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Chapter 1

Introduction to Quantum Information

Quantum computer is regarded as the most powerful computing machine in the

near future. It can handle such problems which are impossible to be solved by classi-

cal computer[1]. Meanwhile, security of communication[2] in quantum information

is another aspect attracting researchers.

1.1 Basic Concepts in Quantum Information

In classical computer, the basic unit of computation is bit, as we know, ”0”

or ”1”. They are distinguished by the value of voltage, such as ”0” represented by

low voltage while ”1” represented by high. However in quantum computer, we have

qubit, which means ”quantum bit”. It is natural to choose different quantum states

as qubit, noting |0〉 and |1〉. Fortunately, superposition of states is allowed in the

quantum physics, so we can realize a state,

|φ〉 = α|0〉+ β|1〉 (1.1)

where α and β are arbitrary complex number and satisfy |α|2 + |β|2 = 1. Such

superposition of bits is unreachable in classical computer.

Another basic concept in quantum information is entangle state. Entangle is

the quantum correlations between systems which can not define individual prop-

– 1 –
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erties. Mathematically, an entangle state can not be written as the product of

individual states. Such as Bell State and GHZ state, they are well-known entangle

state. Entangle state is the essential component in quantum information, especially

in quantum communication.

1.2 Requirements of Quantum Computation

To realize universal quantum computation protocols, there are several necessary

requirements[3]:

1. state initialization of the qubits

2. long-lived coherences

3. universal set quantum gates

4. efficient qubit measurement

5. scalable to large number of qubits

There are several systems proposed to realize the quantum computation: su-

perconductor circuits[4], quantum dots and dopants[5], ion trap system[6], optics[7],

Nuclear Magnetic Resonance (NMR)[8], and so on. The ion trap system is what we

now focus on.

1.3 Advantages of Ions Trap System

Comparing with other systems, the ion trap system has its own advantages:

1. Realize the initialization of ion state by optical pumping

2. Have long life time in the trap

3. Have the longest coherence time among known physical system

4. Detect with high efficiency over 99%

5. Control over internal and external degree easily

– 2 –



Chapter 2

Dynamics in Ion Trap System

2.1 Paul Trap

For a ion trap system, primary thing to realize is the trapping of ion. The

electric field is first choice because of the charges with ion. According to the Maxwell

Equations, a single ion cannot be trapped in a purely static electric field. To satisfy

the equation in free space:

∇ · ~E = 0 (or ∆Φ = 0) (2.1)

it means that a electric field line enters into the region must go out the region. This

requirement leads the result that a purely static electric field cannot trap a ion in

all three dimensions. So other way is required.

One popular form of ion trap is Penning Trap[9], which combines static electric

field and magnetic field together. Another form is called as Paul Trap[10], using

spatially time-dependent electric field, typically oscillating at radio frequency (RF).

In our setup, we use four-electrodes trap, one type of Paul Trap.

Seeing our setup in Figure 2.2, a radio frequency source is connected to the

trap through amplification and helical resonator. An ion pump and a Ti sublimation

pump are connected to the trap to make ultra-high vacuum environment lower than

10−11 torr.

– 3 –
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Figure 2.1: Four-electrodes Paul trap by courtesy of [11]

Figure 2.2: Ion trap used in CQI.

The potential of trap near axis is, generated by electrodes[12]:

Φ(x, y, t) =
U0

2
cos (ΩT t)(1 +

x2 − y2

R2
) (2.2)

– 4 –
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Figure 2.3: Hyperbolic electrodes. The resulting potential is shown for t = 0.

