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摘   要  

I 

摘  要 

量子力学本质上的不可预测性正好可以用来生成真正意义上的随机数。本论

文描述的随机数生成器的随机性和安全性通过量子背景相关性得到验证，Kochen- 

Specker（KS）定理能够将利用量子力学生成的结果与利用经典力学生成的结果区

分开来。此项工作用一个囚禁的 171Yb+离子的三个内部能级生成随机数。 

论文中的实验利用 KS 不等式，更具体地，利用了 Klyachko-Can-Binicioglu- 

Shumovsky（KCBS）不等式，它表现了量子力学当中测量结果对测量背景的依赖

性，这样既保持了严格的随机性，同时也大大简化了实验要求，能够以较快的速度

生成随机数。实验生成的随机数据明显破坏了经典力学当中的 KCBS 不等式，验

证了其随机性。而不等式的破坏值还能够进一步为生成的随机数字符串提供随机

性最小熵的下限。再者，囚禁离子技术的探测效率趋近于完美，由此彻底克服了一

般量子光学实验中存在的探测漏洞，充分地保证了随机性。此项实验工作提供了一

个实用性的快速、安全的随机数的生成器，会在很多实际应用中发挥重要作用。 

此项工作可以通过进一步延伸关闭相容性漏洞，这项扩展需要囚禁一个具有

稳定的搁置态的 137Ba+ 离子，而这两种离子的混合囚禁可以通过完美的同时测量

使随机数生成器更加高效。为此，我们需要控制离子的外部运动态来实现一个完全

摆脱漏洞的随机数生成器。本论文的成果还包括在实验中通过拉曼跃迁技术实现

了离子-激光的相互作用，还拓展出离子外部运动态中的声子数态 n 的加减操作。

借助绝热蓝边带跃迁技术的开发，对于 0 到 10 的任何一个声子数 n，离子的声子

数态得到了+1 或-1 平移，并在实验中观察到了非经典声子态的产生。 

 

 

 

关键词：随机数；量子力学；量子背景相关性；囚禁离子；声子数态 

 



Abstract 

II 

Abstract 

The intrinsic unpredictability of quantum mechanics can be used to generate 

genuine randomness. This dissertation demonstrates a random number generator 

certified by quantum contextuality, where Kochen-Specker(KS) theorem 

distinguishes the results of classical theories from those of quantum mechanics. 

In my work, three internal levels in a single trapped 171Yb+ ion are used to 

generate random numbers. 

We observe a violation of a KS inequality, in particular, the Klyachko-Can- 

Binicioglu-Shumovsky (KCBS) inequality which shows the measurement result 

in quantum mechanics rely on the context of the measurement.  In this way, we 

not only guarantee the randomness strictly, but also lower the experimental 

requirement, thus the speed of random number generation can be reasonably fast. 

Generated experimental result obvious breaks the inequality and certifies its 

randomness. Furthermore, the violation value of the inequality provides the 

bounds for the minimum entropy in the generated string. It can be emphasized 

that this experiment closes the detection loophole due to the perfect detection 

fidelity, which secures the random number generation. This experiment provides 

a practical fast and secure random number generator which will play an important 

role in various applications. 

This work can be extended to close the compatibility loophole by trapping 

a 137Ba+ ion which has stable shelving states,  and hybrid trapping of these two 

species of ions in the same trap will further improve the random number 

generation by implementing perfect sequential measurement . It requires the 

control of external motional state of the ion to achieve a loophole-free random 

number generator. This dissertation involves the result in developing ion-light 

interaction by Raman transition technique and extension of addition and 

substraction operations to external motional phonon state n  of the ion. By the 

development of adiabatic blue sideband transition, we accomplish +1 and -1 shift 

to phonon number for any n from 0 to 10 and observe the production of non-

classical state of phonon. 
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Chapter 1  Introduction 

1.1  Random Numbers 

Random number generation is important for many applications[1,2]. For 

cryptographic applications, random numbers should have good unpredictability in order 

to be secure under attack by the adversaries[3]. Genuine random numbers can never be 

generated by a classical device because any classical device bears in principle a 

deterministic description. Quantum mechanics, on the other hand, has intrinsic 

randomness, and thus can be explored to construct a genuine random number generator. 

There have been many demonstrations of random number generators based on quantum 

principles[4-14]. 

Self-certified random number generation is an advance made recently, where the 

randomness is guaranteed by violation of certain fundamental inequalities[14-16]. In 

particular, it was proposed in Refs. 14,15 that through violation of the Clauser-Horn-

Shimony-Holt (CHSH) inequality, one can certify the generated random numbers in a 

device-independent fashion that is secure against the adversaries who have only classical 

side information[17]. The first proof-of-principle experiment for this scheme has been 

recently demonstrated[14]. 

1.2  Quantum Contextuality 

We consider here a scenario where the provider of the device is assumed to be honest. 

However, we still need to physically certify that the random numbers are generated due 

to the intrinsic uncertainty of quantum mechanics instead of some uncontrolled classical 

noise process in the device. In this case, we can use quantum contextuality manifested 

through the violation of certain Kochen-Specker (KS) inequality to certify the generated 

random numbers[18,19]. Quantum contextuality is a basic property of quantum mechanics, 

where the measurement outcomes depend on the specific context of the 

measurements[20,21]. Quantum contextuality would be revealed by violations of some KS 

inequalities, and such violations can be observed even in a single indivisible system 

without any entanglement[22-27]. Because there is no need of entanglement, a certification 
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scheme of random numbers based on the KS theorem can significantly simplify the 

experimental requirement and generate certified random numbers with a much higher 

speed[18]. A proof-of-principle experimental implementation of this idea has been 

reported with a photonic system quite recently[18]. 

1.3  Trapped Ion System 

Trapped ion system has been in the forefront of quantum optics, quantum 

information, quantum metrology and quantum thermodynamics, especially one of the 

strongest candidates for large-scale practical quantum computation as it performed 

a series of ground-breaking experiments demonstrating universal quantum gates and 

quantum teleportation over the last decades. It has been shown to be a paramount example 

for precision and control. The advantage of long coherence time of trapped ion systems 

and the easy access to long range tunable interactions make it a dominant example for 

precision and control. Technology of trapping ions has also achieved great advances in 

gathering the knowledge about the interaction of light with atomic particles as well as 

implementation of multiple gate operations involving a quantum controlled-NOT gate 

proposed by Cirac and Zoller[32]. This technique is applicable to a large number of qubits 

in scalable trap structures. 

We perform the test of the experiment with a single trapped Ytterbium (171Yb+) ion 

in a four-rod radio-frequency(RF) trap (shown in Figure 1.2(a)(b)) based on the confining 

action of static and time-dependent electric fields[26,29].  
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Figure 1.1  Tsinghua ion trap. RF signal is amplified and connected to the trap 

through a helical resonator. An ion pump and a Ti sublimation pump are connected to 

the trap to make ultra-high vacuum environment lower than 10 -11 torr. 
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Figure 1.2  Four-rod trap and pictures of 171Yb+ ion. (a) Connection of the trap and 

oven of 171Yb+ ion in an octagon. The lasers shine into the trap through viewports. (b) 

Assembly of the four-rod trap with two micromotion compensation electrodes on the 

top. (c) Schematic of the four-rod trap. Among the four rods, two connect to RF while 

the other two are ground(GND) electrodes. In Chapter 3, the two ground electrodes 

are given 10.6V DC voltage to differentiate the two transverse modes clearly (380 

KHz apart). (d)(e) Pictures of one/two trapped 171Yb+ ion on the CCD camera. 
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Chapter 2  Random Number Generation and Certification 

2.1  The KCBS Inequality 

A particular type of the KS inequality, the Klyachko-Can-Binicioglu-Shumovsky 

(KCBS) inequality[22], is convenient for certification of random numbers. Violation of the 

KCBS inequality has been observed before in a single-photonic system[23]. For 

experimental test of the KCBS inequality, there are two possible loopholes: the detection 

efficiency loophole if the detectors only register a subset of data due to their inefficiency, 

and the compatibility loophole, which occurs if additional assumptions are required to 

guarantee that the observables with simultaneous assignment of values in the KCBS 

inequality are compatible with each other and remain identical when their measurement 

contexts change. The test of the KCBS inequality with the photonic system is immune to 

the compatibility loophole[23], however, it requires the fair-sampling assumption due to 

the low photon detection efficiency and thus subject to the detection efficiency loophole. 

In our scheme, a random number generator certified by quantum contextuality with 

a single trapped ion allows us to close the detection efficiency loophole for the first time 

for the KCBS inequality. For the compatibility, we follow basically the same 

configurations as in Ref. 23, where errors in compatible measurement settings only reduce 

the amount of the violations. Even with experimental noise and imperfections, we get 

significant violations of the KCBS inequality, which lead to lower bounds the minimum 

entropy of the generated random string. Compared to the experimental certification based 

on the CHSH inequality[14], the generation rate of random numbers is increased by about 

four orders of magnitudes in our experiment, which is important for practical applications. 

