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The possibility of testing spatial noncommutativity by current experiments on normal quantum scales is

investigated. In the case of both position-position and momentum-momentum noncommuting the spectra

of ions in crossed electric and magnetic fields are studied in the formalism of noncommutative quantum

mechanics. In a limit of the kinetic energy approaching its lowest eigenvalue, this system possesses

nontrivial dynamics. Signals of spatial noncommutativity in the angular momentum are revealed. They are

within limits of the measurable accuracy of current experiments. An experimental test of the predictions

using a modified electron momentum spectrum is suggested. The related experimental sensitivity and

subtle points are discussed. The results are the first step on a realizable way towards a conclusive test of

spatial noncommutativity.
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Quantum theory in noncommutative space [1–9]
presents an attractive possibility as a candidate in the
present round in hinting at new physics. In the low energy
aspect, quantum mechanics in noncommutative space
(NCQM) [10–18] have been studied in detail. But testing
their predictions requires experiments near the Planck
scale which are unrealizable, and/or their modifications
to normal quantum theory depending on vanishingly small
noncommutative parameters, which are outside the limits
of measurable accuracy of current experiments. It seems
that noncommutative quantum theory escapes measure-
ment on normal quantum scales.

The possibility of testing spatial noncommutativity by
current experiments on normal quantum scales was inves-
tigated, and two proposals [18] using Rydberg atoms and
Chern-Simons processes are suggested. The two proposals
revealed that in a limit of diminishing the magnetic field to
zero the vanishingly small noncommutative parameters
usually present in predictions derived from spatial non-
commutativity actually cancel out in the angular momen-
tum, so that the lowest angular momentum turns out to be
@=4. This provides a conclusive test of spatial noncommu-
tativity, i.e., a positive experimental result shows an evi-
dence of spatial noncommutativity and a negative one
draws a conclusive preclusion of spatial noncommutativity.
In practice the magnetic field, however, can only reach
some finite value limited by the level of shielding the
background magnetic fields. In order to meet the condition
of a cancellation between the vanishingly small noncom-
mutative parameters present in the angular momentum

derived from spatial noncommutativity, the magnetic field
must be decreased to a level of some orders less than the
effective intrinsic magnetic field B� originated from spatial

noncommutativity (see below). The field control at that
level seems close to impossible in the foreseeable future.
According to the present level of shielding the back-

ground magnetic fields, this paper explores a realizable
way for testing noncommutative quantum effects on nor-
mal quantum scale. In the case of both position-position
and momentum-momentum noncommuting the spectra of
ions trapped in crossed electric and magnetic fields are
investigated. In a limit of the kinetic energy approaching its
lowest eigenvalue, this system possesses nontrivial dynam-
ics. The corresponding constraints are analyzed. Signals of
spatial noncommutativity in the angular momentum are
revealed. They are within limits of the measurable accu-
racy of current experiments. An experimental test of the
predictions using, similar to electron momentum spectros-
copy (EMS) [19], a modified EMS is suggested, and the
related experimental sensitivity and the subtle points are
discussed. It is the first step on a realizable way towards a
conclusive test of spatial noncommutativity.
We consider an ion of mass� and charge qð>0Þ trapped

in a uniform magnetic fieldB aligned along the x3 axis and
an electrostatic potential [20]

Veff ¼ 1
2�½!2

�ðx21 þ x22Þ þ!2
zx

2
3� (1)

where !2
� and !2

z are frequencies, respectively, in the

ðx1; x2Þ plane and z direction. The vector potential Ai of
B is chosen as Ai ¼ �B�ijxj=2, A3 ¼ 0, (i, j ¼ 1, 2). The

Hamiltonian H of the trapped ion can be decomposed into
a one-dimensional harmonic Hamiltonian Hz in the z di-*Corresponding author
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rection and a two-dimensional Hamiltonian H2 in the
ðx1; x2Þ plane: H ¼ ðpi � qAi=cÞ2=2�þ Veff ¼
H2 þHz,Hz ¼ p2

3=2�þ�!2
zx

2
3=2, andH2 is (henceforth

the summation convention is used)

