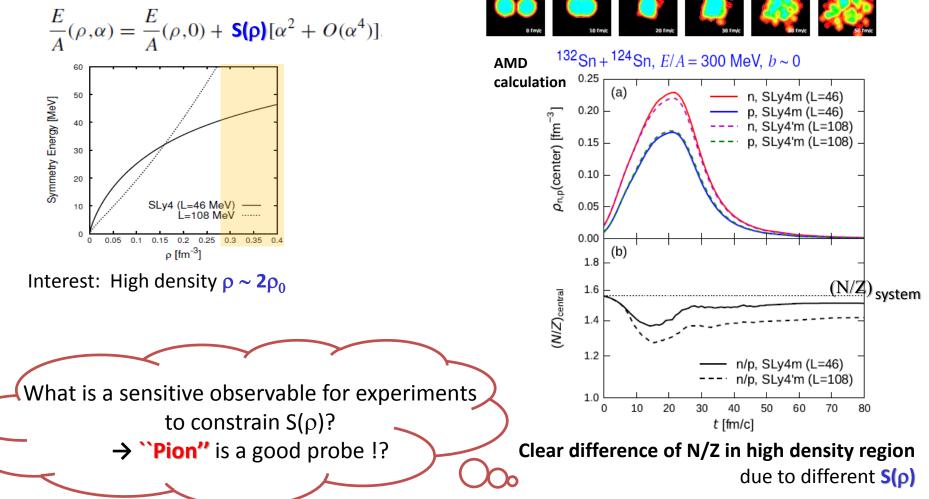
Pion production in heavy-ion collision by the AMD+JAM approach

Natsumi Ikeno (Tottori University)

A. Ono (Tohoku Univ.), Y. Nara (Akita International Univ.), A. Ohnishi (YITP)

Physical Review C 93, 044612 (2016)



6 th International Symposium on Nuclear Symmetry Energy (NuSYM16) June 13- June 17, 2016, Tsinghua University, Beijing, China

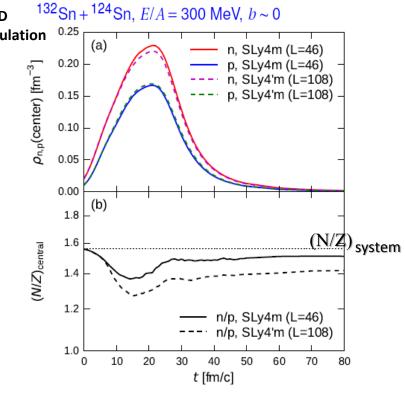
Symmetry energy and Heavy-ion collision

* Symmetry energy S (ρ) :

EOS for asymmetric nuclear matter

* Heavy-ion collisions (Neutron-rich system)

Pion production in Heavy-ion collision

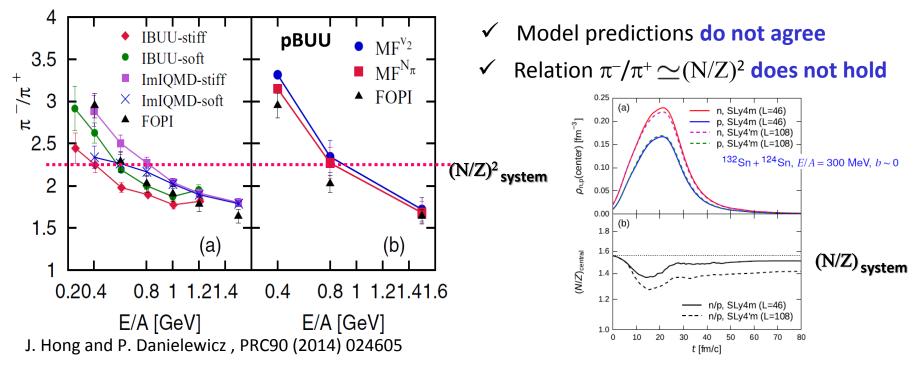

* Pions, Δ resonances:

Formation in NN collisions at early times in the compressed part of the system

 132 Sn + 124 Sn, E/A = 300 MeV, $b \sim 0$ AMD π^{-} production (main reaction) calculation 0.25 (a) $nn \to p\Delta^-$ 20 fm/o 0.20 o_{n,p}(center) [fm⁻³] $\Lambda^- \to n\pi^-$ 0.15 0.10 π^+ production (main) $pp \to n\Delta^{++}$ 0.05 $\Delta^{++} \to p\pi^+$ 0.00 (b) 1.8 (N/Z)_{central} 1.6 Simple expectation : 1.4 $\left(rac{\pi^-}{\pi^+}
ight)\simeqrac{5N^2+NZ}{5Z^2+NZ}\simeq \left(rac{N}{Z}
ight)^2$ 1.2 1.0 0 10 20 40 50 30 60 B. A. Li, PRL 88 (2002) 192701

$\Rightarrow \pi^{-}/\pi^{+}$ ratio is related to some kind of $(N/Z)^{2}$ ratio which is supposed to be sensitive to the symmetry energy at high densities.

