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1. Cluster radioactivity
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Importance of cluster radioactivity

» Alpha decay/cluster radioactivty: an old problem but
renewed interest In recent years

» Superheavy nuclel

» Nuclear properties: energy, lifetime, and nuclear spin and
parity, nuclear interactions, deformation, clustering effect,
shell effect....

» Phenomenological Formulas:

» The Geiger-Nuttall law, Viola-Seaborg formula , Other
forms of decay formulas

» Theoretical Approaches :

» Shell model , Cluster model, Fission-like model, A mixture
of shell and cluster model configurations....



Decay theory In textbooks

(1) Preformation probability
Py V, and T (2) Frequency (Pre-exponential factor)
(3) Exponential factor

Energy and mass dependence. Using p,, v, and 7 obtained above, we can write
the transition probability as

W = pavT

To put this expression into a form so that it can be compared with the Geiger-Nuttall
law of Eq. (4-61), we take the logarithm in the base 10 for both sides and obtain the
result

logio W = loggpa +log) v+ log,, T
= 20.46 + logy, TF/: +1.42VZ A3 (4-65)

The dominant energy dependence comes from the last ternt,imagreement with the
empirical result of the Geiger-Nuttall law.



Decay theory In textbooks

(1) Preformation probability (most difficult)

The probability W for a-particle emission from a heavy nucleus by tunneling may
be separated into a product of three factors. The first is the probability p, to find an
a-particle inside the nucleus, In a heavy nucleus, there is a good chance for two protons
and two neutrons to form an o-like entity. We shall call such an object an a-cluster.
However, this is only one of the many possible components of the wave function for
such a nucleus. As a result, it is not easy to make an estimate for the value of p,. A
crude way is to say that it must be egsentially of the same order of magnitude for all

heavy nuclei, as there are only small fractional differences in their masses and we shall
take p, ~ 0.1 as a rough guide.

This is not true for shell region nuclei!



Decay theory In textbooks

(2) Frequency (Pre-exponential factor)

Once an o-cluster is formed inside the nucleus, it must come to the surface before
it can tunnel through the barrier. The frequency v with which it appears at the edge
of the potential well depends on the velocity v it travels and the size of the potential
well. A reasonable way to estimate v is to take the well size as twice the nuclear radius
R. With this assumption we obtain the result,

v 2K /M,
" 2R 2R
where K is the kinetic energy of the a-cluster inside the well and M, its mass. The

precise value of K depends on the depth of the potential well and is not well known.

v

E, = 5.6 MeV. It is about an order of magnitude larger than the best values deduced
from measurements. Part of the reason for the poor agreement comes from the fact
that heavy nuclei do not have the simple spherical shape assumed here. Furthermore,
the replacement of K by E, may also have cost some loss of accuracy.
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A. Exact results

Consider a potential barrier of any shape, a typical ex-
ample of which is shown in Fig. 1. We split this potential
into two parts V(r)=U(r)+ W(r) as shown in Fig. 2
such that U(r)=V(r) for r <R, U(r)=V(R)=V, for
r>R, and W(r)=0 for r<R, W(r)=V(r)—V, for
r>R.

Consider the state | ®,) which is an eigenstate of the
Hamiltonian H,= —#%V?/2m)+ U (r) with an eigenval-
ue E, where E, <V, [Fig. 2(a)]. The state | ®,) is the
“unperturbed” bound state, and the perturbation W (r)
transforms it to a quasistationary one. We switch on the
“distorting” potential W(r) at t =0. Then the state

Here X, is the regular at the origin and X"’ is the irregu-
lar (outgoing) eigenstate of the Hamiltonian —(#*V?/
2m)+ W(r), with the asymptotic behaviors

20 JuLy 1987
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dr

(3.7)

I"r’ﬂ > (r) cos? frp(r dr’ — 4

If the contribution from the classically forbidden regions
is not small, these regions should also be taken into ac-
count in Eq. (3. 7) Substituting Eq. (3.6) into Eqgs. (3.3)
and (3.4) iclassical width and shift

r

#i°N [ 2
_ €Xp —2_’-’ l

(3.8)

For the high-lying states where @y(r) oscillates strong-
ly, one can replace the cosine term in Eq. (3.7) by 1
Then

1 " m Th
EI dr=——, (3.10)

N-'=
"o p(r} 4m

where T i1s the classical period of motion. Substituting
Eq. (3.10) into Eq. (3.8) we obtain the famous Gamow
formula for the width of the quasistationary state with
preexponential Gamow factor #i/T. However, our pre-
factor factor N#’/4 in Eq. (3.8) is more general and can
also be used as soon as the quasiclassical approximation
is applicable to the bound-state wave function in a classi-
cally forbidden region, which is correct even for low-
lying bound states.

