

Correlations between asymmetric nuclear matter EOS and properties of neutron stars

Ying Zhou (周颖), Zhen Zhang (张振), Lie-Wen Chen (陈列文)

NuSym2016, Jun 17th, Tsinghua University

Outline

Optimization and covariance analysis

Results and discussions

1. Introduction

• EOS of isospin asymmetric nuclear matter (Parabolic law) :

 $E(\rho,\delta) = E_0(\rho) + E_{sym}(\rho)\delta^2 + O(\delta^4) \qquad \delta = (\rho_n - \rho_p) / \rho \longrightarrow \text{Isospin asymmetry}$

✓ EOS of symmetric nuclear matter(SNM) (well-known at ρ₀)
 ✓ Symmetry energy (poorly known)

Finite nucleiHeavy-ion collisionNeutron star $\rho \sim \rho_0$ $2 \sim 3\rho_0$ $\rho > 3\rho_0$

Purpose: Studying the EOS via observables of neutron stars

• EOS of SNM and Symmetry energy:

$$E_{0}(\rho) = E_{0}(\rho_{0}) + \frac{1}{2!}K_{0}x^{2} + \frac{1}{3!}J_{0}x^{3} + O(x^{4}), \qquad x = (\rho - \rho_{0})/3\rho_{0}$$

$$E_{sym}(\rho) = E_{sym}(\rho_{r}) + L(\rho_{r})x_{r} + \frac{K_{sym}(\rho_{r})}{2!}x_{r}^{2} + O(x_{r}^{3}), \qquad x_{r} = (\rho - \rho_{r})/3\rho_{r}$$

$$\rho_{0} \text{ satisfied with: } P = \rho^{2}\frac{d}{d}\frac{E_{0}(\rho)}{d\rho}\Big|_{\rho = \rho_{0}} = 0$$

$$K_{0} = 9\rho_{0}^{2}\frac{d^{2}E_{0}(\rho)}{d\rho^{2}}\Big|_{\rho = \rho_{0}} = L(\rho_{r}) = 3\rho_{r}\frac{dE_{sym}(\rho)}{d\rho}\Big|_{\rho = \rho_{r}}$$

$$J_{0} = 27\rho_{0}^{3}\frac{d^{3}E_{0}(\rho)}{d\rho^{3}}\Big|_{\rho = \rho_{0}} \qquad K_{sym} = 9\rho_{r}^{2}\frac{d^{2}E_{sym}(\rho)}{d\rho^{2}}\Big|_{\rho = \rho_{r}}$$

L.W. Chen, EPJ Web of Conferences, 88, 00017, (2015)

2. Tidal polarizability in SHF approach

• SHF and eSHF interactions:

$$v_{i,j} = t_0(1 + x_0P_{\sigma})\delta(\mathbf{r}) + \frac{1}{2}t_1(1 + x_1P_{\sigma})[\overleftarrow{\mathbf{k}}^2\delta(\mathbf{r}) + \delta(\mathbf{r})\overrightarrow{\mathbf{k}}^2] + t_2(1 + x_2P_{\sigma})\overleftarrow{\mathbf{k}}\cdot\delta(\mathbf{r})\overrightarrow{\mathbf{k}} + \frac{1}{6}t_3(1 + x_3P_{\sigma})\rho(\mathbf{R})^{\alpha}\delta(\mathbf{r}) + iW_0(\sigma_i + \sigma_j)\overleftarrow{\mathbf{k}}\cdot\delta(\mathbf{r})\overrightarrow{\mathbf{k}} + iW_0(\sigma_i + \sigma_j)\overleftarrow{\mathbf{k}}\cdot\delta(\mathbf{r})\overrightarrow{\mathbf{k}} + \frac{1}{2}t_4(1 + x_4P_{\sigma}) \\ [\overleftarrow{\mathbf{k}}^2\rho(\mathbf{R})^{\beta}\delta(\mathbf{r}) + \delta(\mathbf{r})\rho(\mathbf{R})^{\beta}\overrightarrow{\mathbf{k}}^2] + t_5(1 + x_5P_{\sigma})\overleftarrow{\mathbf{k}}\cdot\rho(\mathbf{R})^{\gamma}\delta(\mathbf{r})\overrightarrow{\mathbf{k}} + 0$$

Tidal polarizability (oscillation response coefficient λ)

$$Q_{ij} = \lambda \varepsilon_{ij}$$

Q_{ij}: Quadrupole moment

 ϵ_{ij} : Tidal field of companion

$$\lambda = \frac{2}{3}k_2R^5$$

K₂: the rigidity of star

Éanna É. Flanagan and Tanja Hinderer, Phys.Rev.D 77, 021502(R) (2008) F.J. Fattoyev, J. Carvajal, W.G. Newton, and Bao-An Li, Phys. Rev. C 87, 015806 (2013)

For earth: $0.304 < k_2 < 0.312$

3. Optimization and covariance analysis

• Minimizing the Chi-square $\chi^2(p)$:

$\chi^2(P) - \sum^N$	$\left(\underline{\mathbf{O}_n^{(\mathrm{th})}(P)} - \underline{\mathbf{O}_n^{(\mathrm{exp})}} \right)$	
χ (1) – $\sum_{n=1}$	ΔO_n	