* Heavy-ion collisions (Neutron-rich system)

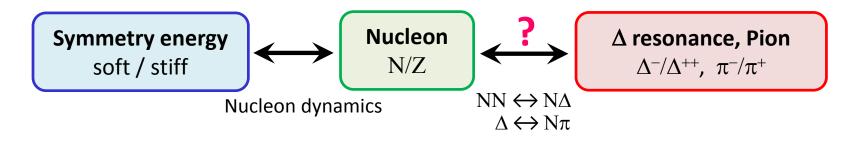


Pion and Symmetry energy

Pion calculations by some models

- B. A. Li, PRL 88 (2002) 192701 : IBUU
- Z. Xiao, B. A. Li, L. W. Chen, G.-C. Yong, and M. Zhang, PRL102 (2009) 062502 : IBUU04
- Z. Q. Feng and G. M. Jin, PLB 683 (2010) 140 : ImIQMD
- J. Hong and P. Danielewicz , PRC90 (2014) 024605 : pBUU
- Wen-Mei Guo, Gao-Chan Yong and Wei Zuo, PRC90 (2014) 044605 ... etc.

Pion ratio in central Au+Au collisions: Theory vs. Exp. Data


Our study

¹³²Sn + ¹²⁴Sn Collision @E/A=300MeV

- Experiment at RIKEN/RIBF T. Isobe, T. Murakami et al.
- Neutron rich system (N/Z) = 1.56 $\rightarrow \pi^- > \pi^+$

Motivation:

We like to understand the mechanism how Δ resonances and pions are produced, reflecting the dynamics of neutrons and protons.

+

Theoretical Model:

AMD

- Treatment of cluster correlation

- Nucleon dynamics

- JAM
 - π , Δ production in the reaction process
 - hadronic cascade model

Transport model (AMD + JAM)

 \blacktriangleright Coupled equations for $f_{\alpha}(\mathbf{r}, \mathbf{p}, t)$ ($\alpha = N, \Delta, \pi$) $\frac{\partial f_{N}}{\partial t} + \frac{\partial h_{N}}{\partial p} \cdot \frac{\partial f_{N}}{\partial r} - \frac{\partial h_{N}[f_{N}, f_{\Delta,\pi}]}{\partial r} \cdot \frac{\partial f_{\Delta,\pi}}{\partial p} = I_{N}[f_{N}, f_{\Delta,\pi}]$ $\frac{\partial f_{\Delta,\pi}}{\partial t} + \frac{\partial h_{\Delta,\pi}}{\partial p} \cdot \frac{\partial f_{\Delta,\pi}}{\partial r} - \frac{\partial h_{\Delta,\pi}[f_{N}, f_{\Delta,\pi}]}{\partial r} \cdot \frac{\partial f_{\Delta,\pi}}{\partial p} = I_{\Delta,\pi}[f_{N}, f_{\Delta,\pi}]$ $\begin{pmatrix} N N \rightarrow N N \\ N N \rightarrow N \Delta \\ N \Delta \rightarrow N N \\ \Delta \rightarrow N \pi \\ N \pi \rightarrow \Delta & \dots \text{ etc.} \end{pmatrix}$ $\frac{\partial f_N}{\partial t} + \frac{\partial h_N}{\partial \boldsymbol{p}} \cdot \frac{\partial f_N}{\partial \boldsymbol{r}} - \frac{\partial h_N[f_N, f_{\Delta, \pi}]}{\partial \boldsymbol{r}} \cdot \frac{\partial f_N}{\partial \boldsymbol{p}} = I_N[f_N, f_{\Delta, \pi}]$