2.2 Pseudopotential: Harmonic Potential

Based on (2.2), we consider how ion moves in such a trap. Assuming an ion feels

electric field E(x, t) (for convenience considering x direction), the force applying on

the ion is:

F = mẍ = eE(x, t) = eE0(x) cos (ΩT t) (2.3)

if the electric field oscillates in cosine with frequency ΩT . After integrating over

time, we obtain:

x(t) = x0 −
eE0(x)

mΩ2
T

cos (ΩT t) (2.4)

– 5 –
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assuming the initial position of ion is x0. So the ion is oscillating near the x0 with

frequency ΩT . We can expand the E0(x) for the position near the ion:

E0(x) = E0(x0) +
∂E0(x)

∂x

∣∣∣∣
x=x0

(x− x0)

= E0(x0) +
∂E0(x0)

∂x0

(
eE0(x)

mΩ2
T

cos (ΩT t))

(2.5)

Because of fast ΩT , It is meaningful to consider force applying on the ion for

time average. Obviously after time average, the part of cos (ΩT t) vanishes. The left

part is:

F̄ = − e2

2mΩ2
T

∂E0(x)

∂x
E0

= −e∂ψp
∂x

(2.6)

where we define pseudopotential[13] ψp as:

ψp =
eE2

0

4mΩ2
T

(2.7)

So in general we can derive that:

F̄ = −e∇ψp(x, y, z) ψp(x, y, z) =
e( ~E(x, y, z))2

4mΩ2
T

(2.8)

Checking our trap, we have:

E(x, y, z) = −∇Φ = − V0

R2
(x~ex − y~ey) (2.9)

The time average force applying on ion is:

F̄ = − e2V 2
0

2mΩ2
TR

4
(x~ex − y~ey) (2.10)

– 6 –
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Focusing on one dimension (take x direction for example), we have:

F̄x = mẍ = − e2V 2
0

2mΩ2
TR

4
x (2.11)

It is easy to notice that the motion equation

ẍ+
e2V 2

0

2m2Ω2
TR

4
x = 0 (2.12)

is the equation of a harmonic oscillator with oscillating frequency

ωx =
eV0√

2mΩTR2
(2.13)

So does the y direction.

Figure 2.4: The pseudopotential derived from (2.8).
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2.3 Mathieu Equation: Micromotion

Using pseudopotential approximation, we can roughly get the outline of the

ion’s motion in trap, but almost all the details are neglected. It is necessary to solve

the motion equation more rigorous. Actually the precise solution to the dynamics

of single trapped ion has been carefully studied [14].

Insert (2.2) into the motion equation of x direction:

ẍ = −Z|e|
m

∂Φ

∂x
(2.14)

where m is the mass of ion and Z|e| is the charge, we get the equation:

ẍ+
|Z|eV0

mR2
x cos (ΩT t) = 0 (2.15)

Actually it is the form of Mathieu equation:

d2x

dξ2
+ [ax − 2qx cos (2ξ)]x = 0 (2.16)

on substituting:

ξ =
ΩT t

2
ax = 0 qx =

2|Z|eV0

mΩ2
TR

2
(2.17)

In the case |ax|, q2
x � 1, the high orders of the solution to Mathieu equation can be

neglected. The approximate solution is:

x(t) = x0 cos (ωxt)[1−
qx
2

cos (ΩT t)] (2.18)

where x0 is dependent on the boundary condition. ωx in this case is:

ωx =
ΩT

2

√
ax +

q2
x

2
=
qxΩT

2
√

2

=
|Z|eV0√
2mΩTR2

(2.19)
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It is equal to (2.13) if we take |Z| as 1. Obviously this part oscillating with frequency

ωx is corresponding to the approximation of pseudopotential. The second part is

still a cosine oscillating part, with frequency ΩT and a amplification modulation

factor qx/2� 1. For ΩT � ωx, the ideal harmonic oscillation is overlapped with a

smaller but faster oscillation, which is called as micromotion.

Figure 2.5: Ideal harmonic oscillation and the solution to Mathieu equation. The
dashed line(red) is the harmonic oscillation, while solid(blue) line shows the result
of micromotion.

2.4 Dynamics in Quantum Mechanics

In experiment we add two addition DC electrodes to confine the micromotion.

