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Meetings association bans bad PowerPoint

Category: News

) View Comments

Meetings & Events Australia (MEA) has banned PowerPoint at its major conference for 2012.

MEA describes itself as a "national, independent not for profit organisation
dedicated to fostering professionalism and excellence in all aspects of meetings
management. It also promotes the value and effectiveness of meetings as an
important high-yield sector of business travel and tourism."

Linda Gaunt, the organisation's CEO, says MEA is banning PowerPoint because
it is an outmoded form of communication.

“The bullet point model was created in the pre-digital era, when there was a
shortage of expert information," she said in a press release issued today. "It was
worth flying somewhere to hear that kind of speech. Now the web is full of expert
presentations you can watch in your own time and location, so meetings need to provide something beyond
that."

Presenters at MEA's Sydney event have been issued guidelines for their talks, including a banned list of classic
PowerPoint techniques. "Bullet points, flow charts, template backgrounds, clip art, reading from the screen, and
other proven yawn-inducers are all forbidden," the press release says.

Simpler, more involving material including photos, videos, demonstrations and storytelling are encouraged. All
on-screen images are to be accompanied by no more than ten words.

“As an industry, we manage everyone else’s events. It's up to us to set an example to show that when you get
people together, it doesn’t have to be a process of dull, passive one-way communication,” Gaunt said. “We're
pushing everyone outside the comfort zone, and we think it's going to be involving and inspiring. It's the future
of meetings.”




Origins of Pigmy Resonance
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E & M response in neutron-rich nuclei

First studies

Two-body Cluster: CB, Baur, NPA 480, 615 (1988)

CB, Sustich, PRC 46 , 2340 (1993)
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Three-body cluster
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E & M response in neutron-rich nuclei
First studies
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Pigmy resonance & Nucleosynthesis

Nucleosynthesis: (y,n) or (n,y) cross sections in the r-process
Importance of the “pygmy” states
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EOS & Neutron stars
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EOS + symmetry energy
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From 100 to 10°7 nucleons, Skyrme & pairing
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Skyrme + Isovector pairing - Reasonable Nuclear
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Neutron Skins

CB, Hongliang Liu, Sagawa,
PRC 85, 014321 (2012)
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EOS + symmetry energy

- Analysis of Giant Isoscalar Resonances TSGMR (T=0, L=0)

Giant Resonance: Coherent vibration of ISGDR (T=0, L=1)

nucleons in a nucleus ‘ ‘ .
- Resonances related to incompressibility:

- High energy heavy ion collisions

c=1]

2
K, =K, (1+cA™)+K N-2),k z2A™
00 sym A ou

- Kgoy 18 basically model independent
- Measurements over several isotopes should give Kt
- Kgym critical to understand neutron stars
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QRPA: The Role of the Rearrangement Term
Avogadro, CB, PRC 88, 044319 (2013) " 4 S ) .
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Pairing - ISGMR - Comparison to data
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ISGMR is better reproduced with the soft interaction Skxs20 (K., # 202

MeV), in contrast with the generally accepted value for K., = 230 MeV.
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Coulomb excitation of PRs

Rossi et al.
PRL 111 (2013) 242503

Wieland et al.
PRL 102, 092502 (2009)
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E & M response in heavy neutron-rich nuclei

0.020¢

0.015¢

S (MeV1)

0.005¢

0.000

0.010¢

68Ni
J=1"

— SGIl |
- SKM*
------- SKP

— SKI2

--+ SKI3

....... SLy4
— SLy5
--- SyO-
------- SkO+
— SK255|.
— LNS

0 15 20 25 30
E (MeV)
E

0;3(2 ) .

S(E)= Y[ v 0) 8(E-E,)

j Er
“ Aic
Colo, Cao, Giai, Capelli,

Comput. Phys. Comm. 184, 142 (2013)

0 5 10 15 20 25



Symmetry energy, neutron skin, and neutron stars
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Reaction theory:
Higher-order effects and relativistic corrections

Relativistic CDCC
CB, PRL 94, 072701 (2005)

Ogata, CB, PTP 121 (2009), 1399
PTP 123 (2010) 701
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Higher order effects
Eikonal scattering waves S‘l.(Kl.,R)
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Relativistic effects
Form factor of non-rel. CDCC
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Swiss candidate's platform: PowerPoint

By Moni Basu, CNN
September 17, 2011 - Updated 1513 GMT (2313 HKT)

(CNN) -- Taxes, health care, jobs. These are
issues that are center stage in U.S. elections.
But a parliamentary candidate in Switzerland
has a slightly different platform: PowerPoint.

