Out-of-equilibrium system and relativistic hydro in heavy-ion collisions

Li Yan

Department of Physics, McGill University
四 McGill

IHIC 2018, Tsinghua, Beijing

A 'standard' picture for heavy-ion collisions

The system is assumed in thermal equilibrium \Rightarrow hydrodynamics

Hydrodynamics is an effective theory for system in/close to equilibrium

$$
\begin{array}{r}
\text { e.g., } \quad \partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu \nu}=\left(\begin{array}{cccc}
\mathcal{E} & 0 & 0 & 0 \\
0 & \mathcal{P} & 0 & 0 \\
0 & 0 & \mathcal{P} & 0 \\
0 & 0 & 0 & \mathcal{P}
\end{array}\right)+\Pi^{\mu \nu} \\
\Pi^{\mu \nu}=-\eta \sigma^{\mu \nu}+\nabla^{2} \underbrace{+\nabla^{3}+\nabla^{4}+\nabla^{5}+\nabla^{6}+\ldots}_{\text {not included in simulations }}
\end{array}
$$

- Gradient expansion: Knudsen number $\sim \nabla$
- 2nd order in gradients: Israel-Stewart, BRSSS, DNMR

Baier, Romatschke, Son, Starinets, Stephonov, Niemi, Denicol, ...

- Hydro predictions are compatible with heavy-ion experiments.
P. Romatschke, M.Luzum, K. Dusling, D. Teaney, U. Heinz, H. Song
- η / s, etc. are estimated based on flow measurements:
M.Luzum, J. Ollitrault, B. Schenke, C. Gale, S. Jeon, ...

$$
\Rightarrow \frac{\eta}{s}=1 \sim 3 \times\left(\frac{1}{4 \pi}\right)
$$

QGP is strongly coupled medium!

A 'modified' picture for heavy-ion collisions

- Is it possible the system is out-of-equilibrium?
- For the system evolution, is it still fluid dynamics to be considered?

Out-of-equilibrium QGP system in heavy-ion collisions

Thermalization is even more changllenged in small colliding systems !

Beyond pressure anisotropy: \mathcal{L}-moment

p^{2}-moment weighted with Legendre Polynomial $P_{2 n}$:

$$
\mathcal{L}_{n}=\int \frac{d^{3} p}{(2 \pi)^{3} p^{0}} p^{2} P_{2 n}\left(p_{z} / p_{\perp}\right) f\left(\tau, \vec{p}_{\perp}, p_{z}\right)
$$

- Lowest order moment conincides with energy density: $\mathcal{L}_{0}=\mathcal{E}$.
- First order moment describes isotropization: $\mathcal{L}_{1}=\mathcal{P}_{L}-\mathcal{P}_{T}$.
- Higher order moments capture finer structure of f (or δf).

Equation of motion for \mathcal{L}_{n}

Consider relaxation time approximation, τ_{R} indep. of \vec{p} :

$$
\left[\partial_{\tau}-\frac{p_{z}}{\tau} \partial_{p_{z}}\right] f(\mathbf{p}, \tau)=-\frac{f(\mathbf{p}, \tau)-f_{\mathrm{eq}}(p / T)}{\tau_{R}}, \quad \tau_{R}=\tau_{R}(T)
$$

which is equivalent to

$$
\begin{aligned}
& \frac{\partial \mathcal{L}_{n}}{\partial \tau}=-\frac{1}{\tau}\left[a_{n} \mathcal{L}_{n}+b_{n} \mathcal{L}_{n-1}+c_{n} \mathcal{L}_{n+1}\right]-\frac{\mathcal{L}_{n}}{\tau_{R}} \quad(n \geq 1) \\
& \frac{\partial \mathcal{L}_{0}}{\partial \tau}=-\frac{1}{\tau}\left[a_{0} \mathcal{L}_{0}+c_{0} \mathcal{L}_{1}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{n}=\frac{2\left(14 n^{2}+7 n-2\right)}{(4 n-1)(4 n+3)}, \quad b_{n}=\frac{(2 n-1) 2 n(2 n+2)}{(4 n-1)(4 n+1)}, \\
& c_{n}=\frac{(1-2 n)(2 n+1)(2 n+2)}{(4 n+1)(4 n+3)},
\end{aligned}
$$

