The 6th International Symposium on Nuclear Symmetry Energy (NuSYM16), Tsinghua University (Beijing, China), June 13th-June 17th,2016

Equations of motion of test particles for solving the spin-dependent Boltzmann-Vlasov equation

Yin Xia (夏银)

Supervisor :

SINAP, CAS, China: Jun Xu (徐骏)

Collaborator :

Texas A&M-Commerce, USA:Bao-An Li (李宝安)

SINAP, CAS, China: Wen-Qing Shen (沈文庆)

中国科学院上海应用物理研究所

Shanghai Institute of Applied Physics, Chinese Academy of Sciences

outline

- 1. Background and motivation.
- 2. The derivation of equations of motion for the spin-dependent Boltzmann-Vlasov equation in HICs.
- 3. The spin splitting of the collective flows.
- 4. Conclusions & Outlook

The importance of nucleon spin degree of freedom

the role of nucleon spin is much less known in nuclear reactions than structures.

3

Spin-orbit potential at low and high energies

low energies (TDHF):

TABLE I. Thresholds for the inelastic scattering of ${}^{16}\text{O}$ + ${}^{16}\text{O}$ system.

Force	Skyrme II (MeV)	Skyrme M* (MeV)
Spin orbit	68	70
No spin orbit	31	27

A. S. Umar et al., Phys. Rev. Lett., 1986

J. A. Maruhn et al, Phys. Rev. C, 2006

high energies : Z. T. Liang and X. N. Wang, Phys. Rev. Lett., 2005 Phys. Lett. B, 2005 A global quark spin polarization

Motivation of this work

In solid state physics, two main methods of spin transport to study spin dynamics

What are EOMs for solving *spin-dependent* BV equation ?

Final Institute of Applied Physics, Chinese Academy of Sciences The spin-dependent Boltzmann-Vlasov equation (two reviews) Method I : from the BV equation with a spinor distribution function $\frac{\partial \hat{f}}{\partial t} + \frac{i}{\hbar} \left[\hat{\varepsilon}, \hat{f} \right] + \frac{1}{2} \left(\frac{\partial \hat{\varepsilon}}{\partial \vec{p}} \cdot \frac{\partial \hat{f}}{\partial \vec{r}} + \frac{\partial \hat{f}}{\partial \vec{r}} \cdot \frac{\partial \hat{\varepsilon}}{\partial \vec{p}} \right) - \frac{1}{2} \left(\frac{\partial \hat{\varepsilon}}{\partial \vec{r}} \cdot \frac{\partial \hat{f}}{\partial \vec{p}} + \frac{\partial \hat{f}}{\partial \vec{p}} \cdot \frac{\partial \hat{\varepsilon}}{\partial \vec{r}} \right) = 0$

(the general BV equation: $\frac{\partial f}{\partial t} + \frac{p}{m} \cdot \nabla_r f - \nabla_r U \cdot \nabla_p f = 0$.)

H. Smith and H.H. Jensen, transport phenomena (Oxford University press, Oxford, 1989) with $\hat{\varepsilon}$ and \hat{f} can be expressed as

$$\hat{\varepsilon}(\vec{r}, \vec{p}) = \varepsilon(\vec{r}, \vec{p})I + \dot{h}(\vec{r}, \vec{p}) \cdot \vec{\sigma}, \hat{f}(\vec{r}, \vec{p}) = f_0(\vec{r}, \vec{p})\hat{I} + \vec{g}(\vec{r}, \vec{p}) \cdot \vec{\sigma},$$

By substituting $\hat{\mathcal{E}}$ and \hat{f} into spin-dependent BV equation :

$$\frac{\partial f_{0}}{\partial t} + \frac{\partial \varepsilon}{\partial \vec{p}} \cdot \frac{\partial f_{0}}{\partial \vec{r}} - \frac{\partial \varepsilon}{\partial \vec{p}} \cdot \frac{\partial f_{0}}{\partial \vec{p}} + \frac{\partial \vec{h}}{\partial \vec{p}} \cdot \frac{\partial \vec{g}}{\partial \vec{r}} - \frac{\partial \vec{h}}{\partial \vec{r}} \cdot \frac{\partial \vec{g}}{\partial \vec{p}} = 0,$$

vector distribution
$$\frac{\partial \vec{g}}{\partial t} + \frac{\partial \varepsilon}{\partial \vec{p}} \cdot \frac{\partial \vec{g}}{\partial \vec{r}} - \frac{\partial \varepsilon}{\partial \vec{r}} \cdot \frac{\partial \vec{g}}{\partial \vec{p}} + \frac{\partial f_{0}}{\partial \vec{r}} \cdot \frac{\partial \vec{h}}{\partial \vec{p}} - \frac{\partial f_{0}}{\partial \vec{p}} \cdot \frac{\partial \vec{h}}{\partial \vec{r}} + \frac{2\vec{g} \times \vec{h}}{\hbar} = 0.$$

