Equations of motion of test particles for solving the spin－dependent Boltzmann－Vlasov equation

Yin Xia（夏银）

Supervisor ：
SINAP，CAS，China：Jun Xu（徐骏）
Collaborator ：
Texas A\＆M－Commerce，USA ：Bao－An Li（李宝安）
SINAP，CAS，China：Wen－Qing Shen（沈文庆）

中国科学演上海夜用物浬研宏西

outline

1．Background and motivation．

2．The derivation of equations of motion for the spin－dependent Boltzmann－Vlasov equation in HICs．

3．The spin splitting of the collective flows．

4．Conclusions \＆Outlook

The importance of nucleon spin degree of freedom

help to explain the magic number and shell structure! the role of nucleon spin is much less known in nuclear reactions than structures.中国科学㜔上海良囲物理研究西

Spin－orbit potential at low and high energies

low energies（TDHF）：

TABLE I．Thresholds for the inelastic scattering of ${ }^{16} \mathrm{O}$ $+{ }^{16} \mathrm{O}$ system．

Force	Skyrme II (MeV)	Skyrme M (MeV)
Spin orbit	68	70
No spin orbit	31	27

A．S．Umar et al．，Phys．Rev．Lett．， 1986
J．A．Maruhn et al，Phys．Rev．C， 2006 $\underline{\text { high energies ：}}$

Z．T．Liang and X．N．Wang， Phys．Rev．Lett．， 2005 Phys．Lett．B， 2005

$$
\overrightarrow{\mathrm{n}}_{\mathrm{re}}=\frac{\overrightarrow{\mathrm{p}}_{\mathrm{in}} \times \overrightarrow{\mathrm{b}}}{\left|\overrightarrow{\mathrm{p}}_{\mathrm{in}} \times \overrightarrow{\mathrm{b}}\right|}
$$

A global quark spin polarization

Motivation of this work

In solid state physics, two main methods of spin transport to study spin dynamics
I. Start from a model Hamiltonian
J. Sinova et al., PRL 92, 126603 (2004)
G. Sundaram et al., PRB 5914915 (1999)
II. Linearize the spin-dependent BV equation
through the relaxation time approximation.
K. Morawetz, PRB 92245425 (2015)

J. W. Zhang et al., PRL 93256602 (2004)

In nuclear physics,

the test-particle	numerically solve		
method	spin-independent		
the lowest order term			BV equation
---:			
C. Y. Wong, PRC 25, 1460 (1982)			
G. F. Bertsch et al, PRC 29, 673 (1984).			

the EOMs of test particles are identical to the canonical EOMs

The spin-dependent Boltzmann-Vlasov equation ${ }_{(\text {two reviews })}$

Method I : from the BV equation with a spinor distribution function

$$
\frac{\partial \hat{f}}{\partial t}+\frac{i}{\hbar}[\hat{\varepsilon}, \hat{f}]+\frac{1}{2}\left(\frac{\partial \hat{\varepsilon}}{\partial \vec{p}} \cdot \frac{\partial \hat{f}}{\partial \vec{r}}+\frac{\partial \hat{f}}{\partial \vec{r}} \cdot \frac{\partial \hat{\varepsilon}}{\partial \vec{p}}\right)-\frac{1}{2}\left(\frac{\partial \hat{\varepsilon}}{\partial \vec{r}} \cdot \frac{\partial \hat{f}}{\partial \vec{p}}+\frac{\partial \hat{f}}{\partial \vec{p}} \cdot \frac{\partial \hat{\varepsilon}}{\partial \vec{r}}\right)=0
$$

(the general BV equation: $\frac{\partial f}{\partial t}+\frac{p}{m} \cdot \nabla_{r} f-\nabla_{r} U \cdot \nabla_{p} f=0$.)
H. Smith and H.H. Jensen, transport phenomena (Oxford University press, Oxford, 1989) with $\hat{\varepsilon}$ and \hat{f} can be expressed as

$$
\begin{aligned}
& \hat{\varepsilon}(\vec{r}, \vec{p})=\varepsilon(\vec{r}, \vec{p}) \hat{I}+\vec{h}(\vec{r}, \vec{p}) \cdot \vec{\sigma}, \\
& \hat{f}(\vec{r}, \vec{p})=f_{0}(\vec{r}, \vec{p}) \hat{I}+\vec{g}(\vec{r}, \vec{p}) \cdot \vec{\sigma},
\end{aligned}
$$