So it is proper to regard the ion as a harmonic oscillator. Simply we can get the

Hamiltonian of the motion of the ion in the trap:

Ĥm = (â†â+
1

2
)~ν (2.20)

Furthermore, for a harmonic oscillator, its eigenstates are the set of Fock State |n〉.
We note they as the motion states of the ion with different energy phonon level |n〉.

Then, we consider a pair of qubit (| ↓〉 and | ↑〉 to distinguish from Fock state)

– 9 –
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as a two level system. It’s convenient to introduce Pauli Matrices:

Î = | ↓〉〈↓ |+ | ↑〉〈↑ | σ̂x = | ↓〉〈↑ |+ | ↑〉〈↓ |

σ̂y = i(| ↓〉〈↑ | − | ↑〉〈↓ |) σ̂z = |1〉〈↑ | − | ↓〉〈↓ |
(2.21)

So the Hamiltonian of the two level system is:

Ĥe = ~ω↓| ↓〉〈↓ |+ ~ω↑| ↑〉〈↑ |

= ~
ω0

2
σ̂z + ~

ω↓ + ω↑
2

Î
(2.22)

where ω0 = ω↑ − ω↓. It is no problem to ignore constant part, to rewrite Ĥe as:

Ĥe = ~
ω0

2
σ̂z (2.23)

For | ↓〉 and | ↑〉, we note they as internal states.

Figure 2.6: Motion state and internal state. (a) shows the motion state of an
harmonic oscillator with frequency ν, the basis of state is Fock state |n〉. (b) shows
the internal state of a simple two level system. (c) shows the coupling between the
motion state and internal state.

Noticing that we have motion states |n〉 and internal states | ↓〉 and | ↑〉, we can

easily couple them by laser. So the new space is the direct product of motion space

– 10 –
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and internal space. The basics are noted as | ↑, n〉 and | ↓, n〉 (Shown in Figure 2.6).

If we note the Hamiltonian of interaction as Ĥi, the total Hamiltonian is:

Ĥ = Ĥm + Ĥe + Ĥi (2.24)

What we care about is the coupling between motion states and internal states,

therefore we transform into interaction picture with free Hamiltonian Ĥ0 = Ĥm+Ĥe.

Thus the interaction Hamiltonian is:

ĤI = Û †0ĤiÛ0 (2.25)

where Û0 = exp (−(i/~)Ĥ0t). We will discuss this in detail in next chapter.

– 11 –



Chapter 3

Laser Setup, Ion initialization and Manipulation

3.1 Ytterbium and Laser Setup

It is common to question that why we choose Ytterbium (actually 171Y b+)

as trapped ion. In fact, several ions, such as Ba+, Be+, Ca+, Cd+,Mg+, Y b+, have

been successfully manipulated in trap[13]. All ions mentioned above have a common

feature. They are all hydrogen-like ions. This common point determines that they

have similar level structure. In experiment, it is convenient to realize the transition

through 2S1/2and 2P1/2. Meanwhile, other transitions among 2S1/2, 2P1/2, 2D5/2and

other energy level are also useful.

3.1.1 Laser Setup

The most efficient way to drive the transition is based on laser which energy of

photon (or wavelength) satisfy the energy gap between levels of transition. For our

171Y b+, several lasers we use are listed in the Figure 3.1 (in dashed black line):

– 12 –
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Figure 1.1: Ytterbium fine and hyperfine structure. The complete level scheme, including the hy-
perfine structure, of Ytterbium which is exploited for ion trapping. A 369.5 nm laser
is essential for driving the 2S1/2 →2P1/2 transitions for ionizing the Ytterbium neutral
to the continuum and also to cool the atom. The 369.5nm laser is also used for state
detections and for preparing and manipulating the Ytterbium Qubit.

