

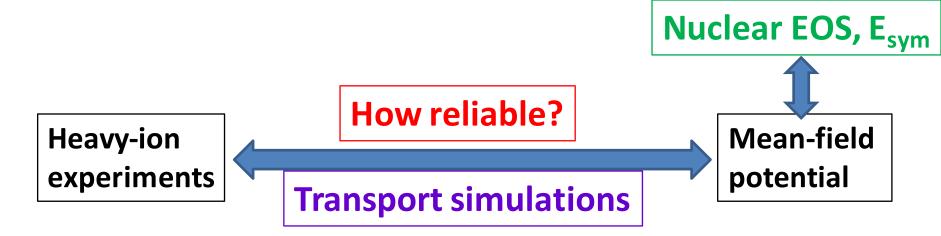
Nusym2016, Beijing, June 13-17, 2016

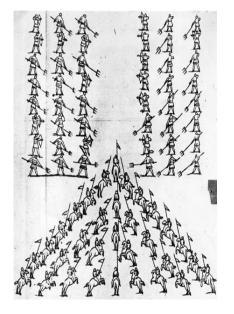
Understanding transport simulations of heavy-ion collisions at intermediate energies

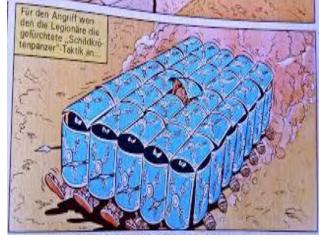
-Comparison of heavy-ion transport codes under controlled condition

Jun Xu (徐骏)

Shanghai Institute of Applied Physics (SINAP), CAS


Collaborators:


Lie-Wen Chen (SJTU) Betty Tsang (MSU) Hermann Wolter (MU)


Ying-Xun Zhang (CIAE)

J. Xu, L.W. Chen, B. Tsang, H. Wolter, Y.X. Zhang *et al.* (31 authors), Phys. Rev. C 93, 044609 (2016) arXiv : 1603.08149 [nucl-th]

18 transport codes: 9 BUU + 9 QMD

Initialization

Mean Field

NN scatterings

Images from H. Wolter

theoretical uncertainties? Compare results from various models

History of Transport Model Comparison Project

- **Trento I (2003):** energy 1-2 GeV/A, emphasis on particle production *π*,K
- mean field and Pauli blocking not quite so important
- Summary Published in J.Phys. G31 (2005) 741

Trento II (2009): energy 100, 400 MeV/A
 Uncertainties not well understood
 results not published

Transport2014 in Shanghai

Mainly 100 AMeV, also 400 AMeV observables: stopping, flow Nonobservables: stability, scattering and Pauli blocking rate

Participating Codes

Boltzmann-Uehling-Uhlenbeck(BUU)-type models (9)

BUU-type	code correspondents	energy range	reference
BLOB	P.Napolitani,M.Colonna	$0.01 \sim 0.5$	[19]
GIBUU-RMF	J.Weil	$0.05 \sim 40$	[20]
GIBUU-Skyrme	J.Weil	$0.05 \sim 40$	[20]
IBL	W.J.Xie,F.S.Zhang	$0.05 \sim 2$	[21]
IBUU	J.Xu,L.W.Chen,B.A.Li	$0.05 \sim 2$	[11, 22]
$_{\rm pBUU}$	P.Danielewicz	$0.01 \sim 12$	[23]
RBUU	K. Kim, Y.Kim, T.Gaitanos	$0.05 \sim 2$	[24]
RVUU	T.Song,G.Q.Li,C.M.Ko	$0.05 \sim 2$	[25]
SMF	M.Colonna,P.Napolitani	$0.01 \sim 0.5$	[26]
		In GeV	

Find representative references for each code in arXiv: 1603:08149 [nucl-th]

Participating Codes

Quantum-Molecular-Dynamics(QMD)-type models(9)

		In GeV	
UrQMD	Y.J.Wang,Q.F.Li	$0.05 \sim 200$	[36, 37]
TuQMD	D.Cozma	$0.1 \sim 2$	[35]
IQMD-SINAP	G.Q.Zhang	$0.05 \sim 2$	[34]
IQMD-IMP	Z.Q.Feng	$0.01 \sim 10$	[33]
ImQMD-CIAE	Y.X.Zhang,Z.X.Li	$0.02 \sim 0.4$	[32]
CoMD	M.Papa	$0.01 \sim 0.3$	[31]
IQMD	C.Hartnack, J.Aichelin	$0.05 \sim 2$	[29, 30]
IQMD-BNU	J.Su,F.S.Zhang	$0.05 \sim 2$	[28]
AMD	A.Ono	$0.01 \sim 0.3$	[27]
QMD-type	code correspondents	energy range	reference

ImQMD-GXNU: low-energy fusion reaction

Find representative references for each code in arXiv: 1603:08149 [nucl-th]