Report of our experiment is organized as follows. First, we introduce the KCBS inequality 

and show the experimental violation of this inequality. Then, we introduce the relation 

between the violation of the KCBS inequality and the minimum entropy of the generated 

random string for the case of an honest provider, and compare the theoretical prediction 

with our experimental observation. The generated random bits are tested under uniform 

or biased choice of measurement settings. We conclude this chapter by summarizing the 

results and discussing further improvements of our random number generation scheme. 

The Kochen-Specker theorem states that the results of quantum mechanics cannot 
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be fully explained by non-contextual classical theories which assume that the 

measurement outcomes of a physical system are predetermined and independent of their 

own and other simultaneous compatible measurements[20,21]. The KCBS inequality 

illustrates the conflict between quantum mechanics and non-contextual classical theory 

in the simplest possible system with the Hilbert space dimension 3d  [22]. The KCBS 

inequality is connected with the following simple algebraic equation. 

 1 2 2 3 3 4 4 5 5 1 3a a a a a a a a a a      , （2.1.1） 

where the value of ia  is either 1 or 1 . If the values of the observables are 

predetermined, the average of the left hand of the above equation should be no less than 

3 , leading to the following inequality: 

 1 2 2 3 3 4 4 5 5 1 3KCBS A A A A A A A A A A        . （2.1.2） 

2.2  Violation of the KCBS inequality 

In quantum mechanics, however, the outcomes of iA  do not have predetermined 

values, which allows violation of the KCBS inequality (2.1.2) for a specific state 0  

in systems with 3d  . In the case of 3d  , we denote the bases by 1 , 2  and  3  

and the observable iA , represented by 1 2i i iA v v  , is the projector on the axis iv . 

The maximal violation of the KCBS inequality (2.1.2) is achieved for the state along the 

symmetric axis of the pentagram shown in Figure 2.1(a). Here 1 1v  , 2 2v  , 

3 1 1( ,0)v R v , 4 2 2( , 0)v R v , 5 1 3( , 0)v R v  and 1 2v R 4( ,0) v , 

where   51.83。and 1,2R  denote the rotation operations between 1  to 3  and 

between 2  to 3 , respectively. Maximal violation the KCBS inequality is achieved 

under the state to 
0 4 4

1 1 2
1 2 1 3

5 5 5
     , with the corresponding value 

5 4 5 3.944KCBS     . 



Chapter 2  Random Number Generation and Certification 

7 

1 

1 

1 

Figure 2.1(b) shows the scheme for preparation of the initial state 0  starting 

from the basis state 3 , and Figure 2.1(c)–(g) describe the implementation of the 

measurement configurations along the five axes. To ensure context independence, we 

emphasize that the measurement configuration of iA  remains the same when it is 

measured with either 1iA   or 1iA   (let 0 5A A , 6 1A A ). For example, the scheme for 

the measurement 2A  is exactly the same in the first [Figure 2.1(c)] and the second stage 

[Figure 2.1(d)]. To move to the second configuration, we perform a rotation between the 

states 1  and 3 , which does not influence the state 2  that corresponds to the 

observable 2A . Only the observable related to the state 1  is changed from 1A  to 3A . 

The configuration for the measurement of 1A  in Figure 2.1(c) is not the same as 

that in Figure 2.1(g), which is therefore denoted by '

1A . If 1A  and '

1A  are not identical, 

it is possible to violate the inequality (2.2.1) even in classical theory. To solve this 

problem, similarly to Ref. 23, we use a new inequality that includes the observable '

1A  

with the form 

 
1 2 2 3 3 4 4 5KCBS A A A A A A A A     

' '

5 1 1 11 3A A A A    
 

. 

（2.2.1） 

Note that the inequality (2.2.1) becomes the original KCBS inequality (2.1.2) when

'

1 1A A . Therefore, the difference between two measurements decrease the violation that 

can be obtained in the experiments[23]. Another possible way out is to introduce an 

empirical parameter to upper bounds the violation of compatibility, which would be 

similar in spirit to a recent work where a parameter is introduced to bound violation of 

the locality loophole for test of the Bell inequalities[28]. Any imperfection in the initial 

state preparation or final measurements only leads to a reduction of violation of the KCBS 

inequality, so a significant violation of this inequality guarantees that the randomness 

comes from the quantum origin instead of a classical noise process. 
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Figure 2.1  The representation in 3 d  space and pulse sequences of a state and 

measurement configurations for the maximal violation of the KCBS inequality (2.1.2). 

(a) The five vectors form a regular pentagram, which represent observables 1A , 

2A ,…, 5A  that are the projectors on them. The vectors related to observables iA , 1iA   

are orthogonal, which makes the neighboring observables  compatible. The initial state 

0  for the maximal violation is located at the center axis (blue arrow) of the 

pentagram. The initial state and measurements of the compatible observables are 

realized by the pulse sequences shown in (b) and (c) -(g). (b) The pulse sequence to 

prepare 
0 4 4

1 1 2
1 2 1 3

5 5 5
     . Here, 1R  and 2R  represent the coherent 

rotations between 1  to 3  and between 2  to 3 , respectively, where  

41.97。  and   64.09。 . The sequence starts from 3  state (black filled circle) 

after optical pumping. (c)–(g) The pulse sequences for the measurement 

configurations (c) 1 2A A , (d) 2 3A A , (e) 3 4A A , (f) 4 5A A , (g) 
'

5 1A A , where  

51.83。 . The important aspect of the configuration is that the measurement scheme for 

iA  is perfectly unchanged when it is measured with either 1iA   or 1iA   except 1A , 

similarly to the photon realization [23]. The pulse sequence for the confirmation of the 

identicalness between 1A  and 
'

1A  is shown in Figure 2.2(d). For the random number 

generation, we choose one of the five configurations (c)–(g) based on software 
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random numbers. 
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The violation of the KCBS inequality have been observed with single photons[18,23], 

however, those experiments are subject to the detection efficiency loophole. Here, we 

present the experimental violation of the KCBS inequality in a single trapped ion. 

Because of the high detection efficiency for the trapped ion, we close the detection 

efficiency loophole for the first time for this inequality. 

2.3  Random Number Generation 

We perform the test of the KCBS inequalities (2.1.2) with a single trapped 171Yb+ 

ion in a four-rod radio-frequency trap[26,29]. The qubit states are represented by the two 

internal levels in the S1/2 ground state manifold, with 1,F  0Fm     and 0,F 

0Fm    .  

The initial state preparation and the measurement configurations are shown in Figure 

2.1(b)-(g), and they are realized by two microwaves with the frequencies 1  and 2 , 

which produce Rabi oscillations 1 1 1( , )R    and 2 2 2( , )R    between 1  to 2  and 

between 1  to 3 , respectively. Here, 1,2  and 1,2  are controlled by the duration 

and phase of the microwaves. 1 1 1( , )R    and 2 2 2( , )R    have the following explicit 

forms 

 

1

1

( )
1 12

1 1 1

( )
1 12

cos 0 sin
2 2

( , ) 0 1 0

sin 0 cos
2 2

i

i

ie

R

ie







 

 

 





 
 

 
  
 
  
 

, 

2

2

( )
2 22

2 2 2

( )
2 22

1 0 0

( , ) 0 cos sin
2 2

0 sin cos
2 2

i

i

R ie

ie







 
 

 





 
 
 
  
 
 
  
 

. 

 

For experimental convenience, we transform the observable 1A  to (1 ) / 2i iV A  , 

which is assigned to value 0iv   when photons are detected or 1iv   when no photons 

are detected. With iV , the KCBS inequality (2.2.1) is rewritten as 
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5 4
' '

1 5 1

1 1

5 4 4KCBS i i i

i i

V VV V V 

 

 
     

 
 

'

1 1 14 4 3V VV   
 

. 

（2.3.1） 

We obtain iV  by mapping the axis iv  to the state 3  and then measuring the 

probability 
3

( 1)i iP v V  (Figure 2.2(b)). For simplicity, let 
3

P P . The correlation 

terms 1i iVV   are obtained by sequential measurements depicted in Figure 2.2(c). First, 

we transfer iV  on the state 3  and apply the standard fluorescence detection scheme. 

If we detect photons, the state should not be 3  and we assign 0iv   to the observable 

iV , where the outcome of the correlation term i jVV  vanishes and no further 

measurements are needed. If we detect no photons, we assign 1iv   to the iV . Then, we 

apply the swapping microwave  -pulse that converts jV  to 3  before another round 

of fluorescence detection. If we observe photons, 0jv  , and if no photons, 1jv  . We 

assign the value 1 to i jVV  only when we detect no photons for both rounds of 

measurements. We obtain the average of the correlation term 
1( 1)i j i iVV P v v     by 

repeating the same experimental sequence many times[26]. 