By substituting $\hat{\boldsymbol{E}}$ and \hat{f} into spin-dependent BV equation :
scalar distribution

$$
\frac{\partial f_{0}}{\partial t}+\frac{\partial \varepsilon}{\partial \vec{p}} \cdot \frac{\partial f_{0}}{\partial \vec{r}}-\frac{\partial \varepsilon}{\partial \vec{r}} \cdot \frac{\partial f_{0}}{\partial \vec{p}}+\frac{\partial \vec{h}}{\partial \vec{p}} \cdot \frac{\partial \vec{g}}{\partial \vec{r}}-\frac{\partial \vec{h}}{\partial \vec{r}} \cdot \frac{\partial \vec{g}}{\partial \vec{p}}=0,
$$

vector distribution $\frac{\partial \vec{g}}{\partial t}+\frac{\partial \varepsilon}{\partial \vec{p}} \cdot \frac{\partial \vec{g}}{\partial \vec{r}}-\frac{\partial \varepsilon}{\partial \vec{r}} \cdot \frac{\partial \vec{g}}{\partial \vec{p}}+\frac{\partial f_{0}}{\partial \vec{r}} \cdot \frac{\partial \vec{h}}{\partial \vec{p}}-\frac{\partial f_{0}}{\partial \vec{p}} \cdot \frac{\partial \vec{h}}{\partial \vec{r}}+\frac{2 \vec{g} \times \vec{h}}{\hbar}=0$.

Method II : from Wigner transformation of TDHF equation with spin. $(i \hbar \hat{\hat{\rho}}=[\hat{h}, \hat{\rho}])$

$$
\begin{aligned}
& i \hbar\langle\vec{r}, s| \dot{\hat{\rho}}^{\prime}\left|\vec{r}^{\prime \prime}, s^{\prime \prime}\right\rangle=\sum_{s^{\prime}} \int d^{3} r^{\prime}\left[\langle\vec{r}, s| \hat{h}\left|\vec{r}^{\prime}, s^{\prime}\right\rangle\left\langle\vec{r}^{\prime}, s^{\prime}\right| \hat{\rho}\left|\vec{r}^{\prime \prime}, s^{\prime \prime}\right\rangle-\langle\vec{r}, s| \hat{\rho}\left|\vec{r}^{\prime}, s^{\prime}\right\rangle\left\langle\vec{r}^{\prime}, s^{\prime}\right| \hat{h}\left|\vec{r}^{\prime \prime}, s^{\prime \prime}\right\rangle\right] \\
& \text { E.B. Balbutsev et al, NPA(2011); PRC(2013) } \\
& f_{\uparrow \uparrow}, f_{\uparrow \downarrow}, s_{\downarrow \uparrow}, f_{\downarrow \downarrow} \rightarrow \uparrow \text { or } \downarrow \square \text { Wigner transformation }\left(\begin{array}{ll}
f_{\uparrow \uparrow} & f_{\downarrow \uparrow} \\
f_{\uparrow \downarrow} & f_{\downarrow \downarrow}
\end{array}\right)
\end{aligned}
$$

The definition of the Wigner function of particles with spin-1/2:

$$
\begin{aligned}
& f_{\sigma \sigma^{\prime}}(\vec{r} \vec{p}, t)=\int d^{3} s e^{i \vec{p} \cdot \vec{s} / \hbar} \psi_{\sigma}\left(\vec{r}-\frac{\vec{s}}{2}, t\right) \psi_{\sigma^{\prime}}\left(\vec{r}+\frac{\vec{s}}{2}, t\right) . \\
& f(\vec{r} \vec{p}, t, 0)=f_{\uparrow \uparrow}(\vec{r} \vec{p}, t)+f_{\downarrow \downarrow}(\vec{r} \vec{r}, t) \quad \text { scalar distribution } \\
& \tau(\vec{r} \vec{p}, t, x)=f_{\downarrow \uparrow}(\vec{r} \vec{p}, t)+f_{\uparrow \downarrow}(\vec{r} \vec{p}, t) \quad \text { Three components of vector } \\
& \tau(\vec{r} \vec{p}, t, y)=-i\left[f_{\downarrow \uparrow}(\vec{r} \vec{p}, t)-f_{\uparrow \downarrow}(\vec{r} \vec{p}, t)\right] \\
& \tau(\vec{r} \vec{p}, t, z)=f_{\uparrow \uparrow}(\vec{r} \vec{p}, t)-f_{\downarrow \downarrow}(\vec{r} \vec{p}, t) \\
& \text { R. F. O'Connell et al, PRA (1984) } \\
& f(\vec{r} \vec{p}, t, 0)=2 f_{0} \\
& \tau(\vec{r} \vec{p}, t)=2 \vec{g}
\end{aligned}
$$