A taste of BUU-type models

$$\begin{aligned} & \text{BUU equation:} \quad \left(\frac{\partial}{\partial t} + \frac{\vec{p}}{m} \cdot \nabla_r - \nabla_r U \cdot \nabla_p\right) f(\vec{r}, \vec{p}; t) = I_{coll}[f; \sigma_{12}] \\ & I_{coll} = \frac{1}{(2\pi)^6} \int dp_2 dp_3 d\Omega |v - v_2| \frac{d\sigma_{12}^{med}}{d\Omega} (2\pi)^3 \delta(p + p_2 - p_3 - p_4) \\ & \times \quad [f_3 f_4 (1 - f)(1 - f_2) - f f_2 (1 - f_3)(1 - f_4)] \end{aligned}$$

test-particle (TP) method: parallel events

C.Y. Wong, PRC 25, 1460 (1982); G.F. Bertsch and S. Das Gupta, Phys. Rep. 160, 189 (1988). Point particle or finite size (triangular, Gaussian)

$$f(\vec{r}, \vec{p}; t) = \frac{1}{N_{TP}} \sum_{i=1}^{N_{TP}A} g(\vec{r} - \vec{r}_i(t)) \tilde{g}(\vec{p} - \vec{p}_i(t))$$

Equation of motion from pseudoparticle method:

$$d\vec{r}_i/dt = \nabla_{\vec{p}_i}H; \qquad d\vec{p}_i/dt = -\nabla_{\vec{r}_i}H.$$

A taste of QMD-type models

Total wave function as products of single-particle wave function:

$$\begin{split} \Psi(\vec{r}_1, ..., \vec{r}_N; t) &= \Pi \phi_i(\vec{r}_i; t), \\ \phi_i(\vec{r}_i; t) &= \frac{1}{(2\pi)^{3/4} (\Delta x)^{3/2}} \exp\left[-\frac{(\vec{r}_i - \vec{R}_i(t))^2}{(2\Delta x)^2} + i\vec{r}_i \cdot \vec{P}_i(t)\right] \end{split}$$

Wigner function (phase-space distribution):

$$f_{i}(\vec{r},\vec{p}) = \frac{1}{(\pi\hbar)^{3}} \exp\left[-\frac{(\vec{r}-\vec{R}_{i}(t))^{2}}{2(\Delta x)^{2}}\right] \exp\left[-\frac{(\vec{p}-\vec{P}_{i}(t))^{2} \cdot 2(\Delta x)^{2}}{\hbar^{2}}\right]$$

Canonical equation of motion:

$$d\vec{R}_{i}/dt = \nabla_{\vec{p}_{i}}H, \qquad d\vec{P}_{i}/dt = -\nabla_{\vec{r}_{i}}H$$

Ch. Hartnack et al., PRC 495, 303 (1989); J. Aichelin, Phys. Rep. 202, 233 (1988).

AMD and FMD: wave function antisymmetrized

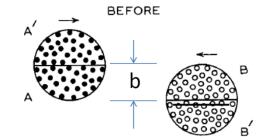
Homework description: Initialization and reaction parameters

2) Reaction:

a) Au + Au, at 100 AMeV

Initial coordinate space: Woods-Saxon distribution

b) Initialisation: Initialize your (test)particles to obtain in coordinate space a Fermi function density profile with radius $R=xA^{1/3}$ (x=1.12 fm) and diffuseness a=0.6 fm. In case you are using finite size (test)particles, use a sphere of the above radius and try to adjust the width in such a way as to approach the diffuseness (if possible).


The momentum of the particles should then be chosen randomly in the local Fermi sphere.

c) impact parameter b=7. and 20. fm, with initial distance (between the centers of project and target) in z-direction 16 fm

d) number of runs and (test)particles:

BUU: 10 runs, 100 TP/nucleon (for finite size TP), 500 TP/nucleon (for point TP) MD: 1000 runs.

e) time evolution: run until t=140 fm/c. Use the time step you are usually using. For a second order integration method we suggest 0.5 fm/c.

b=7 fm: real collisions b=20 fm: single nucleus evolution-stability

Homework description: Mean-field potential and NN scattering

1) Physical input parameters:

a) Equation-of-state:

For non-relativistic transport codes: use a standard *soft Skyrme* parametrization (without momentum dependence) with the following parameters:

 $a = -209.2 \text{ MeV}, b = 156.4 \text{ MeV}, \tau = 1.35, M = 938 \text{ MeV}$

with a symmetry potential energy with linear density dependence $S_{pot}^*(\rho/\rho_0)$, $S_{pot} = 18$ MeV. The total single-particle potential is then:

 $U_{n/p}=a(\rho/\rho_0)+b(\rho/\rho_0)^{\tau}$ +/- $2S_{pot}*\rho/\rho_0*\delta$ ($\delta=(\rho_n-\rho_p)/\rho$) (Properties of this parameterization: Compression modulus K₀=240 MeV, saturation density $\rho_0=0.16$ fm⁻³, binding energy at saturation density E₀= -16 MeV, symmetry energy S(ρ_0)~30.3 MeV)

For relativistic transport codes: use a *nonlinear* σ - ω - ρ *RMF* parameterization "*NL* ρ " (see parameter set I in PRC65, 045201, by Liu B et al.) (properties of this parameterization: K₀=240 MeV, ρ_0 =0.16 fm⁻³, E₀=-16 MeV, S(ρ_0)~30.3 MeV)

- b) use a constant isotropic elastic cross section of 40 mb.
- c) turn off all inelastic collisions.

