Impact of Fock Terms on Nuclear Symmetry Energy and Related Physics

Bao Yuan SUN 孙保元¹

School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu Province, P. R. China

16 June 2016 @ NuSYM16 Beijing

¹E-mail address: sunby@lzu.edu.cn & sunbaoyuan@gmail.com

1. Introduction

- 2. Theoretical Framework of RHF Theory in Nuclear Matter
- 3. Impact of Fock Terms on Nuclear Symmetry Energy
 - Self-Consistent Tensor Effects from Fock Terms
 - Effective Mass and Neutron Star Cooling
 - Extra Softening Effects with Inclusion of Hyperons
- 4. Summary and Outlook

Bao Yuan SUN (Lanzhou University)

Symmetry Energy in Nuclear Matter

• Equation of state isospin asymmetric nuclear matter

$$E_b(\rho_b, \delta) = E_0(\rho_b) + E_S(\rho_b)\delta^2 + S_4(\rho_b)\delta^4 + \mathcal{O}(4), \ \delta = (\rho_n - \rho_p)/(\rho_n + \rho_p)$$

• Empirical parabolic law:

☆ I. Bombaci and U. Lombardo, Phys. Rev. C 44, 1892 (1991).

$$E_{\mathcal{S}}(\rho_b) = \frac{1}{2} \frac{\partial^2 E_b(\rho_b, \delta)}{\partial \delta^2} \bigg|_{\delta=0}, \quad L = 3\rho_0 \left. \frac{\partial E_{\mathcal{S}}(\rho_b)}{\partial \rho_b} \right|_{\rho_b=\rho_0}, \quad K_{\text{sym}} = 9\rho_0^2 \left. \frac{\partial^2 E_{\mathcal{S}}(\rho_b)}{\partial \rho_b^2} \right|_{\rho_b=\rho_0}$$

- Important to understand
 - nuclear structure: fission properties, density distribution, collective excitation, etc.

 B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).

M. Centelles, X. Roca-Maza, X. Viñas et al., Phys. Rev. Lett. 102, 122502 (2009).

- ☆ A. Tamii, I. Poltoratska, P. von Neumann-Cosel et al, Phys. Rev. Lett. 107, 062502 (2011).
- nuclear astrophysics: NS's radius, crust-core transition density, cooling rate, etc.
 & C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001).
 & A. W. Steiner, M. Prakash, J. M. Lattimer et al., Phys. Rep. 411, 325 (2005).
- heavy ion reactions: isospin diffusion, DR(n/p), etc.
 V. Baran, M. Colonna, V. Greco, and M. Di Toro, Phys. Rep. 410, 335 (2005).
 B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).

Bao Yuan SUN (Lanzhou University)

Symmetry Energy in Nuclear Matter

• Equation of state isospin asymmetric nuclear matter

$$E_b(\rho_b, \delta) = E_0(\rho_b) + E_S(\rho_b)\delta^2 + S_4(\rho_b)\delta^4 + \mathcal{O}(4), \ \delta = (\rho_n - \rho_p)/(\rho_n + \rho_p)$$

• Empirical parabolic law:

☆ I. Bombaci and U. Lombardo, Phys. Rev. C 44, 1892 (1991).

$$E_{\mathcal{S}}(\rho_b) = \frac{1}{2} \frac{\partial^2 E_b(\rho_b, \delta)}{\partial \delta^2} \bigg|_{\delta=0}, \quad L = 3\rho_0 \left. \frac{\partial E_{\mathcal{S}}(\rho_b)}{\partial \rho_b} \right|_{\rho_b = \rho_0}, \quad K_{\text{sym}} = 9\rho_0^2 \left. \frac{\partial^2 E_{\mathcal{S}}(\rho_b)}{\partial \rho_b^2} \right|_{\rho_b = \rho_0}$$

Information of symmetry energy is needed to improve the nuclear many-body models

Ingredients of effective nuclear force: momentum-dependence, exchange term, tensor force, short range correlation, ...

& J. M. Lattimer, Y. Lim, ApJ 771, 51 (2013).

Bao Yuan SUN (Lanzhou University)

The Relativistic Hartree-Fock (RHF) Theory

Including the exchange terms and the π -meson

1	In-medium effects not considered explicitly:	☆ A. Bouyssy:PRL1985,PRC1987
2	With the nonlinear self-couplings of the σ -field: $\textcircled{\begin{tabular}{lllllllllllllllllllllllllllllllllll$	<i>☆ P. Bernardos:PRC1993</i>
3	Nonlinear self-interaction of scalar field with zero-range limit: ⓒ Complicated exchange contributions, Violating Pauli Principle	☆ S. Marcos:JPG2004
4	Density-dependent meson-nucleon couplings: ② Lacking rearrangement effect	<i>☆ H. L. Shi:PRC1995</i>

The Relativistic Hartree-Fock (RHF) Theory

Including the exchange terms and the π -meson

	In-medium effects not considered explicitly:	<i>☆ A. Bouyssy:PRL1985,PRC1987</i>
2	With the nonlinear self-couplings of the σ -field: S Inconsistency, Broken chiral symmetry	☆ P. Bernardos:PRC1993
3	Nonlinear self-interaction of scalar field with zero-range limit: ⓒ Complicated exchange contributions, Violating Pauli Principle	☆ S. Marcos:JPG2004
4	Density-dependent meson-nucleon couplings:	<i>☆ H. L. Shi:PRC1995</i>
5	Density-dependent relativistic Hartree-Fock (DDRHF) theory:	<i>☆ W. H. Long:PLB2006</i> g the exchange terms
6	 Inclusion of <i>ρ</i>-tensor couplings in DDRHF theory: Enhanced <i>np</i> correlations, Better conserved relativistic symmetry 	☆ W. H. Long:PRC2007 ☆ Long:PRC2010, Liang:EPJA2010
7	RHF model with bare nucleon-nucleon interaction:	☆ J. N. Hu:PLB2010 ☆ Hu:EPJA2010, Wen:PTP2010
8	Self-consistent tensor interaction within DDRHF theory: ② A unified and self-consistent treatment of both the nuclear tensor	<i>☆ L. J. Jiang:PRC2015</i> and spin-orbit interactions