$1 /\left(\tau / \tau_{R}\right)$ defines Knudsen number.

$$
a_{0}=4 / 3, a_{1}=38 / 21, a_{n}+b_{n}+c_{n}=2 \ldots
$$

Truncation of the coupled equations

$$
\begin{aligned}
& \frac{\partial \mathcal{L}_{n}}{\partial \tau}=-\frac{1}{\tau}\left[a_{n} \mathcal{L}_{n}+b_{n} \mathcal{L}_{n-1}+c_{n} \mathcal{L}_{n+1}\right]-\frac{\mathcal{L}_{n}}{\tau_{R}} \quad(n \geq 1) \\
& \frac{\partial \mathcal{L}_{0}}{\partial \tau}=-\frac{1}{\tau}\left[a_{0} \mathcal{L}_{0}+c_{0} \mathcal{L}_{1}\right]
\end{aligned}
$$

Truncate at n -th order (ignore all \mathcal{L}-moments higher than n-th order) :

- at $n=0$

$$
\frac{\partial \mathcal{E}}{\partial \tau}+\frac{4}{3} \frac{\mathcal{E}}{\tau}=0 \quad \rightarrow \quad \mathcal{E} \sim \tau^{-4 / 3} \quad \text { ideal hydro }
$$

- at $n=1$

$$
\begin{aligned}
& \frac{\partial \mathcal{L}_{0}}{\partial \tau}=-\frac{1}{\tau}\left[a_{0} \mathcal{L}_{0}+c_{0} \mathcal{L}_{1}\right] \\
& \frac{\partial \mathcal{L}_{1}}{\partial \tau}=-\frac{1}{\tau}\left[a_{1} \mathcal{L}_{1}+b_{1} \mathcal{L}_{0}\right]-\frac{\mathcal{L}_{1}}{\tau_{R}}
\end{aligned}
$$

Convergence of truncation

Convergence of truncation

Convergence of truncation

Convergence of truncation

The free-streaming fixed points: $\tau / \tau_{R} \rightarrow 0$

$$
\frac{\partial \mathcal{L}_{n}}{\partial \tau}=-\frac{1}{\tau}\left[a_{n} \mathcal{L}_{n}+b_{n} \mathcal{L}_{n-1}+c_{n} \mathcal{L}_{n+1}\right]
$$

For infinite n :

- $\mathcal{L}_{0}=\mathcal{L}_{1}=\mathcal{L}_{2}=\mathcal{L}_{3}=\ldots$

$$
\Rightarrow \mathcal{L}_{n}=\mathcal{L}_{n}\left(\tau_{0}\right)\left(\frac{\tau_{0}}{\tau}\right)^{2} \quad \rightarrow \tau \partial_{\tau} \ln \mathcal{L}_{n}=2
$$

- $\mathcal{L}_{n}(\tau)=P_{2 n}(0) \mathcal{L}_{0}(\tau)$,

$$
\Rightarrow \mathcal{L}_{n}(\tau)=\mathcal{L}_{n}\left(\tau_{0}\right)\left(\frac{\tau_{0}}{\tau}\right) \quad \rightarrow \tau \partial_{\tau} \ln \mathcal{L}_{n}=1
$$

For finite n,

$$
\left(\begin{array}{ccccc}
a_{0} & c_{0} & 0 & 0 & \ldots \\
b_{1} & a_{1} & c_{1} & 0 & \ldots \\
0 & b_{2} & a_{2} & c_{2} & \ldots \\
\ldots & \cdots & \cdots & \ldots & \ldots
\end{array}\right) \Rightarrow \lambda \approx 2 \text { (unstable) and } \approx 1 \text { (stable) }
$$