Homework list for code contributors

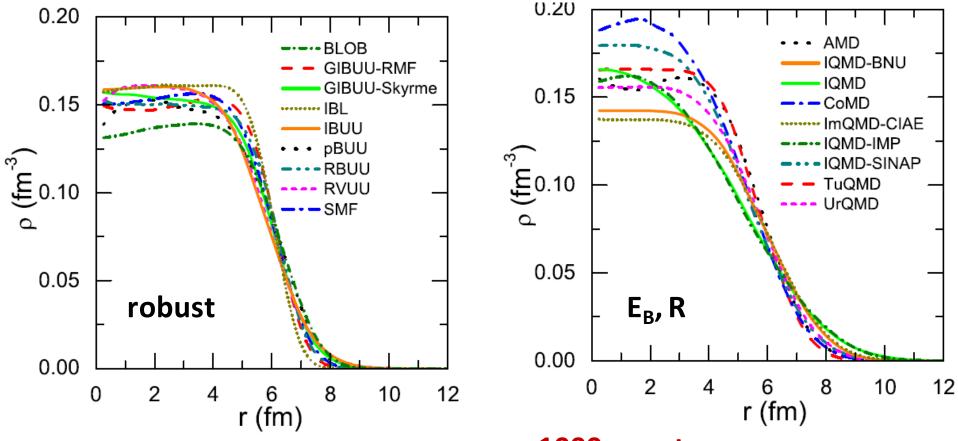
Mode A). Homework1

Mode B). Au+Au@100 AMeV

B.1) No Surface Term mode: Turn off the surface term in the mean field (e.g., the Yukawa interaction in the QMD-like models, the gradient term in the BUU-like models). Allow collisions between all nucleons (or TP).
 B-Full: both mean field and NN scattering

B.2) Vlasov mode: Turn off all collisions and use mean field as in B.1 (no surface terms)..
 B-Vlasov: only mean field
 B.3) Cascade mode: Turn off all interaction potentials in B.1 mode

Mode C). Common initialization


B-Cascade: only NN scattering

Mode D). Au+Au@400 AMeV

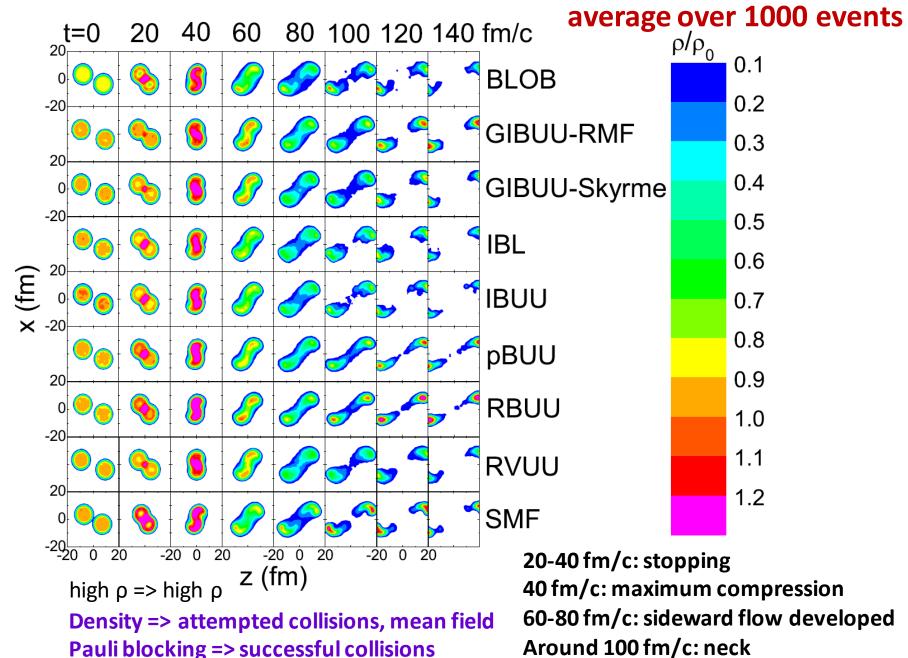
D-Full: 400AMeV, both mean field and NN scattering