Single-particle energy with spin-orbit interaction

Skyrme spin-orbit interaction:

$$
V_{\mathrm{so}}=i W_{0}\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \cdot \vec{k} \times \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \vec{k}^{\prime} .
$$

The spin-dependent single-particle energy: Y.M. Engel et al., NPA (1975)

$$
\begin{array}{rlrl}
& h_{q}^{s o}(\vec{r}, \vec{p})=h_{1}+h_{4}+\left(\vec{h}_{2}+\vec{h}_{3}\right) \cdot \vec{\sigma} \\
h_{1} & =-\frac{W_{0}}{2} \nabla_{\vec{r}} \cdot\left[\vec{J}(\vec{r})+\vec{J}_{q}(\vec{r})\right], & \rho(\vec{r}) & =\int d^{3} p f(\vec{r}, \vec{p}), \\
\vec{h}_{2}=-\frac{W_{0}}{2} \nabla_{\vec{r}} \times\left[\vec{j}(\vec{r})+\vec{j}_{q}(\vec{r})\right], & \vec{s}(\vec{r})=\int d^{3} p \vec{\tau}(\vec{r}, \vec{p}), \\
\vec{h}_{3}=\frac{W_{0}}{2} \nabla_{\vec{r}}\left[\rho(\vec{r})+\rho_{q}(\vec{r})\right] \times \vec{p}, & \vec{j}(\vec{r})=\int d^{3} p \frac{\vec{p}}{\hbar} f(\vec{r}, \vec{p}), \\
h_{4}=-\frac{W_{0}}{2} \nabla_{\vec{r}} \times\left[\vec{s}(\vec{r})+\vec{s}_{q}(\vec{r})\right] \cdot \vec{p} . & \vec{J}(\vec{r})=\int d^{3} p \frac{\vec{p}}{\hbar} \times \vec{\tau}(\vec{r}, \vec{p}) .
\end{array}
$$

Single-particle energy can be written as :

$$
\begin{aligned}
& \varepsilon_{q}(\vec{r}, \vec{p})=\frac{p^{2}}{2 m}+U_{q}+h_{1}+h_{4} \\
& \vec{h}_{q}(\vec{r}, \vec{p})=\vec{h}_{2}+\vec{h}_{3}
\end{aligned}
$$

(U_{q} is the spin-independent mean-field potential.)

Spin-dependent EOMs of test particles

The vector part of the spinor Wigner function distribution:

$$
\vec{g}(\vec{r}, \vec{p})=\vec{n} f_{1}(\vec{r}, \vec{p}) . \quad \quad \text { A unit vector } \vec{n}
$$

Substituting back into the spin-dependent BV equation and after some algebra,

$$
\begin{aligned}
& \frac{\partial f_{0}}{\partial t}+\frac{\partial \varepsilon}{\partial \vec{p}} \cdot \frac{\partial f_{0}}{\partial \vec{r}}-\frac{\partial \varepsilon}{\partial \vec{r}} \cdot \frac{\partial f_{0}}{\partial \vec{p}}+\left(\frac{\partial \vec{h}}{\partial \vec{p}} \cdot \vec{n}\right) \cdot \frac{\partial f_{1}}{\partial \vec{r}}-\left(\frac{\partial \vec{h}}{\partial \vec{r}} \cdot \vec{n}\right) \cdot \frac{\partial f_{1}}{\partial \vec{p}}=0 \quad \frac{\partial \vec{n}}{\partial t} \approx \frac{2 \vec{h} \times \vec{n}}{\hbar} . \\
& \frac{\partial f_{1}}{\partial t}+\frac{\partial \varepsilon}{\partial \vec{p}} \cdot \frac{\partial f_{1}}{\partial \vec{r}}-\frac{\partial \varepsilon}{\partial \vec{r}} \cdot \frac{\partial f_{1}}{\partial \vec{p}}+\frac{\partial f_{0}}{\partial \vec{r}} \cdot\left(\frac{\partial \vec{h}}{\partial \vec{p}} \cdot \vec{n}\right)-\frac{\partial f_{0}}{\partial \vec{p}} \cdot\left(\frac{\partial \vec{h}}{\partial \vec{r}} \cdot \vec{n}\right)=0 .
\end{aligned}
$$