The hydro fixed points: $\tau / \tau_{R} \rightarrow \infty$

Restore hydro EoM via truncation order by order:

- Truncation at $n=1$ gives 2 nd order hydro: $\left(c_{0} \mathcal{L}_{1}=\Pi=\Pi_{\xi}^{\xi}\right)$

$$
\partial_{\tau} \mathcal{L}_{0}=-\frac{1}{\tau}\left(a_{0} \mathcal{L}_{0}+c_{1} \mathcal{L}_{1}\right) \quad \rightarrow \quad \partial_{\tau} \mathcal{E}+\frac{\mathcal{E}+\mathcal{P}_{L}}{\tau}=0
$$

$\partial_{\tau} \mathcal{L}_{1}=-\frac{1}{\tau}\left(a_{1} \mathcal{L}_{1}+b_{1} \mathcal{L}_{0}\right)-\frac{1}{\tau_{R}} \mathcal{L}_{1} \quad \rightarrow \quad \Pi=-\eta \sigma-a_{1} \frac{\tau_{R}}{\tau} \Pi-\tau_{R} \partial_{\tau} \Pi$.

* Note $a_{1}=38 / 21=\beta_{\pi \pi}$ is 2nd transport coefficient in DNMR.
* Also compatible with BRSSS with respect to conformal symmetry.
- Truncation at $n=2$ gives 3rd order hydro: $\left(c_{0} \mathcal{L}_{2}=\Sigma=\Sigma_{\xi}^{\xi}\right)$

$$
\Pi=-\eta \sigma-\tau_{\pi}\left[\partial_{\tau} \Pi+\frac{4}{3} \Pi \nabla \cdot u\right]+\frac{3 \tau_{\pi}}{4 \eta}\left(a_{1}-4 / 3\right) \Pi \Pi+\frac{3 c_{1} \tau_{\pi}}{4 \eta} \Sigma \Pi
$$

The hydro fixed points: $\tau / \tau_{R} \rightarrow \infty$

Ansatz expansion form (hydro gradient expansion)

$$
\mathcal{L}_{n}=\sum_{i=n} \frac{\alpha_{n}^{(i)}}{\tau^{i}}
$$

$\alpha_{n}^{(i)}$ is transport coefficient (of order $n+i$).
The leading and subleading coefficients can be found analytically.

- E.g., $\mathcal{P}_{L}-\mathcal{P}_{T}=\mathcal{L}_{1}=\frac{2 \eta}{\tau}+\frac{4}{3 \tau^{2}}\left(\lambda_{1}-\eta \tau_{\pi}\right)+O\left(1 / \tau^{3}\right)$
- E.g., $\mathcal{L}_{2}=\frac{4}{3 \tau^{2}}\left(\lambda_{1}+\eta \tau_{\pi}\right)+O\left(1 / \tau^{3}\right)$
- Conformal gas and relaxation time approximantion $\tau_{R} \propto p^{2}$:

$$
\alpha_{n}^{(n)}=(-1)^{n} \frac{(2 n)!}{(4 n+1)!!} \Gamma(2 n+4)\left(\frac{\eta}{s}\right)^{n} \frac{T^{4-n}}{2 \pi^{2}}
$$

Factorial growth of $\alpha_{n}^{(n)} \sim n!$: gradient expansion is asymptotic!
H. Grad, M. Heller, M. Spalinski, G. Denicol, J. Noronha

The hydro fixed points: $\tau / \tau_{R} \rightarrow \infty$

Asymptotic decay rate determined by the leading term: $\mathcal{L}_{n} \sim \alpha_{n}^{(n)} / \tau$

$$
\begin{array}{ll}
\Rightarrow \tau \partial_{\tau} \ln \mathcal{L}_{n}=-\frac{4+2 n}{3} & \left(\tau_{R} \propto 1 / T\right) \\
\Rightarrow \tau \partial_{\tau} \ln \mathcal{L}_{n}=-\frac{4+3 n}{3} & \left(\tau_{R} \text { constant }\right)
\end{array}
$$

These are stable fixed points in the hydro regime.