H2 ¼ 1

2�

�
pi þ 1

2
�!c�ijxj

�
2 þ 1

2
�x2i

¼ 1

2�
p2
i þ

1

2
!c�ijpixj þ 1

2
�!2

Px
2
i ; (2)

where � ¼ �!2
�, !c ¼ qB=�c (the cyclotron frequency),

and !P ¼ ð!2
� þ!2

c=4Þ1=2.
If NCQM is a realistic physics, low energy quantum

phenomena should be reformulated in the formalism of
NCQM. We consider the case of both position-position
noncommutativity (position-time noncommutativity is
not considered) and momentum-momentum noncommuta-
tivity. The consistent deformed Heisenberg-Weyl algebra
[18] is

½x̂I; x̂J� ¼ i�2�IJ; ½x̂I; p̂J� ¼ i@�IJ;

½p̂I; p̂J� ¼ i�2�IJ; ðI; J ¼ 1; 2; 3Þ
where �IJ and �IJ are the antisymmetric constant parame-
ters, independent of the position and momentum. We de-
fine �IJ ¼ �IJK�K, where �IJK is a three-dimensional
antisymmetric unit tensor. We put �3 ¼ � and the rest of
the � components to zero (which can be done by a rotation
of coordinates), then we have �ij ¼ �ij� (i, j ¼ 1, 2),

where �ij ¼ �ij3 is a two-dimensional antisymmetric unit

tensor with �12 ¼ ��21 ¼ 1, �11 ¼ �22 ¼ 0. Similarly, we
have �ij ¼ �ij�. Thus we obtain the following two-

dimensional deformed Heisenberg-Weyl algebra

½x̂i; x̂j� ¼ i�2�ij; ½x̂i; p̂j� ¼ i@�ij;

½p̂i; p̂j� ¼ i�2�ij:ði; j ¼ 1; 2Þ: (3)

Here we consider the noncommutativity of the intrinsic
canonical momentum. It means that the parameter �, like
the parameter �, should be extremely small. This is guar-
anteed by a direct proportionality between them [see

Eq. (39) below]. In Eqs. (3) the scaling factor � is � ¼
ð1þ ��=4@2Þ�1=2.

The deformed Heisenberg-Weyl algebra (3) can be real-
ized by undeformed variables xi and pi as follows

x̂ i ¼ �

�
xi � 1

2@
��ijpj

�
; p̂i ¼ �

�
pi þ 1

2@
��ijxj

�
;

(4)

where xi and pi satisfy the undeformed Heisenberg-Weyl
algebra ½xi; xj� ¼ ½pi; pj� ¼ 0, ½xi; pj� ¼ i@�ij. It should

be emphasized that for the case of both position-position
and momentum-momentum noncommuting, the scaling
factor � in Eqs. (3) and (4) guarantees consistency of the
framework, and plays an essential role in dynamics.

The deformed Hamiltonians Ĥ2 and Ĥz in noncommu-
tative space can be obtained by reformulating the corre-
sponding undeformed ones in commutative space in terms
of deformed canonical variables x̂i and p̂i. Because of x̂3 ¼
x3 and p̂3 ¼ p3, the deformed Ĥzðx̂3; p̂3Þ is the same as the

undeformed one, Ĥzðx̂3; p̂3Þ ¼ Hzðx3; p3Þ.
The deformed Ĥ2ðx̂; p̂Þ, using Eqs. (4), can be further

represented by undeformed variables xi and pi as

Ĥ 2ðx̂; p̂Þ ¼ 1

2M

�
pi þ 1

2
G�ijxj

�
2 þ 1

2
Kx2i

¼ 1

2M
p2
i þ

1

2M
G�ijpixj þ 1

2
M�2

Px
2
i ; (5)

where the effective parameters M, G, �P, and K are
defined as

1=2M � �2ðc21=2�þ ��2=8@2Þ;
G=2M � �2ðc1c2=�þ ��=2@Þ;
M�2

P � �2ðc22=�þ �Þ;
K � M�2

P �G2=4M; (6)

and c1 ¼ 1þ�!c�=4@, c2 ¼ �!c=2þ �=2@.
The deformed Hamiltonian (2) and the equivalent one of

Eq. (5) possess a rotational symmetry in the ðx1; x2Þ plane.
The z component of the orbital angular momentum is a
conserved observable.
In order to explore new features of such a system, we

need to investigate a Chern-Simons term Ĵz ¼ �ijx̂ip̂j.