 $I_{\rm N}[f_{\rm N}, f_{\Delta, \pi}]$:collision term

Our model: JAM coupled with AMD

Perturbative treatment of pion and Δ particle production

$$I_N = I_N^{\rm el}[f_N, 0] + \lambda I_N'[f_N, f_{\Delta, \pi}]$$

 $\int f_{\Delta,\pi} = O(\lambda) : \Delta \text{ and pion productions are rare}$ $f_N = f_N^{(0)} + \lambda f_N^{(1)} + \dots$

• Nucleon f_N : Zeroth order equation

$$\frac{\partial f_N^{(0)}}{\partial t} + \frac{\partial h_N}{\partial \boldsymbol{p}} \cdot \frac{\partial f_N^{(0)}}{\partial \boldsymbol{r}} - \frac{\partial h_N[f_N^{(0)}, 0]}{\partial \boldsymbol{r}} \cdot \frac{\partial f_N^{(0)}}{\partial \boldsymbol{p}} = I_N^{\rm el}[f_N^{(0)}, 0]$$

Solved by AMD

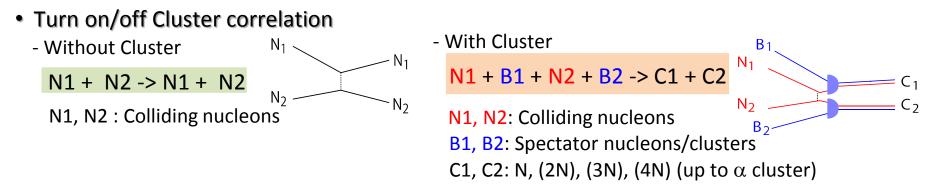
• Δ particle f_{Δ} and pion f_{π} : First order equation Solved by **JAM** $\frac{\partial f_{\Delta,\pi}}{\partial t} + \frac{\partial h_{\Delta,\pi}}{\partial \boldsymbol{p}} \cdot \frac{\partial f_{\Delta,\pi}}{\partial \boldsymbol{r}} - \frac{\partial h_{\Delta,\pi}[f_N^{(0)}, f_{\Delta,\pi}]}{\partial \boldsymbol{r}} \cdot \frac{\partial f_{\Delta,\pi}}{\partial \boldsymbol{p}} = I_{\Delta,\pi}[f_N^{(0)}, f_{\Delta,\pi}]$ for given $f_{\rm N}^{(0)}$

Transport model (AMD + JAM)

AMD (Antisymmetrized Molecular Dynamics)
A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, PTP87 (1992) 1185

AMD wave function

$$(\Phi(Z)) = \frac{\det}{ij} \left[\exp\left\{ -\nu \left(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}} \right)^2 \right\} \chi_{\alpha_i}(j) \right]$$


Solve the time evolution of the wave packet centroids Z

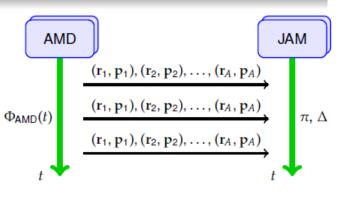
$$Z_i = \sqrt{\nu} D_i + \frac{i}{2\hbar \sqrt{\nu}} K_i$$

v : Width parameter = (2.5 fm)⁻²

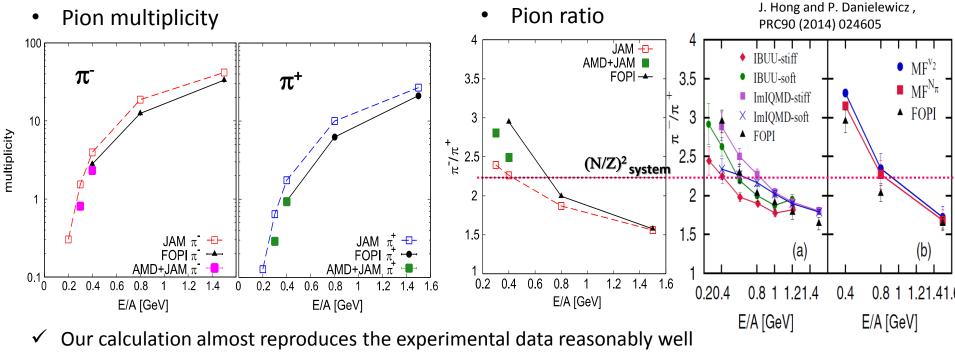
 χ_{α_i} : Spin-isospin states = $p \uparrow, p \downarrow, n \uparrow, n \downarrow$