Mode E). Box calculation

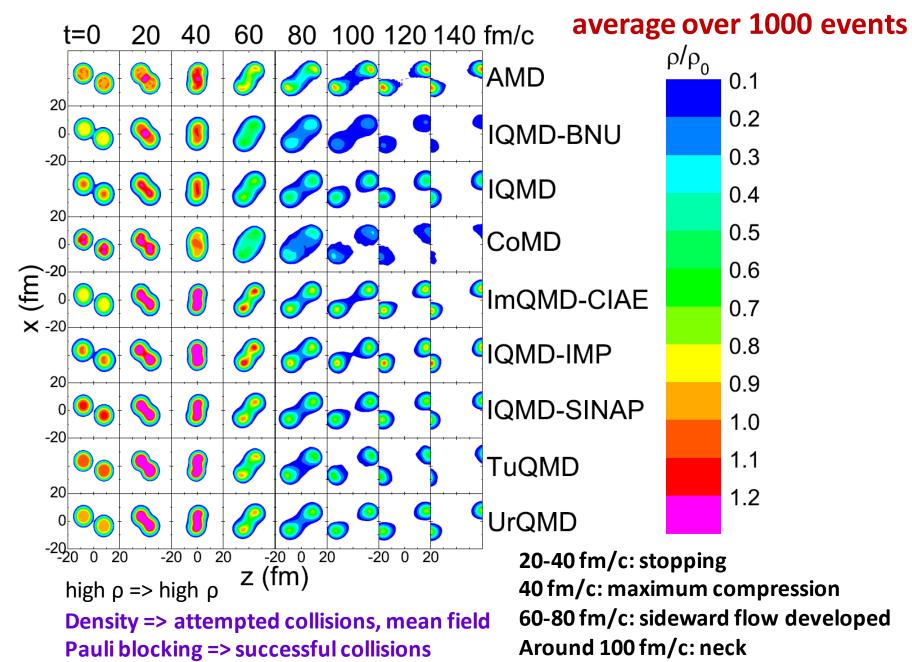
Initial density profile

average over 1000 events

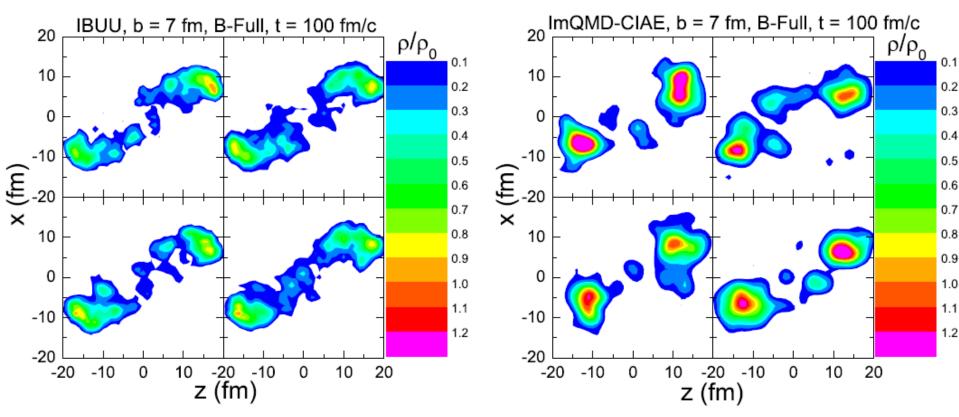
BUU: mostly follow the suggested Woods-Saxon distribution, easily stable QMD: mostly deviate from the suggested Woods-Saxon distribution ground state? Thomas-Fermi or Hartree-Fock, frictional cooling


Difficult to get a common initialization

Code name	Shape of particles	$(\Delta x)^2 (\text{fm}^2)^{\mathbf{a}}$ Size of particles	$ \begin{array}{l} \delta \langle r^2 \rangle^{1/2} ~(\mathrm{fm})^{\mathrm{b}} \\ \langle r^2 \rangle^{1/2} - \langle r^2 \rangle^{1/2}_{\mathrm{WS}} \end{array} $	$\frac{\delta \langle r^4 \rangle^{1/4} \ (\text{fm})^{\text{c}}}{\langle r^4 \rangle^{1/4} - \langle r^4 \rangle^{1/4}_{\text{WS}}}$
AMD	Gaussian	1.56	- 0.01	0.01
IQMD-BNU	Gaussian	1.97	0.32	0.39
IQMD	Gaussian	2.16	0.64	0.85
CoMD	Gaussian	1.32	-0.11	-0.04
ImQMD-CIAE	Gaussian	2.02	0.39	0.47
IQMD-IMP	Gaussian	1.92	0.61	0.80
IQMD-SINAP	Gaussian	2.16	0.03	0.12
TuQMD	Gaussian	2.16	-0.17	-0.17
UrQMD	Gaussian	2	0.12	0.18
	Shape of	$(\Delta x)^2$ (fm ²) or l (fm) ^f		
	test particle	Size of test particles		
BLOB	Triangle	2	0.10	0.07
GIBUU-RMF	Gaussian	1	-0.18	-0.26
GIBUU-Skyrme	Gaussian	1	- 0.03	-0.03
IBL	Gaussian	2	-0.32	-0.42
IBUU	Triangle	1	0.01	0.04
pBUU	Point	$O^{\mathbf{g}}$	0.01	-0.02
RBUU	Invar. Gauss	1.4	-0.12	-0.19
RVUU	Point	0	0.01	0.03
SMF	Triangle	2	- 0.13	-0.18


Stability (b=20 fm)