From the NCQM algebra (3) we obtain commutation rela-

tions between Ĵz and x̂i, p̂i: ½Ĵz; x̂i� ¼ i�ijx̂j þ i�2�p̂i,

½Ĵz; p̂i� ¼ i�ijp̂j � i�2�x̂i. From the above commutation

relations we conclude that Ĵz plays approximately the role
of the generator of rotations at the deformed level. Using

Eqs. (4), we can further represent Ĵz by undeformed var-
iables xi and pi as

Ĵ z ¼ �ijxipj � 1

2@
�2ð�pipi þ �xixiÞ

¼ Jz � 1

2@
�2ð�pipi þ �xixiÞ; (7)

where Jz ¼ �ijxipj is the z component of the orbital an-

gular momentum in commutative space. Ĵz and Ĥ2 com-
mute each other. They have common eigenstates.
We investigate an interesting case: dynamics of this

system in the limit of the mechanical kinetic energy ap-
proaching its lowest eigenvalue. For discussing this limit it
is convenient to work in the Lagrangian formalism. The

Lagrangian corresponding to the Hamiltonian Ĥ2 in Eq. (5)
is

L̂ ¼ 1
2M _xi _xi þ1

2�ij _xixj � 1
2Kxixi: (8)

The mechanical kinetic energy Ĥk ¼ M _xi _xi =2 can be
rewritten as
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Ĥ k ¼ 1

2M
ðK2

1 þ K2
2Þ (9)

where

Ki � pi þ 1
2G�ijxj (10)

are the mechanical momentum corresponding to the vector
potentials Ai. They satisfy the commutation relation

½Ki; Kj� ¼ i@G�ij: (11)

In Eq. (10) pi ¼ @=@xi are the canonical momentum. They
satisfy the commutation relation ½pi; pj� ¼ 0.

We define canonical variables Q ¼ K1=G and � ¼ K2,
which satisfy

½Q;�� ¼ i@�ij: (12)

The kinetic energy Ĥk in Eq. (9) is rewritten as a
Hamiltonian of a harmonic oscillator

Ĥ k ¼ 1

2M
�2 þ 1

2
M!2

0Q
2; (13)

where the effective frequency !0 � G=M. The eigenval-

ues of Ĥk are

Ê k;n ¼ @!0ðnþ 1
2Þ; ðn ¼ 0; 1; 2; � � �Þ: (14)

Its lowest one is

Ê k;0 ¼ @G

2M
: (15)

In the limit of Ĥk ! Êk;0, the Hamiltonian Ĥ2 in Eq. (5)

reduces to

Ĥ 0 ¼ 1
2Kxixi þ Êk;0: (16)

The Lagrangian corresponding to Ĥ0 is

L̂ 0 ¼ 1
2G�ij _xixj � 1

2Kxixi � Êk;0: (17)

In the following, we demonstrate that the reduced sys-

tem ðĤ0; L̂0Þ has nontrivial dynamics. The canonical mo-
menta

pi ¼ @L̂0

@ _xi
¼ 1

2
G�ijxj: (18)

The Hamiltonian Ĥ0
0 obtained from L̂0 is Ĥ0

0 ¼
pi _xi � L̂0 ¼ Kxixi=2þ Êk;0, which is just Ĥ0.

The canonical momenta pi in Eq. (18) does not deter-
mine velocities _xi as functions of p and x which indicates

that L̂0 is singular, but gives relations among p and x. Such
relations are primary constraints [21,22]

’iðx; pÞ ¼ pi þ 1
2G�ijxj ¼ 0: (19)

The physical meaning of Eq. (19) is that it expresses the
dependence of degrees of freedom among p and x. The
constraints (19) should be carefully treated.

The Hamiltonian equation of Ĥ0 in Eq. (16) gives _xi ¼
@Ĥ0=@pi ¼ 0. But the L̂0 in Eq. (17) has nonvanishing _xi.
This needs to be clarified. The Hamiltonian equations of
such a singular (constrained) system are not unique.