Method II : from Wigner transformation of TDHF equation with spin. ($i\hbar\dot{\rho} = [\hat{h}, \hat{\rho}]$)

$$i\hbar \langle \vec{r}, s | \dot{\hat{\rho}} | \vec{r}'', s'' \rangle = \sum_{s'} \int d^{3}r' [\langle \vec{r}, s | \hat{h} | \vec{r}', s' \rangle \langle \vec{r}', s' | \hat{\rho} | \vec{r}'', s'' \rangle - \langle \vec{r}, s | \hat{\rho} | \vec{r}', s' \rangle \langle \vec{r}', s' | \hat{h} | \vec{r}'', s'' \rangle]$$

E.B. Balbutsev *et al*, NPA(2011); PRC(2013)

$$f_{\uparrow\uparrow}, f_{\uparrow\downarrow}, f_{\downarrow\uparrow}, f_{\downarrow\downarrow}, f_{\downarrow\downarrow}$$

$$\begin{pmatrix} f_{\uparrow\uparrow} & f_{\downarrow\uparrow} \\ f_{\uparrow\downarrow} & f_{\downarrow\downarrow} \end{pmatrix}$$

The definition of the Wigner function of particles with spin-1/2:

$$f_{\sigma\sigma'}(\vec{r}\vec{p},t) = \int d^{3}s e^{i\vec{p}\cdot\vec{s}/\hbar}\psi_{\sigma}(\vec{r}-\frac{\vec{s}}{2},t)\psi_{\sigma'}(\vec{r}+\frac{\vec{s}}{2},t),$$

$$f(\vec{r}\vec{p},t,0) = f_{\uparrow\uparrow}(\vec{r}\vec{p},t) + f_{\downarrow\downarrow}(\vec{r}\vec{p},t) \qquad \text{scalar distribution}$$

$$\tau(\vec{r}\vec{p},t,x) = f_{\downarrow\uparrow}(\vec{r}\vec{p},t) + f_{\uparrow\downarrow}(\vec{r}\vec{p},t) \qquad \text{Three components of vector}$$

$$\tau(\vec{r}\vec{p},t,z) = -i[f_{\downarrow\uparrow}(\vec{r}\vec{p},t) - f_{\uparrow\downarrow}(\vec{r}\vec{p},t)] \qquad \text{R. F. O'Connell et al, PRA (1984)}$$

$$\frac{\text{Two methods give the same}}{\text{BV equation !}} f(\vec{r}\vec{p},t) = 2f_{0} \qquad 7$$

Single-particle energy with spin-orbit interaction

Skyrme spin-orbit interaction:

$$V_{\rm so} = i W_0(\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{k} \times \delta(\vec{r}_1 - \vec{r}_2) \vec{k}',$$

The spin-dependent single-particle energy: Y.M. Engel *et al.*, NPA (1975) $h_q^{so}(\vec{r}, \vec{p}) = h_1 + h_4 + (\vec{h}_2 + \vec{h}_3) \cdot \vec{\sigma}$ $h_1 = -\frac{W_0}{2} \nabla_{\vec{r}} \cdot [\vec{J}(\vec{r}) + \vec{J}_q(\vec{r})], \qquad \rho(\vec{r}) = \int d^3 p f(\vec{r}, \vec{p}),$ $\vec{h}_2 = -\frac{W_0}{2} \nabla_{\vec{r}} \times [\vec{j}(\vec{r}) + \vec{j}_q(\vec{r})], \qquad \vec{s}(\vec{r}) = \int d^3 p \vec{\tau}(\vec{r}, \vec{p}),$ $\vec{h}_3 = \frac{W_0}{2} \nabla_{\vec{r}} [\rho(\vec{r}) + \rho_q(\vec{r})] \times \vec{p}, \qquad \vec{i}(\vec{r}) - \int d^3 p \vec{p} f(\vec{r}, \vec{p})$

$$h_{4} = -\frac{W_{0}}{2} \nabla_{\vec{r}} \times [\vec{s}(\vec{r}) + \vec{s}_{q}(\vec{r})] \cdot \vec{p}.$$