The Relativistic Hartree-Fock (RHF) Theory

Including the exchange terms and the π -meson

1	In-medium effects not considered explicitly:	<i>☆ A. Bouyssy:PRL1985,PRC1987</i>
2	With the nonlinear self-couplings of the σ -field: Inconsistency, Broken chiral symmetry	☆ P. Bernardos:PRC1993
3	Nonlinear self-interaction of scalar field with zero-range limit: ⓒ Complicated exchange contributions, Violating Pauli Principle	☆ S. Marcos:JPG2004
4	Density-dependent meson-nucleon couplings:	<i>☆ H. L. Shi:PRC1995</i>
5	Density-dependent relativistic Hartree-Fock (DDRHF) theory:	<i>☆ W. H. Long:PLB2006</i> g the exchange terms
6	Inclusion of ρ -tensor couplings in DDRHF theory: Enhanced <i>np</i> correlations, Better conserved relativistic symmetry	♥ W. H. Long:PRC2007 ♥ Long:PRC2010, Liang:EPJA2010
7	RHF model with bare nucleon-nucleon interaction:	<i>☆ J. N. Hu:PLB2010</i> <i>☆ Hu:EPJA2010, Wen:PTP2010</i>
8	Self-consistent tensor interaction within DDRHF theory: ② A unified and self-consistent treatment of both the nuclear tensor	# <i>L. J. Jiang:PRC2015</i> and spin-orbit interactions
•	DDRHF Effective Interactions : PKO1, PKO2, PKO3, PKA1	

Bao Yuan SUN (Lanzhou University)

Improved Isospin Related Nuclear Structure Descriptions

0.90

0.85

0.80

0.75

Mⁱ_{NR}(E_F)/M

Neutror

Proton

0.60

1.0p

0.5ρ₀

0.9p

Fock terms :

 \rightarrow Improved β and E dependence for the effective mass *☆* W. H. Long et al., PLB 640, 150 (2006).

Exchange diagrams in isoscalar channels :

→ Self-consistent description of spin-isospin excitation # H. Z. Liang, N. Van Giai, J. Meng, PRL 101, 122502 (2008). # H. Z. Liang, P. W. Zhao, J. Meng, PRC 85, 064302 (2012). \rightarrow Significant contributions in the symmetry energy

⇔ B. Y. Sun et al., PRC 78, 065805 (2008).

Effective masses in DBHF: # Z. Y. Ma: PLB2004

BHF vs RHF: # A. Li: PRC2016

Bao Yuan SUN (Lanzhou University)

RHF Lagrangian Density

• Relativistic Hartree & Fock (RHF): meson & photon exchanges

• RHF Lagrangian density: Nucleon (ψ), Hyperon Λ (ψ_{Λ}), Mesons (σ , ω , ρ , π)

$$\mathcal{L} = \mathcal{L}_{M} + \mathcal{L}_{\Lambda} + \mathcal{L}_{I} + \mathcal{L}_{\sigma} + \mathcal{L}_{\omega} + \mathcal{L}_{\rho} + \mathcal{L}_{\pi}$$

$$= \bar{\psi} \left[i\gamma^{\mu}\partial_{\mu} - M \right] \psi + \bar{\psi}_{\Lambda} \left(i\gamma^{\mu}\partial_{\mu} - M_{\Lambda} - g_{\sigma \cdot \Lambda}\sigma - g_{\omega \cdot \Lambda}\gamma^{\mu}\omega_{\mu} \right) \psi_{\Lambda}$$

$$+ \bar{\psi} \left[-g_{\sigma}\sigma - g_{\omega}\gamma^{\mu}\omega_{\mu} - g_{\rho}\gamma^{\mu}\vec{\tau} \cdot \vec{\rho}_{\mu} + \frac{f_{\rho}}{2M}\sigma_{\mu\nu}\partial^{\nu}\vec{\rho}^{\mu} \cdot \vec{\tau} - \frac{f_{\pi}}{m_{\pi}}\gamma_{5}\gamma^{\mu}\partial_{\mu}\vec{\pi} \cdot \vec{\tau} \right] \psi$$

$$+ \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega^{\mu}\omega_{\mu}$$

$$- \frac{1}{4}\vec{R}^{\mu\nu} \cdot \vec{R}_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\vec{\rho}^{\mu} \cdot \vec{\rho}_{\mu} + \frac{1}{2}\partial^{\mu}\vec{\pi} \cdot \partial_{\mu}\vec{\pi} - \frac{1}{2}m_{\pi}^{2}\vec{\pi} \cdot \vec{\pi},$$

$$\Rightarrow \Omega^{\mu\nu} = \partial^{\mu} \cdot \nu - \partial^{\nu} \cdot \mu \quad \vec{u}\nu = \partial^{\mu} \vec{\tau}\nu \quad \partial^{\nu} \vec{\tau}\nu$$

with $\Omega^{\mu\nu} \equiv \partial^{\mu}\omega^{\nu} - \partial^{\nu}\omega^{\mu}$, $\vec{R}^{\mu\nu} \equiv \partial^{\mu}\vec{\rho}^{\nu} - \partial^{\nu}\vec{\rho}^{\mu}$.

 Λ hyperon participates only in the interactions propagated by the isoscalar mesons.

