Nuclear symmetry energy and crustal torsional oscillations in neutron stars

Hajime SOTANI (NAOJ)

Kei IIDA (Kochi)

Kazuhiro OYAMATSU (Aichi-Shukutoku)

Seismology, Helioseismology

Asteroseismology in Neutron Stars

 via the observations of GW frequencies, one might be able to see the properties of NSs

June/17/2016 NuSYM16@Beijing 2

neutron stars

- Structure of NS
 - solid layer (crust)
 - nonuniform structure (pasta)
 - fluid core (uniform matter)
- Crust thickness ≤ 1km
 - strongly associated with nuclear saturation properties
- $\rho \approx \rho_s$ crust

 Oyamatsu (1993)
- Constraint on EOS via observations of neutron stars
 - stellar mass and radius
 - stellar oscillations (& emitted GWs)

"(GW) asteroseismology"

QPOs in SGRs

- Quasi-periodic oscillations (QPOs) in afterglow of giant flares from soft-gamma repeaters (SGRs)
 - SGR 0526-66 (5th/3/1979): 43 Hz
 - SGR 1900+14 $(27^{th}/8/1998): 28, 54, 84, 155 Hz$
 - SGR 1806-20 (27th/12/2004): 18, 26, 30, 92.5, 150, 626.5, 1837 Hz
 (Barat+ 1983, Israel+ 05, Strohmayer & Watts 05, Watts & Strohmayer 06)
 - additional QPO is found: 57Hz (Huppenkothen et al. 2014)

- Crustal torsional oscillation?
- Magnetic oscillations?
- Asteroseismology
 - \rightarrow stellar properties (M, R, B, EOS ...)

June/17/2016

QPOs in SGRs

- Quasi-periodic oscillations (QPOs) in afterglow of giant flares from soft-gamma repeaters (SGRs)
 - SGR 0526-66 (5th/3/1979): 43 Hz
 - SGR 1900+14 (27th/8/1998): 28, 54, 84, 155 Hz
 - SGR 1806-20 (27th/12/2004): 18, 26, 30, 92.5, 150, 626.5, 1837 Hz
 (Barat+ 1983, Israel+ 05, Strohmayer & Watts 05, Watts & Strohmayer 06)
 - additional QPO is found: 57Hz (Huppenkothen et al. 2014)

- Crustal torsional oscillation?
- Magnetic oscillations?
- Asteroseismology
 - → stellar properties (M, R, B, EOS ...)

June/17/2016 NuSYM16@Beijing 5

torsional oscillations

- axial parity oscillations
 - incompressible
 - no density perturbations
- in Newtonian case

(Hansen & Cioff 1980)

$$_{\ell}t_0\simrac{\sqrt{\ell(\ell+1)\mu/
ho}}{2\pi R}\sim 16\sqrt{\ell(\ell+1)}$$
 Hz $_{\ell}t_n\simrac{\sqrt{\mu/
ho}}{2\Delta r}\sim 500 imes n$ Hz

- μ : shear modulus
- frequencies \propto shear velocity $v_s = \sqrt{\mu/\rho}$
- overtones depend on crust thickness
- one can consider torsional oscillations independently of core EOS
- effect of magnetic field
 - frequencies become larger

(Sotani+07, Gabler+12,13)

EOS near the saturation point

 Bulk energy per nucleon near the saturation point of symmetric nuclear matter at zero temperature;

in (our) previous works

- EOS for core region is still uncertain.
- To prepare the crust region, we integrate from r=R.
 - M, R: parameters for stellar properties
 - L, K_0 : parameters for curst EOS (Oyamatsu & lida (2003), (2007))
 - \rightarrow For $L \gtrsim 100$ MeV, pasta structure almost disappears
- In crust region, torsional oscillations are calculated.
 - considering the shear only in spherical nuclei.
 - frequency of fundamental oscillation $\propto v_{\rm s} \, (v_{\rm s}^{\, 2} \sim \mu/H)$
 - calculated frequencies could be lower limit

