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Accurate Electron Affinity of Iron 
and Fine Structures of Negative 
Iron ions
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Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound 
electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an 
electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties 
of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of 
negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the 
accurate EA value of Fe and fine structures of Fe− using the slow electron velocity imaging method. 
These measurements yield a very accurate EA value of Fe, 1235.93(28) cm−1 or 153.236(34) meV. The 
fine structures of Fe− were also successfully resolved. The present work provides a reliable benchmark 
for theoretical calculations, and also paves the way for improving the EA measurements of other 
transition metal atoms to the sub cm−1 accuracy.

Iron is the second most abundant metal element on earth. It is an essential part of human being1, which is cen-
tral to the structure and functioning of blood in transporting oxygen around the body. For over three thousand 
years, iron formed the material basis of human civilization. The Iron Age is after the Bronze Age in the three 
pre-historical ages due to the ease of corrosion and the relatively high melting point of iron. Nowadays, steel, 
an iron based material, is one of the most common materials in world. Iron and iron compounds are magnetic2. 
They can also be used as catalysis3. Recently, some iron based materials were reported as a new class of supercon-
ductors4,5. These fantastic properties of iron are directly related to its unique electronic structures. However, it is 
still a challenge to fully understand them. Even for the single negative atomic ion, Fe−, it is a nontrivial task for 
both experimental and theoretical investigation6–16. The properties of negative ions differ significantly from both 
positive ions and neutral systems17–20. Like the ionization potential, the electron affinity (EA) is a fundamental 
parameter for understanding chemical properties of elements21,22. The detailed knowledge of fine structures of 
anions is also required by laser cooling of negative ions23–28.

Electron affinities of atoms and molecules are mainly measured by photoelectron spectroscopy of negative 
ions, A− +  hν →  A +  e, and EA =  hν −  Ek. hν is the photon energy, and Ek is the kinetic energy of photoelectrons. 
The EA value of Fe, 164(35) meV, was first reported by Engelking and Lineberger in 19796. Then, it was improved 
to 151(3) meV by Leopold and Lineberger in 19867. After their pioneering work, no significant improvement 
has been reported during the past 30 years. On the other side, the accuracy of experimental EA value for some 
transition metal elements and main group elements have been steadily improved to 0.01–0.05 meV29–31. The 
EA uncertainty by s-wave photodetachment even goes down to 1 μ eV level by using the laser photodetachment 
microscopy32–36. Most of the accurate EA values for transitional metals, such as EA(Cu) =  1235.78(4) meV37, were 
obtained by the laser photodetachment threshold (LPT) method38. LPT measures the photodetachment cross 
section versus the photon energy around the photodetachment threshold using the narrow linewidth tunable 
laser. The outgoing photoelectron is a p-wave for the threshold photodetachment from atomic transition metal 
anions. Therefore, the photodetachment cross section near the threshold is very small, according to the Wigner 
threshold law39. Usually, the LPT method requires a strong anion beam and a high-intensity laser beam. However, 
it is difficult to produce an intense Fe− ion beam due to its low EA value. Furthermore, the EA measurement of Fe 
using LPT method requires a tunable light source in the far infrared band, which is a luxury experimental appa-
ratus. Moreover, LPT method cannot well resolve the congested photodetachment channels due to the zero-slope 
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onset of p-wave detachment at threshold39. As shown later, the ability to resolve the congested photodetachment 
channels is crucial to measure the fine structures of Fe−. Similar to the case of Fe, the uncertainties of EA values 
for many other transition metals also remain 10 meV40–42. The experiment method we demonstrated in this study 
can serve as a powerful approach to improve the EA measurement and fine structure for other transition metal 
elements.

In this study, the accurate EA value of Fe and the fine structures of Fe− were obtained using the slow electron 
velocity imaging (SEVI) method. SEVI has a super energy resolution for slow electrons43–46. Recently, an energy 
resolution 1.2 cm−1 for Ek =  5.2 cm−1 has been reported by Wang and coworkers45. The conversion factor between 
cm−1 and eV is 1 eV =  8065.544 005(50) cm−1, recommended by CODATA47. Since the neutral Fe atomic energy 
levels are well known, this gives a freedom to choose the final neutral state of photodetachment. This flexibility is 
crucial for current Fe study and other elements with a low EA value48. To avoid using a tunable laser in far infra-
red region, the Fe(3F4) ←  Fe−(4F9/2) channel, threshold photodetachment wavelength λ  ≈  745 nm, is chosen for 
conducting the Fe EA measurement. With our newly constructed SEVI apparatus, this study successfully resolved 
all fine structures of Fe− and significantly improved the EA accuracy of Fe.

