2p{+}t{+}3n) \\ \hline 100 & \mathsf{keV} \ (t{+}4n) \ !!! \end{array} \right.$$

NP1512-SAMURAI34 July 2017

Yang and Marques, et al.

Angular correlations :

SAMURAI

ightarrow sensitive to ${\sf E}_{\sf R}({}^4{\sf n})$ for any Γ !

EURICA Achievements (2012-):

Half-lives

"Revolution" in the r-process research

Bunch of T1/2 data for A~100 A standard model assuming (n,gamma) equilibrium reproduces the r-abundance up to rare-earth region

Mass, beta-delayed neutron emission probability measurement in future

S. Nishimura et al., PRL. 106, 052502 (2011)
Z. Y. Xu, S. Nishimura *et al.*: PRL. 113, 032505 (2014)
G. Lorusso, S. Nishimura *et al.*: PRL. 114, 192501 (2015)
G. Benzoni, A.I. Morales, H. Watanabe *et al.*: PRC 92, 044320 (2015)
P. Lee, C.-B. Moon, C. S. Lee, A. Odahara *et al.*: PLB 751, 107 (2015)

Next step should be for the 3rd peak

BRIKEN : β-Delayed Neutron Study 2017-

Mass measurements for shell evolution

Yamaguchi (Saitama U.), Wakasugi (RIKEN), Uesaka (RIKEN), Ozawa (Tsukuba U.), et al.

CNS-RIKEN: OEDO Project

Shimoura et al

Energy-degraded radioactive isotope beams

Nucleon transfer reactions (10A – 50A MeV)

Pair transfer / Cluster transfer (10A - 20A MeV)

Ri Deep inelastic collisions (incomplete fusion) (5A – 30A MeV)

Fusion reaction (~ 5A MeV)

Coulomb excitation reactions for low-energy gamma rays (~ 50A MeV)

Transmission and intensity

Operation started in autumn, 2017

Transmission (F3 - S0)
×
Intensity @ F3
Intensity @ OEDO (S0)

Typical example of ¹³²Sn

based on actual intensity in experiment by using 345 AMeV 30pnA U primary beam (Apr. 2015)

Intensity @ F3 (Apr. 2015)	2.5×10 ⁶ [pps]
50 \pm 5 AMeV @ S0	1.3×10 ⁶
20 ± 3 AMeV @ S0	9.5 × 10 ⁵
10 ± 3 AMeV @ S0	7.5 × 10 ⁵
5 ± 1 AMeV @ S0	1.7 × 10 ⁵

cf. 1.4×10^4 pps ¹³²Sn in CARIBU proposal

Summary

On-going EOS Programs at RIBF SAMURAI TPC SpiRIT Collaboration Total interaction cross section measurements Proton and Electron elastic scattering for matter and proton distribution GMR and GDR measurements Tetra neutron spectroscopy with missing mass and invariant mass 3NF study with d+p elastic scattering

<u>r-process path</u> Bunch of data for Half-life and Pn Mass information will be produced soon

<u>The OEDO beam line is completed to start new projects with</u> <u>low energy reactions such as fusion, deep-inelastic.</u> <u>RILAC upgrade will be completed in 2019. Ca and Zn beams at SRC</u> <u>will be increased</u> <u>RIBF intensity upgrade for the U beam is waiting for</u> <u>green-sign by the government</u>

Magicity and its loss through determining $E(2^+)$

Achievements with DALI2 at ZD since 2008-

Shell Evolution And Search for Two-plus energies At the RIBF (SEASTAR) – a RIKEN Physics Program

MINOS (100-mm thick Liq.H₂ target and TPC system, $\Delta\beta = 20\%$) -> high luminosity and vertex position determination DALI2 -> high efficiency to access very neutron-rich nuclei

Nuclear Magic Numbers and Shell Evolution (1)

"Magic" Correlation between RIBF and ISOLDE

RIBF-SEASTAR

First Spectroscopy of ⁷⁹Cu

L. Olivier et al., PRL119, 192501 (2017)

ISOLDE-ISOLTRAP

Binding Energy of ⁷⁹Cu

A. Welker et al., PRL119, 192502 (2017)

Large N=50 gap towards Z=28

Large Z=28 gap at N=50

Viewpoint: Doubly Magic Nickel

Daniel Bazin, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321, USA November 6, 2017 • *Physics* 10, 121

EURICA

EUroball-RIKEN Cluster Array

2012-2016

12 Euroball Cluster Ge detectors Support structure Electronics/daq used for RISING

RIBF: decay station Active stopper: DS-SSD (WAS3ABi) Liq. N₂ system, other infrastructures

+Additional detectors (LaBr₃, Plastic, AIDA...)

