

Equilibration Chronometry

Characterizing neutron-proton equilibration with sub-zeptosecond resolution

Alan McIntosh, Texas A&M University, NuSym 2016, Beijing

Motivation:

Constrain the nuclear equation of state.

Background:

N-Z equilibration should be directly observable in heavy ion reactions. One fragment from binary split evolves in time.

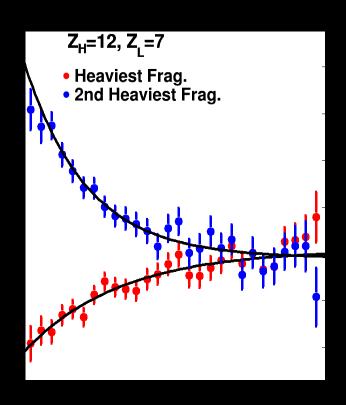
Hypothesis:

The composition of the two fragments from a binary split should evolve toward each other with time.

Methods:

NIMROD 4π array.

First measurement of N-Z of both fragments.


Fine time resolution from alignment angle.

Results:

We observe N-Z equilibration as a function of time.

Equilibration curve is approximately exponential \rightarrow First order kinetics Zeptosecond timescale.

We observe equilibration as a function of time

2015 data analysis Jedele et al.

For details of the analysis, and for collaborative opportunities, please contact me! amcintosh@comp.tamu.edu

Yennello Research Group & Collaborators A. Jedele, A.B. McIntosh, K. Hagel, L. Heilborn, M. Huang, Z.W. Kohley, L.W. May, E. McCleskey, M. Youngs, A. Zarrella, S.J. Yennello

Department of Energy DE-FG03-93ER40773

Welch Foundation A-1266