The expectation value '

1 1VV  is obtained by the scheme shown in Figure 2.2(d). If 

'

1 1V V  ideally, the correlation '

1 1VV  should be same to 1V  since 1V  is projection 

operator 2

1 1V V . The state 1  at the beginning of Figure 2.1(g) corresponds to the 

observable 1V , which is exactly the same configuration as in Figure 2.1(c). Therefore, if 

photons are detected 1( 0)v   or not detected 1( 1)v   at the place where 1V  would be 

measured, photons should be observed '

1( 0)v   or not be observed '

1( 1)v   for the '

1V  

shown in Figure 2.2(d). After repeating the sequence of Figure 2.2(d), we acquire the 

probability that no photons are measured '

1 1( ( 1))P v v  , which gives '

1 1VV  by 

definition. 
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Figure 2.2  The trapped 171Yb+ ion system and detection schemes. (a) The schematic 

diagram of trapped ion 171Yb+ experimental setup for observing the violation of the 

KCBS inequality and for generating random numbers certified by the inequality. The 

three states 1, 0FF m  , 1, 1FF m   and 0, 0FF m   in the S1/2 ground 

state manifold are mapped onto 1 , 2  and 3 , respectively. One of the five 

measurement configurations in Figure 2.1(c)–(g) is chosen by the software generated 

random number and the pulse sequence of the chosen setting is transferred to the 

arbitrary waveform generator(AWG) and is applied to the ion through the amplifier. 

Depending on the photon counts on the photomultiplier tube(PMT), we assign values 

on the observables mapped on the state 3 . (b) The detection schemes for obtaining 

results of single observables iV , jV . First, iV  or jV  is mapped to the state 3  

and apply the standard fluorescent detection method. If we detect photons (no 

photons), we assign zero (one) on the observable iV  or jV . After repeating the same 

pulse sequence and the detection, we obtain the average value of the observable. (c) 

The sequential measurement scheme for the correlation i jVV . i jVV  has a value one 

when both of iV  and jV  have one, where no photons are detected at each stage. (d) 

The experimental confirmation of the identicalness of 1V  and 
'

1V . Ideally, whenever 

1V  has a result one (no photons), 
'

1V  should have the same result (no photons). Any 

imperfection or changes in the system will cause the mismatch of them, which reduces 

the violation in the extended KCBS inequality (2.2.1). 
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We randomly choose one of the five configurations (c)–(g) of Figure 2.1 based on 

computer generated random numbers and perform the sequential measurements. We 

change the order of sequential measurements 1( i iVV   or 1 )i iV V  with equal probability. 

We occasionally check the overlap of 1V  and '

1V . We repeat the sequences 1 × 105 times 

and observe KCBS  3.852(0.030), which violates the extended KCBS inequality (2.2.1, 

2.3.1) by 31 . The detailed results of the measurements are summarized in Table 2.1.  

Table 2.1  Experimental results for each of five settings and five joint 

probabilities for the KCBS inequality 

Setting 

𝑃|3⟩    Correlations   

Term Ideal Result  Term Ideal Result  

Fig 2.1(c) 〈𝑉1〉  0.452(5)  〈𝑉1𝑉2〉  0.014(1)  

 〈𝑉2〉  0.446(5)  〈𝑉2𝑉1〉  0.015(1)  

Fig 2.1(d) 〈𝑉2〉  0.448(5)  〈𝑉2𝑉3〉  0.016(1)  

 〈𝑉3〉  0.436(5)  〈𝑉3𝑉2〉  0.017(1)  

Fig 2.1(e) 〈𝑉3〉 0.447 0.428(5)  〈𝑉3𝑉4〉 0 0.014(1)  

 〈𝑉4〉  0.443(5)  〈𝑉4𝑉3〉  0.016(1)  

Fig 2.1(f) 〈𝑉4〉  0.464(5)  〈𝑉4𝑉5〉  0.015(1)  

 〈𝑉5〉  0.439(5)  〈𝑉5𝑉4〉  0.014(1)  

Fig 2.1(g) 〈𝑉5〉  0.443(5)  〈𝑉5𝑉1〉  0.017(1)  

 〈𝑉1
′ 〉  

0.431(5) 
 〈𝑉1

′ 𝑉2〉  
0.014(1)  

Fig 2.2(d)     〈𝑉1𝑉1
′ 〉 0.447 0.451(5)  

' ˆ( 3.944) 3.852(30)KCBS L        

 

We emphasize that our result of the violation cannot be explained by any non-
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contextual classical theory which does not exploit the compatibility loophole (the 

detection loophole is closed in our experiment). In other words, any classical part of the 

system such as technical noise, imperfections and/or unexpected changes of control 

parameters cannot produce the violation. Therefore, as long as we observe the violation 

of the inequality, we can ensure that the outcomes of our measurements originate from 

quantum mechanics.  

2.4  Minimum Entropy of Randomness 

We establish the relation between violation of the KCBS inequality (2.1.2, 2.3.1) 

and randomness of the generated string from the experiment, similar to the photonic 

demonstration[18]. We focus on the scenario with an honest provider of the device[17] 

rather than the extreme adversary scenario where the device has been produced by a 

malicious manufacturer. Even though we trust the device provider, we still need to ensure 

that the randomness of the generated sequence is caused by quantum uncertainty instead 

of technical noise[17]. For this purpose, we assume: (1) the system can be described by 

quantum theory; (2) the input at l th trial is chosen from a random process that is 

independent and uncorrelated from the system and its value is revealed to the system only 

at step l ; (3) the outcomes of the corresponding pairs of measurements at step l  are 

compatible (the measurement of one observable does not influence on the marginal 

distribution of the results of the other observable); (4) the adversary does not have any 

capability of controlling the inside of the system. The first and the second assumptions 

here are identical to those made in the certification scheme of Bell’s inequality[14]. The 

third is the contextuality assumption that replaces the role of locality assumption for the 

Bell inequality. The fourth is an assumption about the honest provider[17]. 

We consider five sets of measurement configurations 1 2 2 3 3 4 4 5{ , , , ,S A A A A A A A A

5 1}A A , where iA  is the observable with the output 1ia    and compatible with 1iA   

and 1iA  . We can rewrite the KCBS inequality (2.1.2) as 

 

5

1 1 1 1

1 ,

( ) ( ) 3
i j

i i i i i i i i

i a a

L P a a A A P a a A A   



        , （2.4.1） 

where 1 1( )i i i iP a a A A   or 1 1( )i i i iP a a A A   is the probability that the output results 

are the same or different for a chosen measurement setting 1i iA A  . Note that we change 

the sign of the inequality to make the deviation similar to that in Refs. 14,17,30. In our 
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experiment, since we use the observable iV  (result iv  0,1) instead of iA  and only 

distinguish the event of 1 1i iv v    from others, the Eq. (2.4.1) is modified as 

 
5 5

1 1

1 1

5 4 ( 1 ) 4 ( 1 ) 3i i i i i i

i i

L P v V P v v VV 

 

 
       

 
  , （2.4.2） 

where ( 1 )i iP v V  is the probability that the output result iv  is 1 at a measurement 

setting iV . The result of terms inside {…} is ideally zero and non-zero positive value 

can be occurred by experimental errors or imperfections, which only reduces the amount 

of violation from the optimal. Therefore, we can conclude that the experimental violations 

of the inequality (2.4.2) arise from solely quantum mechanical origin not any classical 

mean.  

In our realization, we estimate the violation of the inequality (2.4.2) by repeating the 

sequences n  times and additional runs ccn  of the compatibility check, the 

measurement setting '

1 1VV . The estimation L̂  of Eq. (2.4.1), obtained from the 

experimental data, is written as 

 

5

1

' '
4

5 1 5 11 1

'
1 1 5 1

' '

1 1 1 11 1

1

( 1 )4ˆ 5
( )

( 1 )( 1 )4

( ) ( )

4 ( 1 )4 ( 1 )

( )

i i

i i

i i i i

i i i

cc

N v V
L

n P V

N v v V VN v v VV

n P VV P V V

N v v VVN v V

nP V n



 

 


 

    
  
  

  
  
  



 , （2.4.3） 

where ( 1 )i iN v V  or 1 1( 1 )i i i iN v v VV    is the number of times that the outcome 

iv  or iv  and 1iv   is one under a measurement setting iV  or iV  and 1iV  , 

respectively. ( )iP V  or 1( )i iP VV   is the probability with which a measurement 

configuration iV  or iV  and 1iV   is chosen. Note that positive result of terms inside 

{…} and […] originates from the experimental flaws, which only reduces the amount of 

violation. 