 $\vec{j}(\vec{r}) = \int d^3 p \frac{\vec{p}}{\hbar} f(\vec{r}, \vec{p}),$ $\vec{J}(\vec{r}) = \int d^3 p \frac{\vec{p}}{\hbar} \times \vec{\tau}(\vec{r}, \vec{p}).$

Single-particle energy can be written as :

$$\varepsilon_q(\vec{r}, \vec{p}) = \frac{p^2}{2m} + U_q + h_1 + h_4, \vec{h}_q(\vec{r}, \vec{p}) = \vec{h}_2 + \vec{h}_3,$$

 $(U_q \text{ is the spin-independent mean-field potential.})$

Spin-dependent EOMs of test particles

The vector part of the spinor Wigner function distribution:

 $\vec{g}(\vec{r},\vec{p}) = \vec{n}f_1(\vec{r},\vec{p}).$ A unit vector \vec{n}

Substituting back into the spin-dependent BV equation and after some algebra,

$$\frac{\partial f_0}{\partial t} + \frac{\partial \varepsilon}{\partial \vec{p}} \cdot \frac{\partial f_0}{\partial \vec{r}} - \frac{\partial \varepsilon}{\partial \vec{r}} \cdot \frac{\partial f_0}{\partial \vec{p}} + \left(\frac{\partial \vec{h}}{\partial \vec{p}} \cdot \vec{n}\right) \cdot \frac{\partial f_1}{\partial \vec{r}} - \left(\frac{\partial \vec{h}}{\partial \vec{r}} \cdot \vec{n}\right) \cdot \frac{\partial f_1}{\partial \vec{p}} = 0 \qquad \qquad \frac{\partial \vec{n}}{\partial t} \approx \frac{2\vec{h} \times \vec{n}}{\hbar}.$$

$$\frac{\partial f_1}{\partial t} + \frac{\partial \varepsilon}{\partial \vec{p}} \cdot \frac{\partial f_1}{\partial \vec{r}} - \frac{\partial \varepsilon}{\partial \vec{r}} \cdot \frac{\partial f_1}{\partial \vec{p}} + \frac{\partial f_0}{\partial \vec{r}} \cdot \left(\frac{\partial \vec{h}}{\partial \vec{p}} \cdot \vec{n}\right) - \frac{\partial f_0}{\partial \vec{p}} \cdot \left(\frac{\partial \vec{h}}{\partial \vec{r}} \cdot \vec{n}\right) = 0.$$

These two equations can be **decoupled**, $V_{hn} = \vec{h} \cdot \vec{n}$

$$\frac{\partial(f^{+})}{\partial t} + \left(\frac{\partial\varepsilon + \partial V_{hn}}{\partial \vec{p}}\right) \cdot \frac{\partial(f^{+})}{\partial \vec{r}} - \left(\frac{\partial\varepsilon + \partial V_{hn}}{\partial \vec{r}}\right) \cdot \frac{\partial(f^{+})}{\partial \vec{p}} = 0 \quad \text{with} \quad f^{\pm} = f_0 \pm f_1$$
$$\frac{\partial(f^{-})}{\partial t} + \left(\frac{\partial\varepsilon - \partial V_{hn}}{\partial \vec{p}}\right) \cdot \frac{\partial(f^{-})}{\partial \vec{r}} - \left(\frac{\partial\varepsilon - \partial V_{hn}}{\partial \vec{r}}\right) \cdot \frac{\partial(f^{-})}{\partial \vec{p}} = 0 \quad \text{arXiv:} 1602.00404$$

The equation for f^{\pm} is just **a standard Vlasov equation** with the single-particle Hamiltonian $\varepsilon \pm V_{hn}$.