A simple summary on the fixed points

- Degenerated fixed point of all g_{n} in the free-streaming limit.
- Hydro fixed points of g_{n} split according to n.
- System evolves between there two types of fixed points - attractor.

Attractor solution

Some general discussions on attractor solution rBRSSS

- Attractor solution exists, with or without conformal symmetry
- Non-hydro modes decay exponentially, w.r.t. attractor solutions.
P. Romatschke, A. Kurkela, U. Wiedemann
\Rightarrow fluid dynamics can be extended to out-of-equilibrium system!
- Attractor corresponds to Borel resummed hydro gradient expansion. M.Heller, M. Spalinski, R. Janik, P. Witaszczky, G. Basar, G. Dunne, ...

Renormalization of η / s

Effects from higher order moments/viscous hydro (leading order):

$$
\begin{aligned}
\partial_{\tau} \mathcal{L}_{0} & =-\frac{1}{\tau}\left(a_{0} \mathcal{L}_{0}+c_{0} \mathcal{L}_{1}\right) \\
\partial_{\tau} \mathcal{L}_{1} & =-\frac{1}{\tau}\left(a_{1} \mathcal{L}_{1}+b_{0} \mathcal{L}_{0}\right)-\underbrace{\left[1+\frac{c_{1} \tau_{R}}{\tau} \frac{\mathcal{L}_{2}}{\mathcal{L}_{1}}\right]}_{z_{\eta / s}^{-1}} \frac{\mathcal{L}_{1}}{\tau_{R}} \quad\left(\mathcal{L}_{2} \text { in 2nd hydro }\right), \\
g_{2}\left(\tau / \tau_{R}\right) & =-a_{2}-b_{2} \frac{\mathcal{L}_{2}}{\mathcal{L}_{1}}-\frac{\tau}{\tau_{R}}
\end{aligned}
$$

- Taking attractor solution for g_{2} : resummed of gradients.
- Effectively, for 2nd order hydro, η / s is renormalized.

Attractor solution

Out-of-equilibrium physics can be effectively absorbed into a reduced η / s.
E. Shuryak, M. Lublinsky

Summary

- \mathcal{L}-moments are proposed to quantify system thermalization.
- Coupled equations for \mathcal{L}_{n} are derived, and valid truncations.

$$
\Rightarrow \text { fluid dynamics for out-of-equilibrium system }
$$

- Attractor solution smoothly connect fixed points of \mathcal{L}_{n} in two limits.
- The systems in heavy-ion collisions may be out-of-equilibrium:
- Actual value of η / s could be larger than expectation.

Back-up slides

Kinetic theory description

- In kinetic theory: $p^{\mu} \partial_{\mu} f\left(\tau, p_{\perp}, p_{z}\right)=-\mathcal{C}[f]$

$$
\begin{aligned}
& \mathcal{P}_{L}=\int \frac{d^{3} p}{(2 \pi)^{3} p^{0}} p_{z}^{2} f\left(\tau, p_{\perp}, p_{z}\right), \quad \mathcal{P}_{T}=\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3} p^{0}}\left(p_{x}^{2}+p_{y}^{2}\right) f\left(\tau, p_{\perp}, p_{z}\right) \\
& \mathcal{E}=\mathcal{P}_{L}+2 \mathcal{P}_{T}=\int \frac{d^{3} p}{(2 \pi)^{3} p^{0}} p^{2} f\left(\tau, p_{\perp}, p_{z}\right)
\end{aligned}
$$

Bjorken symmetry: boost invariance along ξ, translation invariance in \vec{x}_{\perp}.

Solved by kinetic theory with respect to QCD 2-to-2 scattering.