The randomness of a single generated bit iv  from a measurement setting iV  can 

be characterized by the min-entropy 
2( ) log max ( )

ii i v i iH v V P v V
     , where 
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Figure 2.3  The min-entropy vs. the violation. The function ( )f L  in Eq. (2.4.4) 

depending on the violation L of the KCBS inequality (2.4.1), which is calculated by 

semi-definite programming (SDP). The function ( )f L ò  at various confidence 

levels (1 ')ò  such as 90%, 99% and 99.9% are plotted for the uniform choices of 

measurement configurations, where 1/ ) ln /( 2 '
maxm r n ? ò  and 

1min ( ) 1/ 5i i ir P A A   . Here we divide interval with the spacing 

1 ( 3) /10( 0.0944)
maxm m m   L L L . Given a measured L̂  and confidence level, we 

can estimate the min-entropy of a generated random string as summarized in Eq. 

(2.4.4). Note that we ignore the term 2log   in Eq. (2.4.4) that does not have 

dependence on the trial n . 
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( )i iP v V  is the conditional probability of obtaining iv  when the input setting iV  and 

the maximum is taken over all possible values of the output string. The theorem 1 of Ref. 

17 shows that the min-entropy of the generated string after n  trials is bounded by 

 2(v V, ) ( ) logmH m nf    L ? , （2.4.4） 

where ( 0,1,..., )am m xm mL  is a series of KCBS violation thresholds with 0 3L  the 

classical bound, and 4 5 5
maxm  L the maximum violation, and 

1/ ) ln /( 2 '
maxm r n ? ò , with r  the smallest probability of input choices 

min ( )i iP V . The parameter 𝜖′ denotes the closeness between the resulting distribution 

that characterizes k  successive uses of the device and another extended distribution that 

is well defined mathematically. f  is found as a lower bound on the min-entropy of the 

joint probability  (v v VV ) ( )i j i j i j i jP P v v V V  which establishes a relation between 

quantum contextuality and randomness of the measurement outcomes of our quantum 

system. According to the discussion in Ref. 14, the joint probability (v v VV )i j i jP  is a 

quantum realization if ( ) Tr( )ji

i j

aa

i j i j A AP v v V V O O  on a state   and observables 

 ( 1,2,3,4,5)i

i

a

AO O i   where i

i

a

AO  is a projector that projects the state onto an 

eigenstate of measurement iA  with eigenvalue ia . We want to obtain the lower bound 

on the min-entropy of the output randomness for a given violation L̂ : 

 2
ˆ(v v VV ) log max ( ) ( )

i ji j i j v v i j i jH P v v V V f L
   
 

, （2.4.5） 

which is equivalent to solving the following optimization problem: 

 
( , )

max                    ( )

ˆsubject to ( ) ( )

                 ( ) Tr( )ji

i j

i j i j

i j i j i j i j

i j S

aa

i j i j A A

P v v V V

P v v V V P v v V V L

P v v V V O O



     



 , （2.4.6） 
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where the optimization is carried over all quantum realization  , ,O P . The solution 

*( )i j i jP v v V V  of the above problem gives the minimal value of entropy 

2(v v VV ) log *( )i j i j i j i jH P v v V V    consistent with the quantum theory and the 

KCBS violation L̂ . To obtain a lower bound on the min-entropy as a function of L̂
 

which is independent of the input pair ( )i jVV , it is sufficient to solve (2.4.6) for all input 

and output pairs ( )i jVV  and ( )i jv v .  

Using to the technique introduced in Refs. 56,57, the above optimization problem 

can be effectively solved by casting it to a semi-definite programs (SDP) problem. For 

the set of operators  1 2 3 4 5, , , , ,O I v v v v v , theoretically from the setting of 

the pentagram we have 1 2 2 3 3 4 4 5 1 5 0v v v v v v v v v v     , thus the set of 

operators changes to  2 3 4 5 2 3 4 5
ˆ, (5 ) / 4 , , , ,O I L v v v v v v v v      . 

Now we only need to solve the SDP problem over all symmetric 6×6 positive semi-

definite matrices   with  1 0 ... 0c   and vector  1 2 9  ... 
T

y y y y 

 2 3 4 5 1 3 1 4 2 4 2 5 3 5        
T

v v v v v v v v v v v v v v  : 

 
1max                    

subject to        0

Tc y

 f
, （2.4.7） 

with the form 

 

4 52 32 3 4 5

1 41 3

2 4 2 5

3 5

ˆ1 (5 ) / 4

001

1 0

1 0

1 0

1

v vv vL v v v v

v vv v

v v v v

v v

     
 
 
 

   
 
 
 
 
 

. 
（2.4.8

） 

Here only the upper triangular part of   is given since it is symmetric. This SDP 

problem is solved using the matlab toolbox SeDuMi[58]. ˆ( )f L  equals zero at the 
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classical point ˆ 3L   and increases monotonously as L̂  increases. For the 

maximal violation ˆ 4 5 5L   , we get * 0.457P  , corresponding to approximately 

ˆ( ) 1.13f L  bits. Figure 2.3 presents how the min-entropies are affected by the 

confidence levels, 1 − 𝜖′ and 1 − 𝛿. When we set a high confidence level, 1 − 𝜖′, the 

bound on the min-entropy reduces as expected. Note that the certified min-entropy is only 

determined by measured value L̂  and the choice of 𝜖′, independent of experimental 

details. 

2.5  Experimental Setup 

For a single trapped 171Yb+ ion in a four-rod radio-frequency trap[26,29], the qubit 

states are represented by the two internal levels in the S1/2 ground state manifold, with 

1,F  0Fm     and 0,F  0Fm    (shown in blue in Figure 2.4(b)). The 

transition frequency between   to   is (2 )HF  12642.821 MHz, determined 

by the hyperfine interaction. These two states form a qutrit with 1,F  1Fm  . In detail, 

1, 0FF m  , 1, 1FF m   and 0, 0FF m   are mapped onto 1 , 2  and 

3 , the energy levels of qutrit are shown in Figure 2.4(b). 

Laser system for a 171Yb+ ion consists of 369 nm, 399 nm, 638 nm, 935 nm lasers. 

To load a 171Yb+ ion, we first heat up the 171Yb oven in the trap so that the 171Yb atoms 

pump out. A 399 nm laser beam excites them from 1S0 to 1P1 then ionized by a strong 

369 nm laser beam.  

The experimental procedure consists of Doppler cooling, initialization, coherent 

operations and detection. The frequency stabilized 369 nm laser is split into several beams 

to be used for Doppler cooling, initialization and detection by applying sidebands of 

different frequencies. 

Doppler cooling happens on 1/2 1/22 2S P  at wavelength 369.5 nm. 2S1/2 and 2P1/2 , 

Both 12.643 GHz and 2.105 GHz are necessary in order to cover all the hyperfine states 

of 2S1/2 and 2P1/2 , thus an Electro Optic Modulator (EOM) at 7.37 GHz is used to generate 

14.74 GHz modulation by its second order sideband. 

Initialization to the   state is realized by optical pumping that excites transition 
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between 1/2 1/22 1, 0 2 1, 0,1, 1F FS F m P F m      ,  where the lat ter states 

 

 

 

Figure 2.4  Energy state of a 171Yb+ ion. (a) The usages of 369 nm, 638 nm and 935 

nm lasers. (b) Qubit(blue) and qutrit(black) setting of a 171Yb+ ion. Detection covers 

1/2 1/22 1, 0 2 0, 0F FS F m P F m      without any modulation because 

1/22 0, 0FP F m   decays to the 1/22 1, 0,1, 1FS F m    states as the blue 

arrows. Doppler cooling covers both 12.643 GHz and 2.105 GHz, optical pumping 

covers 2.105 GHz. 1  and 2  are resonant to the transitions between 1  and 3 , and 

between 2  and 3  
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decay into the   state from where ion is hard to scatter because of hyperfine splitting. 

This procedure is implemented by adding 2.105 GHz sideband through another 

EOM. 

Detection beam only need to cover the transition between 

1/2 1/22 1, 0 2 0, 0F FS F m P F m      because ion at 1/22 0, 0FP F m   

state only decays to one of the 1/22 1, 0,1, 1FS F m    states and transition to 

  state is forbidden. Thus, no modulation is required for detection procedure.  

The other two lasers of 935 nm and 638 nm bring the ion back to state 2S1/2 

from metastable states 2D3/2 and 2F7/2 respectively as Figure 2.4(a) shows. 