Because of the constraints ’iðx; pÞ ¼ 0 of Eq. (19), Ĥ0

plus any linear combination of ’i is also a Hamiltonian of

the system, i.e., the Ĥ0 can be replaced by Ĥ0ðx; pÞ þ
	i’iðx; pÞ where the Lagrange multiplier 	i may be a
function of x and p. The Hamiltonian equations, including
the contributions of �ð	iðx; pÞ’iðx; pÞÞ, read

_p i ¼ �@Ĥ0

@xi
� 	k

@’k

@xi
; _xi ¼ @Ĥ0

@pi

þ 	k

@’k

@pi

: (20)

From @Ĥ0=@pi ¼ 0 and @’k=@pi ¼ �ki, it follows that the
above second equation reduces to

_x i ¼ 	i: (21)

In this example the Lagrange multiplier 	i is just the
velocity _xi.
The Poisson brackets of the constraints are

Cij ¼ f’i; ’jgP ¼ G�ij: (22)

Cij defined in Eq. (22) are elements of the constraint matrix

C. Elements of its inverse matrix C�1 are ðC�1Þij ¼
��ij=G. The corresponding Dirac brackets of the canoni-

cal variables xi and pj can be determined,

fxi;pjgD ¼ 1

2
�ij; fx1; x2gD ¼� 1

G
; fp1;p2gD ¼�G

4
:

(23)

The Dirac brackets of ’i with any variables xi and pj are

zero so that the constraints (19) are strong conditions. It
can be used to eliminate dependent variables. If we select
x1 and p1 as independent variables, from the constraints
(19) we obtain x2 ¼ �2p1=G, p2 ¼ Gx1=2. Introducing

new canonical variables x ¼ ffiffiffi
2

p
x1 and p ¼ ffiffiffi

2
p

p1, we have
fx; pgD ¼ 1. The corresponding quantum commutation re-
lation is ½x; p� ¼ i@.

The reduced system ðĤ0; L̂0Þ can be solved as follows.
We define, respectively, the following effective mass and
frequency

�̂ � � G2

2K
; !̂� � K

G
; (24)

then the Hamiltonian Ĥ0 reduces to

Ĥ �
0 ¼

1

2�̂� p
2 þ 1

2
�̂�!̂�2x2 þ Êk;0: (25)

Equation (25) shows that the following annihilation and
creation operators can be introduced
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Â � ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�̂�!̂�

2@

s
xþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2@�̂�!̂�

s
p;

Â�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�̂�!̂�

2@

s
x� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2@�̂�!̂�

s
p:

(26)

They satisfies ½Â�; Â�y� ¼ 1. The eigenvalues of the num-

ber operator N̂� ¼ Â�yÂ� is n ¼ 0; 1; 2; � � � . The

Hamiltonian Ĥ�
0 reads

Ĥ �
0 ¼ @!̂�

�
Â�yÂ� þ 1

2

�
þ Êk;0: (27)

Similarly, in the limit of Ĥk ! Êk;0, the Chern-Simons

term Ĵz in Eq. (7) reduce to

Ĵ �
z ¼ @Ĵ �

�
Â�yÂ� þ 1

2

�
; Ĵ � ¼ 1� �2

�
G�

4@
þ �

G@

�
:

(28)

The eigenvalues of Ĵ�z are Ĵ �
n ¼ @Ĵ �ðnþ 1=2Þ. Its lowest

one is

Ĵ �
0 ¼ 1

2@Ĵ
�: (29)

In the present case of both position-position and
momentum-momentum noncommuting, the second equa-
tion of Eq. (4), up to the first order of � and �, can be
rewritten as p̂i ¼ pi þ ��ijxj=2@ ¼ pi þ qB��ijxj=2c. It

indicates that there is an effective intrinsic magnetic field
B� originated from spatial noncommutativity,

B� ¼ c�

q@
: (30)

Because B� should be vanishingly small, only the external

magnetic field B decreasing to a level of closing to B�, the

small quantum effects of B� from spatial noncommutativ-

ity are manifested obviously.
In the following we demonstrate that, because of the

effective intrinsic magnetic field B�, in a further limiting

process of diminishing the external magnetic field B to
zero the survived system also has nontrivial dynamics. In
this limit the frequency !P reduces to !P ¼ !�. Up to the

first order of � and �, we have � ¼ 1. The effective
parameters M, G, �P, and K reduce, respectively, to ~M,
~G, ~�P, and ~K, which are defined by

~M �
�
1

�
þ�!2

��
2

4@2

��1 ¼ �;

~G@ � �2!2
��þ �

~�2
P � !2

� þ �2

4�2
@
2
¼ !2

�;

~K � ~M ~�2
P �

~G2

4 ~M
¼ �!2

�:

(31)

We define the following effective mass and frequency

~� �
~G2

2 ~K
; ~! � ~K

~G
; (32)

and the annihilation and creation operators

~A ¼
ffiffiffiffiffiffiffiffiffi
~� ~!