Obviously f^{\pm} represent the phase-space distributions of the particles with their spin in $\pm \vec{n}$ directions.

$$\hat{f}(\vec{r},\vec{p}) = f_0(\vec{r},\vec{p})\hat{I} + f_1(\vec{r},\vec{p})\vec{n}\cdot\vec{\sigma} \stackrel{\text{eigenfunction}}{=} \begin{bmatrix} f^+ = f_0 + f_1 & \text{spin-up} \\ f^- = f_0 - f_1 & \text{spin-down} \end{bmatrix} + \vec{n}$$

Introduce two type test-particles to *independently* solve each of these equations

arbitrary function $f^{\pm}(\vec{r},\vec{p},t) = \int \frac{d^3r_0d^3p_0d^3s}{(2\pi\hbar)^3} \exp\{i\vec{s}\cdot[\vec{p}-\vec{P}(\vec{r}_0\vec{p}_0\vec{s},t)]/\hbar\} \times \delta[\vec{r}-\vec{R}(\vec{r}_0\vec{p}_0\vec{s},t)]f^{\pm}(\vec{r}_0,\vec{p}_0,t_0)$ with the initial conditions $\vec{R}(\vec{r}_0\vec{p}_0\vec{s},t_0) = \vec{r}_0$ and $\vec{P}(\vec{r}_0\vec{p}_0\vec{s},t_0) = \vec{p}_0$ find the new phase-space coordinates $\vec{R}(\vec{r}_0\vec{p}_0\vec{s},t)$ and $\vec{P}(\vec{r}_0\vec{p}_0\vec{s},t)$ at $t = t_0 + \Delta t$

Substitute into the decoupled equation

$$-\frac{\partial \vec{R}}{\partial t} = \frac{\partial \varepsilon}{\partial \vec{p}} \pm \frac{\partial V_{hn}}{\partial \vec{p}} \quad follow the same method as in C. Y. Wong's paper
$$\frac{\partial \vec{P}}{\partial t} = -\frac{\partial \varepsilon}{\partial \vec{r}} \mp \frac{\partial V_{hn}}{\partial \vec{r}} \quad follow the same method as in C. Y. Wong's paper two EOMs for two distributions of the particles f^{\pm} , respectively$$$$

1 中国科学院上海运用物理研究所

Spin direction is arbitrary and do not set a spin reference direction spin vector $\langle S \rangle = [\langle S_x \rangle, \langle S_y \rangle, \langle S_z \rangle]$

 $\vec{n} \cdot \vec{\sigma}$ spin along \vec{n} direction $\langle \vec{\sigma} \rangle = \vec{n}$

F⁺ and f^- represent the same type of phase-space distributions $\frac{\partial \vec{R}}{\partial t} = \frac{\partial \varepsilon}{\partial \vec{p}} + \frac{\partial V_{hn}}{\partial \vec{p}} \text{ similar to the <u>canonical equations</u>} \begin{bmatrix} \frac{d\vec{r}}{dt} = \nabla_p \varepsilon \\ \frac{d\vec{p}}{dt} = -\nabla_r \varepsilon \\ \frac{d\vec{p}}{dt} = \frac{2\vec{h} \times \vec{n}}{\hbar} \end{bmatrix} \xrightarrow{\vec{\sigma}} \vec{B} \quad \frac{d\vec{\sigma}}{dt} \sim \vec{\sigma} \times \vec{B} \qquad \begin{bmatrix} \frac{d\vec{r}}{dt} = \nabla_p \varepsilon \\ \frac{d\vec{p}}{dt} = -\nabla_r \varepsilon \\ \frac{d\vec{\sigma}}{dt} = \frac{1}{i} [\vec{\sigma}, \varepsilon] \end{bmatrix}$

This kind of treatment is the same as our previous work.

J. Xu *et al*, Phys. Lett. B(2013) Y. Xia *et al*, Phys. Rev. C(2014) J. Xu *et al*, Frontiers of Physics (2015)

$$\widehat{r}_{i} = -\overline{y}$$
Single-particle energy $\varepsilon + \overline{h} \cdot \overline{n}$
Similar to
 $\overline{\sigma} \cdot \overline{B}$ external magnetic field
(a specific reference direction ?)
do not commute with each other.
 $[\sigma_i, \sigma_j] = 2i\varepsilon_{ijk}\sigma_k(ijk \sim xyz)$
Three components of spin states can
not be measured simultaneously.
Similar to the Stern-Gerlach experiment, projection of spin onto measurement direction
 $h_y >> h_x orh_z$
(a limit case)
(omit spin evolution)
set \overline{y} as a specific reference direction $, \overline{n} = \overline{y}$
 $+ \overline{y}$
 \overrightarrow{l}
 \overrightarrow{l}
 \overrightarrow{l}
 \overrightarrow{l}
 $-\overline{y}$
 $\overrightarrow{n}_i = +\overline{y}$ for spin-up
 $\overrightarrow{n}_i = -\overline{y}$ for spin-down
(12)

(similar to isospin case, proton and neutron distribution in same system)

Different EOMs for particles with different spin state (in the third spin direction)

The force acting on a test particle *depends on* spin up or spin down.

