Symmetry energy from dipole polarizability

Constraining EoS by nuclear properties: possible experiments with radioactive beams

Relativistic Coulomb excitation and invariant-mass spectroscopy: R3B at GSI and FAIR, EXL at HESR up to 5 GeV/nucleon -> Dipole polarizabilty

Inelastic alpha scattering EXL at ESR and/or at HESR at FAIR

-> Giant Monopole Resonance

Elastic proton scattering

EXL at at ESR and/or at HESR at FAIR, active target at R3B <u>Elastic electron scattering</u> SCRIT at RIKEN, ELISe at ESR at FAIR <u>Isotope shift measurements</u> (LASPEC at FAIR) -> Neutron-skin thickness

Symmetry energy $S_2(\rho)$ and neutron skin in ²⁰⁸Pb

S. Typel and B.A. Brown, Phys. Rev. C **64** (2001) 027302

• strong <u>linear</u> correlation between neutron skin thickness and parameters a_4 , p_0 (J, L)

$$E(\rho, \alpha) = E(\rho, 0) + S_{2}(\rho) \alpha^{2} + O(\alpha^{4}), \alpha = \frac{N-Z}{A}$$

$$S_{2}(\rho) = \frac{1}{2} \frac{\partial^{2} E(\rho, \alpha)}{\partial \alpha^{2}} \Big|_{\alpha=0} =$$

$$= a_{4} + \frac{p_{0}}{\rho_{0}^{2}} (\rho - \rho_{0}) + \frac{\Delta K_{0}}{18\rho_{0}^{2}} (\rho - \rho_{0})^{2} + \dots$$

$$\int_{0}^{0} \frac{1}{\rho_{0}} \frac{1}{\rho_{0}}$$

Alex Brown, PRL 85 (2000) 5296

Symmetry energy and dipole response

J. Piekarewicz, PRC 83, 034319 (2011)

n-skin / (L, J) from Pygmy strength n-skin / (L, J) from polarizability

A. Carbone et al., PRC 81 (2010) 041301(R)
P.-G. Reinhard, W. Nazarewicz, PRC 81 (2010) 051303(R)
A. Tamii et al., Phys. Rev. Lett. 107 (2011) 062502.

A. Klimkiewicz et al., PRC 76 (2007) 051603(R)

J. Piekarewicz, PRC 73, 044325 (2006)

Dipole polarizability and neutron skin: neutron-rich nuclei

Calculation using RHB+RQRPA framewoork with DD-ME2* effective interaction

*G. A. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 71 024312 (2005)

Electromagnetic excitation at high energies

Determination of 'photon energy' (excitation energy) via a kinematically complete measurement of the momenta of all outgoing particles (invariant mass)

Production of fast exotic nuclei

The LAND reaction setup @GSI

The LAND reaction setup @GSI

Previous measurements with radioactive beams

Method: Electromagnetic excitation at relativistic beam energies (C.A. Bertulani and G. Baur, Phys. Rep. 163, 299 (1988))

Analysis of ⁶⁸Ni: decay after Coulomb excitation

Neutron kinetic energy

Gamma sum energy

consistent fit taking into account:

0.25

1) invariant mass, but also information of subsets like $E_{kin}(n)$, E_{qsum} etc.

2) detailed knowledge about detector response function

D. Rossi et al., PRL 111 (2013) 242503

Dipole strength distribution of ⁶⁸Ni

Simultaneous fit of spectra with 8 individual energy bins as free fit parameters:

"deconvolution"

Polarizability and neutron skin

$$\alpha_D = \frac{nc}{2\pi^2} \int_0^{\infty} \frac{\sigma(E)}{E^2} dE$$

Theoretical calculations from J. Piekarewicz, PRC **83**, 034319 (2011)

Neutron-skin thickness Using one particular RMF interaction (Piekarewicz)

 $\Delta R_{n,p} = 0.175(21) \text{ fm}$

Extracted value depends on functional used !

D. Rossi et al., PRL 111 (2013) 242503

Neutron skin in ²⁰⁸Pb from different methods

Constraining symmetry-energy parameters L and J with measurements of the dipole polarizability

Combined analysis of polarizabilities for ²⁰⁸Pb, ¹²⁰Sn (RCNP), and ⁶⁸Ni (GSI)

Xavi Roca-Maza et al., Phys. Rev. C 92 (2015) 064304

TABLE I. Various estimates of the neutron skin thickness (in fm) of ⁶⁸Ni, ¹²⁰Sn, and ²⁰⁸Pb. (a) Lower and upper values of Δr_{np} as predicted by those models that reproduce the experimental values of the electric dipole polarizability of ⁶⁸Ni, ¹²⁰Sn, and ²⁰⁸Pb. (b) Mean value and standard deviation of Δr_{np} as predicted by the same subset of models in column (a). (c) Predictions extracted from the correlation $\alpha_D J - \Delta r_{np}$ using a suitable range for the symmetry energy coefficient *J* (see text for details).