These two equations can be decoupled, $V_{h n}=\vec{h} \cdot \vec{n}$

$$
\begin{array}{cc}
\frac{\partial\left(f^{+}\right)}{\partial t}+\left(\frac{\partial \varepsilon+\partial V_{h n}}{\partial \vec{p}}\right) \cdot \frac{\partial\left(f^{+}\right)}{\partial \vec{r}}-\left(\frac{\partial \varepsilon+\partial V_{h n}}{\partial \vec{r}}\right) \cdot \frac{\partial\left(f^{+}\right)}{\partial \vec{p}}=0 & \text { with } f^{ \pm}=f_{0} \pm f_{1} \\
\frac{\partial\left(f^{-}\right)}{\partial t}+\left(\frac{\partial \varepsilon-\partial V_{h n}}{\partial \vec{p}}\right) \cdot \frac{\partial\left(f^{-}\right)}{\partial \vec{r}}-\left(\frac{\partial \varepsilon-\partial V_{h n}}{\partial \vec{r}}\right) \cdot \frac{\partial\left(f^{-}\right)}{\partial \vec{p}}=0 & \text { arXiv:1602.00404}
\end{array}
$$

The equation for $f^{ \pm}$is just a standard Vlasov equation with the single-particle Hamiltonian $\varepsilon \pm V_{h n}$.

Obviously $f^{ \pm}$represent the phase-space distributions of the particles with their spin in $\pm \vec{n}$ directions.

$$
\hat{f}(\vec{r}, \vec{p})=f_{0}(\vec{r}, \vec{p}) \hat{I}+f_{1}(\vec{r}, \vec{p}) \vec{n} \cdot \vec{\sigma} \xrightarrow{\text { eigenfunction }}\left[\left.\begin{array}{ll}
f^{+}=f_{0}+f_{1} & \text { spin-up } \\
f^{-}=f_{0}-f_{1} & \text { spin-down }
\end{array} \right\rvert\,+\vec{n}\right.
$$

Introduce two type test-particles to independently solve each of these equations

$$
f^{ \pm}(\vec{r}, \vec{p}, t)=\int \frac{d^{3} r_{0} d^{3} p_{0} d^{3} s}{(2 \pi \hbar)^{3}} \exp \left\{i \vec{s} \cdot\left[\vec{p}-\vec{P}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right)\right] / \hbar\right\} \times \delta\left[\vec{r}-\vec{R}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right)\right] f^{ \pm}\left(\vec{r}_{0}, \vec{p}_{0}, t_{0}\right)
$$

$$
\text { with the initial conditions } \vec{R}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t_{0}\right)=\vec{r}_{0} \text { and } \vec{P}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t_{0}\right)=\vec{p}_{0}
$$

$$
\text { find the new phase-space coordinates } \vec{R}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right) \text { and } \vec{P}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right) \text { at } t=t_{0}+\Delta t
$$

Substitute into the decoupled equation

$$
\left[\frac{\partial \vec{R}}{\partial t}=\frac{\partial \varepsilon}{\partial \vec{p}} \pm \frac{\partial V_{h n}}{\partial \vec{p}} \quad \begin{array}{l}
\text { follow the same method as } \\
\text { in C. Y. Wong's paper }
\end{array}\right.
$$

$$
\text { C. Y. Wong, PRC 25, } 1460 \text { (1982) }
$$

two EOMs for two distributions of the particles $f^{ \pm}$,respectively

Spin direction is arbitrary and do not set a spin reference direction
 spin vector $\langle S\rangle=\left[\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle,\left\langle S_{z}\right\rangle\right]$

$$
\vec{n} \cdot \vec{\sigma} \quad \stackrel{\text { spin along } \vec{n} \text { direction }}{\Longrightarrow}\langle\vec{\sigma}\rangle=\vec{n}
$$

f^{+}and f^{-}represent the same type of phase－space distributions

EOMs

 $\frac{\partial \vec{R}}{\partial t}=\frac{\partial \varepsilon}{\partial \vec{p}}+\frac{\partial V_{h n}}{\partial \vec{p}}$$\frac{\partial \vec{P}}{\partial t}=-\frac{\partial \varepsilon}{\partial \vec{r}}-\frac{\partial V_{h n}}{\partial r}$
$\frac{\partial \vec{n}}{\partial t}=\frac{2 \vec{h} \times \vec{n}}{\hbar}$
This kind of treatment is the same as our previous work．
J．Xu et al，Phys．Lett．B（2013）
Y．Xia et al，Phys．Rev．C（2014）
J．Xu et al，Frontiers of Physics（2015）

