

Direct and resonant reactions with active targets

Yassid Ayyad National Superconducting Cyclotron Laboratory

1

Y. Ayyad 06/2015 - NuSym16 - Beijing

The "art" of performing direct and resonant reactions. Active Target Time Projection Chamber (AT-TPC) at NSCL

Recent results and perspectives

Conclusions

2

Direct and resonant reactions in nuclear physics Direct reactions Resonant reactions

 $A + a \Rightarrow C^* \Rightarrow B + b$

- Going through resonances.
- · Intermediate step that decays.
- Time scales can be very large ($\sim 10^{-18}$ s).
- Cross sections follow Breit-Wigner.
- Excitation function of the resonant process
- Partial width gives spectroscopic information

- Resonant (in)elastic scattering: Isobaric Analog States in the composite system. Clustering in nuclei.
- Capture reactions: Astrophysics, reactors.

Y. Ayyad 06/2015 - NuSym16 - Beijing

- Small momentum transfer.
- Large impact parameter (surface).
- Cross section focused on forward direction.

 $A + a \Rightarrow B + b$

• Very short time scale ($\sim 10^{-22}$ s).

- Elastic scattering: Optical potentials, density distributions.
- Inelastic scattering: Electromagnetic transitions, exotic structures and resonance modes.
- Transfer reactions: Nuclear structure, pairing.
 - Charge-exchange: GT strengths, baryon resonances

•

•

Direct and resonant reactions in nuclear physics Direct reactions Resonant reactions

 $A + a \Rightarrow C^* \Rightarrow B + b$

- Going through resonances.
- Intermediate step that decays.
- Time scales can be very large ($\sim 10^{-18}$ s).
- Cross sections follow Breit-Wigner.
- Excitation function of the resonant process
- Partial width gives spectroscopic information

Elastic scattering: Optical potentials, density distributions.

 $A + a \Rightarrow B + b$

Cross section focused on forward direction.

Small momentum transfer.

Large impact parameter (surface).

• Very short time scale ($\sim 10^{-22}$ s).

- Inelastic scattering: Electromagnetic transitions, exotic structures and resonance modes.
 - Transfer reactions: Nuclear structure, pairing.
 - Charge-exchange: GT strengths, baryon resonances

- Resonant (in)elastic scattering: Isobaric Analog States in the composite system. Clustering in nuclei.
- Capture reactions: Astrophysics, reactors.

Well suited for active targets!

High resolution measurements in nuclear physics

Magnetic spectrometers

High beam intensityExcellent Ex resolution

Limited to stable/longlived targets Si+Csl telescopes

5

Setup configuration and trigger selection

Y. Ayyad 06/2015 - NuSym16 - Beijing

MICHIGAN STATE

NIVERSI

Energy resolution in inverse kinematics

Heavy ion detected in spectrometer (3 mg/cm²)

Reaction	Ei/A (MeV)	$\theta_{\rm lab}$	Origin of contribution					
			$\Delta \theta$	Δp	Estragg	$\Theta_{1/2}$	dE/dx	
p(¹² Be, ¹¹ Be)d	30	1.07°	172	147	101	74	23	259
p(12Be, 11Be)d	15	1.06°	84	71	99	74	37	169
p(77Kr, 76Kr)d	30	0.16°	1404	811	808	723	56	1952
p(77Kr, 76Kr)d	10	0.10°	334	143	502	570	268	883
d(⁷⁶ Kr, ⁷⁷ Kr)p	10	0.21°	1140	614	2177	1859	1321	3408

Light particle detected in solid state device (3 mg/cm²)

Reaction	<i>E</i> _i / <i>A</i> (MeV)	θ_{lab}	Origin o	f contribution		Σ_{quad}		
			$\Delta \theta$	ΔE_f	ΔE_i	$\Theta_{1/2}$	dE/dx	
p(¹² Be, d) ¹¹ Be	30	19.0°	136	74	114	96	649	685
p(12Be, d)11Be	15	17.8°	66	72	55	89	984	995
p(⁷⁷ Kr, d) ⁷⁶ Kr	30	15.0°	124	55	64	63	186	249
p(⁷⁷ Kr, d) ⁷⁶ Kr	10	6.0°	26	24	23	19	775	777
d(⁷⁶ Kr, p) ⁷⁷ Kr	10	155.3°	52	93	37	60	1309	1316

J. S. Winfield et al., NIM A 396 (1997)

Gas Volume (Target) 8

Read-out plane and electron amplification

11

Read-out plane and electron amplification

Active Targets: An overview

Table 1

Active targets in operation or being constructed.