frequencies of crustal oscillations $_{\circ}t_{_{\prime}}$

HS+2012a

- For $M=1.4M_{\odot}$ & R=12km, calculated frequencies $_{0}t_{2}$
- $_{\circ}t_{2}$ is almost independent of the value of K_{\circ}
- For $R=10\sim14$ km and $M/M_{\odot}=1.4\sim1.8$, similar dependence on K_{\odot}
- One can write fitting line
- Focus on L dependence of $_{0}t_{2}$

• $_{0}t_{l}$ can also be expressed as a function of L.

frequencies of crustal oscillations $_{\circ}t_{_{\prime}}$

HS+2012a

- For $M=1.4M_{\odot}$ & R=12km, calculated frequencies $_{0}t_{2}$
- $_{\circ}t_{2}$ is almost independent of the value of K_{\circ}
- For $R=10\sim14$ km and $M/M_{\odot}=1.4\sim1.8$, similar dependence on K_{\odot}
- One can write fitting line
- Focus on L dependence of $_{0}t_{2}$
- $_{0}t_{2}$ becomes smaller with larger R and M.
- $_{0}t_{l}$ can also be expressed as a function of L.

identification of SGR 1806-20

allowed region for L

June/17/2016

NuSYM 16@Beijing

alternative possibility

instead of previous correspondence, i.e., I = 4, 8, 13 for SGR 1900+14, and I = 3, 4, 5, 15 for SGR 1806-20, we may consider alternative possibility as

26 Hz QPO observed in SGR 1806-20 remains a complete puzzle!!

alternative allowed region for L

⇒ 58.0 MeV ≤ L ≤ 85.3 MeV

other constraints on L

- other constraints suggests $L \sim 60\pm20$ MeV?
 - this means that alternative correspondences may be favored??
 - if so, one has to prepare another oscillation mechanism...

all QPOs come from crustal oscillations

missing 26Hz

as a possibility of 26Hz...

- we consider the oscillations in the pasta structure
- shear modulus in pasta phase
 - slab phase: shear is the 3rd order of displacement (Landau)
 - > in the linear perturbation, oscillations in slab are negligible

Beijing

16

as a possibility of 26Hz...

- · we consider the oscillations in the pasta structure
- shear modulus in pasta phase
 - slab phase: shear is the 3rd order of displacement (Landau)
 - → in the linear perturbation, oscillations in slab are negligible
 - two independent oscillations can be excited in different regions:
 - oscillations in spherical and cylindrical nuclei
 - oscillations in bubble and cylindrical-hole nuclei
 - as a first step, we consider only oscillations in bubble phase

$$\mu = 0.1194 \frac{n_i (Ze)^2}{a}$$

June/17/2016

bubble structures in crust

- with larger L, small region of pasta phase
- for $L \ge 75 \text{MeV}$, bubble structure disappears

torsional oscillations in bubble phase

effective charge density in bubble

$$n_Q = -n_e - (n_p - n_e) = -n_p$$
bubble background

• effective charge in bubble

$$Z_{bubble} = n_Q \times V_{bubble}$$

- enthalpy contributing to oscillations (entrainment rate?)
 - maximum: all matter elements contribute to oscillations (minimum frequency)
 - minimum: only matter elements inside the bubble contribute (maximum frequency) μ

$$f \propto v_s$$
 $v_s = \frac{\mu}{\mathcal{E} + P}$ enthalpy

bubble oscillations 1

• in the case that all matter elements contribute to oscillations

• the frequency is almost independent of the value of K_{\odot}

$$_{0}t_{2}$$
 = 205.5 / L + 37.73 - 0.2922 L

bubble oscillations 2

 in the case that only matter elements inside the bubble contribute to oscillations