230 collaborators from 19 countries About 100 days were approved for physics run Commissioning March 2012 NIM B 317, 649 (2013) Physics Run June 2012 – June 2016

s contractions of the second sec

WAS3ABi

Publication at this time (November 15th, 2017)
38 papers (12xPRL, 9xPLB, 4xPRC(R), 14xPRC, 1xEPJA)
12 PhD Thesis + 1 Master Thesis
38 proceedings
8 technical articles

"End-of-Campaign WS Sept.6-7th, 2016

Decay-station

EURICA Achievements (2012-)

New isotopes

P-Rich

⁹⁶In, ⁹⁴Cd, ⁹²Ag, ⁹⁰Pd: Celikovic et al., PRL 116, 162501(2016)
⁶³Se, ^{67, 68}Kr: Blank et al., PRC 93, 061301(R) (2016)
⁶⁷Kr: Goigoux et al., PRL 117, 162501 (2016)
⁷²Rb: Suzuki et al., PRL 119, 192503 (2017)
N-rich
⁷³Mn, ⁷⁶Fe, ^{77,78}Co, ^{80,81,82}Ni, ⁸³Cu:
Sumikama et al., PRC95, 051601(R) (2017)

Isomers

⁷⁶Co. ⁷⁶Ni: Soderstrom et al., PLB 750, 448(2015) ¹⁰²Zr : Browne et al., PRC96, 024309 (2017) ^{126, 128}Pd: Watanabe et al, PRL 111, 152501 (2013) ¹²⁶Pd: Watanabe et al, PRL 113, 042502 (2014) ⁹²Rh, ⁹⁶Ag, ⁹⁸Cd: Park et al., PRC 96, 044311 (2017) ⁹⁶Cd: Davied et al, PLB 767, 474 (2017) ¹²⁸Cd: Junclaus et al, PLB 772, 483 (2017) ¹²⁹Cd, ¹³¹In: Taprogge et al, PLB 738, 223 (2014); Eur.Phys.J.A.52, 347(2016) ^{136,138}Sn: Simpson et al., PRL 113, 132502 (2014) ^{158,160}Nd : Ideguchi et al., PRC94, 064322 (2016) ¹³⁶Sb: Lozeva et al., PRC 91, 024302(2015) ¹⁴⁰Sb: Lozeva et al., PRC 93, 014316 (2016) ¹⁶⁴Sm, ¹⁶⁶Gd:Patel et al., PRL 113, 262502 (2014) ¹⁶⁰Sm : Patel et al., PLB, 753, 182 (2016) ^{159, 161, 162}Sm : Patel et al., PRC95, 034305 (2017) ¹⁷⁰Dy: Soderstrom et al., PLB 762, 404 (2016) ¹⁷²Dy: Watanabe et al., PLB 760, 641 (2016)

Half-life

Indication of a double magic ⁷⁸Ni : Xu et al., PRL 113, 032505 (2014) Half-lives for 110 n-rich nuclei: Lorusso et al., PRL 114, 192501 (2015) Half-lives for 94 n-rich nuclei: Wu et al., PRL 118, 072701 (2017)

Beta-gamma

^{68, 69, 70}Mn: Benzoni et al., PLB 751, 107(2015)
⁶⁰Co, ⁷⁰Ni: Morales et al., PLB 765, 328(2017)
⁷²Ni: Morales et al., PRC 93, 034328 (2016)
⁷⁶Co, ⁷⁶Ni: Soderstrom et al., PRC 92, 051305(R) (2015)
⁷⁷Cu: Sahin et al., PRL118, 242502 (2017)
⁷⁰Br: Morales et al., PRC 95, 064327(2017)
^{104,106}Zr: Browne et al., PLB 750, 448(2015)
^{116,118}Ru: Soderstrom et al., PRC 88, 024301(2013)
¹²⁹In: Taprogge et al., PRC 91, 054324 (2015)
¹³⁰In: Jungclaus et al, PRC 94, 024303 (2016)
¹³¹In: Taproge et al., PRC 93, 041301(R) (2016)
¹³⁸Te: Lee et al., PRC 92, 044320(2015)
¹⁴⁰Te: Moon et al., PRC 96, 014325(2017)

Discovery of ⁷²Rb: H. Suzuki et al., PRL 119, 192503 (2017) A nuclear sandbank beyond the proton drip-line

Physics with Exotic Nuclei

Shell Evolution : magicity loss and new magicity

Neutron Correlation in the vicinity of the Drip-line

R-process path: Synthesis up to U

EOS: asymmetric nuclear matter SN explosion, neutron-star, gravitational wave

Physics with Exotic Nuclei

Shell Evolution : magicity loss and new magicity

Neutron Correlation in the

R-process path: Synthesis up to U

EOS: asymmetric nuclear matter SN explosion, neutron-star,

vitational wave

Gamma-decay of unbound neutron-hole states in ¹³³Sn

V. Vaquero, A. Jungclaus et al., PRL 118, 202502 (2017)

A gamma-decay of a neutron-hole unbound state at 3.57 MeV in ¹³³Sn is observed. Neutron emission of a state at 3.66 MeV was observed at ISOLDE (PRL77, 1020, 1996)

Very small overlap between the state of ¹³³Sn and the ground state of ¹³²Sn, because of double magicity of ¹³²Sn

Concerning the r-process path, not only beta-delayed emission but also gamma-decay should be considered in network calculation 41

SPiRIT-Time Projection Chamber

for the measurement of charged particles in HIC

NIMA 784 (2015) 513

SAMURAI dipole magnet

134 x 86 x 53 cm³ effective area $dE/dX - B\rho$ particle identification. Target at the entrance of chamber. Readout with ~12000 pads.

Elastic scattering study for Exotic Nuclei with ESPRI

Terashima, Zenihiro, Sakaguchi et al.

In 2006-2008

Experiments for C- and O-isotopes at HIMAC 9-11C, 20O at 300 MeV/u, 10^5 /s

In 2009-2010

Experiment for n-rich Ni isotopes at GSI

C-16 and Sn-132 at RIBF

500 µm

Resolution

TOF: 0.1 nsec

0.3 %(80 MeV