Frequency
Vs

Well defined

pre-factor



Decay theory in textbooks

(3) Exponential factor

to calculate. In this limit, kb — oo, and sinh kb — €*®. The transmission coefficient
in Eq. (4-62) simplifies to the form

T — g 2 (4-63)

The factor e™"* expresses the attenuation of the amplitude of the wave in going through
the barrier, and it is quite reasonable to expect that the transmission coefficient is
essentially given by the square of this factor. For our case of V4 &~ 30 MeV and F, in

The form of the solution, however, remains very similar to that given in Eq. (4-63)
if we make the replacement

kb —s /:1 \/g{Vb(r) - Ec.,}u2 dr
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The factor of agreement for odd nuclei of
ground-state transitions (Z=52-105)
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The experimental and calculated alpha-decay half-
lives of nuclei with Z2=106-110
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TABLE I. Comparison of average and rms deviations of DDCM
and GLDM.

Nuclide Number Average rms deviation
deviation

Even-even [57 (131) 0.209 0.267(0.35)
Odd-A 231 (192) 0.229 0.285(0.57/0.71)
Odd-odd 79 (50) 0.318 0.435(0.99)

A constant alpha preformation factor is OK for
open shell nuclel, but not for shell region nuclel!

How to calculate the preformation factor microscopically?
(three quantities self-consistently)
One must first test the theory for alpha decay of %1?Po



PHYSICAL REVIEW C 93, 011306(R) (2016)

a-decay width of *’Po from a quartetting wave function approach

Chang Xu.":" Zhongzhou Ren.'>! G. Ropke.*! P. Schuck,* % Y. Funaki.’ H. Horiuchi.”$ A. Tohsaki.”
T. Yamada.” and Bo Zhou'?
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TABLE I. The calculated preformation probability and decay half-life of 2'*Po using different sets of effective c.m. potentials.

Potential c d E unnel Fermi energy Eunnel — Ha Preform. factor Decay half-life
(MeV fm) (MeV tm) (MeV) s (MeV) (MeV) P, Tip(s)

A 13866.30 4090.51 - O —19.346 0 i 0t
B 11032.08 3415.56 19.346 —19.771 0.425 0.142 2.99 x 1077




212pg __|_ a

Strong Measured
correlation data

J

Symmetry Energy

Decay O (MeV)  log;o75%" (s)

22pe 2014 4C 31.29 14.52
21Ra27pp+ C 32.40 13.37
222Ra2%pp+ M 33.05 11.10
2BRa-2%pp+ M 31.83 15.05
22Ra- %+ M 30.54 15.90
226Ra*1pp+ M 28.20 21.29
228 Th2%pb+2% 44.72 20.73
20T Hg+ 2 Ne 5776 24.63
231pa 07T+ Ne 60.41 22.89
2327 2%pp+ ¥ Ne 62.31 20.39
237 2%pp + 2 Ne 60.49 24.84
B OHg+Bmg 7411 25.74
230p, 2%pp+ BV [79.67 21.65
#3py g+ S 91.19 25.30
em-%pb+*si  [96.51 23.11




2. Symmetry energy

The density dependence of nuclear symmetry energy
----an Important issue in both nuclear physics and astrophysics

symmetry energy  Isospin asymmetry
\ ) _lp 2
E(pn’pp):EO(pn:pp)-l_Esym(p)( np P] +0(54)

T

Energy per nucleon in symmetric
nuclear matter

Energy per nucleon in asymmetric nuclear matter




Questions:

e |s there a general principle at some level,
Independent of the interaction and many-
body theory, telling us what determines the
symmetry energy and its slope?

e |s there direct way to determine the symmetry
energy and its slope at saturation density?