It may be more suitable to describes properly *the correlation between the spin and the trajectory in measurement!* (but it omits spin evolution)

The spin splitting of transverse flow

Transverse flow $\langle p_x \rangle \sim y$ sensitive to nuclear interaction

 $U = U_0 + \sigma U_{spin}$ $\sigma = 1(\uparrow)or - 1(\downarrow)$ $F_{ud}(y) = \frac{1}{N(y)} \sum_{i=1}^{N(y)} \sigma_i(p_x)_i$ reflects different transverse flows of

spin-up and spin-down nucleons

The spin splitting of directed flow V_1

Directed flow:

$$v_1 = \langle \cos(\phi) \rangle = \left\langle \frac{p_x}{p_T} \right\rangle$$

Spin splitting is **obvious** at different beam energy and impact parameter.

Effects of spin-orbit interaction on elliptic flow v_2

Elliptic flow:

$$v_2 = \left\langle \cos(2\phi) \right\rangle = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle$$

The spin splitting of elliptic flow increases with increasing nucleon momentum

The multiplicity of a M-nucleon cluster is

$$N_M = G \int \sum_{i_1 > i_2 > \dots > i_M} d\mathbf{r}_{i_1} d\mathbf{k}_{i_1} \cdots d\mathbf{r}_{i_{M-1}} d\mathbf{k}_{i_{M-1}}$$
$$\times \langle \rho_i^W(\mathbf{r}_{i_1}, \mathbf{k}_{i_1} \cdots \mathbf{r}_{i_{M-1}}, \mathbf{k}_{i_{M-1}}) \rangle.$$

R. Mattiello et al., Phys. Rev. Lett 1995 Phys. Rev. C 1997.

 ρ^{W} is the Wigner phase-space density of the M-nucleon cluster,

Angular momentum conservation? Spatial wave function: s-wave assumption

 $G : \text{coalescence with a given isospin} G = \begin{cases} 3/8, d \\ 1/12, t \\ 1/12, ^{3}He \end{cases}$ $\frac{G}{G} = \begin{cases} 3/8, d \\ 1/12, t \\ 1/12, ^{3}He \end{cases}$ $\frac{G}{G} = \begin{cases} 3/8, d \\ 1/12, t \\ 1/12, ^{3}He \end{cases}$ $\frac{G}{G} = \begin{cases} 3/8, d \\ 1/12, t \\ 1/12, ^{3}He \end{cases}$ $\frac{G}{G} = \begin{cases} 3/8, d \\ 1/12, t \\ 1/12, ^{3}He \end{cases}$ $\frac{G}{G} = \begin{cases} 3/8, d \\ 1/12, t \\ 1/12, ^{3}He \end{cases}$ $\frac{G}{G} = \begin{cases} 3/8, d \\ 1/12, t \\ 1/12, ^{3}He \end{cases}$ $\frac{G}{G} = \begin{cases} 3/8, d \\ 1/12, t \\ 1/12, ^{3}He \end{cases}$ $\frac{G}{G} = \begin{cases} 3/8, d \\ 1/12, t \\ 1/12, ^{3}He \end{cases}$ $\frac{G}{G} = \begin{cases} 3/8, d \\ 1/12, t \\ 1/12, ^{3}He \end{cases}$

Easily experimentally measured/identified

Useful probe of spin-orbit coupling¹

Conclusions & Outlook

- I. We derive equations of motion (EOMs) of nucleon test particles for solving the spin-dependent BUU equation for the first time.
- II. Considering further the quantum nature of spin, the EOMs of spin-up and spin-down nucleons are given separately in reference direction. (without spin evolution)
- III. We study the spin splitting of the collective flows. It may be a sensitive probe of SO coupling in HICs.
- IV.Hope future comparisons of model simulations with experimental data will help constrain the poorly known inmedium nucleon spin-orbit coupling.

Thank you for attention!