Density evolution at b = 7 fm - BUU


Density evolution at b = 7 fm - QMD

Fluctuation in BUU and QMD

4 runs with 100 TPs per nucleon

4 individual events

Fluctuation related to N_{TP}

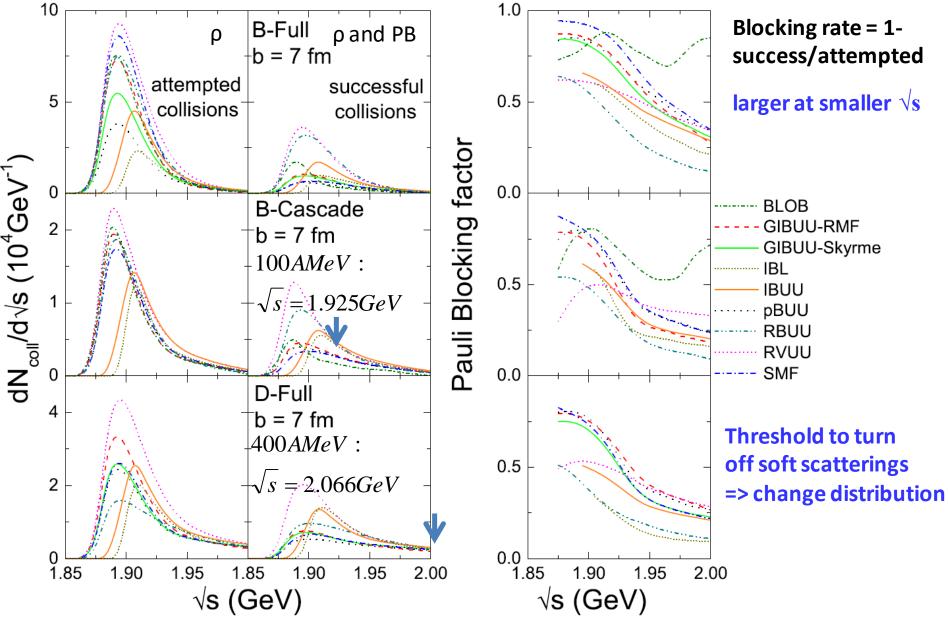
Fluctuation related to the Gaussian width

How are the collisions realized? (in most transport models)

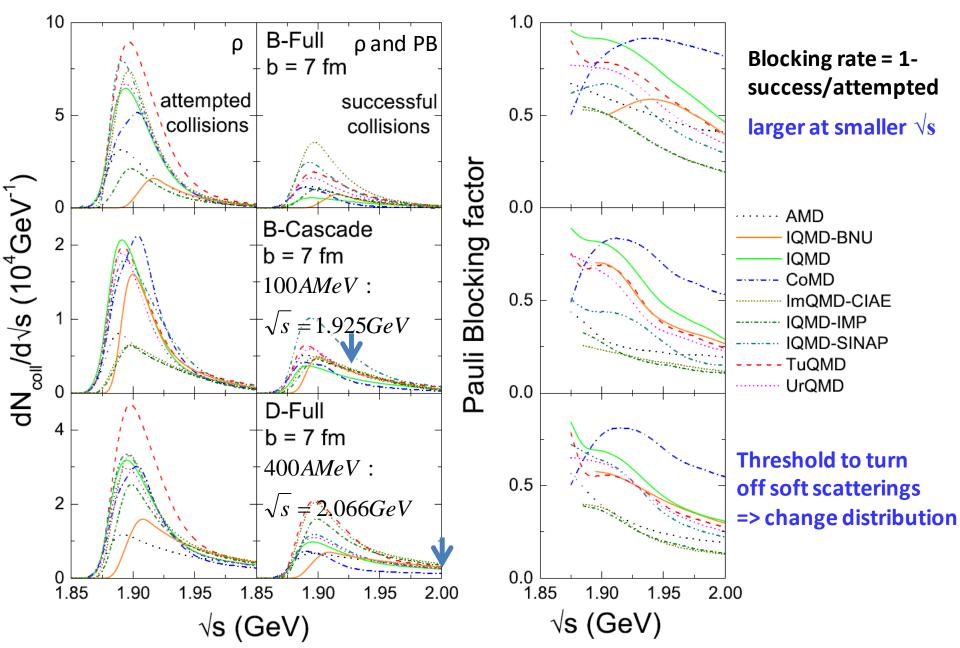
- Bertsch's approach (Phys. Rep. 160, 189 (1988))
 - Go into the C.M. frame of the two nucleons
 - Collision can happen if

 $b = \sqrt{(\Delta r)^2 - (\Delta r \cdot p/p)^2} < \sqrt{\sigma/\pi} \quad \text{and} \quad \left|\frac{\Delta r \cdot p}{p}\right| < \left(\frac{p}{\sqrt{p^2 + m_1^2}} + \frac{p}{\sqrt{p^2 + m_2^2}}\right) \delta t/2$