Bao Yuan SUN (Lanzhou University)

RHF Energy Functional in Momentum Representation

· Energy functional in momentum representation: energy density in nuclear matter

$$\varepsilon = \frac{1}{\Omega} \left\langle \Phi_0 \right| H \left| \Phi_0 \right\rangle = \varepsilon_k + \sum_{\phi} \left(\varepsilon_{\phi}^D + \varepsilon_{\phi}^E \right),$$

with kinetic energy density ε_k , direct (ε_{ϕ}^D) and exchange (ε_{ϕ}^E) terms of the potential energy density,

$$\begin{split} \varepsilon_{k} &= \sum_{p,s,\tau} \bar{u}(p,s,\tau) \left(\boldsymbol{\gamma} \cdot \boldsymbol{p} + M_{\tau} \right) u(p,s,\tau), \quad \text{with} \quad \tau_{n} = \frac{1}{2}, \ \tau_{p} = -\frac{1}{2}, \ \tau_{\Lambda} = 0, \\ \varepsilon_{\phi}^{D} &= + \frac{1}{2} \sum_{p_{1},s_{1},\tau_{1}} \sum_{p_{2},s_{2},\tau_{2}} \bar{u}(p_{1},s_{1},\tau_{1}) \Gamma_{\phi} u(p_{1},s_{1},\tau_{1}) \frac{1}{m_{\phi}^{2}} \bar{u}(p_{2},s_{2},\tau_{2}) \Gamma^{\phi} u(p_{2},s_{2},\tau_{2}), \\ \varepsilon_{\phi}^{E} &= - \frac{1}{2} \sum_{p_{1},s_{1},\tau_{1}} \sum_{p_{2},s_{2},\tau_{2}} \bar{u}(p_{1},s_{1},\tau_{1}) \Gamma_{\phi} u(p_{2},s_{2},\tau_{2}) \frac{1}{m_{\phi}^{2} + \boldsymbol{q}^{2}} \bar{u}(p_{2},s_{2},\tau_{2}) \Gamma^{\phi} u(p_{1},s_{1},\tau_{1}), \end{split}$$

where ϕ represents $\sigma\text{-S},$ $\omega\text{-V},$ $\rho\text{-V},$ $\rho\text{-VT},$ and $\pi\text{-PV}$ couplings,

$$\begin{split} \Gamma_{\sigma\text{-S}} = & i g_{\sigma} \text{ or } i g_{\sigma\text{-}\Lambda}, & \Gamma_{\omega\text{-V}} = & g_{\omega} \gamma_{\mu} \text{ or } g_{\omega\text{-}\Lambda} \gamma_{\mu}, & \Gamma_{\rho\text{-V}} = & g_{\rho} \gamma_{\mu} \vec{\tau}, \\ \Gamma_{\rho\text{-T}} = & \frac{f_{\rho}}{2M} q^{\nu} \sigma_{\mu\nu} \vec{\tau}, & \Gamma_{\rho\text{-VT}} = & \Gamma_{\rho\text{-V}} \text{ or } \Gamma_{\rho\text{-T}}, & \Gamma_{\pi\text{-PV}} = & \frac{f_{\pi}}{m_{\pi}} q \cdot \gamma \gamma_5 \vec{\tau}. \end{split}$$

• Self-energies in nuclear matter from variation: $\Sigma(p) = \Sigma_S(p) + \gamma_0 \Sigma_0(p) + \gamma \cdot \hat{p} \Sigma_V(p)$

$$\Sigma(p)u(p,s,\tau) = \frac{\delta}{\delta \bar{u}(p,s,\tau)} \sum_{\sigma,\omega,\rho,\pi} \left[\varepsilon^D_\phi + \varepsilon^E_\phi \right].$$

Bao Yuan SUN (Lanzhou University)

Momentum Dependence of Nucleon Self-Energy

Where does momentum dependence of the potential energy come from?

- 1 Range of NN force
- 2 Intrinsic k-dependence of NN interaction
- 3 Fock term

Bao Yuan SUN (Lanzhou University)

Impact of Fock Terms on Nuclear Symmetry Energy

B. Y. Sun, W. H. Long, J. Meng, and U. Lombardo, Phys. Rev. C 78, 065805 (2008).

- Not only the ρ meson but all the mesons take part in the isospin properties in the DDRHF theory
 - \rightarrow In charge of producing the symmetry energy via the Fock channel
 - \rightarrow Significant contributions from isoscalar σ and ω exchange diagram in the symmetry energy
- Observation limit to neutron star radius imposes a strong constraint on the symmetry energy

Correlation with neutron star radius: 🌣 C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001).

Bao Yuan SUN (Lanzhou University)

Nuclear Tensor Interaction: Relativistic Formalism

Nuclear tensor interaction is identified by the form:

 $S_{12} = 3(\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q}) - \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \boldsymbol{q}^2$

Usually thought from (isovector) π and ρ - meson exchange \Rightarrow T. Otsuka et al., PRL 95, 232502 (2005).

→ GT and SD in RHF+RPA: significant contribution from $\sigma^E + \omega^E$: central+tensor? \Rightarrow *H.Z. Liang et al., PRL* 101(2008)122502; *H.Z. Liang et al., PRC* 85(2012)064302. → β -decay in RHF+QRPA: \Rightarrow Z.M. Niu, Y.F. Niu, H.Z.Liang, et al., PLB 723, 172–176, (2013).

Relativistic formalism to quantify tensors in Fock diagrams of π -PV, σ -S, ω -V, ρ -T couplings:

L. J. Jiang, S. Yang, B. Y. Sun, W. H. Long, and H. Q. Gu, Phys. Rev. C 91, 034326 (2015).

Second-Order Irreducible Tensor S_{12} for π -PV, σ -S:

 $S_{12} = 3 \left(\gamma_0 \boldsymbol{\Sigma}_1 \cdot \boldsymbol{q} \right) \left(\gamma_0 \boldsymbol{\Sigma}_2 \cdot \boldsymbol{q} \right) - \left(\gamma_0 \boldsymbol{\Sigma}_1 \right) \cdot \left(\gamma_0 \boldsymbol{\Sigma}_2 \right) \boldsymbol{q}^2$

→ The tensors are involved naturally by the Fock diagrams and quantified by the relativistic formalism without introducing any additional free parameters.
 → Much distinct tensor effects are found in the isoscalar rather than the isovector.

Bao Yuan SUN (Lanzhou University)

Nature of Tensor Force: Spin Dependence

- Tensor feature involved by Fock diagram is evaluated almost completely by the proposed formalism.
- Much distinct tensor effects are found in the isoscalar rather than the isovector.

L. J. Jiang, S. Yang, B. Y. Sun, W. H. Long, and H. Q. Gu, Phys. Rev. C 91, 034326 (2015).

Bao Yuan SUN (Lanzhou University)

Nature of Tensor Force: Tensor Sum Rule

• Tensor sum rule: riangle T. Otsuka, T. Suzuki et al.