Name	Lab	Gas ampl.	Volume (cm ³)	Pressure (atm)	Energy (MeV/n)	Electronics	Number of chan.	Status ^a	Ref.
Ikar	GSI	NA	$60 \cdot 20^2 \pi$	10	≳700	FADC	6*3	0	[6]
Maya	GANIL	Wire	$30 \cdot 28.3^2$	0.02-2	2-60	Gassiplex	1024	0	[7]
ACTAR	GANIL	μ megas	20 ³	0.01-3	2-60	GET	16,000	С, Р	[8]
MSTPC^b	CNS	Wires	$70 \cdot 15 \cdot 20^{c}$	<0.3	0.5-5	FADC	128	0	[9,10]
CAT	CNS	GEM	$10\cdot 10\cdot 25$	0.2-1	100-200	FADC	400	Т	[11]
MAIKo	RNCP	μ -PIC	14 ³	0.4-1	10-100	FADC	2 × 256	Т	[12]
pAT-TPC	MSU	μ megas	$50 \cdot 12.5^2 \pi$	0.01-1	1–10	GET	256	Τ, Ο	[13]
AT-TPC	FRIB	μ megas	$100 \cdot 25^2 \pi$	0.01-1	1–100	GET	10,240	0	[14]
TACTIC	TRIUMF	GEM	$24 \cdot 10^2 \pi$	0.25-1	1–10	FADC	48	Т	[15]
ANASEN	FSU/LSU	Wires	$43 \cdot 10^2 \pi$	0.1-1	1–10	ASIC	512	0	[16]
MINOS	IRFU	μ megas	6000	1	>120	Feminos	5000	0	[17]
O-TPC	TUNL	Grid	$21 \cdot 30^2$	0.1	~10	Optical CCD	2048 · 2048 pixels	0	[18]

^a O: operational, C: under construction, P: Project, T: test device.
 ^b Two GEM versions: GEM-MSTPC (CNS) [19,20] GEM-MSTPC (KEK) [21,22].
 ^c GEM-MSTPC (CNS): 23.5 · 29.5 · 10.0, GEM-MSTPC (KEK): 10.0 · 10.0 · 10.0.

S. Beceiro-Novo et al. / Progress in Particle and Nuclear Physics 84 (2015) 124–165

- Cylindrical-Radial type
- micromegas (+ Thick GEM) read-out
- prototype ATTPC/ ATTPC 256/10.240 channels
- 50 cm x 12.5 cm/100 cm x 25 cm
- GET electronics (General Electronics for TPCs*)
 - * S. Anvar et al., IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2011) pp.745–749.

AT-TPC: Read-out and electronics

Micromegas electron amplifier

25/55 cm diameter 253 backgammon/10.240 triangular pads GET electronics (General Electronics for TPCs) Programmable trigger Individual thresholds, shaping times... All channels successfully commissioned!