✓ Effective interaction

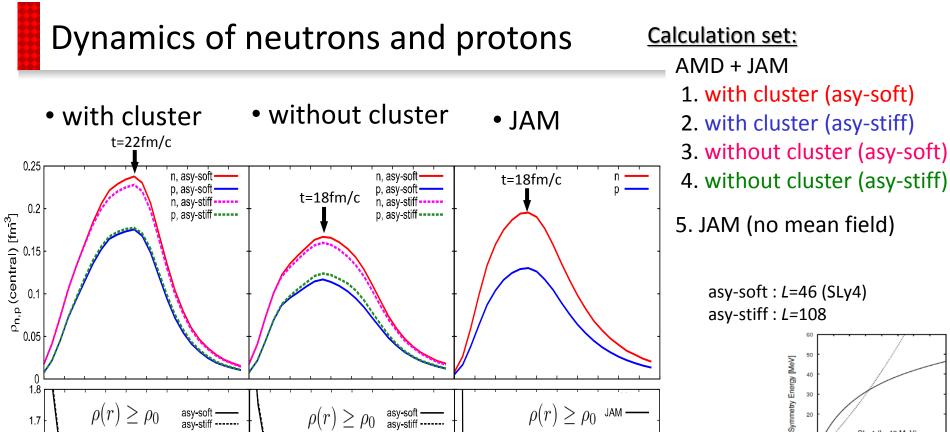
Ono-san's talk

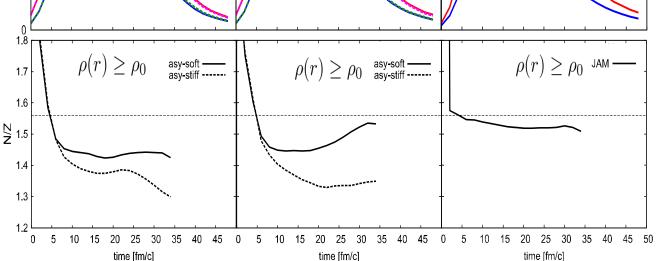

JAM (Jet AA Microscopic transport model)

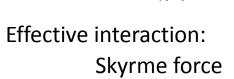
Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, PRC61 (2000) 024901


- Applied to high-energy collisions (1 \sim 158 A GeV)
- Hadron-Hadron reactions are based on experimental data and the detailed balance.
- No mean field (default)
- *s*-wave pion production (NN \rightarrow NN π) is turned off. ... etc.

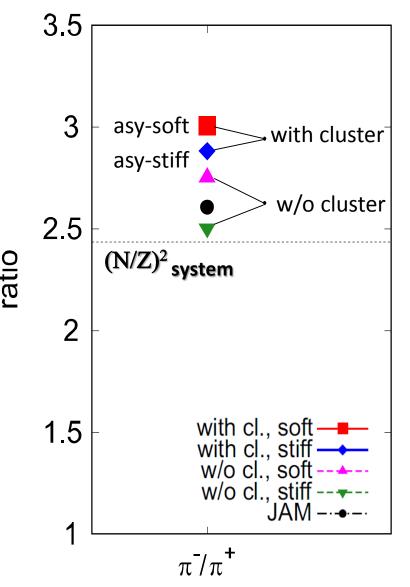
Transport model (AMD + JAM)


We send nucleon test particles (r₁, p₁), (r₂, p₂), ..., (r_A, p_A) from AMD to JAM at every 2 fm/c with corrections for the conservation of baryon number and charge.