Results
Photoelectron Spectroscopy.  The descriptions of our spectrometer have been reported in previous 
work49. The Fe− ion beam was produced by a laser ablation ion source assisted with sodium vapor. The photo-
electron spectra were obtained for Fe− at various detachment laser wavelengths. Figure 1 presents the spectrum 
at a photon energy hν =  13414.38 cm−1. There are six sharp peaks labelled with letters (a–f). The photoelectron 
imaging shown in the inset clearly shows expected parallel transitions due to the p-wave detachment. The related 
transitions of each peak are shown in Fig. 2. The vertical spikes in Fig. 1 are the theoretical simulation according 
to the assigned transitions. These intensity simulations were derived by assuming the ion temperature of 800 K6 
and further rescaled according to the Wigner threshold law σ  ∝  Ek

3/2 for p-wave detachment. Here σ  is the cross 
section of photodetachment. The excellent agreement between experimental results and simulations confirmed 
the validity of current assignment. Based on the assignment, transition d [Fe(3F4) ←  Fe−(4F9/2)] is the only pho-
todetachment channel originated from the ground state Fe−(4F9/2), so it was selected as the target channel for the 
accurate EA measurement.

Figure 1.  Photoelectron image and spectrum of Fe− at photodetachment energies 13414.38 cm−1. The 
double arrow indicates the laser polarization. Peak d is a result of photodetachment from Fe−(4F9/2) to Fe(3F4), 
which is used to determine the electron affinity of Fe. The vertical red spikes are the theoretical simulations at 
the ion temperature 800 K.

Peak Levels (Fe ← Fe−) Binding energy (cm−1)

a 3F4 ←  4F7/2 12691.1(11)

b 3F3 ←  4F5/2 12895.8(14)

c 3F2 ←  4F3/2 13043.7(14)

d 3F4 ←  4F9/2 13212.17(28)

e 3F3 ←  4F7/2 13276.5(21)

f 3F2 ←  4F5/2 13304.1(34)

Table 1.   Measured binding energies, fine structures of Fe−, and the electron affinity.



www.nature.com/scientificreports/

3Scientific Reports | 6:24996 | DOI: 10.1038/srep24996

Electron Affinity and Fine Structures.  In order to obtain high accurate EA of Fe, the photoelectron imag-
ing system for the transition d was carefully calibrated. After inverse-Abel transformation50, the hitting positions 
of photoelectrons on the phosphor screen form a ring for each individual transition. The radius r of the ring is 
proportional to the velocity of photoelectrons. The radius can be obtained by summing the intensity over all 
angles, and then finding the peak center via a Gaussian profile fitting. A series of photoelectron spectra were 
measured with the photon energy scanned from 13227 cm−1 to 13247 cm−1 with a step 5 cm−1. The measured 
radius square (r2) of transition d versus the photon energy hν was plotted in Fig. 3. The energy calibration param-
eters of the linear relation between hν and r2 were determined by linear fitting. The binding energy of transition d 
and its uncertainty can be also derived from this procedure. Figure 4 shows the measured binding energy versus 
the photoelectron kinetic energy. The mean binding energy is 13212.17 cm−1 with an uncertainty 0.27 cm−1. The 
neutral Fe (3F4) state is 11976.239 cm−1 above the iron neutral ground state (5D4). Therefore, EA(Fe) is determined 
as 1235.93 ±  0.28 cm−1. The uncertainty 0.28 cm−1 has included the 0.06 cm−1 laser linewidth.

The fine structure of Fe−(4F) were derived from the observed transitions. The splitting of 
Fe−(4F7/2) ←  Fe−(4F9/2), Fe−(4F5/2) ←  Fe−(4F9/2), Fe−(4F3/2) ←  Fe−(4F9/2) was determined as 520.9(11), 901.0(14), 
1160.8(15) cm−1 by the standard spectroscopic method, the covariance algebra, respectively51,52.

Figure 2.  Energy levels of Fe and Fe− related to the present measurement. The ground state of Fe is 
3d64s2 5D4. The ground state of Fe− is 3d74s2 4F9/2. The labels of each transition are the indexes of the observed 
peaks in Fig. 1. The transition d is used for the electron affinity measurement.

Figure 3.  Energy calibration of the photoelectron imaging system. Points with error bars are experimental 
data. The solid line is the best linear fitting. The rings above each point are the photoelectrons imaging of 
Fe(3F4) ←  Fe−(4F9/2). The ring radius r is in unit of pixel.
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The measured binding energies of transitions and fine structures of Fe− are summarized in Tables 1–3. 
The measured fine structures of Fe− are in comparison with the calculated ones using the spin-orbit coupling 
multi-reference configuration interaction method. The calculated values are slightly higher than the experimental 
results. The measured EAs were also compared with the theoretical predictions in Tables 1–3. The small value of 
EA of iron is a particular challenge to theory. Some methods even predicted a negative binding energy.