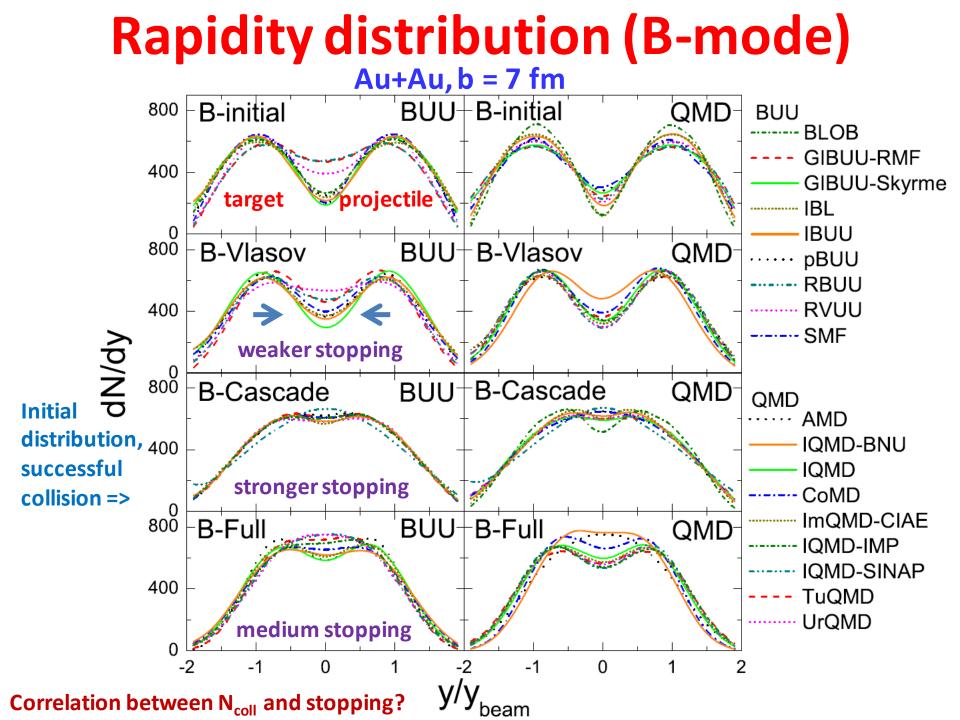
- If collision happen, change the direction of $\rm P_{cm}$ in the C.M. frame
- Boost the momenta of the two nucleons to lab frame
- Check phase space density; if Pauli blocked, return to the initial momenta

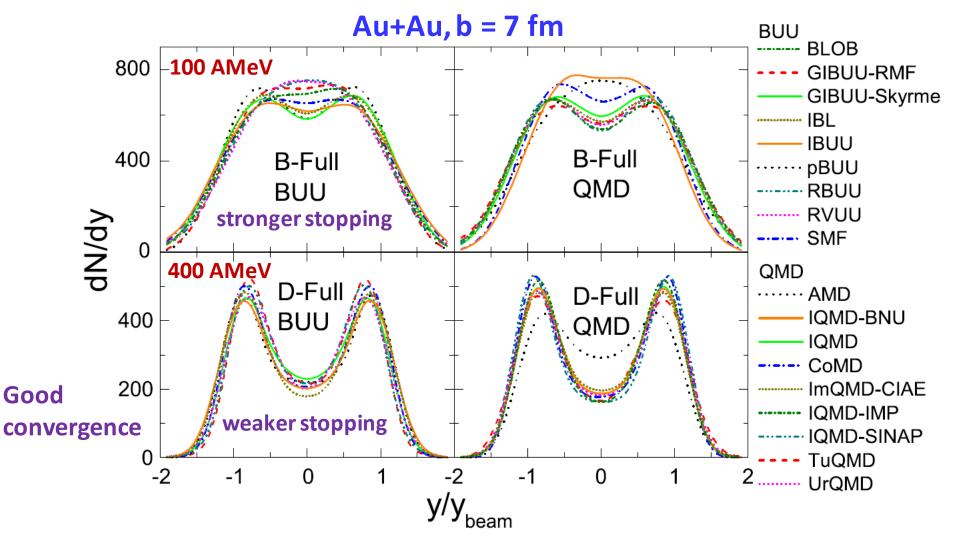

How is Pauli blocking realized? (in most transport models)