T. Otsuka, T. Suzuki et al., Phys. Rev. Lett. 95, 232502 (2005).

$$(2j_{>}+1) V_{j_{>}j'}^{T} + (2j_{<}+1) V_{j_{<}j'}^{T} = 0$$

 $V_{j \ge j'}^T$: Interaction matrix elements of the tensor force components

⁴⁸ Ca		$V^{T,\sigma}_{j\gtrless j'}$ (10	⁻¹ MeV)					
PKA1	$\nu 1 p_{1/2}$	$\nu 1 d_{5/2}$	$\nu 1 d_{3/2}$	$\nu 1 f_{7/2}$	$\nu 1 p_{1/2}$	$\nu 1 d_{5/2}$	$\nu 1 d_{3/2}$	$\nu l f_{7/2}$
$\nu 1 p_{3/2}$	-1.72	+0.80	-1.24	+0.56	+0.27	-0.13	+0.21	-0.10
$\nu 1 p_{1/2}$	+3.43	-1.60	+2.48	-1.11	-0.54	+0.26	-0.41	+0.19
$\nu 1d_{5/2}$	-1.62	+1.13	-1.66	+1.02	+0.27	-0.19	+0.28	-0.18
$\nu 1 d_{3/2}$	+2.44	-1.69	+2.50	-1.53	-0.40	+0.29	-0.42	+0.27

D L. J. Jiang, S. Yang, B. Y. Sun, W. H. Long, and H. Q. Gu, Phys. Rev. C 91, 034326 (2015).

- ♦ Combined with the contributions in spin-orbit splittings, the relativistic formalism are then confirmed to be of the nature of tensor force.
- The tensors are involved naturally by the Fock diagrams and quantified by the relativistic formalism without introducing any additional free parameters.

Bao Yuan SUN (Lanzhou University)

Tensor Effects — Nuclear Matter

Effects of Fock terms to E_S : Soften due to tensor part; Stiffen due to central part

$$E_{\sigma}^{T} = +\frac{1}{2} \frac{1}{(2\pi)^{4}} \frac{g_{\sigma}^{2}}{m_{\sigma}^{2}} \sum_{\tau_{1},\tau_{2}} \delta_{\tau_{1},\tau_{2}} \int p_{1} dp_{1} p_{2} dp_{2} \hat{P}_{1} \hat{P}_{2} \left[\left(p_{1}^{2} + p_{2}^{2} - \frac{1}{3} m_{\sigma}^{2} \right) \Phi_{\sigma} - p_{1} p_{2} \Theta_{\sigma} \right]$$

Tensor Effects: Responsible for the uncertainty of E_S at supranuclear densities \Leftrightarrow C. Xu and B. A. Li, Phys. Rev. C 81, 064612 (2010); I. Vidaña et al., Phys. Rev. C 84, 062801(R) (2011).

Bao Yuan SUN (Lanzhou University)

Tensor Effects — Kinetic Symmetry Energy

	TW99	PKDD	PKO1	PKA1	BHF
kin	8.0	8.1	3.7	0.5	-1.0
T = 0	51.0	50.8	38.8	42.4	44.2
T = 1	-26.2	-22.1	-8.1	-5.7	-9.0

☆ Or Hen et al., Phys. Rev. C 91, 025803 (2015).
 ☆ A. Rios et al., Phys. Rev. C 89, 044303 (2014).
 ☆ I. Vidaña et al., PRC 84, 062801(R) (2011).
 Short Range Correlation?

$$E_{\omega}^{T} \leftrightarrow \int p_{1} dp_{1} p_{2} dp_{2} \left\{ \left[\left(P_{1}^{2} + p_{2}^{2} + \frac{1}{6} m_{\omega}^{2} \right) \Phi_{\omega} - p_{1} p_{2} \Theta_{\omega} \right] \hat{P}_{1} \hat{P}_{2} + \left(\frac{1}{4} m_{\omega}^{2} \Theta_{\omega} - p_{1} p_{2} \right) (\hat{M}_{1} \hat{M}_{2} - 1) \right\}$$

Difference of $E_{S,k}$ between RMF and RHF: mainly due to the exchange term of ω -coupling

Bao Yuan SUN (Lanzhou University)

1

Self-Energy Decomposition of $E_S(\rho_b)$

• Symmetry Energy from HVH theorem \Rightarrow B. J. Cai, L. W. Chen, Phys.Lett. B 711 (2012) 104 - 108.

$$E_b + \rho_b \frac{\partial E_b}{\partial \rho_b} = \varepsilon_F \xrightarrow{expansion}_{to asymmetry} E_S(\rho_b) = \frac{1}{4} \frac{d}{d\delta} \left[\sum_{\tau} \tau \varepsilon_F^{\tau}(\rho_b, \delta, k_F^{\tau}) \right] \Big|_{\delta=0}$$

$$\frac{d\varepsilon_F^{\tau}}{d\delta}|_{\delta=0} = \frac{\tau k_F}{3} \left(\frac{\partial\varepsilon}{\partial k}\right)\Big|_{k=k_F} + \frac{\partial\varepsilon_F^{\tau}}{\partial\delta}\Big|_{\delta=0}, \quad \Longrightarrow E_S(\rho_b) = \boxed{E_S^{\rm kin}(\rho_b) + E_S^{\rm mon}(\rho_b)} + \boxed{E_S^{\rm lst}(\rho_b)}$$

• Kinetic part, k-dependence of self-energy, δ -dependence of self-energy:

$$E_{S}^{\mathrm{kin}}(\rho_{b}) = \frac{k_{F}k_{F}^{*}}{6E_{F}^{*}}, \qquad E_{S}^{\mathrm{1st}}(\rho_{b}) = \frac{1}{2}\frac{g_{\rho}^{2}}{m_{\rho}^{2}}\rho_{b} + E_{S}^{\mathrm{1st},E}$$
$$E_{S}^{\mathrm{mon}}(\rho_{b}) = \frac{k_{F}k_{F}^{*}}{6E_{F}^{*}}\frac{\partial\Sigma_{V}}{\partial k}\Big|_{k=k_{F}} + \frac{k_{F}M_{F}^{*}}{6E_{F}^{*}}\frac{\partial\Sigma_{S}}{\partial k}\Big|_{k=k_{F}} + \frac{k_{F}}{6}\frac{\partial\Sigma_{0}}{\partial k}\Big|_{k=k_{F}},$$