Fitting

Properties of finite nuclei

Nucleus	B(MeV)	$\mathrm{Rch}(\mathrm{fm})$	$E_{\rm GMR}({\rm MeV})$	error	spin-orbit
${}^{20}_{8}O$	-127.61723	2.701	—	_	6.30(1np)
					6.10(1pp)
$^{40}_{20}\mathrm{Ca}$	-342.03360	3.478	_	_	_
$^{48}_{20}\mathrm{Ca}$	-415.97198	3.479	_	_	_
$^{56}_{28}Ni$	-483.95050	3.750	—	_	_
$^{68}_{28}{ m Ni}$	-590.36648	_	—	_	_
$^{88}_{38}{ m Sr}$	-768.38296	4.220	_	_	_
$^{90}_{40}{ m Zr}$	-783.79526	4.269	17.81	0.35	_
$^{100}_{50}{ m Sn}$	-824.62947	_	_	_	_
$^{116}_{50}{ m Sn}$	-988.51881	4.626	15.90	0.07	_
$^{132}_{50}{ m Sn}$	-1102.68603	_	_	_	_
$^{144}_{62}{ m Sm}$	-1195.46065	4.960	15.25	0.11	_
$^{208}_{82}{ m Pb}$	-1635.89266	5.504	14.18	0.11	1.42(2dp)
					0.90(3pn)
					1.77(2 fn)

// -	Quantity	MSL0	\mathbf{P}_0
_	$ ho_0$	0.16	0.1608
\rangle^2	$E_0({ m MeV})$	-16.0	-16.0313
-]	$K_0({ m MeV})$	230.0	228.3431
	$m_{s,0}^{st}/m$	0.80	1.0281
	$m_{v,0}^*/m$	0.70	1.0119
	$E_{\rm sym}(\rho_0)({\rm MeV})$	30.0	33.7289
	$L({ m MeV})$	60	63.8086
	$G_S({ m MeV fm}^5)$	132.0	113.4911
	$G_V({ m MeV fm}^5)$	5.0	15.8508
	$W_0({ m MeV fm}^5)$	133.3	108.7601
	Quantity	eMSL09	\mathbf{P}_0
	$ ho_0$	0.1585	0.1600
	$E_0({ m MeV})$	-16.046	-16.0365
	$K_0({ m MeV})$	230.1	229.0086
	$J_0({ m MeV})$	-353.7	-395.0170
	$G_S({ m MeV fm}^5)$	92.9	100.7536
	$G_V({ m MeV fm}^5)$	46.2	49.7946
	$G_{SV}({ m MeV fm}^5)$	-8.4	15.9162
	$G_0'(ho_0)$	0.25	0.3079
	$m_{s,0}^{st}/m$	0.9	1.0156
	$m_{v,0}^{st}/m$	0.75	0.7542
	$E_{ m sym}(ho_0)$	32.8	32.5187
	$L(ho_0)$	53.7	57.8552
	$K_{ m sym}(ho_0)$	-100.2	-76.2283
	$W_0({ m MeV fm}^5)$	103.78	109.2549

M. Wang *et al.*, Chinese Physics C, **36**, 12 (2012) experimental data M. Kortelainen *et al.*, Phys.Rev.C **82**, 024313 (2010) Fitting example

• Covariance analysis:

The expansion of $\chi^2(p)$ around the point p_0 :

$$\chi^{2}(P) = \chi^{2}(P_{0}) + \frac{1}{2} \sum_{i,j=1}^{F} (P - P_{0})_{i} (P - P_{0})_{j} \partial_{i} \partial_{j} \chi^{2}(P_{0}) + L$$
$$\Delta \chi^{2}(\mathbf{x}) = \chi^{2}(P) - \chi^{2}(P_{0}) = \mathbf{x}^{T} \mathbf{M} \mathbf{x} \qquad \left(\mathbf{x} = \frac{P - P_{0}}{P}\right)$$

Covariance and correlation coefficient:

(Color online) Correlation C_{AB} between selected nuclear matter properties and (a) the maximum mass of a neutron star and (b) the radius of a $1.4M_{\odot}$ neutron star obtained for the Skyrme functional SV-min. Phys.Rev.C 87, 044320 (2013)

$$\operatorname{Cov}(A,B) = \sum_{i,j=1}^{F} \frac{\partial A}{\partial \mathbf{x}_{i}} \operatorname{M}_{ij}^{-1} \frac{\partial B}{\partial \mathbf{x}_{j}}$$

$$\rho_{AB} = \frac{\text{Cov}(A, B)}{\sqrt{D(A)}\sqrt{D(B)}}$$

F. J. Fattoyev and J. Piekarewicz, Phys.Rev.C **84**, 064302 (2011) Wei-Chia Chen and J. Piekarewicz, Phys.Rev.C **90**, 044305 (2014)

SHF:

4. Results and discussions

Correlation coefficient ρ_{AB}

• eSHF:

Correlation coefficient ρ_{AB}

$$E_{sym}(\rho) = E_{sym}(\rho_r) + L(\rho_r)x_r + \frac{K_{sym}(\rho_r)}{2!}x_r^2 + O(x_r^3), \qquad x_r = (\rho - \rho_r)/3\rho_r$$

Correlation coefficients as function of ρ_r :

SHF:

eSHF:

5. Conclusion

- At the saturation density, the $\lambda_{1.4}$ has strongest correlation with $K_{sym}(\rho_0)$.
- In supra-saturation density region ($2.1\rho_0 < \rho_r < 3.6\rho_0$), the $\lambda_{1.4}$ is sensitive to $E_{sym}(\rho_r)$ and $L(\rho_r)$, it is $\rho_{AB} > 0.8$.

Thank you for your attention!