Pion Calcutions in central Au+Au collisions

✓ Pion ratios are also larger than $(N/Z)^2_{system}$

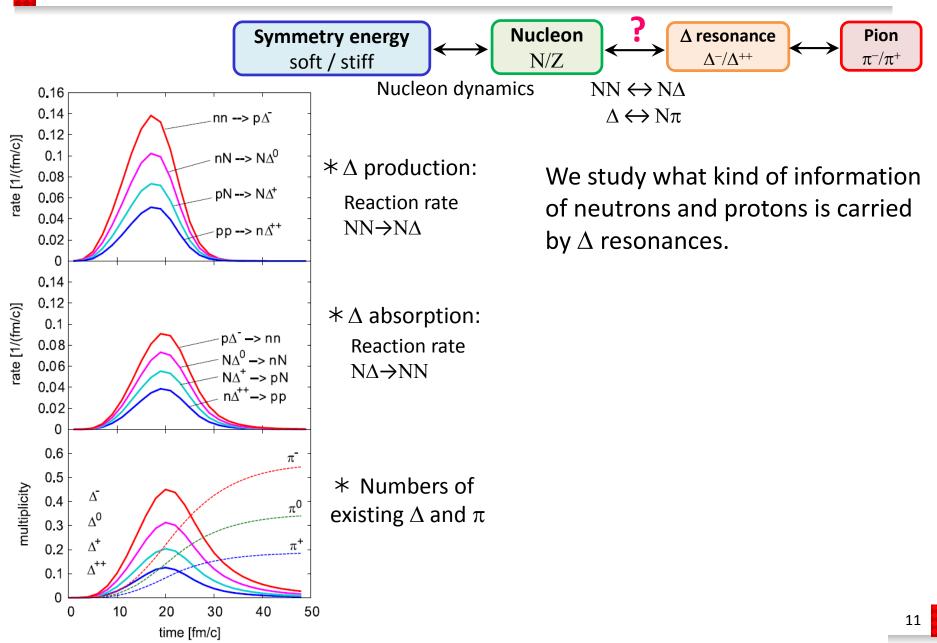

SLy4 (L=46 MeV

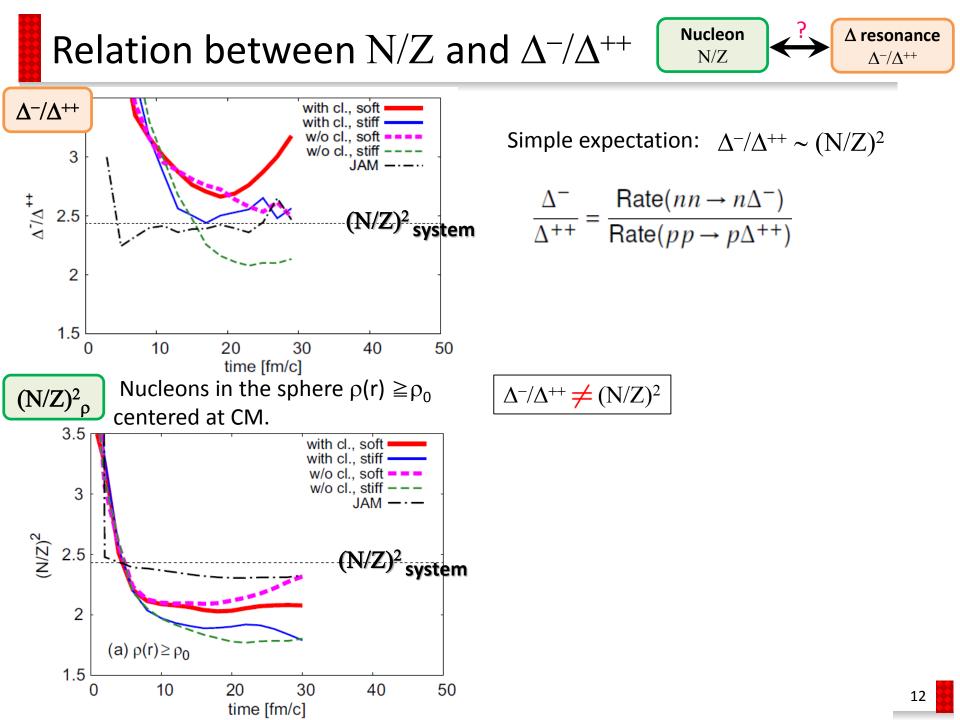
0.2 0.25 ρ [fm⁻³]