• *k*-dependenct contribution and Landau mass:

$$E_{\mathcal{S}}^{\mathcal{K}} = E_{\mathcal{S}}^{\rm kin} + \underline{E}_{\mathcal{S}}^{\rm mon} = \frac{k_F^2}{6M_L^*}$$

• The negative E_S^{mon} due to the k-dependence of self-energies in RHF, lead to larger M_L^*

Bao Yuan SUN (Lanzhou University)

Impact of Landau Mass

Neutrino emission from neutron stars:

- Non-Relativistic: Landau Mass
- Relativistic: Dirac Mass

 $M_R^* = M_{NR}^* + \epsilon = M_g^* = M_L^*$

☆ D.G. Yakovlev et al., Phys. Rep. 354, 1 (2001).

& L.B. Leinson, A. Pérez, Phys. Lett. B 518, 15 (2001).

Rotation Effects: \Leftrightarrow N. B. Zhang et al.

Bao Yuan SUN (Lanzhou University)

Influence of Nucleon Effective Masses

Bao Yuan SUN (Lanzhou University)

Influence of Nucleon Effective Masses

Bao Yuan SUN (Lanzhou University)

Impact of Fock Terms on Nuclear ES and Related Physics

Properties of E_S at Saturation Density: J and L

EXP1: J. Lattimer, Astrophys. J. 771, 51 (2013); EXP2: J. Lattimer, Eur. Phys. J. A 50, 40 (2014).

Bao Yuan SUN (Lanzhou University)

Symmetry Energy — Hyperon effects

- Softened E_{sym} with hyperons → Reduced R_{max}
- Softened EoSs: The stiffer the EoS is, the greater the effort by Λ to soften the EoS is.
- The Λ - ω couplings in the Fock channel give an attraction even at high densities
 - → Extra mass reduction due to the Fock terms

W. H. Long, B. Y. Sun, K. Hagino, and H. Sagawa, Phys. Rev. C 85, 025806 (2012).

Extra E_{sym} softening due to Fock terms: 2-3 times reduction by Fock terms as Hartree ones do Fock terms play more significant role in determining the symmetry energy.

Bao Yuan SUN (Lanzhou University)

Mass-Radius Relations of Neutron Stars

W. H. Long, B. Y. Sun, K. Hagino, and H. Sagawa, Phys. Rev. C 85, 025806 (2012).

	PKA1	РКО3	PKDD	TW99	PK1	NL-SH
M _{max}	1.713	1.837	1.849	1.647	1.832	2.213
$R_{\rm max}$	10.425	11.495	11.583	10.333	13.048	13.633
$\Delta M_{\rm max}$	0.710	0.663	0.480	0.431	0.483	0.589
$\Delta R_{\rm max}$	1.929	0.992	0.215	0.299	-0.343	-0.099

- Reduced deviations on EoSs \rightarrow Vicinal M_{max}
- Softened E_{sym} with hyperons \rightarrow Reduced R_{max}

 Softened EoSs: The Λ-ω couplings in the Fock channel give an attraction even at high densities
 → Extra mass reduction due to the Fock terms

Bao Yuan SUN (Lanzhou University)

Mass-Radius Relations of Neutron Stars — Hyperon effects

W. H. Long, B. Y. Sun, K. Hagino, and H. Sagawa, Phys. Rev. C 85, 025806 (2012).

	PKA1	РКО3	PKDD	TW99	PK1	NL-SH
$M_{\rm max}$	1.713	1.837	1.849	1.647	1.832	2.213
$R_{\rm max}$	10.425	11.495	11.583	10.333	13.048	13.633
$\Delta M_{\rm max}$	0.710	0.663	0.480	0.431	0.483	0.589
$\Delta R_{\rm max}$	1.929	0.992	0.215	0.299	-0.343	-0.099

- Reduced deviations on EoSs \rightarrow Vicinal M_{max}
- Softened E_{sym} with hyperons \rightarrow Reduced R_{max}

 Softened EoSs: The Λ-ω couplings in the Fock channel give an attraction even at high densities
 → Extra mass reduction due to the Fock terms

Bao Yuan SUN (Lanzhou University)

Summary and Outlook

- The effects of exchange terms: isoscalar channel σ and ω Fock terms
 \$\vee\$ B. Y. Sun et al., PRC 78, 065805 (2008); W. H. Long et al., PRC 85, 025806 (2012).
- Without introducing any additional free parameters, the DDRHF approach is a natural way to reveal the tensor effects on the nuclear matter system.
 k L. J. Jiang et al., PRC 91, 034326 (2015); L. J. Jiang et al., PRC 91, 025802 (2015).
- The inclusion of the Fock terms in the CDF theory reduces the kinetic part of the symmetry energy and enhances the Landau mass.
 & O. Zhao et al., JPG 42, 095101 (2015).
- Influence of theoretical model uncertainties
- Inclusion of δ -meson coupling channel
- New density dependence of meson-nucleon coupling constants
- SRC: a high-momentum tail for the nuclear momentum distribution
- Correction of interaction vertex with the form factor
- Second-order Hartree-Fock theory

Collaborators

Prof. Jie Meng Prof. Wen Hui Long Prof. Umberto Lombardo Prof. Kouichi Hagino Prof. Hiroyuki Sagawa

Dr. Jian Min Dong Dr. Li Juan Jiang Mr. Shen Yang & Mr. Qian Zhao Peking University, China Lanzhou University, China INFN - LNS, Italy Tohoku University, Japan University of Aizu, Japan

IMPCAS, China Lanzhou University, China Lanzhou University, China

Thank you for your attention!