Single－particle energy $\varepsilon+\overparen{h \cdot \vec{n}}$ $\vec{\sigma} \cdot \vec{B}$ external magnetic field （a specific reference direction ？）

do not commute with each other．

$$
\left[\sigma_{i}, \sigma_{j}\right]=2 i \varepsilon_{i j k} \sigma_{k}(i j k \sim x y z)
$$

Three components of spin states can not be measured simultaneously．

Similar to the Stern－Gerlach experiment，projection of spin onto measurement direction．

$$
\begin{aligned}
& h_{y} \gg h_{x} \text { orh }_{z} \\
& \quad \square \quad \text { (a limit case) } \\
& \square \text { (omit spin evolution) }
\end{aligned}
$$ set \vec{y} as a specific reference direction,$\vec{n}=\vec{y}$

$$
\begin{array}{ll}
\vec{n}_{i}=+\vec{y} & \text { for spin-up } \\
\vec{n}_{i}=-\vec{y} & \text { for spin-down }
\end{array}
$$

（similar to isospin case，proton and neutron distribution in same system ）

Different EOMs for particles with different spin state (in the third spin direction)

EOMs

$$
\begin{aligned}
& \text { [} \frac{\partial \vec{R}}{\partial t}=\frac{\partial \varepsilon}{\partial \vec{p}}+\frac{\partial h_{y}}{\partial \vec{p}} \\
& L \frac{\partial \vec{P}}{\partial t}=-\frac{\partial \varepsilon}{\partial \vec{r}}-\frac{\partial h_{v}}{\partial \vec{r}} \\
& {\left[\begin{array}{l|l}
\frac{\partial \vec{R}}{\partial t}=\frac{\partial \varepsilon}{\partial \vec{p}} \\
\frac{\partial \vec{P}}{\partial t}=-\frac{\partial \varepsilon}{\partial \vec{r}} & -\frac{\partial h_{y}}{\partial \vec{p}} \\
\hline \vec{r}
\end{array}\right]}
\end{aligned}
$$

spin-up particles with the single-particle Hamiltonian $\varepsilon+h_{y}$
spin-down particles with the single-particle Hamiltonian $\varepsilon-h_{y}$

The force acting on a test particle depends on spin up or spin down.

It may be more suitable to describes properly the correlation between the spin and the trajectory in measurement! (but it omits spin evolution

The spin splitting of transverse flow

Transverse flow $\left\langle p_{x}\right\rangle \sim y$ sensitive to nuclear interaction

$$
\begin{gathered}
U=U_{0}+\sigma U_{\text {spin }} \quad F_{u d}(y)=\frac{1}{N(y)} \sum_{i=1}^{N(y)} \sigma_{i}\left(p_{x}\right)_{i} \\
\sigma=1(\uparrow) \operatorname{or}-1(\downarrow)
\end{gathered}
$$

reflects different transverse flows of
spin－up and spin－down nucleons

Transverse flow larger for spin down nucleons $F_{u d}$ is sensitive to the strength of the spin－orbit interaction

Shanghai Institute of Applied Physics, Chinese Academy of Sciences

The spin splitting of directed flow v_{1}

Directed flow:

$$
v_{1}=\langle\cos (\phi)\rangle=\left\langle\frac{p_{x}}{p_{T}}\right\rangle
$$

Spin splitting is obvious at different beam energy and impact parameter.