The energy gaps between different neutral Fe states can also be extracted from the six transitions. It is worth 
comparing them with the standard atomic data53. The interval between peaks d and e is 585.4 cm−1, in an excellent 
agreement with the energy difference 584.695 cm−1 between 3F3 and 3F4 states of neutral Fe. Similarly, we have an 
energy interval 408.3 cm−1 between peaks b and f versus 407.620 cm−1 between Fe(3F2) and Fe(3F3). These accu-
rate data can be considered as the fingerprints of anionic states for the unambiguous assignment.

Discussion
In conclusion, the EA value of Fe was determined as 1235.93(28) cm−1 or 153.236(34) meV using the slow elec-
tron velocity imaging method. The accuracy of EA of Fe was improved by a factor more than 80 compared with 
previous reported 151(3) meV7. The fine structures of Fe− were successfully resolved. The Fe− 4F7/2, 4F5/2, 4F3/2 are 
520.9(11) cm−1, 901.0(14) cm−1, and 1160.8(15) cm−1 above the ground state 4F9/2, respectively.

Figure 4.  Binding energy of Fe(3F4) ← Fe−(4F9/2) transition measured as a function of the kinetic energy of 
photoelectrons. The dotted lines indicate the ± 0.27 cm−1 uncertainty.

Levels Calculated/extrapolated Experimental
4F7/2 ←  4F9/2 543/540(50)41 520.9(11)
4F5/2 ←  4F9/2 965/930(60)41 901.0(14)
4F3/2 ←  4F9/2 1267/1200(60)41 1160.8(15)

Table 2.   Fine structure of Fe− (cm−1).

Value (meV) Reference

580 Clementi8 (calculated)

− 220 Cole et al.9 (calculated)

− 30 Mitas10 (calculated)

210 Bauschlicher et al.11 (calculated)

− 110 Buendia et al.12 (calculated)

78 Balabanov et al.14 (calulated)

164 (35) Engelking et al.6 (measured)

151 (3) Leopold et al.7 (measured)

153.236(34) this work (measured)

Table 3.   The electron affinity of Fe and references.
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During past 40 years, the measurement accuracy of the electron affinity (EA) of main group elements has 
been steadily improved to 0.01–0.05 meV. However, the uncertainties of EA values of many transition elements 
still remain 10 meV40–42. The experimental EA values for most of the f-block lanthanides and actinides are not 
available yet54–57. The super energy resolution of SEVI method combined with the sodium vapor assisting laser 
ablation ion source makes it possible to improve the EA measurement accuracy to sub cm−1 for nearly all transi-
tion metal atoms.

Methods
The experiment was conducted using a slow electron velocity imaging apparatus equipped a laser ablation ion 
source. The Fe− ion beam was produced by a laser ablation ion source. Sodium vapor was introduced to enhance 
Fe− yield by an inline oven. The56 Fe− ions were selected by a Wiley-McLaren type time-of-flight mass spec-
trometer. Then, the selected ions were perpendicularly crossed by the detachment laser beam in the interaction 
zone. The photodetachment laser is from a Spectra-physics dye laser system (400–920 nm, line width 0.06 cm−1 
at 625 nm) pumped by a Quanta-Ray Pro 290 Nd:YAG laser (20 Hz, 1000 mJ/pulse at 1064 nm). The photon 
energy (hν) was further measured by a HighFinesse WS6-600 wavelength meter with an accuracy of 0.02 cm−1. 
The detached photoelectrons were projected onto a phosphor screen behind a set of micro-channel plates and 
recorded by a CCD camera. Each photoelectron imaging was an accumulated result of 200,000 laser shots. The 
photoelectron spectrum was then generated by an inverse Abel transformation of the raw photoelectron imaging. 
The obtained energy resolution is 3.1 cm−1 for Ek =  25 cm−1 at an imaging voltage − 150 V. It should be noted that 
the energy resolution Δ Ek depends on the kinetic energy Ek, roughly Δ Ek ∝  Ek

1/2.
The fine structures of Fe− were calculated using the spin–orbit coupling multireference configuration inter-

action method with the TZP-DKH basis set. The TZP-DKH basis set was obtained from the basis set exchange 
website https://bse.pnl.gov. The calculations were carried out using the Molpro package.
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