After 1 ms Doppler cooling, the internal state of the ion is initialized to 3  by 3 

μs standard optical pumping with efficiency 99.1% [26]. The states are coherently 

manipulated by the microwaves 1  and 2  that are resonant to the transitions between 

1  and 3 , and between 2  and 3  (Figure 2.4(b)). The quantum operations of 

the microwaves 1  and 2  are described by the rotation matrix 1 1 1( , )R    and 

2 2 2( , )R   , respectively. Here 1 2,   and 1 2,   are controlled by the duration and the 

phase of the applied microwaves through an amplifying horn as shown in Figure 2.5. The 

2𝜋 times for both Rabi oscillations are adjusted to 29.5 μs, that is 1,2  (2𝜋) 33.9 kHz 

in frequency. The maximum probability of off-resonant excitation 2 2

2 1/ ( )    is 

about 1.6 × 10-5, small enough to ensure independence of each Rabi oscillation. The 

standard fluorescent-detection method enables us to differentiate between one state 

versus the other two states of a qutrit. We observe on average 10 photons at 369.5 nm for 

the 1  or the 2  state and detect no photon for the 3  state. The state detection error 

rates for wrongly registering the state 3  and missing the state 3  are 0.9% and 1.9%, 

respectively, with the discrimination threshold 1phn  . As shown in Figure 2.2(b), we 

t r a n s f e r  t h e  i n f o r m a t i o n  o f  o b s e r v a b l e 
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Figure 2.5  Photo of the microwave horn applying to the trap. The microwave horn is 

almost attached to trap, applying the amplified microwave signal through the viewport 

and providing operation to the trapped ion. 

 

( )i jA A  by  -pulse and apply the measurement sequence. Then we assign the value 

1ia  ( 1)ja   on the observable ( )i jA A  when photons detected or 1ia   ( 1)ja    

when no photons are detected. After repeating the same experimental procedures, we 

obtain the iA  ( iA ). Here we emphasize that our setup is not subject to detection 

loophole and provide a value of the measurement at every trial.  

2.6  Experimental Result 

We perform hundred thousand trials to generate random bits as described in the 

previous section. At each trial, we choose one of the five measurement configurations 

shown in Figure 2.1(c)–(g) by computer-generated random numbers, perform the 

sequence composed of Doppler cooling, state initialization and rotations for the chosen 
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Figure 2.6  Comparison between theory and experimental results. (a)(c)The min -

entropy (v V)H
 (2.4.4) depending on the number of trials for (a) an uniform 

distribution of measurement settings ( ) 1/ 5iP V   and (c) a biased distribution with 

1( ) 1 4P V q  , 2 3 4 5( ) ( ) ( ) ( )P V P V P V P V q    , and 
1/26(100000)q   with the 

probability of errors 𝜖′=0.01 and 𝛿=0.001. The min-entropies (a A)H
 are bounded 

by the relation of the violation L̂  of the KCBS inequality (2.4.4), where we set the 

10 intervals of L̂  between 0L  and 
maxmL . The min-entropies are linearly increasing 

as the number of trial increases and the slopes are basically dependent on the 

thresholds of the intervals 7L =3.6610 (blue), 8L =3.7554 (green), 9L =3.8496 

(yellow), and 10 ( )
maxmL L =3.944 (red). The black dots are obtained from the violation 
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values that were observed at the number of trials. (b)(d) The correlation between the 

KCBS violations (2.4.4) and the min-entropy (2.4.4) of the strings for (b) the uniform 

input choices and (d) the biased settings. Here we divide the total 1 × 105 numbers by 

10 division and show the KCBS violations L̂  and min-entropies in the division. We 

can clearly show that the monitor of L̂  at each division provides sufficient 

information to guarantee the min-entropy in the division. 

 

configuration and finally record the existence of fluorescence. As explained, we obtain a 

random bit, i.e., 1 (or 0) with fluorescence (or no fluorescence) for each trial. The 

sequence takes about 10 ms, mainly limited by the wave-form loading time to the pulse 

generator. Note that the random generator based on the CHSH inequality produced a 

random bit per several minutes. 

Figure 2.6 shows the min-entropies of generated strings. We produce a string of 

length 1×105 with uniform choices of the measurement settings, ( ) 1/ 5iP V  . As shown 

in Table 2.1, we observe the expectation L̂ 3.852 0.030, implying the min-entropy 

4(v V) 5.24 10uniH   with 99% confidence. Note that the other confidence level   

does not have any noticeable influence on the bound of min-entropy. Here we used the 

thresholds of KCBS violations 
9

9
3.8496 ( 3)

10 maxm

 
   

 
L L . 

Figure 2.6 shows clearly the advantage of our certification scheme, i.e., we can 

guarantee the min-entropy of the generated random string by only monitoring the 

violation L̂  independent of experimental details. Figure 2.6(a) shows the accumulated 

behavior of the min-entropy as the number of experimental trials n  increases. The solid 

lines show the theoretical linear increment of the min-entropies and the slopes are 

determined by only the thresholds mL . Due to drifts of experimental parameters, the 

violations L̂  are fluctuating from one threshold to another, which accordingly 

introduces the changes to the min-entropy, accordingly. Figure 2.6(b) shows details of 
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Figure 2.7  The results for random tests. The summary for the results of random 

tests[31] on our generated random numbers. In the tests, we can consider the sequences 

as random if P–values of the tests are over the threshold that we set, 0.01. All of 

random numbers pass the listed tests.  

 

the transient behavior of the generated random string. We monitor the violation L̂  for 

each batch of 41 10n   trials and estimate the min-entropy in the batch. Figure 2.6(b) 

reveals that the min-entropies are correlated to the violations L̂  and completely 

determined by the thresholds mL  at given confidence level 99%. Here, we do not need 

massive random tests to ensure the amount actual random number in the generated string. 

The amount of min-entropy of our random numbers is guaranteed by the measured 

violation L̂ , regardless of unexpected changes of experimental parameters. 

We also generate random bits with a biased choice of measurement settings, where 

1( ) 1 4P V q  , 2 3 4 5( ) ( ) ( ) ( )P V P V P V P V q    , and 1/2q n   with 6   and 

510n  . We observe basically the same behavior of the min-entropy for the generated 

string except for a slightly smaller bound due to the non-uniform setting. We get the min-

entropy bound 
4(v V) 1.4 10biaH   from 1×105 rounds with violation of L̂  3.901. For 

the biased choice of measurement settings, the output entropy (1.35×104) exceeds the 

input entropy (1.14×104), and we obtain 2.1×103 net random bits. For the case of uniform 
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measurement settings, we always need more initial randomness and thus cannot obtain 

net randomness. This is similar to the random number generation scheme with the CHSH 

inequality, where to generate net randomness, one always needs to consider non-uniform 

measurement settings. 

Finally, we carry out a series of random tests[31] to examine the quality of our 

random numbers obtained by collecting the outcomes of the first measurement in each 

trial. We apply the random tests that are appropriate for the size of our random numbers, 

which are ‘Frequency’, ‘Block Frequency’, Cumulative Sums (Cusums)’, ‘Runs’, 

‘Longest-Run-of-Ones in a Block (LROB)’, ‘Rank’, ‘Discrete Fourier Transform Test 

(FTT)’, ‘Approximate Entropy (AE), ‘Serial’ The p-values of all the tests, which are the 

probabilities that an ideal random number generator would produce less random sequence 

than the tested one. Therefore, a p-value of 0 simply means that the tested sequence 

appears to be completely non-random, whereas a p-value of 1 implies that the sequence 

in test appears to be perfectly random. The p-value lies in the open interval (0,1) and if p-

value is larger than a significance level  , we accept the sequence as random for the test. 

Typically   is chosen to be in the range [0.0001, 0.01] and we set  =0.01. Note that 

we use Von-Neumann extractor for the output strings to make uniform distributions, 

which reduces the size of random numbers to one quarter. We also note that the random 

tests are different from guaranteeing the amount of min-entropy in the generated string. 

In other words, even the data could not pass the random tests but still have the quoted 

min-entropy. 

Figure 2.7 shows the summary of the test results. Actually the real randomness of 

our generated strings is already certified by the KCBS inequality, which is a much 

stronger statement than claiming that the produced numbers pass all the random tests, 

since no random tests on finite strings should be considered complete. 

2.7  Extension for Loophole Free Experiment 

Our scheme of sequential measurement invented an effective way to distinguish the 

probability of 1i jVV   with 0i jVV   by defining 0iv   if we detect the 
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Figure 2.8  Energy state of a 137Ba+ ion. It has a stable shelving state at 5D5/2 state 

with a 1762 nm narrow band laser. When the ion is at this shelving state, it does not 

fluoresce when illuminated with the cooling lasers of 493 nm thus provide clear 

detection. Ion can be excited out of the dark shelving state and begin a new run with a 

614 nm laser. A repump laser at 650 nm excites the ion out of the 5 D3/2 state. Both 

hyperfine states and Zeeman sublevels (not shown in the figure) of 5D5/2 state and 

6S1/2 state can be used as a qutrit. The example shown here uses two hyperfine states 

of 5D3/2 state and 1/26 0, 0FS F m   to form a qutrit. 
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photon and 1iv 
 

if no photon is detected. However, the detection of the ion breaks the 

dark state, in this case, second detection of jV  is not meaningful anymore at all, which 

implies our current system cannot distinguish the results of 0, 0i jV V 
 

and 

0, 1i jV V  . Although it is enough for experimentally certifying random numbers, the 

compatibility loophole still left open in the theory. 