Shanghai Institute of Applied Physics, Chinese Academy of Sciences
Effects of spin-orbit interaction on elliptic flow v_{2}

Elliptic flow:

$$
v_{2}=\langle\cos (2 \phi)\rangle=\left\langle\frac{p_{x}^{2}-p_{y}^{2}}{p_{x}^{2}+p_{y}^{2}}\right\rangle
$$

The spin splitting of elliptic flow increases with increasing nucleon momentum

The multiplicity of a M-nucleon cluster is

$$
\begin{aligned}
N_{M} & =G \int \sum_{i_{1}>i_{2}>\ldots>i_{M}} d \mathbf{r}_{i_{1}} d \mathbf{k}_{i_{1}} \cdots d \mathbf{r}_{i_{M-1}} d \mathbf{k}_{i_{M-1}} \\
& \times\left\langle\rho_{i}^{W}\left(\mathbf{r}_{i_{1}}, \mathbf{k}_{i_{1}} \cdots \mathbf{r}_{i_{M-1}}, \mathbf{k}_{i_{M-1}}\right)\right\rangle .
\end{aligned}
$$

R. Mattiello et al., Phys. Rev. Lett 1995
Phys. Rev. C 1997.
ρ^{W} is the Wigner phase-space density of the M-nucleon cluster,
Angular momentum conservation? Spatial wave function: s-wave assumption

$$
\left\{\begin{array}{l}
G: \text { coalescence with a given isospin } \\
G^{\prime}: \text { coalescence with a given spin and isospin }
\end{array}\right.
$$

$$
G\left\{\begin{array}{l}
3 / 8, \mathrm{~d} \\
1 / 12, \mathrm{t} \\
1 / 12,{ }^{3} \mathrm{He}
\end{array}\right.
$$

${ }_{1}^{2} H(S=1)$	G^{\prime}	${ }_{1}^{3} H(S=1 / 2)$
$p \uparrow \& n \uparrow \longrightarrow 1 / 2\left(S_{Z}=1\right)$	$p \uparrow \& n \uparrow \& n \downarrow \longrightarrow 1 / 3\left(S_{Z}=1 / 2\right)$	$n \uparrow \& p \uparrow \& p \downarrow \longrightarrow 1 / 3\left(S_{Z}=1 / 2\right)$
$p \uparrow \& n \downarrow \longrightarrow 1 / 4\left(S_{Z}=0\right)$	${ }_{2}^{3} H e(S=1 / 2)$	G^{\prime}
$p \downarrow \& n \uparrow \longrightarrow 1 / 4\left(S_{Z}=0\right)$	$p \downarrow \& n \uparrow \& n \downarrow \longrightarrow 1 / 3\left(S_{Z}=-1 / 2\right)$	$n \downarrow \& p \uparrow \& p \downarrow \longrightarrow 1 / 3\left(S_{Z}=-1 / 2\right)$
$p \downarrow \& n \downarrow \longrightarrow 1 / 2\left(S_{Z}=-1\right)$		

Spin-splitting of light clusters collective flows is more obvious.

Easily experimentally measured/identified

Useful probe of spin-orbit coupling-1

Conclusions \& Outlook

I. We derive equations of motion (EOMs) of nucleon test particles for solving the spin-dependent BUU equation for the first time.
II. Considering further the quantum nature of spin, the EOMs of spin-up and spin-down nucleons are given separately in reference direction. (without spin evolution)
III. We study the spin splitting of the collective flows. It may be a sensitive probe of SO coupling in HICs.
IV.Hope future comparisons of model simulations with experimental data will help constrain the poorly known inmedium nucleon spin-orbit coupling.

Thank you for attention!

Back up

Test－particles method

$$
\begin{align*}
f^{ \pm}(\vec{r}, \vec{p}, t) & =\int \frac{d^{3} r_{0} d^{3} p_{0} d^{3} s}{(2 \pi \hbar)^{3}} \exp \left\{i \vec{s} \cdot\left[\vec{p}-\vec{P}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right)\right] / \hbar\right\} \\
& \times \delta\left[\vec{r}-\vec{R}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right)\right] f^{ \pm}\left(\vec{r}_{0}, \vec{p}_{0}, t_{0}\right) \tag{33}
\end{align*}
$$