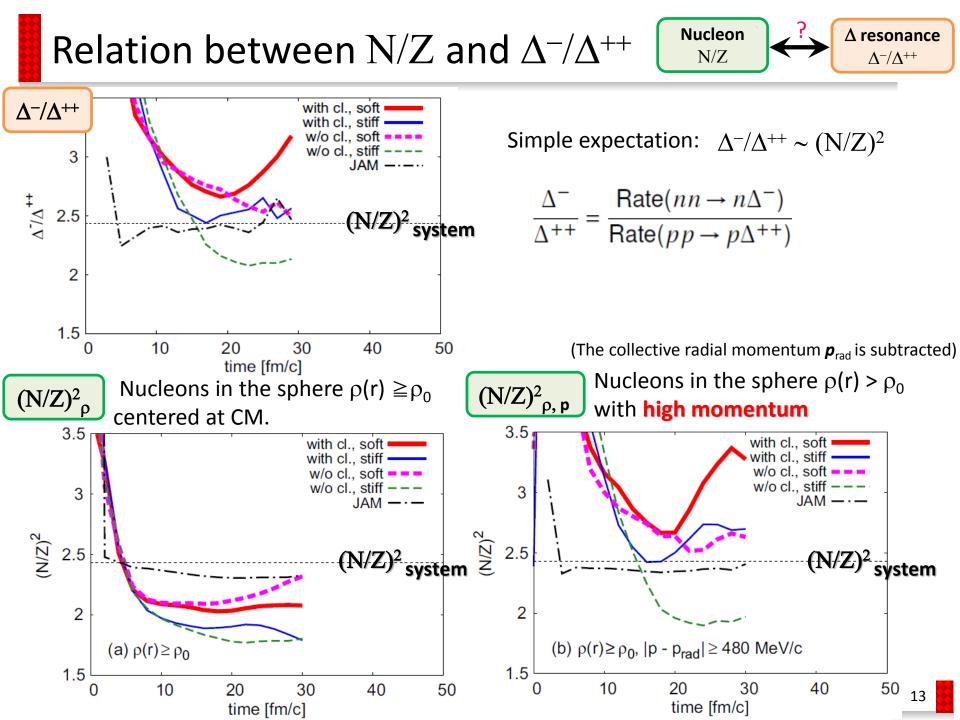
20

- Density maximum is different for cases with or without cluster \checkmark
- Clear difference of N/Z ratio due to different symmetry energy \checkmark
- Especially symmetry energy effect is weaker if there is cluster correlation