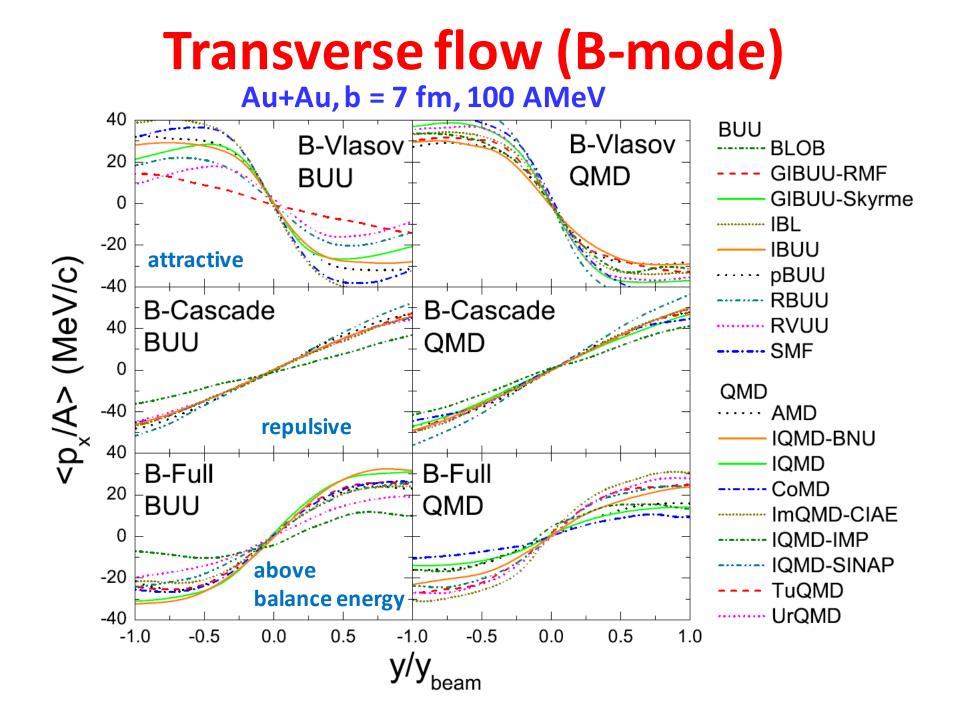
 Update the occupation probability f_i at each time step (f_i is calculated differently for each code, and can be different for BUU and QMD)


• When a collision is attempted, check the Pauli blocking probability $1 - (1 - f_i)(1 - f_j)$

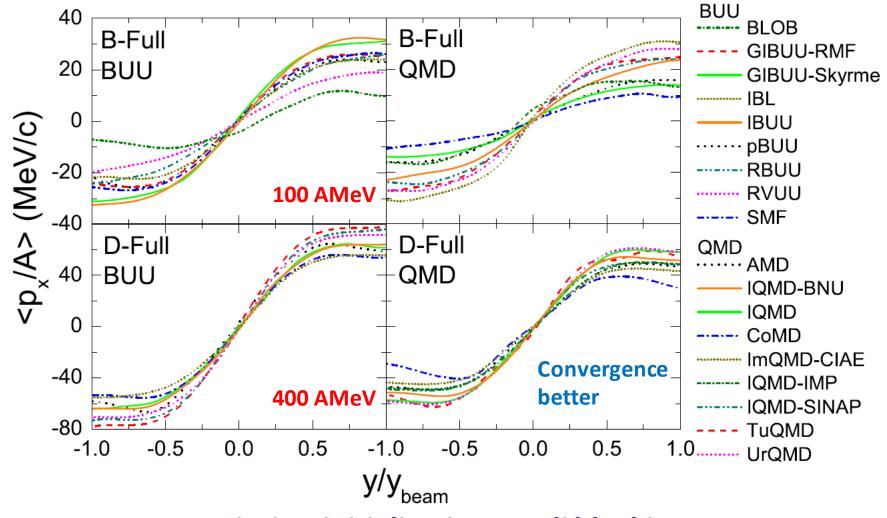
• Additional constraint if any (phase-space constraint ...)


