Flow and isotopic ratios from KRATTA@ASYEOS experiment

Jerzy Łukasik, Piotr Pawłowski, Paweł Lasko IFJ PAN Kraków, Poland

Janusz Brzychczyk, Sebastian Kupny Jagiellonian University, Kraków, Poland and the ASY-EOS Collaboration

- ASY-EOS Experiment
- KRATTA results
- LAND results (P. Russotto et al.)

NUSYM16, Beijing, 13-17.06.2016

Work supported by Polish National Science Center (NCN), Contract Nos. UMO-2013/10/M/ST2/00624, UMO-2013/09/B/ST2/04064

ASY-EOS experimental setup

RATTA @ GSI

experiment

KRATTA main characteristics

- Broad energy range (from ~2.5 to ~260 MeV for protons)
- Mass resolution up to Z~4 .
- Modularity, versatility, portability (35 modules) •
- Solid angle ~160 msr (~4.5 msr/module at 40 cm from the target) .
- Low noise preamplifiers .
- Digital pulse processing (15×V1724 CAEN FADCs (100 MHz, 14 bits) .
- Off-line pulse shape analysis .
- VME+RIO4+MBS data acquisition
- Operates in air (at present) .

[deg]

Thresholds

Fragment	E _{low} (500 μm Si) [MeV/u]	E _{int} (2.5 cm Csl) [MeV/u]	E _{up} (15 cm CsI) [MeV/u]
¹ H	8.3	89.6	254.4
⁴ He	8.3	89.4	253.9
⁷ Li	9.5	103.6	296.5
²⁰ Ne	19.9	231.3	719.0
⁴³ Ca	26.7	339.7	1134.2
⁹¹ Zr	34.0	513.9	1911.8
¹⁹⁷ Au	38.6	775.8	3550.9

5

KRATTA active elements

PD1+CSI1=SCT (Single Chip Telescope, G. Pasquali et al. NIMA 301(91)101)

Photodiodes: HAMAMATSU S5377-02

- Active Area: 28x28 mm²
- Thickness: 500 ± 15 µm
- Orientation:
- 1.5 µm front, 20 µm rear • Dead Layers:

(111)

- Full Depletion: ~170 V
- Dark Current: 30 nA, (Max. 150 nA)
- Rise Time: 40 ns
- Capacitance: 200 pF

CsI(TI): IMP-CAS, Lanzhou, China

- TI concentration: 1500 ppm <7%
- LO non-uniformity:
- Shape:
- Tolerance:
- Truncated pyramids ± 0.1 mm
- Wrapping: 3M Vikuiti[™] ESR foil
- Reflectance:
- Thickness:
- >98% 65 µm

6

SCT decomposed (non-trivial) (lines from the ATIMA range-energy tables)

p10+p10/33.5:p12+p13-p10/33.5

Entries 1072173

KRATTA@HIMAC: ΔE-E Xe fragmentation at ~300 AMeV

Flows of light charged particles in Au(400 MeV/u) + Au reactions: KRATTA vs FOPI results

Fourier decomposition of the azimuthal distributions with respect to the reaction plane (ϕ_R) :

$$\frac{dN}{d(\phi-\phi_R)} = \frac{N_0}{2\pi} \left(1 + 2\sum_{n\geq 1} v_n \cos n(\phi-\phi_R) \right)$$

 $v_1 \equiv \langle \cos(\phi - \phi_R) \rangle$ directed flow $v_2 \equiv \langle \cos 2(\phi - \phi_R) \rangle$ elliptic flow

Model simulations

UrQMD Q. Li, J. Phys. G 31(2005)1359

"Fermi-gas" parametrization of the symmetry term:

Ζ

Energy/nucleon

Au (400 MeV/u) + Au

b < 7.5 fm 24° < lon < 59.4 $^{\circ}$ 0.7 $^{\circ}$ < lat < 25.7 $^{\circ}$

$t/^{3}$ He isotope ratios (20 < E_{kin}/A < 133 MeV)

Au (400 MeV/u) + Au 5.5 < b < 7.5 fm $24^{\circ} < \Theta_{LAB} < 62^{\circ}$ 20 < E_{KIN}/A < 133 MeV

Proton flow $(20 < E_{kin} < 250 \text{ MeV})$

Deuteron flow $(20 < E_{kin}/A < 160 \text{ MeV})$

CHIMERA@ASY-EOS

FIG. 4: (Color online) Identification plot of CsI(Tl) signals recorded with a CHIMERA module of ring 7 ($\theta_{lab} \approx 17^{\circ}$) from ¹⁹⁷Au+¹⁹⁷Au collisions at 400 MeV/nucleon displaying the ratio of fast-over-slow vs. the slow signal components. The loci of hydrogen and helium ions punching through the full length of the detector are labeled as H_{pt} and He_{pt} . An expanded view of the area within the rectangular box is shown in the inset. Besides the punch-through groups, also the loci of mass-identified light ions are indicated there.

ALADIN ToF Wall@ASY-EOS

FIG. 5: (Color online) AToF identification plots of calibrated time of flight vs. recorded energy loss ΔE for two slats approximately 30 cm and 35 cm to the right of the beam direction ($\theta_{lab} \approx 4.7^{\circ}$ and $\approx 5.4^{\circ}$, respectively, at their central parts). The groups of light elements are clearly recognized up to atomic number $Z \approx 10$ as shown in the inset.