 $\bullet\,$ again, the frequencies are almost independent of K_{O}

$$_{0}t_{2}$$
 = 1100 / L + 57.39 - 0.4345 L

frequencies strongly depend on the entrainment rate

comparison with QPOs

• oscillation in bubble might be possible to correspond to 26Hz QPO, depending on the entrainment rate.

constraint on L

constraint on L

⇒ 58.0 MeV ≤ L ≤ 75 MeV

conclusion

- neutron stars are good candidates to examine the physics under the extreme state.
 - QPOs in SGRs may be good examples to adopt the asteroseismology
- constraint on L can be obtained as
 - 100 \lesssim L \lesssim 130 MeV, if all QPOs come from torsional oscillations
 - 58 ≤ L ≤ 85 MeV, if QPOs except for 26 Hz QPO coms from torsional oscillation
- as another possibility to produce the 26 Hz, we consider the torsional oscillations in bubble structure
 - frequencies strongly depend on the entrainment rate
 - even so, the frequency might be possible to correspond to 26 Hz with the suitable value of L to explain the other QPOs by torsional oscillations in the region composed of spherical nuclei
 - the constraint on L should be modified as

 $58 \leq L \leq 75 \text{ MeV}$

in order that the bubble structure should exist

Constraint on L

- For $R=10\text{km}\sim14\text{km}$ & $M/M_{\odot}=1.4\sim1.8$, t_2 are calculated
- Assuming that the observed QPOs would come from torsional oscillations
- $_{0}t_{2}$ is the smallest frequency among a lot of torsional oscillations
 - $_{\rm O}t_{\rm 2}$ should be equal to or smaller than the smallest observed QPOs frequency

- Modification due to the pasta effect should be small
- This is first constraint in the symmetry parameter with astronomical observations

constraint on L via SGR 1806-20

June/17/2016

identification of SGR 1900+14

constraint on L via SGR 1900+14

June/17/2016

NuSYM16@Beijing

Identifications of SGR 1806-20

• for R = 12 km and $M = 1.4M_{\odot}$

Effect of superfluidity

HS+2012b

- For $\rho \approx 4 \times 10^{11}$ g cm⁻³, neutron could drip from nuclei
- Some of dripped neutron play a role as superfluid
- Effective enthalpy affecting on the shear oscillations could be reduced
 - shear speed $(v_{\rm s}^{\ 2} \sim \mu/H)$ increases due to the effect of superfluidity

$$\mathcal{Y}'' + \left[\left(\frac{4}{r} + \Phi' - \Lambda'\right) + \frac{\mu'}{\mu}\right]\mathcal{Y}' + \left[\underbrace{\frac{\epsilon + p}{\mu}}_{\mu}\omega^2 e^{-2\Phi} - \frac{(\ell + 2)(\ell - 1)}{r^2}\right]e^{2\Lambda}\mathcal{Y} = 0.$$

- $_{\circ}t_{l}$ could also increase due to the effect of superfluidity
- While, the fraction of superfluid neutron in dripped neutron is still unknown...
 - Chamel (2012): superfluid neutron are not so much (~10-30%?)
- $_{\circ}t_{l}$ with using a parameter of N_{s}/N_{d} for R=14km & $M=1.8M_{\odot}$

Oscillations & Instabilities

The most promising strategy for constraining the physics of neutron stars involves observing their "ringing" (oscillation modes)

- f-mode: scales with average density
- > p-modes: probes the sound speed through out the star
- **g-modes**: sensitive to thermal/composition gradients
- w-modes: oscillations of spacetime itself.
- s-modes: Shear waves in the crust
- Alfvèn modes: due to magnetic field
- i-modes: inertial modes associated with rotation (r-mode)

Typically **SMALL AMPLITUDE** oscillations —> weak emission of GWs

UNLESS

they become unstable due to rotation (r-mode & f-mode)

$$l = 2, m = 2$$

$$l = 3, m = 3$$

$$l = 4, m = 4$$