NN scattering & Pauli blocking - BUU

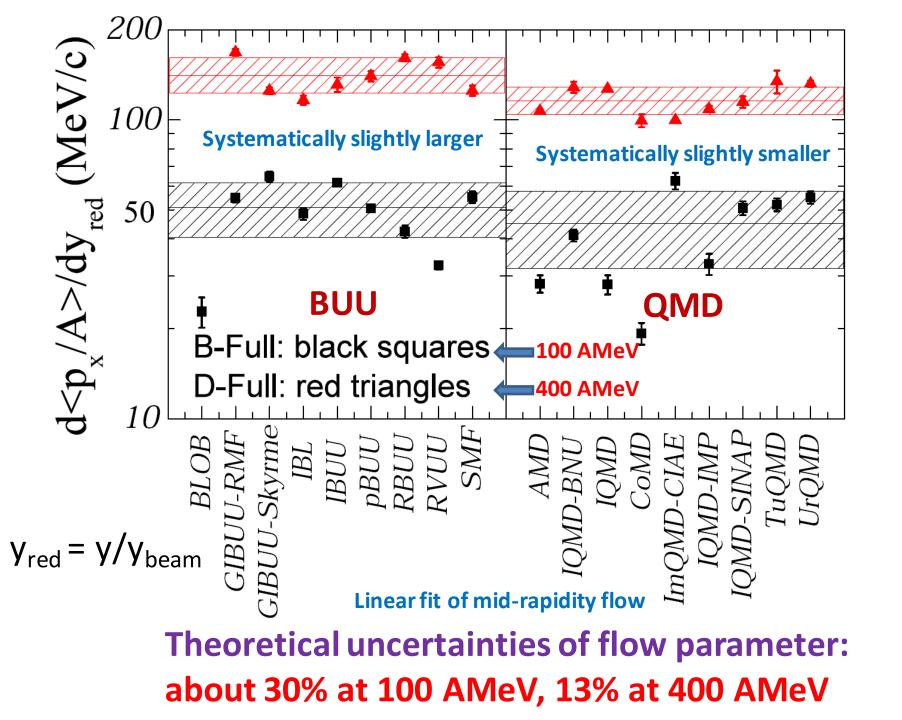

NN scattering & Pauli Blocking - QMD


Code name	Occupation probability f_i			Blocking probability ^a	Additional constraints
AMD IQMD-BNU IQMD-BNU IQMD CoMD ImQMD-CIAE IQMD-IMP IQMD-SINAP TuQMD UrQMD BLOB GIBUU-Skyrme IBL IBUU BBUU RBUU RBUU RBUU RBUU	Anti f_i in phase-space co $f_i = \sum_k$ f_i in spherical phase-sp $f_i = \sum_k$ f_i in sphere with radius 3 f_i in phase-space f_i in phase-space f_i in phase-space f_i in san f_i in phase-space	symmetrized wave packet f_i in h^3 f_i in h^3 f_i in h^3 f_i in h^3 ell with $dx = 3.367$ fm, d $e^{-(\vec{r}_k - \vec{r}_i)^2/[2(\Delta x)^2]}e^{-(\vec{p}_k - \vec{p}_i)^2/2}$ bace cell with $dx = 3.0$ fm $e^{-(\vec{r}_k - \vec{r}_i)^2/[2(\Delta x)^2]}e^{-(\vec{p}_k - \vec{p}_i)^2/2}$ f_i m with Gaussian weige e cell with $dx = 1.4$ fm, $df_i in h^3cell with dx = 2.73 fm, dme and neighboring spatiale$ cell with $dx = 1.4$ fm, $dparticular the state of the state$	$p = 89.3 \text{ MeV}/c$ $p_{(\Delta x)^2/\hbar^2}$ $p = 240 \text{ MeV}/c^{\text{f}}$ $p = 68 \text{ MeV}/c$ $p = 68 \text{ MeV}/c$ $p = 187 \text{ MeV}/c$ $l \text{ cell}^1$ $p = 64 \text{ MeV}/c$ $p = 331 \text{ MeV}/c^{\text{m}}$	Physical wave packet ^b $1 - (1 - f_i)(1 - f_j)$ $1 - (1 - f_i)(1 - f_j)$ $f'_i, f'_j < f_{max} = 1.05 - 1.$ $1 - (1 - f_i)(1 - f_j)$	No Yes ^c Yes ^d 1 Yes ^e No No Yes ^g Yes ^h Yes ^j No No yes ^k No No No No No No No
Code name	Attempted collisions	First collisions within same nucleus		within	st collisions same nucleus
AMD IQMD-BNU IQMD CoMD ImQMD-CIAE IQMD-IMP IQMD-SINAP TuQMD UrQMD	$p = \alpha e^{-\nu R_{ij}^2} v_{ij} \Delta t$ Bertsch approach ^d Bertsch approach $p = 1 - e^{\Delta t/\tau}$ Bertsch approach Bertsch approach Bertsch approach Bertsch approach Collision time table ^e	Yes No Yes Yes Yes Yes Yes Yes Yes	GIBUU-RMF GIBUU-Skyrm(IBL IBUU pBUU RBUU RBUU RVUU	$p = \sigma^{\text{med}} \frac{(\rho_i + \rho_j)}{2} v_{ij} \Delta t$ Bertsch approach Bertsch approach Bertsch approach Cell ^h Bertsch approach Bertsch approach Bertsch approach p = $\sigma^{\text{med}} \frac{(\rho_i + \rho_j)}{2} v_{ij} \Delta t$	Yes Yes No Yes Yes Yes Yes Yes

Rapidity distribution (Full mode)



400AMeV: weaker Pauli blocking, less sensitive to initialization, good convergence of N_{coll} at larger \sqrt{s}



Transverse flow (Full-mode)

Au+Au, b = 7 fm

Uncertainties: initialization, Pauli blocking

conclusions and outlook

- Initialization and Pauli blocking are the two main sources of uncertainties in heavy-ion simulations
- Theoretically error bar for collective flow is about 13% at 400 AMeV and 30% at 100 AMeV (need to be reduced!)
- Future test: particle production, fluctuation and fragmentation, momentum dependence, ...

An agreement in treating each part of the simulation Towards an accurate description of heavy-ion collisions!

Transport2016 - box calculation

the Box Simulation Organizing Committee

Maria Colonna Akira Ono Yongjia Wang

Jun Xu

Yingxun Zhang

Initial configuration well controlled Theoretical answer available collision rate, blocking rate, mean field

Local organizers:

Chair: Fengshou Zhang (BNU, China)

Lie-Wen Chen (SJTU, China), Qingfeng Li (HZU, China), Yongjia Wang (HZU, China), Jun Xu (SINAP, China), Yingxun Zhang(CIAE, China), Zhigang Xiao (TSHU, China), Fengshou Zhang (BNU, China)

Date: June 18th, 2016, right after Nusym16

http://info.phys.tsinghua.edu.cn/enpg/nusym16/htmls/transport-model.html

xujun@sinap.ac.cn