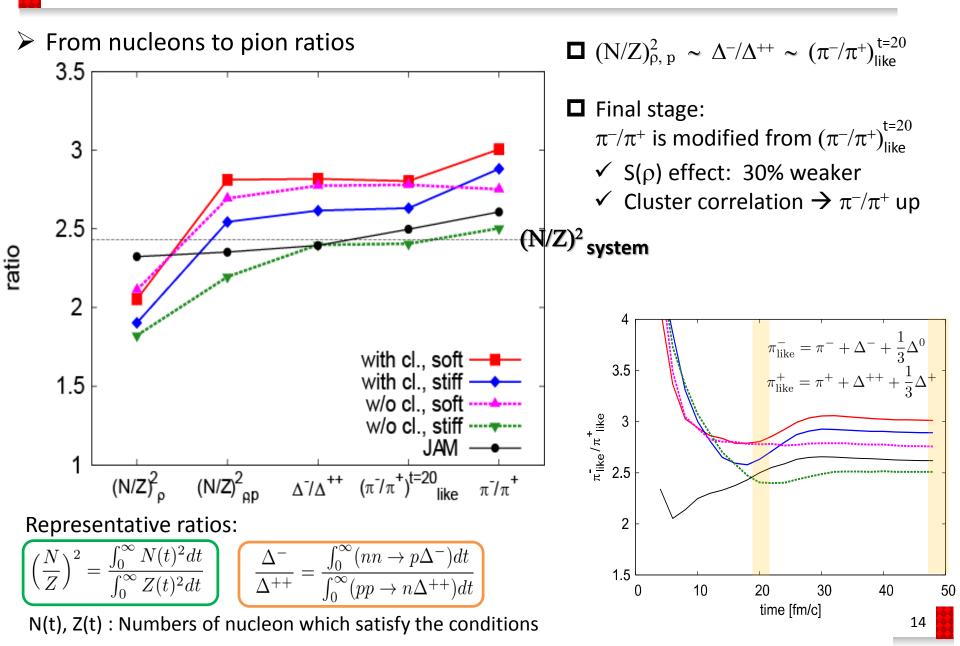
Final π^{-}/π^{+} ratio

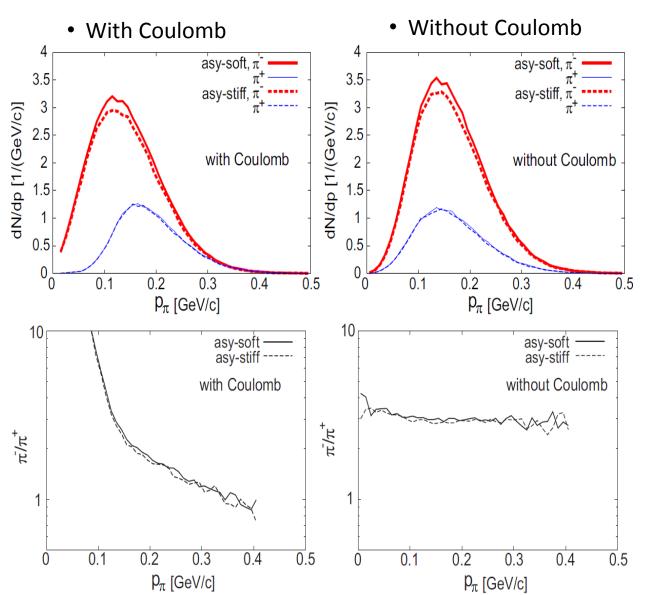

1. Symmetry energy dependence $S(\rho)$ π^{-}/π^{+} ratio with soft $S(\rho)$ is larger -> Similar result to IBUU


2. Model dependence of nucleon dynamics S(ρ) effect is weaker with cluster correlations


3.
$$\pi^{-}/\pi^{+}$$
 ratio > $(N/Z)^{2}_{system}$

 \Rightarrow What is the origin of these behaviors?





Final π^{-}/π^{+} ratio

Pion spectra

AMD + JAM with cluster (asy-soft)

 Coulomb effect: Acceleration of π⁺ Deceleration of π⁻
 → Changes of pion spectra

	π^{-}	π^+	π^{-}/π^{+}
with Coulomb	0.577	0.192	3.01(1)
w/o Coulomb	0.582	0.193	3.02(1)

→ Coulomb effect has almost no effect on the pion multiplicities and the pion ratio.

Clusters at high density?

In the calculation, cluster correlation played important roles for the pions. But, in the high density region, should cluster correlations really exist?

3 Options: Treatment of cluster correlations

1. With cluster

Clusters are formed at any density.

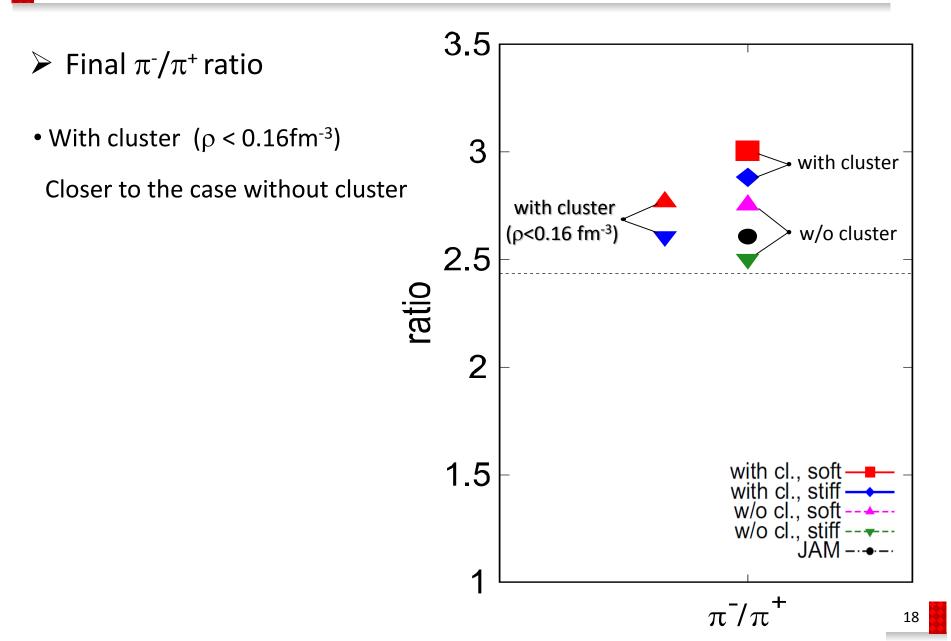
2. Without cluster

Clusters are not formed at all.