FOPI-LAND LAND@ASY-EOS

 $\gamma = 0.75 \pm 0.10.$

FIG. 14: (Color online) FOPI-LAND data: Elliptic flow ratio of neutrons over all hydrogen isotopes (top) and of neutrons over all charged particles (bottom) for moderately central (b < 7.5 fm) collisions of 197 Au+ 197 Au at 400 MeV/nucleon, as a function of the transverse momentum per nucleon p_t/A . The black symbols represent the experimental data. The UrQMD predictions for stiff ($\gamma = 1.5$, green symbols) and soft ($\gamma = 0.5$, purple symbols) are shown. The red line in each panel is the result of a linear interpolation between the predictions; the obtained gamma values and their uncertainties are indicated.

FIG. 15: (Color online) Elliptic flow ratio of neutrons and charged particles for moderately central (b < 7.5 fm) collisions of ¹⁹⁷Au+¹⁹⁷Au at 400 MeV/nucleon as a function of the transverse momentum per nucleon p_t/A , evaluated with a fraction of 80% for the second step of timing corrections (see Sec. IV A). The full squares represent the experimental data, the triangles and dots represent the UrQMD predictions for stiff ($\gamma = 1.5$) and soft ($\gamma = 0.5$) power-law exponents of the potential term. The full line is the result of a linear interpolation between the predictions, leading to the indicated

LAND@ASY-EOS

 $\gamma = 0.72 \pm 0.19$ $L = 72 \pm 13 \text{ MeV}$

FIG. 19: (Color online) Constraints deduced for the density dependence of the symmetry energy from the present data in comparison with the FOPI-LAND result of Ref. [5] as a function of the reduced density ρ/ρ_0 . For reference, the low-density results of Refs. [66–69] as presented in Ref. [70] are included.

Conclusions

KRATTA

- good detector performance
- usefulness of photodiodes operating in the double mode

KRATTA results from the ASY-EOS measurements

- flow parameters consistent with FOPI data
- UrQMD (+ clustering) fails in reproducing isotope ratios
- realistic description of cluster formation needed

LAND results from the ASY-EOS measurements

• moderately soft to linear density dependence: $\gamma = 0.72 \pm 0.19$

The ASY-EOS Collaboration

P. Russotto,¹ S. Gannon,² S. Kupny,³ P. Lasko,³ L. Acosta,⁴ M. Adamczyk,³ A. Al-Ajlan,⁵ M. Al-Garawi,⁶
S. Al-Homaidhi,⁵ F. Amorini,⁴ L. Auditore,^{7,8} T. Aumann,⁹ Y. Ayyad,¹⁰ V. Baran,^{4,11} Z. Basrak,¹² R. Bassini,¹³ J. Benlliure,¹⁰ C. Boiano,¹³ M. Boisjoli,¹⁴ K. Boretzky,¹⁵ J. Brzychczyk,³ A. Budzanowski,^{16,*} C. Caesar,⁹
G. Cardella,¹ P. Cammarata,¹⁷ Z. Chajecki,¹⁸ M. Chartier,² A. Chbihi,¹⁴ M. Colonna,⁴ M. D. Cozma,¹⁹ B. Czech,¹⁶ E. De Filippo,¹ M. Di Toro,^{4,20} M. Famiano,²¹ I. Gašparić,^{9,12} V. Greco,^{4,20} L. Grassi,¹² C. Guazzoni,^{13,22}
P. Guazzoni,^{13,23} M. Heil,¹⁵ L. Heilborn,¹⁷ R. Introzzi,²⁴ T. Isobe,²⁵ K. Kezzar,⁶ M. Kiš,^{12,15} A. Krasznahorkay,²⁶ N. Kurz,¹⁵ E. La Guidara,¹ G. Lanzalone,^{4,27} A. Le Fèvre,¹⁵ Y. Leifels,¹⁵ R. C. Lemmon,²⁸ Q. F. Li,²⁹ I. Lombardo,^{30,31} J. Łukasik,¹⁶ W. G. Lynch,¹⁸ P. Marini,^{14,32} Z. Matthews,² L. May,¹⁷ T. Minniti,¹
M. Mostazo,¹⁰ A. Pagano,¹ M. Papa,¹ P. Pawłowski,¹⁶ S. Pirrone,¹ G. Politi,^{1,20} F. Porto,^{4,20} W. Reisdorf,¹⁵ W. Reviol,³³ F. Riccio,^{13,22} F. Rizzo,^{4,20} E. Rosato,^{30,31,*} D. Rossi,^{15,18} S. Santoro,^{7,8} D. G. Sarantites,³³ H. Simon,¹⁵ I. Skwirczynska,¹⁶ Z. Sosin,^{3,*} L. Stuhl,²⁶ W. Trautmann,¹⁵ A. Trifirò,^{7,8} M. Trimarchi,^{7,8} M. B. Tsang,¹⁸ G. Verde,¹ M. Veselsky,³⁴ M. Vigilante,^{30,31} Yongjia Wang,²⁹ A. Wieloch,³ P. Wigg,² J. Winkelbauer,¹⁸ H. H. Wolter,³⁵ P. Wu,² S. Yennello,¹⁷ P. Zambon,^{13,22} L. Zetta,^{13,23} and M. Zoric¹²

Pulse decomposition analysis

log(Slow+Fast) for thin crystal