Nucleus	Δr_{np} (a)	Δr_{np} (b)	Δr_{np} (c)
⁶⁸ Ni	0.15-0.19	0.18 ± 0.01	0.16 ± 0.04
¹²⁰ Sn	0.12-0.16	0.14 ± 0.02	0.12 ± 0.04
²⁰⁸ Pb	0.13-0.19	0.16 ± 0.02	0.16 ± 0.03

 $30 \leqslant J \leqslant 35 \,\mathrm{MeV}$

 $20 \leqslant L \leqslant 66 \,\mathrm{MeV}$

Neutron skin in ²⁰⁸Pb from different methods

Collaboration of ⁶⁸Ni dipole-response experiment

Measurement of the dipole polarizability of the unstable neutron-rich nucleus ⁶⁸Ni

D. M. Rossi,^{1,2,*} P. Adrich,¹ F. Aksouh,^{1,†} H. Alvarez-Pol,³ T. Aumann,^{4,1,‡} J. Benlliure,³ M. Böhmer,⁵ K. Boretzky,¹ E. Casarejos,⁶ M. Chartier,⁷ A. Chatillon,¹ D. Cortina-Gil,³ U. Datta Pramanik,⁸ H. Emling,¹ O. Ershova,⁹ B. Fernandez-Dominguez,^{3,7} H. Geissel,¹ M. Gorska,¹ M. Heil,¹ H. T. Johansson,^{10,1} A. Junghans,¹¹ A. Kelic-Heil,¹ O. Kiselev,^{1,2} A. Klimkiewicz,^{1,12} J. V. Kratz,² R. Krücken,⁵ N. Kurz,¹ M. Labiche,^{13,14} T. Le Bleis,^{1,9,15} R. Lemmon,¹⁴ Yu. A. Litvinov,¹ K. Mahata,^{1,16} P. Maierbeck,⁵ A. Movsesyan,⁴ T. Nilsson,¹⁰ C. Nociforo,¹ R. Palit,¹⁷ S. Paschalis,^{4,7} R. Plag,^{9,1} R. Reifarth,^{9,1} D. Savran,^{18,19} H. Scheit,⁴ H. Simon,¹ K. Sümmerer,¹ A. Wagner,¹¹ W. Waluś,¹² H. Weick,¹ and M. Winkler¹

¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany ²Institut für Kernchemie, Johannes Gutenberg-Universität, D-55128 Mainz, Germany ³University of Santiago de Compostela, E-15705 Santiago de Compostela, Spain ⁴Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany ⁵Physik-Department E12, Technische Universität München, D-85748 Garching, Germany ⁶University of Vigo, E-36310 Vigo, Spain ⁷University of Liverpool, Liverpool L69 7ZE, United Kingdom ⁸Saha Institute of Nuclear Physics, Kolkata 700-064, India ⁹Institut für Angewandte Physik, Goethe Universität, D-60438 Frankfurt am Main, Germany ¹⁰Chalmers University of Technology, SE-41296 Göteborg, Sweden ¹¹Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden, Germany ¹²Jagiellonian University, PL-30-059 Krakow, Poland ¹³University of the West of Scotland, Paisley PA1 2BE, United Kingdom ¹⁴STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom ¹⁵Institut Pluridisciplinaire Hubert Curien, F-67037 Strasbourg, France ¹⁶Bhabha Atomic Research Centre, Mumbai 400-085, India ¹⁷Tata Institute of Fundamental Research, Mumbai 400-005, India ¹⁸ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany ¹⁹Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main, Germany

Summary

- Dipole response of n-rich nuclei Pygmy Resonance
 - Low-lying dipole strength observed in n-rich nuclei, 'proton-Pygmy' in $^{32}\mathrm{Ar}$
 - many open questions next-generation experimental program planned at GSI, RIKEN, SDALINAC, HIγS, RCNP, ...
 - systematics, strength and position as a function of N-Z (and mass)
 - isospin character (isoscalar dipole)
 - decay properties
 - relation to nuclear-matter properties
 - relation to observed low-lying strength for stable nuclei
 - extraction of quadrupole strength
- Dipole response of ⁶⁸Ni
 - 25(2)% non-statistical decay
 - PDR: 2.8(5)% EWSR, 7(2)% direct gamma decay
 - Dipole polarizability extracted for the first time for a radioactive nucleus

This opens the possibility for systematic studies as a function of N-Z which will enable to provide tight constraints on neutron skins and the density dependence of the symmetry energy