MICHIGAN STAT

<u>MICHIGAN STATE</u> university

A classic: Ikeda diagram

pAT-TPC: Principle of operation

Alpha-resonant scattering on ¹⁰Be

pAT-TPC: Hit pattern reconstruction

pAT-TPC: ¹²Be cluster states ⁸He+⁴He at 17 MeV @ TRIUMF (D. Suzuki)

MICHIGAN STAT

pAT-TPC: Kinematics

Pattern recognition algorithm for tracking

- Linear Hough space allow us to infer kinematical variables online.
- Trigger validation.
- To improve the resolution, a linear fit is needed.
- The energy of the recoil particles is extracted from the range.
- Analysis in progress, very promising!

pAT-TPC: Kinematics

Statistics of one single run (1 hour)

25

Y. Ayyad 06/2015 - NuSym16 - Beijing

Y. Ayyad 06/2015 - NuSym16 - Beijing

AT-TPC: Monte Carlo minimization

MICHIGAN STATE

AT-TPC: Monte Carlo minimization

Toward better accuracy: MC with Energy Loss Transversal and longitudinal straggling

ATTPCROOT Analysis framework

A scattering event

AT-TPC: Kinematics

32

AT-TPC: Fission experiment

Fusion with neutron-rich rare isotope beams (S. Beceiro-Novo)

W. Neubert, Nucl. Instr. and Meth. A, 237, 535 (1985)

Cross sections, angular distributions, atomic number?, mass?

AT-TPC: Fission experiment

Fusion with neutron-rich rare isotope beams (S. Beceiro-Novo)

W. Neubert, Nucl. Instr. and Meth. A, 237, 535 (1985)

Cross sections, angular distributions, atomic number?, mass?

THGEM applications @ NSCL

Gain_{3-THGEM} > 10⁶ for p>100 torr

U.S. Department of Energy Office of Science National Science Foundation Michigan State University Reduced Bias (V/torr)

AT-TPC: Outlook and conclusions

• A robust framework for (p)AT-TPC data analysis is being developed. Parallelization of the code CUDA, OpenMP, MPI...Framework collaboration: MSU, TRIUMF, ND and RIKEN

Short-term future experiments: Low and high energy reactions

- Direct measurement of a key reaction for the rp-process with the AT-TPC (Y. Ayyad and S. Beceiro-Novo, Approved, PAC39). ²²Mg(α,p).
- Search for cluster and molecular states in neutron-rich carbon isotopes with the AT-TPC (Y. Ayyad and T. Kawabata). ${}^{16}C(\alpha, \alpha')$ at 80A MeV with thick GEMs and pure helium gas.
- ¹²Be +4He resonant scattering: Another approach (TRIUMF proposal)

And long-term prospects:

- Investigate the most exotic species in the carbon chain: ¹⁸C, ²⁰C... exotic α -condensates...
- np-pairing in N=Z exotic nuclei using (³He,p) reactions
- Collaboration between NSCL, RIKEN and RCNP (Osaka)

Acknowledgements

ATTPC Collaboration NSCL: D. Bazin, S. Beceiro-Novo, J. Bradt, L. Carpenter, M. Cortesi, M. Kuchera, W. Lynch, W. Mittig, J. Yurkon Notre Dame: T. Ahn RIKEN: D. Suzuki TRIUMF: R. Kanungo, M. Holl

Thank you for your attention!

pAT-TPC: Pattern recognition

Find an efficient way to deal with what the trigger missed and analyze straight tracks

1) Hough Space Line equation

Sector of ALICE TPC @CERN

C. Cheshkov NIM A 566 (2006) 35-39

AT-TPC: Pattern recognition

Hough Space for Circles

$$R^2 = (x - x_C)^2 + (y - y_C)^2$$

3-dimensional accumulation matrix

Computationally expensive! Find all possible circles with a given R

$$b(a) = \frac{x_2 - x_1}{y_1 - y_2}a + \frac{1}{2}\frac{(y_1^2 - y_2^2) + (x_1^2 - x_2^2)}{y_1 - y_2}$$

$$\frac{1}{D(\theta)} = 2 \cdot \frac{(y_1 - y_2)\sin\theta + (x_1 - x_2)\cos\theta}{(y_1^2 - y_2^2) + (x_1^2 - x_2^2)}$$

$$R = \sqrt{(a - x_{hit})^2 + (b - y_{hit})^2}.$$

AT-TPC: Robust algorithm

Y. Ayyad 03/10/2015 - NSCL

<u>MICHIGAN STATE</u> u n i v e r s i t y