Bao Yuan SUN (Lanzhou University)

Quantization of RHF Hamiltonian

• System Hamiltonian (
$$\phi = \sigma^{S}, \omega^{V}, \rho^{V}, \rho^{VT}, \rho^{T}, \pi^{PV}$$
):

$$H = \int d\mathbf{x} \bar{\psi} \left(-i\boldsymbol{\gamma} \cdot \boldsymbol{\nabla} + M \right) \psi + \frac{1}{2} \int d\mathbf{x} d\mathbf{x}' \bar{\psi}(\mathbf{x}) \bar{\psi}(\mathbf{x}') \Gamma_{\phi} D^{\phi} \psi(\mathbf{x}') \psi(\mathbf{x}),$$

with interaction vertices $\Gamma_{\phi}(x, x')$ and meson propagators $D_{\phi}(x, x')$ Retardation effects neglected

$$D_{\phi}(\mathbf{x}, \mathbf{x}') = \frac{1}{4\pi} \frac{e^{-m_{\phi}|\mathbf{x}-\mathbf{x}'|}}{|\mathbf{x}-\mathbf{x}'|}, \qquad D_{\phi}(1,2) = \frac{1}{m_{\phi}^2 + q^2} \quad \text{where} \quad q = p_2 - p_1.$$

• Self-energies Σ in nuclear matter: Four-momentum of nucleon: p = (E(p), p)

$$\Sigma(p) = \Sigma_{\mathcal{S}}(p) + \gamma_0 \Sigma_0(p) + \boldsymbol{\gamma} \cdot \hat{\boldsymbol{p}} \Sigma_V(p).$$

Dirac equation in nuclear matter:

$$(\boldsymbol{\gamma} \cdot \boldsymbol{p}^* + M^*) \, u(p, s, \tau) = \gamma_0 E^* u(p, s, \tau)$$

with starred quantities:

Relativistic mass-energy relation: $E^{*2} = p^{*2} + M^{*2}$

$$\boldsymbol{p}^* = \boldsymbol{p} + \hat{\boldsymbol{p}} \Sigma_V(p), \qquad M^* = M + \Sigma_S(p), \qquad E^* = E(p) - \Sigma_0(p).$$

Quantization of the nucleon field:

$$\psi(x) = \sum_{p,s,\tau} u(p,s,\tau) e^{-ipx} c_{p,s,\tau}.$$

• RHF ground state: $|\Phi_0\rangle = \prod_{p,s,\tau} c^{\dagger}_{p,s,\tau} |0\rangle$, where $|0\rangle$ is physical vacuum state.

Bao Yuan SUN (Lanzhou University)

Impact of Fock Terms on Nuclear ES and Related Physics

No-sea approximation

Selected CDF Effective Lagrangians

Table: Bulk properties of symmetric nuclear matter at saturation point

	Fock	σ -NL	$\omega\text{-NL}$	DD	π -PV	ρ -T	ρ_0	E_B/A	K	J	L	Reference
							(fm^{-3})	(MeV)	(MeV)	(MeV)	(MeV)	
PKA1	 Image: A second s	×	×	\checkmark	✓	\checkmark	0.160	-15.83	230.0	36.0	104	Long:2007
PKO1	\checkmark	×	×	\checkmark	\checkmark	×	0.152	-16.00	250.2	34.4	98	Long:2006
PKO2	\checkmark	×	×	\checkmark	×	×	0.151	-16.03	249.6	32.5	76	Long:2008
PKO3	\checkmark	×	×	\checkmark	\checkmark	×	0.153	-16.04	262.5	33.0	83	Long:2008
NL1	×	\checkmark	×	×	×	×	0.152	-16.43	211.2	43.5	140	Reinhard:1986
NL3	×	\checkmark	×	×	×	×	0.148	-16.25	271.7	37.4	118	Lalazissis:1997
NL-SH	×	\checkmark	×	×	×	×	0.146	-16.33	354.9	36.1	114	Sharma:1993
TM1	×	\checkmark	\checkmark	×	×	×	0.145	-16.26	281.2	36.9	111	Sugahara:1994
PK1	×	\checkmark	\checkmark	×	×	×	0.148	-16.27	282.7	37.6	116	Long:2004
TW99	×	×	×	\checkmark	×	×	0.153	-16.25	240.3	32.8	55	Typel:1999
DD-ME1	×	×	×	\checkmark	×	×	0.152	-16.20	244.7	33.1	56	Nikšić:2002
DD-ME2	×	×	×	\checkmark	×	×	0.152	-16.11	250.3	32.3	51	Lalazissis:2005
PKDD	×	×	×	\checkmark	×	×	0.150	-16.27	262.2	36.8	90	Long:2004

Relatively large values of K and J systematically in RMF with nonlinear self-coupling of mesons (NLRMF)

☆ B. Y. Sun et al., PRC 78(2008)065805; W. H. Long et al., PRC 85(2012)025806; L. J. Jiang et al., PRC 91(2015)025802.

Bao Yuan SUN (Lanzhou University)

Meson-Nucleon Coupling Constants

Bao Yuan SUN (Lanzhou University)

Symmetry Energy — Contribution from ρ Meson

The Fock terms play an important role in EoSs of asymmetric nuclear matter at high densities.

Bao Yuan SUN (Lanzhou University)

Influence of Theoretical Model Uncertainties

Enhancing the interaction between nuclear experiment and theory through information and statistics: *D. G. Ireland, W. Nazarewicz, J. Phys. G* **42**, 030301 (2015).

Qian Zhao, Bao Yuan Sun, Wen Hui Long, J. Phys. G. 42, 095101 (2015).