A perfect solution as well as the next step of improving our experiment system is 

trapping a Barium ion. For a 137Ba+ ion, the hyperfine states of the metastable 5D5/2 state 

with 35 s lifetime provide direct shelving from the ground state. This highly efficient and 

robust shelving process can be accomplished by using a 1762 nm narrow band laser with 

adiabatic passage technique[48,49]. The detection of this shelving event is reliable since the 

ion remains dark and does not fluoresce when illuminated with the cooling lasers at this 

“shelved” state, it is obvious to clarify the “dark” and “bright” state. When we use the 

hyperfine states and Zeeman levels of the 6S1/2 state as qutrit similar to a 171Yb+ ion, the 

information can be fully transferred and detected in the 5D5/2 state. Furthermore, multiple 

hyperfine states and Zeeman levels of the 5D5/2 state itself are also strong candidates for 

forming a qutrit with the 6S1/2 state, like one of the examples shown in Figure 2.8. Both 

schemes can fully close the compatibility loophole, lead to a totally loophole free random 

number generator! 

After realizing Barium ion trapping, we plan to develop hybrid trapping technique 

to invent an even stronger random number generator. To accomplish this, we may first 

realize sub-Doppler cooling to lower temperature than Doppler cooling with independent 

trapping of Barium ion. By co-trapping two species of ion in the same trap with the 

scheme in Figure 2.9, we can take advantage of both easy and clear hyperfine structure 

of 171Yb+ as well as stable shelving of 137Ba+ or 138Ba+ ion. Although two different species 

of ions are trapped in one trap, they have independent detection setting, which will lead 

to simultaneous detection of both ions’ information at the same time thus implement 

perfect sequential measurement. In this way, our generated random numbers will be 

mu ch  mo r e  secur e  an d  e f fec t iv e  bo th  th eo r e t i c a l l y  an d  p r ac t i c a l l y .  
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Figure 2.9  Hybrid trapping of a 171Yb+ ion and a 137Ba+ ion. These two species of ions 

can be trapped in the same trap and implement perfect sequential measurement.  
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Chapter 3  Phonon Shift Operation 

3.1  Motional Structure of an Ion 

In our system, a single atomic 171Yb+ ion is confined in a harmonic potential 

generated by radio frequency in the radial axis and dc-voltage in the axial direction. This 

harmonic oscillator potential is used as a quantum databus for transferring and processing 

information between multiple ions. By using an external coherent laser light, the internal 

electronic levels can be coupled to each other and the external motional degrees of 

freedom of the ions. Light is able to influence motion of the ion during an emission or 

absorption because of the momentum transfer between the ion and a photon. Controlling 

the ion motion becomes available by controlling the atom-photon coupling since the light 

field can act as a source of energy. In our case, the internal state of the ion, which is 

simply represented by a two-level subsystem, stores the quantum information. When we 

tune the laser mode close to the transition of this two-level ion with ground state   

and excited state  , this accurate interaction between light and the electronic structure 

of the ion can be transferred to the state of motion, thus the motion of two or more ions 

in the same potential realizes the “databus” to exchange information. 

The motion of the ion can be approximated by a harmonic oscillator 

 
2

( ) 2 2
ˆ 1ˆ ˆ

2 2

m

X

P
H M X

M
  , （3.1.1） 

where M is the mass of the ion, X  is the trap frequency along the radial direction X-

axis which comes from confinement of the transverse mode. The transverse COM modes 

oscillate the ion at two different motional modes X  .(2𝜋) 2.8 MHz and Y  .(2𝜋) 

3.18 MHz. The frequency difference of these two modes is 380 KHz, which is enough 

for getting rid of mutual effect. We achieved this amount by adding 10.6 V DC voltage 

to the two ground electrodes of the four rods in Figure 1.2(c). In our experiment, we only 

care the inner mode X . X̂  and P̂  are position and momentum operators. The 

framework of this quantum system is defined by its eigenstates 
M

n , 0,1,...n  with 
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eigenenergies ( 1/ 2)n XE n h . The energy quantum of this system is called a phonon 

for vibrational quanta. The motion of the ion in the harmonic potential is quantized using 

the creation and annihilation operators 

 
† ˆ ˆˆ

2 2

X

X

M i
a X P

M




 

h h
, （3.1.2） 

 ˆ ˆˆ
2 2

X

X

M i
a X P

M




 

h h
, （3.1.3） 

for all 0n  , we have the usual ladder algebra 

 
†ˆ 1 1

M M
a n n n   , ˆ 1

M M
a n n n  , （3.1.4） 

but ˆ 0 0
M M

a  . The Hamiltonian is then given by 

 
( )ˆ mH  † 1

ˆ ˆ( )
2

X a a h . （3.1.5） 

3.2  Stimulated Raman Transition 

The total Hamiltonian of the system can be written now as[51,52] 

 ( ) ( ) ( )ˆ ˆ ˆ ˆe m iH H H H   . （3.2.1） 

( )eH  characterizes the internal electronic state of the ion, ( )iH  describes the interaction 

of ion to the applied light fields. With the denotation ˆ :      and ˆ :     , 

the coupling Hamiltonian has the form[50] 

 
ˆ ˆ( ) ( )( ) 1ˆ ˆ ˆ( )( )

2
L Li kX t i kX tiH e e

     

    h , （3.2.2） 

with rabi frequency   measures the strength of the coupling and L  is the effective 

frequency of the light field. 2 /k    is the wave number with   being 
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Figure 3.1  Interaction between internal and external degree of freedom. Ion with two 

levels of internal electronic states couples to the harmonic oscillator of vibrational motion 

states with Xh  energy difference. 

 

 

Figure 3.2  Schematic of three typical transitions (carrier, blue sideband and red 

sideband). They are shown in the view of (a) harmonic oscillation potential , (b) 

motional state with two levels. 
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the wavelength of the light field. Introducing the Lamb -Dicke parameter 

/ 2 Xk M  h , it describes the interaction strength between the light and the motional 

modes of the ion in the ground state, thus yielding †ˆ ˆ ˆ( )kX a a  . Induced by the light 

field, this Hamiltonian is moved into the interaction with the free Hamiltonian 

( ) ( )

0
ˆ ˆ ˆe mH H H 

†ˆ ˆ ˆ/ 2 ( 1/ 2)HF z X a a    h h  (Figure 3.1). When the transformation 

with the unitary transformation 
0 0

ˆ ˆexp[ ( / ) ]U i H t  h  is applied, the two terms which 

oscillating rapidly with frequency HF L   are neglected in the rotating-wave 

approximation(RWA), while the other two terms oscillate with frequency 

L HF HF     = ,  resul t ing the Hamil tonian in  th e interact ion picture 

 

† ( )

int 0 0

†

ˆ ˆ ˆ ˆ

1
ˆ ˆ ˆ( exp( ( )) . .)

2
L L

i

i t i ti t

H U H U

e i a e ae h c
    





   h
. （3.2.3） 

If the ion is confined to the Lamb-Dicke regime (defined by the condition 2 1 1n  =  

for all the phonon number n ), which implies the ion’s position spread is small compared 

to the wavelength[53], we can simplify the model to  

 
†

int

1ˆ ˆ ˆ ˆ{1 ( )} . .
2

L Li t i t i tH i a e ae e h c
     

    h  . （3.2.4） 

Excitation with the external field coherently couples the vibrational motion of the ion to 

the internal electronic state. As the ion oscillates in the trap and the detuning of the laser 

field is set precisely to meet the trap frequency, the laser can couple the state ,n  to 

all phonons. The sidebands of the transition occur in the absorption or emission processes, 

leads to the transfer of the energy difference h  in kinetic energy of the ion when 

changing the phonon number n . 

From Eq.(3.2.4), it is clear to identify three most commonly used transitions defined 

as follows considering respective levels 

 

Carrier:   , ,n n     

Blue Sideband:  , , 1n n     

 Red Sideband:  , , 1n n     

（3.2.5） 

Neglect the terms proportional to  , the first resonance, carrier transition, is excited 
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when the frequency is tuned to 0  . The Hamiltonian reads 

 ,

1 1ˆ ˆ , ,
2 2

i t i t

car n nH e n n e    

     h h   （3.2.6） 

with coupling strength 2

, 0 (1 )n n n     for all 0n   while 0 HF  . It is actually 

pure qubit transitions without motional modes of the ion, thus bring no changes to the 

phonon number distribution. 

When the resonance of the laser is blue detuned by one unit of the trap frequency to 

have X  , the blue sideband (bsb) transition is excited with the form[53,54] 

 
†

, 1

1 1ˆ ˆ ˆ( ) , 1 ,
2 2

Li t i t i t

blue n nH i a e e n n e
     

       h h ,  （3.2.7） 

corresponding rabi frequency changes to , 1 01n n n    . It is description of 

absorption of a photon reducing the phonon number by one, and successfully entangles 

the motion state with the internal state of the ion.  