DUIEREOINTIEARTY,

Lo

Come again? Yes, we're talking about the
computer program that has become the tool
of choice for public speakers of all varieties --
such as politicians, businessmen, and
educators.

Mathias Poehm believes PowerPoint presentations dilute the
point, dull the speech and make people less persuasive.

Matthias Poehm would rather see it all
STORY HIGHLIGHTS stopped. No more discussion points. No more, "Next slide, please."

- Forget taxes or jobs. Mathias No more droopy eyes tired of following along.
Poehm is rallying against
PowerPoint - . . o . ;

The Swiss public speaking coach believes PowerPoint presentations

* The Swiss public speaking dilute the point, dull the speech and in the end, make people less

coach thinks the program dulls =
speech persuasive. They are also a huge waste of money, Poehm says.

23



Theory movie in next 5 transparencies (enjoy!)@
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Example
Reaction

208Ph (8B, 'Be+p) at 250 A MeV and 100 A MeV
208pp(11Be, 19Be+n) at 250 A MeV and 100 A MeV

Projectile wave function and distorting potential
Standard Woods-Saxon

Modelspace

8B 11Be
ImaX= 3 ImaX= 3
N.=20, N, =10, N ,=20, N4=10 ,
N=5 N=5
e =10 MeV e =10 MeV
r__=200 fm r__=200 fm
R .= 900 fm R .= 450 fm
N, = 138 N, = 166

5B or ""Be

~ KAL)

208ph

30



Pb(éB,p’Be) at 250 MeV/nucleon
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Pb(éB,p’Be) at 250 MeV/nucleon

all orders
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Pentagon Declares War Against PowerPoint

2 JANUARY 2009 5,751 VIEWS NO COMMENT

The Wall Street Journal headline (4/26/00) announced, “The Pentagon Declares War on Electronic Slide
Shows That Make Briefings a Pain.” Not long after, General Hugh Shelton, chairman of the Joint Chiefs of
Staff, issued an order to all military bases worldwide which translated as, “enough with the bells and whistle!

get to the point!”

Army Secretary Louis Calderna suggests that the Pentagon’s PowerPoint presentations are alienating
lawmakers. He says, “People are not listening to us because they are spending so much time trying to
understand these incredibly complex slides.” Navy Secretary Richard Danzig announced that he was no
longer willing to sit through PowerPoint slide shows, saying they were necessary only if the audience was

“functionally illiterate.”

Itis true. Misuse of this wonderful, exciting technology can turn speakers into mere readers of captions for
slides with the result being that all personal communication is lost. Bloated PowerPoint presentations have

become a dance to the death-a veritable cure for insomnia.
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Nuclear response for PDR, GDR and GQR
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Dynamical coupling of PDR, GDR and GQR
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Brady, Aumann, CB, Thomas
Phys. Lett. B 757, 553 (2016)
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* Nuclear response fitted
with Lorentzians
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Dynamical coupling of PDR, GDR and GQR

Brady, Aumann, CB, Thomas
Phys. Lett. B 757, 553 (2016)

* Nuclear response fitted
with Lorentzians

* Nuclear response discretized
* Coupled Channels calculations

* Cross sections

®. First order

e all orders relativistic
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Dynamical coupling of PDR, GDR and GQR

Rossi at al.,
PRL 111, 242503 (2013)
2> op = 3.40 fm3

Our new analysis
2> ap=3.16 fm?®

Neutron skin
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Our new analysis
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Summary:
- PDR

» skins and halos (neutron stars, sun, supernovae)

+ structure in the continuum (effective interactions)

» all depends on experimental precision - needs to improve
» Because of low energies and high excitation probabilities

- Higher order effects crucial for future experimental
analyses of PDR strength

Important contribution to this work from:

Nathan Brady (A&M-Commerce)
Thomas Aumann (TU Darmstadt)
James Thomas (A&M-Commerce)

C.A. Bertulani, Nusym16, Tsinghua U., Beijing, 2016
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