2@

s
xþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2@ ~� ~!

s
p;

~Ay ¼
ffiffiffiffiffiffiffiffiffi
~� ~!

2@

s
x� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2@ ~� ~!

s
p

(33)

~A and ~Ay satisfies ½ ~A; ~Ay� ¼ 1. The eigenvalues of the

number operator ~N ¼ ~Ay ~A is ~n ¼ 0; 1; 2; � � � . Then, up
to the first order of � and �, the Ĥ�

0 and Ĵ�z reduce,
respectively, to the following ~H0 and ~Jz:

~H 0 ¼ @ ~!ð ~Ay ~Aþ 1
2Þ; ~Jz ¼ @ ~J ð ~Ay ~Aþ 1

2Þ;
~J ¼ 1� �

~G@
:

(34)

The eigenvalues of ~H0 and ~Jz are, respectively,

~E n ¼ @ ~!ð~nþ 1
2Þ; ~J n ¼ @ ~J ð~nþ 1

2Þ: (35)

The term �= ~G@ of ~J in Eq. (34) reads �= ~G@ ¼ 1=½1þ
�2!2

�=ð�=�Þ�. Where �=� is a positive finite constant of

dimension mass�2 time2.
In the context of nonrelativistic quantum mechanics this

can be elucidated from conditions of guaranteeing the
deformed bosonic algebra in the case of both position-
position and momentum-momentum noncommuting. The
general representations of deformed annihilation and cre-

ation operators âi and âyi at the deformed level are deter-
mined by the deformed Heisenberg-Weyl algebra (3) and
the deformed bosonic algebra

½â1; ây1 � ¼ ½â2; ây2 � ¼ 1; ½âi; âj� ¼ 0: (36)

They are [18]

â i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2@

ffiffiffiffi
�

�

rs �
x̂i þ iffiffiffiffiffiffiffiffiffi

�=�
p p̂i

�
;

âyi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2@

ffiffiffiffi
�

�

rs �
x̂i � iffiffiffiffiffiffiffiffiffi

�=�
p p̂i

�
:

(37)

In the limits �, � ! 0, and �=� keeping finite, the de-
formed annihilation operator âi should reduce to the un-
deformed ai in commutative space. In the context of
nonrelativistic quantum mechanics, the general represen-
tations of undeformed annihilation and creation operators

ai and ayi are determined by the undeformed Heisenberg-
Weyl algebra and the undeformed bosonic algebra

½ai; ayj � ¼ �ij, ½ai; aj� ¼ 0. They read
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ai ¼
ffiffiffiffiffiffiffiffi
1

2c@

s
ðxi þ icpiÞ; ayi ¼

ffiffiffiffiffiffiffiffi
1

2c@

s
ðxi � icpiÞ; (38)

where c is a positive constant. In the limits �, � ! 0, and
�=� keeping finite Eq. (37) should reduce to Eq. (38). It
follows that the factor �=� in Eq. (37) should equal c�2,
that is,

� ¼ c�2�: (39)

Both noncommutative parameters � and � should be ex-
tremely small, because modifications to the normal
quantum mechanics originated from spatial noncommuta-
tivity should be vanishingly small. This is guaranteed by
Eq. (39).

The undeformed Heisenberg-Weyl algebra shows that
the equation ½ai; aj� ¼ 0 is automatically satisfied, thus

there is not constraint on the constant c. Up to now, how
to fix this constant from fundamental principles is an open
issue.