In the same way, the red sideband (rsb) transition is excited when the laser is red 

detuned by the trap frequency s.t. X    

 
, 1

1 1ˆ ˆ ˆ( ) , 1 ,
2 2

Li t i t i t

red n nH i ae e n n e
      

       h h  

with , 1 0n n n   ,  

（3.2.8） 

for 1n  , but not for the ground state as previously mentioned. This stimulated emission 

of a phonon leads to increasing of the phonon number.  

Stimulated Raman transition is a two photon process involving two qubit levels in 

the ground state as well as an excited electronic state e [55], it consists of combined 

stimulate absorption and emission of a photon. This virtual level must be far off the 

resonances of all real levels, especially the lifetimes of the e   needs to be much 

shorter than the transitions    . Thus the frequency difference of the two light 

fields make L . Raman detuning e  of this virtual level from the 1/2P  state is 

determined by the wavelength of the counter-propagating laser beams. Figure 3.4 shows 

the Raman transition configuration for 171Yb+ ion.  
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Figure 3.3  Rabi oscillation of carrier and blue sideband transition. (a) Rabi 

oscillation on the carrier transition in the spin qubit between |↓, 0⟩ and |↑, 0⟩. (b) Rabi 

oscillation on the blue transition between |↓, 0⟩ and |↑, 1⟩. The vertical axis shows the 

probability of detecting the ion in the bright state, and the horizontal axis shows the 

interaction time between light field and the ion. Here we get the value 

1,0 0/ 0.098     . 
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3.3  Sideband Cooling 

Although the ion is Doppler cooled in the trap, due to the average energy 

B XE k T n   h  that originates from the temperature T of the system, the ion is in a 

mixture of the vibrational motion states. Sideband cooling is necessary procedure to cool 

the ion to the ground state[50,54]. The idea of the process that substracting the vibrational 

quantum number one by one until the ion is cooled to phonon number 0 is implemented 

by iteration of red sideband transition and optical pumping. A  -pulse of red sideband, 

for which the frequency of the laser is tuned to HF X  , excites the ion from 

, , 1n n     and then leads to the reduction of phonon number by one when the 

optical pumping process is followed. In this way, a cooling cycle is established without 

changing the initial internal state. We repeat this Raman cooling cycle for N=100 

iterations until the ion is brought to ,0 . To the result, the ground state is a dark state 

that not affected by the laser light, as the ion cannot make a red sideband transition from 

0n   to 1n    since the latter does not exist. Figure 3.5(a) shows the scheme of 

sideband cooling. 

According to the definition of red sideband transition, its  -pulse time 

, 1 , 1 0/ /n n n nT n        depends on their initial vibrational state. It means that 

another independent process is needed to calibrate the resonance frequency as well as rabi 

frequency. By taking a Raman spectrum separately, we first apply frequency scan, then 

use the fitted resonance frequency to do time scan to obtain 1,0 0/T     between 

,1 ,0    in experiment, and then calculate exact Raman cooling time for each step. 

After Doppler cooling and optical pumping procedure which pumps the ion to dark state, 

we start the first sideband cooling cycle by turning on the Raman beams to excite 

transition from ,100  to ,99  then again applying optical pumping beam to make 

ion from ,99  to ,99 . We repeat the procedures in the same way only changing 

the red sideband transition time by , 1 , 1 / 1n n n nT T n n   , and ends up with a  -pulse 

from ,1  to ,0  and optical pumping. The schematic of all the sequences is 

depicted in Figure 3.5(b). Effect of sideband cooling is clearly showed in Figure 3.6, 

complete suppression of the red sideband transition implies the ion is cooled to the ground 

state. 
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Figure 3.4  Raman transition configuration. (a) Raman beams applied to the trapped 

ion. (b) Raman transition via an excited state. Light fields couple the qubit levels 

between   and   at detuning L HF    . Blue sideband and red sideband can be 

realized by blue and red detuning of X  amount from effective laser frequency HF . 
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Figure 3.5  Schematic and procedure of Raman sideband cooling. (a) Raman sideband 

cooling process starts from Doppler cooling and optical pumping, then the ion is supposed 

to be in ,n
 

state. A  -pulse of red sideband transition reduces the vibrational 

motion state by one as the spin is flipped to   state. When followed by optical 

pumping, the ion is transferred to , 1n   state. This cycle is processed until the ion is 

in the ,0  where no more red sideband can be excited. (b) Time schematic for 

sideband cooling. Duration of the pulsed Raman transition at first cycle is 1,0 /T n , then 

 -time of red sideband increases by factor of 1 /n n . Finally, the ion is cooled to 

the ground state after n
 
cycles. 
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Figure 3.6  Effect of sideband cooling shown by spectrum.  (a) Spectrum before 

sideband cooling. (b) Spectrum after sideband cooling. Red sideband transition is 

completely suppressed. 
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3.4  Rapid Adiabatic Transition Process 

Now it is straightforward to implement the creation operator 
†â  as the ion is cooled 

to the ground state. A  -pulse of blue sideband transition followed by a  -pulse of 

carrier transition will map the ion from ,0 ,1 ,1     , thus increases the phonon 

number by one. This scheme can be applied for any vibrational number state ,n , but 

the  -pulse period of blue sideband transition changes on the dependency of n , which 

makes it difficult to simultaneously apply exact  -pulse of blue sideband for every 

phonon number state if the ion is in a mixture of vibrational motion states. Condition is 

same for the annihilation operator â  which consists of first  -pulse of carrier transition 

followed then a  -pulse of blue sideband transition. Furthermore, the creation and 

annihilation operators 
†â  and â  do not simply add and substract phonons, but also 

bring modification to the state amplitudes with n  factors. Therefore, pure shift 

operation independent of phonon number n , actually bare addition and substraction of 

phonons, are required besides the creation 
†â  and annihilation â . Instead of normal 

blue sideband transition, the adiabatic blue sideband transition   operation transfers the 

ion from ,n  to , 1n   for any n .  

We apply the scheme shown in Ref. 33 to accomplish the adiabatic blue sideband 

transition by changing intensity and detuning of the Raman beams. Intensity   follows 

Sine curve to have 0( ) sin( / )t t T   , where adiabatic transition duration takes 7 

times of  -pulse time of blue sideband transition with 1,07 91T T s    in 

experiment, which is reasonably fast comparing to the scheme demonstrate in Ref. 34 

with linear control of the intensity and Gaussian control of the detuning. Detuning   is 

realized by adding a time varying detuning phase 
0

( ) ( )
t

t t dt   , with 

0( ) cos( / )t t T   and the parameter is set to be 0 01.5   , experimentally takes the 

value of (2 ) 55.6 KHz. 

However, the geometric phases are acquired during this rapid adiabatic passage 

(RAP) and they have to be cancelled out. Spin-echo is the solution for eliminating 

accumulated geometric phases. Experimentally it is realized by inverting the intensity 

  of the laser beams as depicted in Figure 3.7. This protocol transfers the state from 
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Figure 3.7  Time dependent control of the laser intensity and detuning in rapid 

adiabatic transition process. The time dependence of the laser intensity Ω(𝑡) =
Ω0sin(𝜋𝑡/𝑇) and the detuning δ(𝑡) = δ0cos(𝜋𝑡/𝑇). Intensity is inverted in the middle 

as spin-echo. 

 

,n  to , 1n   regardless of phonon number n  between 0 to 6. The observed 

fidelity of the adiabatic operation is shown in Table 3.1. The error compared to the 

simulation mainly comes from heating process and imperfection of Fock state preparation 

which is also mainly due to the heating during the operation. 

Table 3.1  The comparison between the simulation and the experimental result of the 

adiabatic blue-sideband transition 

 |↓ ,0⟩ →|↑ ,1⟩ |↓ ,1⟩ →|↑ ,2⟩ |↓ ,2⟩ →|↑ ,3⟩ |↓ ,3⟩ →|↑ ,4⟩ |↓ ,4⟩ →|↑ ,5⟩ 

simulation(%) 99.48 99.88 99.15 99.52 98.17 

experiment(%) 98.8 96.3 96.9 96.4 92.4 

 

Although this pure addition and substraction operations are different from creation 

and annihilation operators, they produce non-classical state of phonon[35]. For Fock state 
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and coherent state, Wigner function measurement is done after pure phonon shifting 

operations either addition or substracting. The observation of a negative probability 

proves the generation of non-classicality. 

3.5  Experimental Setup 

The laser source of the Raman transition is a Coherent Mira 900 mode-locked 

Titanium:Sapphire (Ti:S) laser which provides switching between continuous wave (CW), 

femtosecond and picosecond operations. It is pumped by a Verdi 532 nm green laser and 

has quite a wide frequency range. This Titanium:Sapphire laser provides 2.2W at 756 nm, 

we lock the frequency-doubled laser at 378 nm with 200 mW to start optical path to the 

trap. As the laser’s repetition rate is 76.2 MHz, a band pass filter chooses the frequency 

between 166th and 167th which is closest to HF .  