X 1Σ+
g manifold ([17]). Molecular iodine is often selected as a frequency reference for

wavelengths from the near-infrared (e.g., 830 nm [21]) to the visible spectrum (e.g.,

633 nm [16]) to the disassociation limit at 499.5 nm because of the density of narrow

absorption lines in this region[14, 11]. These lines can serve as excellent frequency

references for laser stabilization to a few parts in 10−9 or better[7]. However, data on

the transitions involved in producing the spectrum for the regions 667 nm to 776 nm

and the 514 nm to 526 nm is generally scarce [19] beyond what data was provided by

the iodine atlas by Gerstenkorn and Luc (GL atlas [11, 10]) likely due to the weak

lines at room temperature. It is not altogether certain whether the lines around

the 739nm region (13530.0936cm−1, 13530.1934cm−1 and 13530.6745cm−1 [14]) are

Figure 3.1: 171Y b+fine and hyperfine structure (to scale), courtesy of [15]. The
369.53 nm laser is used for photoionization (with 398.9 nm laser), optical pumping,
Doppler cooling and detection. 935 nm and 638 nm laser are used to take ion back
from unexpected manifolds.

3.1.2 Hyperfine Qubit

Actually we put 171Y b+in a fixed magnetic field, leading to Zeeman splitting

or hyperfine structure of initial energy level. Here we choose two hyperfine levels as

our qubit (as shown in Figure 3.1):

| ↓〉 = |2S1/2, F = 0,mF = 0〉

| ↑〉 = |2S1/2, F = 1,mF = 0〉
(3.1)

– 13 –
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3.2 Initialization of Ion

Initialization of ion is one of the key step to realize further manipulation. Here

are several steps for initialization.

- 7 - 

In general, trapped-ion system meets all the DiVincenzo criteria to a great extent, 

and can be implemented with existing techniques. Compared with other types of 

approaches, it is most promisingly to provide a functional prototype of quantum 

computer in current state of technology.  

Trapped-Ion System with 171Yb+ II.

General View1.

Our experimental trapped-ion system can be divided into several subsystems 

with different functions, as shown in Fig. 1. 

Trap

System

Vacuum

System

Laser

System

Detection

System

Confinement

System

Control

System

Fig. 1 | divisions of our experimental system 

The vacuum system is used to provide an UHV condition for the ion trap to 

reduce the background collision rate, thus ensuring a relatively long lifetime of the 

ions. 

The laser system is made up of lasers, cavities, electro-optic modulators and 

acousto-optic modulators. Its goal is to generate frequency-stabilized laser beams for 

Doppler cooling, optical pumping, state detection and coherent gate operation, etc. 

Figure 3.2: Divisions of our experimental system, courtesy of [16]

3.2.1 Photoionization

In fact 171Y b+is loaded into the trap by the photoionization of neutral Y b. In

the vacuum chamber (shown in Figure 2.2) the trap and ions guns are included.

After applying current to the ion guns, atom beam is headed into the trap. With

the help of two laser, the photoionization can be successfully achieved.

According to Figure 3.3, one beam is 398.9 nm, which is provided by Topica

diode laser. Another is 369.53 nm which is the SHG laser from a 739.06 nm diode

laser. Additionally, in order to avoid Doppler Effect, the direction of two laser beam

should be approximately perpendicular to the atom beam.

– 14 –
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Figure 3.3: Partial level diagram of neutral Ytterbium atom (to scale). The process
of photoionization is shown by courtesy of [13].

3.2.2 Doppler Cooling

After photoionization, we apply Doppler cooling[17] to the trapped 171Y b+by

369.53 nm laser, which is slightly red detuned from 2S1/2|F = 1〉 → 2P1/2|F = 0〉.

For a incident light to be red detuned from resonance, because of Doppler

Effect, the light frequency an atom feels is closer to resonance if an atom moves

towards than it moves away. Considering an atom will absorb more photons when

light frequency is closer to resonance, an atom will be slowed down in a certain
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direction because of absorbing momentum of photons against atom.