NEW 3. With cluster ($\rho < 0.16 \text{ fm}^{-3}$)

Clusters are formed in the low density region ($\rho < 0.16 \text{ fm}^{-3}$) Clusters are not formed in the high density region ($\rho > 0.16 \text{ fm}^{-3}$)

Preliminary result with cluster ($\rho < 0.16$ fm⁻³)


> Dynamics of neutrons and protons

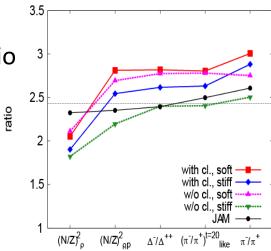
1. with cluster 2. without cluster 3. With cluster (ρ <0.16fm⁻³) t=22fm/c 0.25 0.25 n, asy-soft n, asy-soft n, asy-soft p, asy-soft p, asy-soft p. asv-soft t=18fm/c n, asy-stiff ----n, asy-stiff-----n, asy-stiff -----0.2 0.2 p, asy-stiff ----p, asy-stiff ----p. asy-stiff ----ρ_{n,p} (central) [fm³] ρ_{n, p} (central) [fm³] 0.15 0.15 0.1 0.1 0.05 0.05 1.8 1.8 asy-soft $\rho(r) \ge \rho_0$ $\rho(r) \ge \rho_0$ $\rho(r) \ge \rho_0$ asy-stiff ----asy-soft -----asy-soft 1.7 1.7 asy-stiff ------1.6 1.6 N/Z N 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 0 25 25 30 35 5 10 15 20 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 40 time [fm/c] time [fm/c] time [fm/c]

Density maximum is not as high as the case with cluster

45 50

Preliminary result with cluster (ρ < 0.16 fm⁻³)

Summary: Pion production in ¹³²Sn+¹²⁴Sn collisions @E/A = 300MeV


Motivation: To understand the mechanism how pions are produced reflecting the dynamics of neutrons and protons

Calculation: - Transport model combining AMD and JAM

- Effective interaction: soft/stiff symmetry energy
- Turn on/off cluster correlation

Pion ratio certainly carries the information on neutrons and protons at the dynamical stage of collisions

- ✓ The π^{-}/π^{+} and Δ^{-}/Δ^{++} ratios are related to the $(N/Z)^{2}$ ratio in high-density and high-momentum region.
- ✓ The π^-/π^+ ratio with soft E_{sym} is larger
- ✓ E_{sym} effect is weaker with cluster correlations
- ✓ In the final stage, π^{-}/π^{+} ratio is modified from $(\pi^{-}/\pi^{+})_{like}^{t=20}$

Future work:

-> We need to investigate not only pions but also other observables (cluster correlation)

- Δ resonance production threshold

Potential for Δ and pion

In JAM, reaction thresholds are the same as in free space.

(The production and absorption reactions for Δ and pions occur in the JAM calculation as in the free space)

Nucleons feel potential in the AMD calculation.

Therefore AMD+JAM assumes

$$NN \leftrightarrow N\Delta \qquad \Delta \leftrightarrow N\pi U_{\tau_1}^{(N)} + U_{\tau_2}^{(N)} = U_{\tau_3}^{(N)} + U_{\tau_4}^{(\Delta)}, \qquad U_{\tau_1}^{(\Delta)} = U_{\tau_3}^{(N)} + U_{\tau_4}^{(\pi)} \qquad \text{for } \tau_1(+\tau_2) = \tau_3 + \tau_4$$

This is equivalent to the choice in the pBUU calculation

c.f. Hong and Danielewicz, PRC 90 (2014) 024605

$$\begin{split} v_{asy}(\Delta^{-}) &= 2v_{asy}(n) - v_{asy}(p) = 3v_{asy}(n), \\ v_{asy}(\Delta^{0}) &= v_{asy}(n), \\ v_{asy}(\Delta^{+}) &= v_{asy}(p) = -v_{asy}(n), \\ v_{asy}(\Delta^{++}) &= 2v_{asy}(p) - v_{asy}(n) = -3v_{asy}(n). \end{split}$$

* Different choice, cf. Bao-An Li

$$\begin{split} v_{asy}(\Delta^{-}) &= v_{asy}(n), \\ v_{asy}(\Delta^{0}) &= \frac{2}{3}v_{asy}(n) + \frac{1}{3}v_{asy}(p) = \frac{1}{3}v_{asy}(n), \\ v_{asy}(\Delta^{+}) &= \frac{1}{3}v_{asy}(n) + \frac{2}{3}v_{asy}(p) = -\frac{1}{3}v_{asy}(n), \\ v_{asy}(\Delta^{++}) &= v_{asy}(p) = -v_{asy}(n). \end{split}$$

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0 0.14 0.12

0.1

0.08

0.06

0.04

0.02 0 0.6

0.5

0.4

0.3

0.2 0.1 0

0

time [fm/c]

multiplicity

rate [1/(fm/c)]

rate [1/(fm/c)]