The 756 nm red laser is used for frequency stabilization. Its frequency that acquired 

from Photo Diode is mixed with frequency of / 2HF , then the frequency is doubled 

after first passing through a low-pass filter to filter out high frequency component from 

the output of the mixer. The doubled frequency is mixed with the frequency of Raman1 

(213 MHz) then feedback again to Raman1 RF source which provide frequency 

modulation (FM). Finally, the stabilized frequency is applied to the Acousto-Optic 

Modulator (AOM1 in Figure 3.8) where the laser source divides into two beams. The 

frequency generated by either another RF source or an Arbitrary Waveform 

Generator(AWG) board of Raman2 is applied by AOM2 and its first order needs to pass 

the same distance as Raman1 beam to excite Raman transition. This procedure is 

accurately controlled by an one-dimensional translation stage covered with two mirrors 

on the path of Raman1. The signals of RF source and AWG are combined together then 

output to AOM2 which provide the choice of using either RF source or AWG. For most 

cases, RF source is first used to process sideband cooling to cool the ion to the ground 

state, then we use AWG for subsequent operations. The zeroth order of AOM2 is used 

for stabilizing the intensity which feedback to AOM0. 

The laser is first focused at AOM1 position with a 400 mm lens (L1), L2 and L3 

with the same focal length collimate Raman1 and Raman2 respectively. A vertical 
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cylindrical lens V1(f=500 mm) converges the height of Raman2. L4(f=75 mm) and 

L5(f=300 mm) makes the beam size of Raman2 bigger. By adding these two lenses, the 

distance of the image of AOM1 to the image of AOM2 in the trap is lowered to guarantee 

the strength of the transitions as well as convergence of the laser alignment at various 

frequencies. 

 

 

 

 

Figure 3.8  The schematics of the Raman set up with Coherent Mira 900. Raman1 

and Raman2 are separated by AOM1, they are the first order of AOM1 and AOM2, 

respectively. Intensity stabilization is applied using the zeroth order of AOM2 then 

feedback to AOM0. Feedback of frequency stabilization system goes to AOM1. The 

756 nm laser shown in red is used to monitor the repetition rate and stabilize the 

frequency. The lenses are shown in blue and the vertical cylindrical lens  V1 is in 

white. 
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Figure 3.9  Coherent Mira 900 laser and beam path.  
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3.6  Experimental Result 

As the first attempt, phonon addition to a coherent state of 𝛼=0.5 is experimentally 

operated. Although there are several technical aspects to be improved, the phonon 

distribution of initial state is shifted by one after phonon addition operation (Figure 3.10). 

Furthermore, we successfully observed negative value when measuring Wigner function 

of this phonon added coherent state. This result is shown in Figure 3.11.  

 

 

Figure 3.10  Phonon addition of α=0.5 coherent state shown by measuring phonon 

distribution. (a) Original phonon distribution after preparing α=0.5 coherent state. (b) 

Phonon distribution after phonon addition operation.  
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Figure 3.11  Wigner function measurement of α=0.5 coherent state after phonon 

addition operation. Obvious observation of negative value (with minimum of -0.48) 

proves generation of non-classical state of phonon. 

3.7  Related Work 

There has been another project of testing Quantum Jarzynski Equality with a trapped 

ion system in our lab. Being a milestone in the development of non-equilibrium statistical 

mechanics, Jarzynski equality relates the free energy difference W  between two 

equilibrium states and the work F  done on the system through far from equilibrium 

processes[59]. The Jarzynski equality has the form 

 
( )/

1BW F k T
e
 

 , （3.7.1） 

here T  is the initial temperature of the system in the thermal equilibrium and Bk  is 

Boltzmann constant. 

Our project developed an experimental scheme as a test of the quantum Jarzynski 

equality with a single 171Yb+ ion trapped in harmonic potential, also performed projective 

measurements on phonon[36] to determine the initial eigenstate from thermal distribution 

and the standard phonon distribution measurement after work is done on the projected 

eigenstate to find work distribution. This work is also done by applying laser induced 
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force on the projected energy eigenstate, and finding transition probabilities to final 

energy eigenstates after the work is done. In classical regime, this equation has been 

successfully performed in various systems[37,38,39,40,41]. Work distribution is described by 

  
,

( ) ( ) (0) th

n n n n n

n n

P W W E E P P       , （3.7.2） 

where    exp (0) / / exp (0) /th

n n B n Bn
P E k T E k T      shows the initial thermal 

distribution and 
2

ˆ( ) (0)n nP n U n   is the transition probability from the initial 

state (0)n  to the final state ( )n   under the evolution operator Û .  

For the test of the validity of the Jarzynski equality, we observed that the average of 

the exponentiated work    exp / ( )exp /B BW k T P W W k T    does not depend on 

the protocol of applying the work from quasi-static to far-from equilibrium. It is observed 

by obtaining the conditional probability from the projected energy eigenstate out of 

thermal distribution to the final eigenstate after the work is done on the projected state. 

The experiment is processed as following four stages: 1. Preparation of thermal State; 2. 

Projection to an energy eigenstate; 3. Application of work on the eigenstate; 4. 

Measurement of final phonon distribution. The procedure is repeated to obtain statistically 

meaningful result. 

Figure 3.12 illustrates the result. Phonon number state n  is prepared up to 5n   

with over 90% fidelity (Figure 3.12(a)). Then the laser induced force is applied on the 

prepared state for the durations of 5 μs, 25 μs and 45 μs with the linear increase of the 

strength to the same maximum value as shown in Figure 3.12(b). Figure 3.12(c) 

summarizes the final phonon distributions depending on the speed of applying work on a 

Fock state, which are the transition probabilities n nP  . Figure 3.12(d) shows the 

probability distribution of dissipated work, W F  constructed from n nP   with the 

phonon distribution th

nP  of effective temperature T  480 nK calculated from the initial 

average phonon number n  0.157. It is clear that the ramping of the force with the 

duration τ = 45 μs is close to adiabatic, the mean value and the width of the distribution 
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of the dissipated work increase with the pulling speed. The dissipated work for the case 

of τ = 5 μs shows non-Gaussian distribution, which strongly indicates the process is far-

from equilibrium. 

Our experiment demonstrate the validity of Jarzynski equality when other 

estimations deviate from the ideal values in far-from equilibrium regime[60]. The main 

error in the experiments come from the heating of phonon modes, but the effect of the 

heating in the Jarzynski estimation is less than experimental uncertainties according to 

our numerical simulations. Our experimental developments pave the way for further 

investigation of the equality in an open quantum system and may shed light on the 

understanding of work and heat in quantum regime[47,42]. This demonstration could lead 

to some applications in quantum heat engine[43,44] as well as for the quantum information 

processing[42,45,46] and would be able to provide an experimental tool for Boson-sampling 

problem[36]. 
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Figure 3.12  The dissipated works and the transition probabilities of three different 

speeds of ramping up the force. (a) The fidelity of phonon Fock state from n = 0 to 5. 

(b) The force is linearly increased to the maximum value in three  different durations, 

which are corresponding to far-from equilibrium (5 μs), intermediate (25 μs) and near 

adiabatic (45 μs) processes of work. The dashed line shows the adiabatic process to 

bring the system to the lab frame in 50 μs. (c) The transfer probabilities from initial 

state (0) ( (0) 0,1,...,5)n n   to the final state ( )n   with three speeds measured by 

maximal-likelihood method after the work process.  (d) The distributions of dissipated 

works at n  0.157 have full information to test the validity of quantum Jarzynski 

equality, Eq. (3.7.1). The data (bars) are resulted from the transfer  probability (c). The 

three distributions of dissipated works show the characteristics of far-from 

equilibrium, intermediate and adiabatic processes . 
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Chapter 4  Conclusion 

4.1  Experimental Conclusion 

In summary, we have demonstrated violations of the KCBS inequality using a single 

trapped ion, with the detection efficiency loophole closed for the first time. We use 

quantum contextuality to certify randomness of the measurement outcomes. The 

randomness of our device is ensured by observing violations of the inequality independent 

of experimental details. With our device, we already obtained a net output entropy. 

4.2  Outlook 

In the future, our device can generate random numbers with a higher speed and 

better security. We plan to use a 137Ba+ ion which has a stable shelving state as a qutrit to 

achieve loophole-free random number generation. After developing Barium ion trapping, 

an even better device with perfect sequential measurement by hybrid trapping of a Barium 

ion and an Ytterbium ion are expected to totally complete our random number generator 

which is important for practical applications. As we have been dealing the motion of the 

ion by ion-laser interaction, this promising improvement is already on the way. 
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