Back up

Test-particles method

$$f^{\pm}(\vec{r}, \vec{p}, t) = \int \frac{d^3 r_0 d^3 p_0 d^3 s}{(2\pi\hbar)^3} \exp\{i\vec{s} \cdot [\vec{p} - \vec{P}(\vec{r}_0 \vec{p}_0 \vec{s}, t)]/\hbar\} \\ \times \delta[\vec{r} - \vec{R}(\vec{r}_0 \vec{p}_0 \vec{s}, t)] f^{\pm}(\vec{r}_0, \vec{p}_0, t_0),$$
(33)

Substituting back into the decoupled Vlasov equation,

$$\begin{bmatrix} -\frac{\partial \vec{R}(\vec{r}_{0}\vec{p}_{0}\vec{s},t)}{\partial t} + \frac{\partial \varepsilon}{\partial \vec{p}} \end{bmatrix} \cdot \frac{\partial f^{\pm}(\vec{r},\vec{p},t)}{\partial \vec{r}} \pm \frac{\partial V_{hn}}{\partial \vec{p}} \cdot \frac{\partial f^{\pm}(\vec{r},\vec{p},t)}{\partial \vec{r}} \\ + \int \frac{d^{3}r_{0}d^{3}p_{0}d^{3}s}{(2\pi\hbar)^{3}} \{f^{\pm}(\vec{r}_{0},\vec{p}_{0},t_{0})[\frac{-i\vec{s}}{\hbar} \cdot \frac{\partial \vec{P}(\vec{r}_{0}\vec{p}_{0}\vec{s},t)}{\partial t} \\ - \frac{[\varepsilon(\vec{r}-\frac{\vec{s}}{2},t)-\varepsilon(\vec{r}+\frac{\vec{s}}{2},t)]}{i\hbar} \end{bmatrix} \\ \mp f^{\pm}(\vec{r}_{0},\vec{p}_{0},t_{0})[\frac{[V_{hn}(\vec{r}-\frac{\vec{s}}{2},t)-V_{hn}(\vec{r}+\frac{\vec{s}}{2},t)]}{i\hbar}] \\ \times \exp\{i\vec{s}\cdot[\vec{p}-\vec{P}(\vec{r}_{0}\vec{p}_{0}\vec{s},t)]/\hbar\} \\ \times \delta[\vec{r}-\vec{R}(\vec{r}_{0}\vec{p}_{0}\vec{s},t)] = 0. \tag{34}$$

EOMs from test-particle method

$$\begin{bmatrix} -\frac{\partial \vec{R}(\vec{r}_0 \vec{p}_0 \vec{s}, t)}{\partial t} + \frac{\partial \varepsilon}{\partial \vec{p}} \end{bmatrix} \cdot \frac{\partial f^{\pm}(\vec{r}, \vec{p}, t)}{\partial \vec{r}} \pm \frac{\partial V_{hn}}{\partial \vec{p}} \cdot \frac{\partial f^{\pm}(\vec{r}, \vec{p}, t)}{\partial \vec{r}} = 0, \qquad (35)$$

$$f^{\pm}(\vec{r}_{0},\vec{p}_{0},t_{0})\left\{\frac{-i\vec{s}}{\hbar}\cdot\frac{\partial\vec{P}(\vec{r}_{0}\vec{p}_{0}\vec{s},t)}{\partial t}\right] = (\varepsilon(\vec{r}-\frac{\vec{s}}{2},t)-\varepsilon(\vec{r}+\frac{\vec{s}}{2},t)) + \varepsilon(\vec{r}+\frac{\vec{s}}{2},t) + \varepsilon($$

Wigner phase-space density

deuteron

$$\rho_d^W(\mathbf{r}, \mathbf{k}) = \int \phi \left(\mathbf{r} + \frac{\mathbf{R}}{2} \right) \phi^* \left(\mathbf{r} - \frac{\mathbf{R}}{2} \right) \exp(-i\mathbf{k} \cdot \mathbf{R}) \, d\mathbf{R},$$
$$\mathbf{k} = (\mathbf{k}_1 - \mathbf{k}_2)/2 \qquad \mathbf{r} = (\mathbf{r}_1 - \mathbf{r}_2)$$