« Why the symmetry energy at high-density is
SO uncertain?



Hugenholtz, N. M.
Van Hove, L.,
1958

The HVH theorem

A THEOREM ON THE SINGLE PARTICLE ENERGY
IN A FERMI GAS WITH INTERACTION

by N. M. HUGENHOLTZ and L. VAN HOVE

Instituut voor theoretische fysica der Rijksuniversiteit, Utrecht, Nederland

Synopsis

This paper investigates single particle properties in a Fermi gas with interaction at
the absolute zero of temperature. In such a system a single particle energy has only a
meaning for particles of momentum k| close to the Fermi momentum kp. These single
particle states are metastable with a life-time approaching infinity in the limit k| — &p.
The limiting value of the energy is called the Fermi energy Ep. As a special case of a
more general theorem, it is shown that for a system with zero pressure (i.e. a Fermi
liquid at absolute zero) the Fermi energy Ep is equal to the average energy per particle
Eq/N of the system. This result should apply both to liquid Heg and to nuclear matter,

The theorem is used as a test on the internal consistency of the theory of
Brueckner 1j for the structure of nuclear matter. It is seen that the large discrepancy
between the values of Ep and Ep/N, as calculated by Brueckner and Gammel ¥),
arises from the fact that Brueckner neglects important cluster terms contributing
to the single particle energy. This neglection strongly affects the calculation of the
optical potential.

Physica XXIV
363-376

L. Van Hove



Q1: Theoretical Formulism

Starting from the Hugenholtz—\Van Hove theorem that is a
fundamental relation among the Fermi energy, the average energy
per particle E and the pressure of the system P at the absolute
temperature of zero.

n n 85
I(kF)—|_U}?(paaakF): apns

p p 0§
t(kip) +Up(p. 8. ki) = 0Py

The nucleon single-particle potentials can be expanded as a power
series

U (p. 8, k) =Uo(p. )+ Y Ugm.i(p, k)(xd)’
i=1,2,3,...

=\Uo(p, k) + Usym,1(p, k)(T6) + Usym,Z(k)(Tfs)z + .-

Isoscalar isovector (Lane potential)




1 (k) = t(kp) |+ [Un(p. 8. k) = Up(p, 8. kp)]
107[1(k) + Uo(p. ]|
~ Z ) ok AF
=123 kr
K Z F( w) —( F(j)(—é)f'”
J=12.3.. j=1,2.3,...
I&US nl(p k)|
D DT IR ) N DD D i) I
1=1.2.3.... I=12 3. i=123..." ‘ kg
x[( Y. F() 5”—( Y m)(—a)f') (—5)"]
j=1,23,. / j=1,23
29[t (k) + U k
=|:,% [( _l_ O(p )] AF+2[]g}llll(ka)i|5+
_ ok b

Xu et. al, Phys. Rev. C 82, 054607 (2010)
Xu et. al, Phys. Rev. C 81, 064612 (2010)
Xu et. al, Phys. Rev. C 81, 044603 (2010)
Xu et. al, Nucl. Phys. A 865, 1 (2011)

Xu et. al, Nucl. Phys. A 913 (2013) 236
Xu et. al, Eur. Phys. J. A50 (2014) 21
Xu et.al,Phys. Rev. C 90, 064310 (2014)



Theoretical Formulism

0& & 2 85
00 app o 38

Z 21 Esym,i ()O)(Si_l

1=2,4,0,...
— 4Esym,2(/0)5 + 8Esym,4(lo)53 + lesym,6(p)55 +

Comparing the coefficient of each term then gives the
symmetry energy of any order

I o[z (k) + Uo(p, k)] I
Egym,2(p) = — kr + =Usym,1(p, kF)

6 ok i sym,
1r(A)+laU0 k—l—lU (p.kF)
F 6 ok F > sym, 1 {0, KF

\_/

Symmetry energy: Kinetic energy part
Isoscalar potential part + isovector potential part (most uncertain)



Connections between the symmetry energy and isoscalar and
Isovector parts of single-particle potential is explicitly shown.

100

BUU: The Momentum dependent Interaction (MDI)



Theoretical Formulism

The quadratic term E,,, , Is the most important.