Bao Yuan SUN (Lanzhou University)

Relativistic Formalism of Tensors

Relativistic formalism to quantify tensors in Fock diagrams of π -PV, σ -S, ω -V, ρ -T couplings: \Leftrightarrow L. J. Jiang, S. Yang, B. Y. Sun, W. H. Long, and H. Q. Gu, Phys. Rev. C **91**, 034326 (2015).

$$\mathcal{H}_{\pi-\mathrm{PV}}^{T} = -\frac{1}{2} \left[\frac{f_{\pi}}{m_{\pi}} \bar{\psi} \gamma_0 \Sigma_{\mu} \vec{\tau} \psi \right]_1 \cdot \left[\frac{f_{\pi}}{m_{\pi}} \bar{\psi} \gamma_0 \Sigma_{\nu} \vec{\tau} \psi \right]_2 D_{\pi-\mathrm{PV}}^{T, \ \mu\nu}(1, 2), \tag{1}$$

$$\mathcal{H}_{\sigma-\mathrm{S}}^{T} = -\frac{1}{4} \Big[\frac{g_{\sigma}}{m_{\sigma}} \bar{\psi} \gamma_{0} \Sigma_{\mu} \psi \Big]_{1} \Big[\frac{g_{\sigma}}{m_{\sigma}} \bar{\psi} \gamma_{0} \Sigma_{\nu} \psi \Big]_{2} D_{\sigma-\mathrm{S}}^{T, \ \mu\nu}(1, 2), \tag{2}$$

$$\mathcal{H}_{\omega-\mathbf{V}}^{T} = +\frac{1}{4} \Big[\frac{g_{\omega}}{m_{\omega}} \bar{\psi} \gamma_{\lambda} \gamma_{0} \Sigma_{\mu} \psi \Big]_{1} \Big[\frac{g_{\omega}}{m_{\omega}} \bar{\psi} \gamma_{\delta} \gamma_{0} \Sigma_{\nu} \psi \Big]_{2} D_{\omega-\mathbf{V}}^{T, \ \mu\nu\lambda\delta}(1,2), \tag{3}$$

$$\mathcal{H}_{\rho,\mathrm{T}}^{T} = +\frac{1}{2} \left[\frac{f_{\rho}}{2M} \bar{\psi} \sigma_{\lambda\mu} \vec{\tau} \psi \right]_{\mathrm{I}} \cdot \left[\frac{f_{\rho}}{2M} \bar{\psi} \sigma_{\delta\nu} \vec{\tau} \psi \right]_{2} D_{\rho,\mathrm{T}}^{T, \ \mu\nu\lambda\delta}(1,2), \tag{4}$$

where $\Sigma^{\mu} = (\gamma^5, \Sigma)$, and D^T (ϕ for σ and π , ϕ' for ω and ρ) read as,

$$D_{\phi}^{T, \ \mu\nu}(1,2) = \left[\partial^{\mu}(1)\partial^{\nu}(2) - \frac{1}{3}g^{\mu\nu}m_{\phi}^{2}\right]D_{\phi}(1,2) + \frac{1}{3}g^{\mu\nu}\delta(x_{1} - x_{2}),$$

$$D_{\phi'}^{T, \ \mu\nu\lambda\delta}(1,2) = \left[\partial^{\mu}(1)\partial^{\nu}(2)g^{\lambda\delta} - \frac{1}{3}G^{\mu\nu\lambda\delta}m_{\phi'}^{2}\right]D_{\phi'}(1,2) + \frac{1}{3}G^{\mu\nu\lambda\delta}\delta(x_{1} - x_{2}).$$

$$G^{\mu\nu\lambda\delta} \equiv \left(g^{\mu\nu}g^{\lambda\delta} - \frac{1}{3}g^{\mu\lambda}g^{\nu\delta}\right)$$

Bao Yuan SUN (Lanzhou University)

Potential Symmetry Energy in DDRHF Theory

$$E_{S}(\rho_{b}) = E_{S,k} + E_{S,T=0}^{D} + E_{S,T=0}^{E} + E_{S,T=1}^{D} + E_{S,T=1}^{E}$$

A Qian Zhao, Bao Yuan Sun, Wen Hui Long, J. Phys. G 42, 095101 (2015).

		TW99	PKDD	PKO1	PKA1	BHF
	kin	5.9	5.0	-34.5	-69.6	14.9
L	T = 0	62.2	78.2	67.5	71.3	69.1
	T = 1	-12.8	7.0	64.8	103.2	-17.5

Large model dependence in kinetic and T=1 potential parts: Significant $E_{s}^{E,\sigma+\omega}$

Stiff E_S in RHF: Too strong T=1 \bigcirc

☆ I. Vidaña et al., PRC 84, 062801(R) (2011).

Bao Yuan SUN (Lanzhou University)

Effective Mass in RHF Theory

• Definition of the Effective Mass:

$$\frac{M_{\tau}^{*}}{M} = 1 - \frac{dU_{\tau}(k,\epsilon(k))}{d\epsilon_{\tau}} = k \frac{dk}{d\epsilon_{\tau}} = \left[1 + \frac{M}{k} \frac{dU_{\tau}}{dk}\right]^{-1}$$

• Non-relativistic Mass: Shrödinger equivalent potential U_e^{τ}

$$E - mass: \frac{\bar{M}}{M} = \left[1 - \frac{\partial U^{\tau}}{\partial \epsilon^{\tau}}\right], \quad K - mass: \frac{\tilde{M}}{M} = \left[1 + \frac{M}{k} \frac{\partial U^{\tau}}{\partial k}\right]^{-1}$$

$$\frac{M_{NR}^*}{M} = \frac{\bar{M}}{M} \cdot \frac{\tilde{M}}{M} = \left[1 - \frac{\Sigma_0}{M}\right] \left[1 + \left(\frac{M^*}{k}\frac{\partial\Sigma_S}{\partial k} + \frac{E^*}{k}\frac{\partial\Sigma_0}{\partial k} + \frac{k^*}{k}\frac{\partial\Sigma_V}{\partial k} + \frac{\Sigma_V}{k}\right)\right]^{-1}$$

• Landau Mass: $\epsilon + M = E^* + \Sigma_0$

$$\frac{M_L^*}{M} = k \frac{dk}{d\epsilon^{\tau}} = k \Big[\frac{k^*}{E^*} + \frac{M^*}{E^*} \frac{\partial \Sigma_{S,E}}{\partial k} + \frac{k^*}{E^*} \frac{\partial \Sigma_{V,E}}{\partial k} + \frac{\partial \Sigma_{0,E}}{\partial k} \Big]^{-1}$$

• Relativistic Mass:

☆ W. H. Long et al., Phys. Lett. B 640, 150 (2006).

$$\frac{M_R^*}{M} = 1 - \frac{d}{d\epsilon} \Big[U_e^{\tau} - \frac{\epsilon^2}{2M} \Big], \quad M_R^* = M_{NR}^* + \epsilon = M_g^* \rightarrow \text{group mass}$$

Bao Yuan SUN (Lanzhou University)

HVH theorem and $E_S(\rho_b)$

- Hugenholtz-Van Hove (HVH) theorem: relations between binding energy per nucleon and single-nucleon Fermi energy.
 - HVH theorem: $p = \rho_b^2 \frac{\partial}{\partial \rho_b} \left(\frac{\varepsilon}{\rho_b}\right) = -\mathcal{E} + \mu \rho_b, \xrightarrow{\mu = \epsilon_F} E_b + \rho \frac{\partial E_b}{\partial \rho_b} = \varepsilon_F$ $\Leftrightarrow L.$ Satpathy, V. S. Uma Maheswari, R. C. Nayak, Phys. Rep. 319, 85(1999).
 - RHF approximation with static limit satisfies the thermodynamic $p \mathcal{E}$ relation with $\mu = \varepsilon_F$ at every density.

☆ Hiroshi. Uechi, Nucl. Phys. A. 501, 813(1989)

- Single-nucleon potential decomposition of E_S(ρ_b) in non-relativistic framework.

 [‡] R.Chen, B.J.Cai, L.W.Chen, B.A.Li, X.H.Li and Ch.Xu, Phys. Rev. C. 85, 024305(2012).

 [‡] C. Xu, et al, Nucl. Phys. A 865 (2011) 1; R. Chen, et al, Phys. Rev. C 85, 024305 (2012)
 - Constraining $E_S(\rho_b)$ from neutron-nucleus scattering data.

☆ X. H. Li,et al, Phys. Lett. B 721(2013)101-106

- Constraining the *n*-*p* effective mass splitting from empirical constraints on E_S.

 A. Li and X. Han, Phys. Lett. B 727(2013)276-281
- Self-energy decomposition of $E_S(\rho_b)$ in relativistic framework.

☆ B. J. Cai, L. W. Chen, Phys.Lett. B 711 (2012) 104 - 108.

Examining the effects of momentum-dependent exchange term of self-energy on the symmetry energy in RHF theory.

Bao Yuan SUN (Lanzhou University)

Isospin Splitting of Landau Mass

Neutron Star Cooling

Input Physics of Neutron Star Cooling:

- 1 The Equation of State
- 2 Nucleon Effective Masses
- 3 Pairing Correlations
- 4 The Specific Heat
- 5 Neutrino Emissivity
- & D. Page et al., ApJS 155, 623 (2004).
- D. G. Yakovlev et al., Phys. Rep. 354, 1 (2001).

☆ J. M. Lattimer and M. Prakash

Specific heat, entropy, and superfluid gaps, and processes such as neutrino emission from particles with energies in the neighborhood of the Fermi energy, depend sensitively on the so-called Landau effective masses of particles.

- Direct Urca (only proton fraction $x \ge 1/9$) $n \rightarrow p + e^- + \bar{\nu}_e$ $p \rightarrow n + e^+ + \nu_e$
- Modified Urca $n+n \rightarrow p+n+e^- + \bar{\nu}_e$ $p+p \rightarrow n+p+e^+ + \nu_e$
- Neutrino bremsstrahlung $n + n \rightarrow n + n + \nu + \overline{\nu}$ $p + p \rightarrow p + p + \nu + \overline{\nu}$ $p + n \rightarrow n + p + \nu + \overline{\nu}$
- Pair break and form (PBF) $p \rightarrow p + \nu + \bar{\nu}$ $n \rightarrow n + \nu + \bar{\nu}$

EoS of Neutron Star Matter — Hyperon effects

Constraint for cold matter: \$\$\\$F\$. \$\overline{O}zel, G. Baym, and T. G\overline{O}ver, Phys. Rev. D 82, 101301(R) (2010).

34/35

Difficulty to an Unified EoS of Neutron Star Matter

1. How to reproduce the reported massive NS mass?

- Uncertainty of Λ -hyperon coupling strengths
- The neglected Λ-Λ interactions mediated by the strange mesons may contribute additional repulsion to stiffen the EoS
- Inclusion of Σ and Ξ hyperons
- Inclusion of the quark degree of freedom
 T. Klähn, et al., Phys. Lett. B 654, 170 (2007).
 A. Kurkela, et al., Phys. Rev. D 81, 105021 (2010).
- Recalibrated model with a stiff behavior of *E*₀
- Rotation effects on increasing the NS mass

Difficulty to an Unified EoS of Neutron Star Matter

1. How to reproduce the reported massive NS mass?

- Uncertainty of Λ -hyperon coupling strengths
- The neglected Λ-Λ interactions mediated by the strange mesons may contribute additional repulsion to stiffen the EoS
- Inclusion of Σ and Ξ hyperons
- Inclusion of the quark degree of freedom
 T. Klähn, et al., Phys. Lett. B 654, 170 (2007).
 A. Kurkela, et al., Phys. Rev. D 81, 105021 (2010).
- Recalibrated model with a stiff behavior of E₀
- Rotation effects on increasing the NS mass

2. How to reproduce the small radius of $1.4 M_{\odot}$ NS?

8.7-12.5 km

- The EoS at density region $3\rho_0 \sim 5\rho_0$ is still too stiff
- Recalibrated EoS model with a soft behavior of E_S around ρ₀ without exotic degrees of freedom *φ* F. J. Fattoyev and J. Piekarewicz, Phys. Rev. C 82, 025805 (2010).
 φ F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G. Shen, Phys. Rev. C 82, 055803 (2010).
- Including the Δ resonance and adopting weaker Δ - ω coupling than the one in the nucleonic sector \Leftrightarrow *T. Schürhoff, S. Schramm, and V. Dexheimer, Astrophys. J. Lett.* **724**, *L74* (2010).

Bao Yuan SUN (Lanzhou University)