Substituting back into the decoupled Vlasov equation，

$$
\begin{aligned}
& {\left[-\frac{\partial \vec{R}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right)}{\partial t}+\frac{\partial \varepsilon}{\partial \vec{p}}\right] \cdot \frac{\partial f^{ \pm}(\vec{r}, \vec{p}, t)}{\partial \vec{r}} \pm \frac{\partial V_{h n}}{\partial \vec{p}} \cdot \frac{\partial f^{ \pm}(\vec{r}, \vec{p}, t)}{\partial \vec{r}}} \\
& +\int \frac{d^{3} r_{0} d^{3} p_{0} d^{3} s}{(2 \pi \hbar)^{3}}\left\{f ^ { \pm } (\vec { r } _ { 0 } , \vec { p } _ { 0 } , t _ { 0 }) \left[\frac{-i \vec{s}}{\hbar} \cdot \frac{\partial \vec{P}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right)}{\partial t}\right.\right. \\
& \left.-\frac{\left[\varepsilon\left(\vec{r}-\frac{\vec{s}}{2}, t\right)-\varepsilon\left(\vec{r}+\frac{\vec{s}}{2}, t\right)\right]}{i \hbar}\right] \\
& \left.\mp f^{ \pm}\left(\vec{r}_{0}, \vec{p}_{0}, t_{0}\right)\left[\frac{\left.V_{h n}\left(\vec{r}-\frac{\vec{s}}{2}, t\right)-V_{h n}\left(\vec{r}+\frac{\vec{s}}{2}, t\right)\right]}{i \hbar}\right]\right\} \\
& \times \exp \left\{i \vec{s} \cdot\left[\vec{p}-\vec{P}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right)\right] / \hbar\right\} \\
& \times \delta\left[\vec{r}-\vec{R}\left(\vec{r}_{0} \vec{n}_{0} \vec{s}, t\right)\right]=0 .
\end{aligned}
$$

EOMs from test－particle method

$$
\begin{align*}
{\left[-\frac{\partial \vec{R}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right)}{\partial t}+\frac{\partial \varepsilon}{\partial \vec{p}}\right] \cdot \frac{\partial f^{ \pm}(\vec{r}, \vec{p}, t)}{\partial \vec{r}} } & \pm \frac{\partial V_{h n}}{\partial \vec{p}} \cdot \frac{\partial f^{ \pm}(\vec{r}, \vec{p}, t)}{\partial \vec{r}} \\
& =0, \tag{35}
\end{align*}
$$

$$
\begin{array}{ll}
f^{ \pm}\left(\vec{r}_{0}, \vec{p}_{0}, t_{0}\right)\left\{\frac{-i \vec{s}}{\hbar} \cdot \frac{\partial \vec{P}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right)}{\partial t}\right. \tag{36}\\
\left.-\frac{\left[\varepsilon\left(\vec{r}-\frac{\vec{s}}{2}, t\right)-\varepsilon\left(\vec{r}+\frac{\vec{s}}{2}, t\right)\right]}{i \hbar}\right\} \mp f^{ \pm}\left(\vec{r}_{0}, \vec{p}_{0}, t_{0}\right) & \vec{s} \cdot \frac{\partial \vec{P}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right)}{\partial t}=\left[\varepsilon\left(\vec{r}-\frac{\vec{s}}{2}, t\right)-\varepsilon\left(\vec{r}+\frac{\vec{s}}{2}, t\right)\right. \\
\times\left\{\frac{\left[V_{h n}\left(\vec{r}-\frac{\vec{s}}{2}, t\right)-V_{h n}\left(\vec{r}+\frac{\vec{s}}{2}, t\right)\right]}{i \hbar}\right\}=0 . & (36) \\
& \begin{array}{l}
\text { Keep lowest order } \\
2
\end{array} \\
& \left.\frac{\partial \vec{P}\left(\vec{r}_{0} \vec{p}_{0} \vec{p}_{s}, t\right)}{\partial t}=-\frac{\vec{s}}{2}, t\right)-V_{h n}\left(\vec{r}+\frac{\vec{s}}{2}, t\right) \\
\partial \vec{r} \\
& \frac{\partial V_{h n}}{\partial \vec{r}} .
\end{array}
$$

$$
\underbrace{\partial \vec{R}\left(\vec{r}_{0} \vec{p}_{0} \vec{s}, t\right)} \frac{\partial \varepsilon}{\partial t} \pm \frac{\partial V_{h n}}{\partial \vec{p}}
$$

Wigner phase-space density

deuteron

$$
\begin{gathered}
\rho_{d}^{W}(\mathbf{r}, \mathbf{k})=\int \phi\left(\mathbf{r}+\frac{\mathbf{R}}{2}\right) \phi^{*}\left(\mathbf{r}-\frac{\mathbf{R}}{2}\right) \exp (-i \mathbf{k} \cdot \mathbf{R}) d \mathbf{R}, \\
\mathbf{k}=\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right) / 2 \quad \mathbf{r}=\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{gathered}
$$