From Eqs. (35) and (39) the dominant values of the

lowest eigenvalue ~J 0 and the interval �~J n � ~J nþ1 �
~J n of ~Jz take, respectively,

~J 0 ¼ @

2

1

1þ 1=c2�2!2
p

; �~J 0 ¼ @
1

1þ 1=c2�2!2
p

:

(40)

Comparing with the corresponding results J 0 ¼ @=2 and
�J n ¼ @=2 in commutative space, Eq. (40) reveals that in

noncommutative space ~J 0 < @=2 and �~J n < @=2. The

result ~J 0 < @=2 is a clear signal of spatial
noncommutativity.

Towards a test of spatial noncommutativity using modi-
fied EMS—EMS [19] is used in atomic and molecular
physics to obtain unique information about the motion
and correlation of valence electrons in atoms, molecules,
and their ions. EMS involves the measurement of the
relative differential cross section for the ðe; 2eÞ reaction
on an atom or molecule as a function of the electron
separation energy and the momenta of observed electrons.
A calculation of the differential cross section requires a
knowledge of the target and ion wave functions. The
reaction can be considered as a measurement of properties
of these wave functions if it is well understood that the
cross section can be calculated within experimental error.
The measured and calculated momentum distributions are
different for different angular momentum states of the
electrons in the target, e.g., for the s state the maximum
of the momentum profile appears at the region of the
vanishing momentum, but for the p state the minimum
appears at the same region.

In modified EMS we study the ðI; 2IÞ reaction where I
means an ion. We take the incidental ion as the same type
as the target (trapped) one, and measure the relative dif-
ferential cross section of the two out-going ions as a

function of the ion separation energy and the momenta of
observed ions. Here information of the angular momentum
is, different from EMS, for the whole target ion, not for an
electron of the target ion. For our purpose the initial state of

modified EMS is taken as jii ¼ j
ij�ðþÞð ~k0Þi, where

j�ðþÞð ~k0Þi is a distorted wave of the incident ion and j
i
is an angular momentum eigenstate of the target ion.
Information of the angular momentum of the trapped ion
is included in the wave function of the initial state. As a
analog of EMS, the modified EMS ðI; 2IÞ reaction can
differentiate between wave functions of the trapped ions
with different angular momenta from the measured mo-
mentum distributions of out-going ions. For normal quan-
tum mechanics in commutative space, � ¼ � ¼ 0, in
limits of Hk ! Ek;0 and subsequent diminishing the mag-

netic field B to zero the effective parameter ~G ¼ 0, so the

effective frequency ~! and the annihilation operator ~A in
Eq. (34) cannot be defined. Using angular momentum
wave functions in momentum space for both normal quan-
tum mechanics and NCQM, calculating the differential
cross sections of ðI; 2IÞ reaction, and comparing theoretical
results with the measured ones, we are able to conclusively
determine whether space is noncommutative, i.e., a posi-
tive experimental result shows evidence of spatial non-
commutativity and a negative one draws a conclusive
preclusion of spatial noncommutativity.
The existing upper bounds of � and � are, respectively,

�=ð@cÞ2 � ð10 TeVÞ�2 [12] and j ffiffiffiffi
�

p j � 1 �eV=c [17].

From this upper bound of� the effective intrinsic magnetic
field

B� ¼ c�

q@
� 10�14 T: (41)

In order to meet the condition of deriving Eqs. (40), the
magnetic field B must be decreased to a level of some
orders less than B�. The diminishing level of B is deter-

mined by the level of shielding the background magnetic
fields. The field control at that level seems close to impos-
sible in the foreseeable future.
Recently, controlling a field at the 10�9 T level was

realized using magnetic shields of two thick mu-metal
cylinders [23]. It may relax the field control further to the
challenging, but achievable 10�12 T level. It is interesting
to consider the case of diminishing the external magnetic
field B to the level of �10�9 Tð10�12 TÞ. Using laser

trapping and cooling [24], the limit of Ĥk ! Êk;0 can be

reached. Up to the first order of � and�, the contribution of
the term �=G@ of J � in Eq. (28) is about �=G@�
10�5ð10�2Þ. The contribution of the other term G�=4@ is
about G�=4@� 10�36ð10�39Þ which can be neglected. For
normal quantum mechanics in commutative space, � ¼
� ¼ 0, in the limit of Hk ! Ek;0, the lowest angular mo-

mentum J �
0 ¼ @=2. The corresponding changes of the

lowest angular momentum �Ĵ �
0 � J �

0 � Ĵ �
0 originated

from spatial noncommutativity are, respectively,
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�Ĵ �
0 � 10�5

@ð10�2
@Þ: (42)

These results are signals of spatial noncommutativity
which are within limits of the measurable accuracy of the
modified EMS. In this case a positive experimental result
shows primary evidence of spatial noncommutativity. One
point that should be emphasized is that in this case a
negative one cannot draw a conclusive preclusion of spatial
noncommutativity, but provides an improved upper bound
of �.