. 5 d[t(k)+ Uolp. k)]
Esyma(p) = [124 o kg
L kll.l.
I @*[t(k) + Un(p, )| 5 L (k) + Un(p. 01| -
108 k2 i | 648 TE s
_ 1 HL"-!-;}-'m.l':P~k}: S 1 E}EUE.}-'m.l{.C'H{':}: 2
36 ok |, 72 akE |t
I 3Usym,2(p. k) | 1
to— | kr +Et-mym.;m:.n-}}.
kp

Microscopic calculations : higher-order terms are usually
negligible, less than 1 MeV at p,

At supra-saturation densities : modify the proton fraction in
neutron stars and the cooling mechanism of proto-neutron stars



Density slope of symmetry energy

The symmetry energy can be characterized by using the value of
Eqym(Po) and the slope parameter L

dEsym (p) ‘ Density
dp P=P0 dependence

L = 3po

L: important for : the size of the neutron skin in heavy
nuclel , location of the neutron drip line ,core-crust
transition density and gravitational binding energy of
neutron stars

2h%ks 3
L — I £ =~ Usym 9k

Momentum

dependence




Q2: Symmetry energy and its slope at saturation density

Systematics based on world data accumulated since 1969:

(1) Single particle energy levels from pick-up and stripping reaction

(2) Neutron and proton scattering on the same target at about the same energy
(3) Proton scattering on isotopes of the same element

(4) (p,n) charge exchange reactions

80
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Constraining the symmetry energy near saturation density
using global nucleon optical potentials

C. Xu, B.A. Li and L.W. Chen, PRC 82, 054606 (2010).

60

Esym(pﬂ) = 31.3 MeV +4.5 Me

L(po) = 52.7 MeV £ 225 MeV

Energy (MeV)

Estimated Error Bar

Contribution



Q3: Symmetry energy at supra-saturation density

 Some indications of a supersoft E, at high densities have
been obtained from analyzing the z*/z~ ratio data.

e EXperiments have now been planned to investigate the high-
density behavior of the E,, at the CSR in China, GSI In
Germany, MSU in the United States, and RIKEN in Japan.

« Possible physical origins of the very uncertain E ., at supra-
saturation densities?
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Uy =— == U+ Uy _
2 44 Effects of the spin-
o, YU 1, 1, e isoSpin dependent
20 44 three-body force

U,: relatively well determined
Effects of the In-

Ugm :Isosinglet vs isotriplet channels, medium tensor
force and nucleon

However, the Uy, is very poorly correlation

known especially at high momenta.




Effects of the spin-isospin dependent three-body force

Symmetry energy with different spin dependence x, and density
dependence o in the three-body force (Gogny force)
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Effects of short-range correlations induced by tensor force

Symmetry energy with different values of the BRS parameter
agr= 0, 0.05, 0.10, 0.15, 0.20 using different values for the tensor
correlation parameter.
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3. Symmetry energy and density slope extracted from
cluster radioactivity

U.(p,E) .
Single-nucleon potential | —— —=| Density slope L(p,)
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FIG. 4. (Color online) The schematic diagram of constraining the
neutron skin thickness of ***Pb and the slope parameter L(p,) by
cluster radioactivity.




1. Single-nucleon potential: constrained by reaction data
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2. Cluster-core potential: constrained by radioactivity data
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Decay
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FIG. 3. (Color online) The variation of cluster radioactivity half-
lives of 2*Ra, #¥*Th, #*U, #®Pu, and ***Cm as a function of the
neutron skin thickness of 2"*Pb.



Density slope of symmetry energy extracted from
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C. M. Tarbert ef al., Phys. Rev. Lett. 112, 242502 (2014).

cluster radioactivity
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1 L(py) =54 £ 6 MeV



Summary

General expressions are derived for E,,,, and L by
usina the HVH theorem.

= Mk L

SVIIl 2 2”10 2 Sylll b b
Lip) = 2 i’k N 3 U (oo k) + dUsym ks
32mE |27 ok |,

E.,m and L at normal density: extracted from the global
optical potential [reaction data]

Eqm(po) = 31.3 MeV, and L(pg) = 52.7 MeV,

E.,m and L at normal density: cluster radioactivity

[decay data] |
L(pp) = 544+ 6 MeV.



e Thanks!
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