Internal wave function $\phi(r) \implies$ root-mean-square radius of 1.96 fm

Triton or Helium3

$$\rho_{t(^{3}\text{He})}^{W}(\rho,\lambda,\mathbf{k}_{\rho},\mathbf{k}_{\lambda}) = \int \psi \left(\rho + \frac{\mathbf{R}_{1}}{2},\lambda + \frac{\mathbf{R}_{2}}{2}\right) \psi^{*} \left(\rho - \frac{\mathbf{R}_{1}}{2},\lambda - \frac{\mathbf{R}_{2}}{2}\right) \times \exp(-i\mathbf{k}_{\rho}\cdot\mathbf{R}_{1}) \exp(-i\mathbf{k}_{\lambda}\cdot\mathbf{R}_{2})3^{3/2} d\mathbf{R}_{1} d\mathbf{R}_{2}$$

$$\begin{pmatrix} \mathbf{R} \\ \rho \\ \lambda \end{pmatrix} = J \begin{pmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3} \end{pmatrix} J = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \mathbf{K} \\ \mathbf{k}_{\rho} \\ \mathbf{k}_{\lambda} \end{pmatrix} = J^{-,+} \begin{pmatrix} \mathbf{k}_{1} \\ \mathbf{k}_{2} \\ \mathbf{k}_{3} \end{pmatrix} J^{-,+} = \begin{pmatrix} \frac{1}{2} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{pmatrix}$$
Internal wave $\psi(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}) \implies$ RMS radius 1.61 and 1.74 fm for triton and ³He function

Assign all many-nucleon states which are allowed from the Pauli principle the same weight .

8 wave function(considering the spinisospin and exchange of antisymmetric), 3 of 8 are feasible.

G= 3/8 (no information about spin)

$$S=1 \quad T=0$$

$$\begin{vmatrix} 2 \\ 1 \\ H \end{vmatrix} \sim |spin\rangle |isospin\rangle$$

$$S_{z} = +1 \quad \forall_{1} \sim \frac{1}{\sqrt{2}}(p \uparrow n \uparrow -n \uparrow p \uparrow)$$

$$S_{z} = 0 \quad \forall_{2} \sim \frac{1}{2}(p \uparrow n \downarrow + p \downarrow n \uparrow -n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$S_{z} = -1 \quad \forall_{3} \sim \frac{1}{\sqrt{2}}(p \uparrow n \downarrow -n \downarrow p \downarrow)$$

$$\psi_{4} \sim \frac{1}{2}(p \uparrow n \downarrow -p \downarrow n \uparrow -n \uparrow p \downarrow +n \downarrow p \uparrow)$$

$$\psi_{5} \sim \frac{1}{\sqrt{2}}(p \uparrow n \downarrow +p \downarrow n \uparrow +n \uparrow p \downarrow +n \downarrow p \uparrow)$$

$$\psi_{6} \sim \frac{1}{2}(p \uparrow n \downarrow +p \downarrow n \uparrow +n \uparrow p \downarrow +n \downarrow p \uparrow)$$

$$\psi_{7} \sim \frac{1}{\sqrt{2}}(p \uparrow n \downarrow -p \downarrow n \uparrow +n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$\psi_{8} \sim \frac{1}{2}(p \uparrow n \downarrow -p \downarrow n \uparrow +n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$\psi_{8} \sim \frac{1}{2}(p \uparrow n \downarrow -p \downarrow n \uparrow +n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$\psi_{1} \sim \frac{1}{\sqrt{2}}(p \uparrow n \downarrow -p \downarrow n \uparrow +n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$\psi_{1} \sim \frac{1}{\sqrt{2}}(p \uparrow n \downarrow -p \downarrow n \uparrow +n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$\psi_{1} \sim \frac{1}{\sqrt{2}}(p \uparrow n \downarrow -p \downarrow n \uparrow +n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$\psi_{1} \sim \frac{1}{\sqrt{2}}(p \uparrow n \downarrow -p \downarrow n \uparrow +n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$\psi_{1} \approx \frac{1}{\sqrt{2}}(p \uparrow n \downarrow -p \downarrow n \uparrow +n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$\psi_{1} \approx \frac{1}{\sqrt{2}}(p \uparrow n \downarrow -p \downarrow n \uparrow +n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$\psi_{1} \approx \frac{1}{\sqrt{2}}(p \uparrow n \downarrow -p \downarrow n \uparrow +n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$\psi_{1} \approx \frac{1}{\sqrt{2}}(p \uparrow n \downarrow -p \downarrow n \uparrow +n \uparrow p \downarrow -n \downarrow p \uparrow)$$

$$S = 1/2 T = 1/2$$

$$S = 1/2 T$$