The limit of the mechanical kinetic energy approaching
its lowest eigenvalue is an important ingredient to obtain
the final results. Now we discuss the consequences if this
condition is not fulfilled. In this case the effects of spatial
noncommutativity are contributed by the second term
�2�pipi=2@ and the third term �2�xixi=2@ of Eq. (7).
They can be estimated as follows. We consider the ion of
a mass number in the order A� 102. Using laser cooling to
reduce its average velocity to the order �v� 102 ms�1. Its
average momentum is around the order �p�
10�6 eV=ms�1. The average coordinate �x can be roughly
estimated by the uncertainty relation: �x��x, �p� �p,
and �x� @= �p. Up to the first order of � and �, the contri-
butions of � �p2=@ and � �x2=@� �@= �p2, according to the
existing upper bounds of � and �, are, respectively, about

� �p2=@� 10�20
@; � �x2=@� 10�17

@:

They are extremely small. Testing contributions of spatial
noncommutativity at such a level is almost impossible in
the foreseeable future.

Technical difficulties involved in the modified EMS
ðI; 2IÞ reaction are as follows:

(i) The differential reaction cross section for the ion-ion
scattering is very small. For a rough estimation using
a hard sphere model with radius 10�10 m, the total
cross sections is about 10�20 m2 which depends on
the ion’s type and energy [25].

(ii) The efficiency of the coincidence measurements of
two out-going ions is quite small. The efficiency of
measuring one out-going ion is determined by the
geometry of the spectrometer and the open solid
angles of ions going out from the trap. As a safe
region, the open solid angle is estimated as �1% of
the full 4� without deteriorating the performance of
the trap [26]. Therefore, the efficiency of the coin-
cidence measurements of the two out-going ions is
about 10�4.

It turns out that, like neutrino experiments, the pe-
riod of the modified EMS experiment is long. In
order to measure one momentum spectrum in a
year, one coincidence measurement per day which
corresponds to a frequency about 10�5 s�1 is neces-
sary. For this purpose the number of trapped ions and
the incident ion current are, respectively, about 1010

and 109 s�1. In such cases influence of ion’s electric
charge and magnetic fields of moving ions are large
which need to be greatly reduced by special com-
pensation techniques.

(iii) Ions with low energy are easily influenced by the
disordered background electric and magnetic fields.
Thus determinations of momentum distributions of
ions through measuring orbits of scattered ions may
lead to large error which should be controlled at a
reasonable level.

(iv) In order to guarantee that the inner structures of the
target and the incident ions are not changed during
scattering a careful selection of the suitable ion’s
type and beam energy are necessary.

A more detailed analysis by means of the knowledge of
the noncommutative wave functions shows that the total
cross sections for the ion-ion scattering keeps the same
order as one of using a hard sphere model. It is clarified that
detailed calculations do not change the basic character-
istics of the results of the above qualitative analysis. But a
detailed analysis of some experimental technique points
are out of the scope of the present theoretical paper.
Similar to EMS, the modified EMS is one of the most

subtle processes which provides a variety of information
for evaluating the dynamic mechanism of the ðI; 2IÞ reac-
tion. Though test of spatial noncommutativity using modi-
fied EMS is a challenging enterprise, unlike experiments
near the Planck scale 1019 GeV, modified EMS provides a
realizable way for measuring noncommutative quantum
effects on normal quantum scales. It is expected that the
experimental realization of the proposal will be the first
step towards a conclusive test of spatial noncommutativity.
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and D. Zappalà, Phys. Rev. D 72, 025010 (2005).
[18] Jian-zu Zhang, Phys. Lett. B 584, 204 (2004); Phys. Rev.