Internal wave function $\phi(r) \longmapsto$ root-mean-square radius of 1.96 fm

Triton or Helium3

$$
\begin{aligned}
\rho_{\mathrm{t}\left({ }^{3} \mathrm{He}\right)}^{W}\left(\rho, \lambda, \mathbf{k}_{\rho}, \mathbf{k}_{\lambda}\right)= & \int \psi\left(\rho+\frac{\mathbf{R}_{1}}{2}, \lambda+\frac{\mathbf{R}_{2}}{2}\right) \psi^{*}\left(\rho-\frac{\mathbf{R}_{\mathbf{1}}}{2}, \lambda-\frac{\mathbf{R}_{2}}{2}\right) \\
& \times \exp \left(-i \mathbf{k}_{\rho} \cdot \mathbf{R}_{1}\right) \exp \left(-i \mathbf{k}_{\lambda} \cdot \mathbf{R}_{2}\right) 3^{3 / 2} d \mathbf{R}_{1} d \mathbf{R}_{2}
\end{aligned}
$$

$\left(\begin{array}{l}\mathbf{R} \\ \rho \\ \lambda\end{array}\right)=J\left(\begin{array}{l}\mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3}\end{array}\right) J=\left(\begin{array}{ccc}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}}\end{array}\right) \quad\left(\begin{array}{c}\mathbf{K} \\ \mathbf{k}_{\rho} \\ \mathbf{k}_{\lambda}\end{array}\right)=J^{-,+}\left(\begin{array}{l}\mathbf{k}_{1} \\ \mathbf{k}_{2} \\ \mathbf{k}_{3}\end{array}\right) J^{-,+}=\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}}\end{array}\right)$
Internal wave $\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right) \longmapsto$ RMS radius 1.61 and 1.74 fm for triton and ${ }^{3} \mathrm{He}$, function

${ }_{1}^{3} \mathrm{H} \&{ }_{2}^{3} \mathrm{He}$ wave function $\left|{ }_{1}^{3} \mathrm{H} /{ }_{2}^{3} \mathrm{He}\right\rangle \sim \mid$ spin $\rangle \mid$ isospin $\rangle \quad S_{\rho} T_{\lambda}-S_{\lambda} T_{\rho}$ $\left.\left.\right|_{2} ^{3} \mathrm{He}\right\rangle\left(S_{Z} \uparrow\right)$
$\psi_{1} \sim 1 / \sqrt{6}(p \uparrow n \uparrow p \downarrow-p \downarrow n \uparrow p \uparrow-n \uparrow p \uparrow p \downarrow$ $+n \uparrow p \downarrow p \uparrow-p \uparrow p \downarrow n \uparrow+p \downarrow p \uparrow n \uparrow)$
$\psi_{2} \sim 1 / 2(p \uparrow n \uparrow p \downarrow+n \uparrow p \uparrow p \downarrow-p \uparrow p \downarrow n \uparrow$
$-p \downarrow p \uparrow n \uparrow)$
$\psi_{3} \sim 1 / \sqrt{12}(-p \uparrow n \uparrow p \downarrow-2 p \downarrow n \uparrow p \uparrow$ $+n \uparrow p \uparrow p \downarrow+2 n \uparrow p \downarrow p \uparrow+p \uparrow p \downarrow n \uparrow$ $-p \downarrow p \uparrow n \uparrow)$
$\stackrel{s=1 / 2}{\lambda}\left[\begin{array}{l}1 / \sqrt{2}(\uparrow \downarrow \uparrow-\downarrow \uparrow \uparrow) \\ 1 / \sqrt{2}(\uparrow \downarrow \downarrow-\downarrow \uparrow \downarrow) \\ \frac{1 / \sqrt{2}(p n p-n p p)}{1 / \sqrt{2}^{(p n n-n p n)}}\end{array}\right]_{T=1 / 2}$
$\left\{S\left({ }_{1}^{3} H\right)=1 / 2 \& S\left({ }_{2}^{3} \mathrm{He}\right)=1 / 2\right\}$
24 wave function(considering the spinisospin and exchange of antisymmetric), 2 of 24 are feasible.

$\mathrm{G}=1 / 12$ (no information of

spin)