Lett. 93, 043002 (2004); Phys. Lett. B 597, 362 (2004);
Qi-Jun Yin and Jian-zu Zhang, Phys. Lett. B 613, 91
(2005); Jian-Zu Zhang, Phys. Lett. B 639, 403 (2006);
Phys. Rev. D 74, 124005 (2006); Int. J. Mod. Phys. A 23,
1393 (2008).

[19] I. E. McCarthy and E. Weigold, Rep. Prog. Phys. 54, 789
(1991).

[20] This effective potential Veff can be realized in a Paul trap
[see, for example, S. L. Brown and G. Gabriels, Rev. Mod.
Phys. 58, 233 (1986); H. Dehmelt, Rev. Mod. Phys. 62,
525 (1990)]. According to its electrode structure a Paul
trap involves an oscillating axially symmetric electric
potential Vð�; z; tÞ ¼ ðVd þ V0 cos�tÞð�2 � 2z2Þ=ð�2

0 þ
2d2Þ, where � ¼ ðx21 þ x22Þ1=2 and zð¼ x3Þ are cylindrical
coordinates; V0 and Vd are, respectively, the amplitude of
the radio-voltage and the dc voltage applied between the
electrodes of the ring and two end caps; 2d is the separa-
tion of the two end caps, and 2�0 the diameter of the ring
(generally �2

0 ¼ 2d2); � is a large radio frequency. The

dominant effect of the oscillating potential is to add an
oscillating phase factor to the wave function. Rapidly
varying terms of time in the Schrödinger equation can
be replaced by their average values. In the present ex-
ample, the trap operates in the field of the Paul trap and a
uniform magnetic field B aligned along the z axis simul-
taneously, i.e., it is a combined trap (see, e.g., R. J. Cook,
D. G. Shankland, and A. L. Wells, Phys. Rev. A 31, 564
(1985); G. Z. Li, Z. Phys. D 10, 451 (1988); R. Blatt, P.
Gill, and R. C. Thompson, J. Mod. Opt. 39, 193 (1992); K.
Dholakia et al., Phys. Rev. A 47, 441 (1993) and refer-
ences there in). Thus for large � we obtain a time-
independent effective potential Veff ¼ 1

2�ð!2
��

2 þ
!2

zx
2
3Þ, where !2

� ¼ q2V2
0=8�

2�2d4 þ qVd=2�d2 and
!2

z ¼ q2V2
0=2�

2�2d4 � qVd=�d2 are the macrofrequen-
cies, respectively, in the ðx1; x2Þ plane and z direction. The
above effective potential approximation is only valid at
high frequency �. Comparing with the Penning trap, the
advantage of the combined trap is that in the limit of
diminishing the magnetic field to zero it reduces to a Paul
trap, thus is still stable as a Paul trap.

[21] C. Baxter, Phys. Rev. Lett. 74, 514 (1995).
[22] Jian-zu Zhang, Phys. Rev. Lett. 77, 44 (1996); H. J.W.

Müller-Kirsten and Jian-zu Zhang, Phys. Lett. A 202, 241
(1995).

[23] B. E. Sauer, H. T. Ashworth, J. J. Hudson, M.R. Tarbutt,
and E.A. Hinds, XX Int. Conf. Atomic Phys. 869, 44
(2006); E. A. Hinds (private communication).

[24] See, e.g., F. Shimizu, K. Shimizu, and H. Takuma, Opt.
Lett. 16, 339 (1991). In terms of a number of laser beams
and Zeeman tuning velocities of atoms can reach 1 ms�1.

[25] For the electron-ion case, see, J. Lecointre et al., J. Phys. B
41, 045201 (2008); For the atom-atom case, see, K. J.
Matherson et al., Rev. Sci. Instrum. 78, 073102 (2007).

[26] The commercially available ion detectors with a large size
can realize the 100% detecting efficiency for the out-going
ions, such as the delay line detector, see, O. Jagutzkiet
et al., IEEE Trans. Nucl. Sci. 49, 2477 (2002). If some
technique of increasing the out-going probability of ions
without deteriorating the stable performance of the trap is
realized, the efficiency of the coincidence measurements
of the two out-going ions can be improved.

TEST OF QUANTUM EFFECTS OF SPATIAL . . . PHYSICAL REVIEW D 78, 105021 (2008)

105021-7