However the spontaneous emission is still in random, so scattering in any other

direction can heat the atom rather than cool it. The lowest temperature can be

achieved is[18]

kBT =
~Γ

2
(3.2)

where Γ is the rate of spontaneous emission.

In our case we use 2S1/2|F = 1〉 → 2P1/2|F = 0〉 as Doppler Cooling cycle.

Because our laser can cause off-resonance coupling to 2P1/2|F = 1〉, the decay will

cause ion trapped in | ↓〉, which limits the efficiency of cooling. So we add an

Electro-Optic Modulator (EOM) driven at 7.37 GHz to couple | ↓〉 to prevent this.

Furthermore, considering the opportunity of decay from 2P1/2→ D , we still need

laser 935 nm with an EOM driven at 3.07 GHz to bring state back to cooling cycle.

Finally for the S → F caused by collision, we also need laser 638 nm.

3.2.3 Optical Pumping

It is important to initialize the state in | ↓〉 by optical pumping[19]. We use

laser 369.53 nm with an EOM driven at 2.01 GHz, which couples the transition of

2S1/2|F = 1〉 → 2P1/2|F = 1〉. In this cycle all the state decay back to | ↓〉 will be

trapped and can not come back to the cycle. After finite cycles (in our experiment

about 1 µs), most of the state will be in | ↓〉

3.2.4 Detection

To do the state detection, we still use 2S1/2|F = 1〉 → 2P1/2|F = 0〉 transition.

If the ion is at | ↑〉, there will be enough scattering photons. On the contrary, if the

ion is at | ↓〉, there will be less photons.
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Figure 4.6: The 171Yb+qubit (not to scale). The 2S1/2|F = 1,mF = 0〉 state is defined to be |1〉,
and the 2S1/2|F = 0,mF = 0〉 state is defined to be |0〉. (a) State initialization to |0〉
by application of light resonant with the 2S1/2|F = 1〉 ↔ 2P1/2|F = 1〉 transition. (b)
Detection of the qubit state. If the qubit state is |1〉, the 369.53 nm light applied for
detection is nearly on resonance, and the ion scatters many photons. If the state is |0〉,
very few photons are scattered. Measurements of the hyperfine splitting of the 2S1/2

and 2P1/2 levels are found in Ref. [36] and [105], respectively. Details regarding our
measurement of the hyperfine splitting of 2D3/2 and 3[3/2]1/2 are found in Sec. 4.6.

63

Figure 3.4: The process of initialization by courtesy of [20]. (a) refers to optical
pumping. 369.53 nm laser with EOM driven at 2.105 GHz is used to coupling of
2P1/2|F = 1〉 levels. (b) refers to the detection of the qubit state.
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3.3 Raman Transition

3.3.1 General Theory of Two Level Transition

As we mentioned in last chapter, the total Hamiltonian applying on the ion

can be describe as (2.24). In recent researches of interaction, what we focus on can

be simplified as the transition in a two level system. For running wave light field

case, coupling Hamiltonian can be described as[14]

Ĥi =
~Ω

2
(σ̂+ + σ̂−)× [ei(kx̂−ωt+φ) + e−i(kx̂−ωt+φ)] (3.3)

Transforming it into interaction picture in (2.25) way, the interaction Hamiltonian

is

ĤI = Û †0ĤiÛ0

=
~Ω

2
e(i/~)Ĥet(σ̂+ + σ̂−)e(−i/~)Ĥet

× e(i/~)Ĥmt[ei(kx̂−ωt+φ) + e−i(kx̂−ωt+φ)]e(−i/~)Ĥmt

(3.4)

For part e(i/~)Ĥmtx̂e(−i/~)Ĥmt, it is the transformation from Schrodinger picture to

Heisenberg picture, which means

e(i/~)Ĥmtx̂e(−i/~)Ĥmt = x̂H(t) (3.5)

According to the derivation in reference [14], we have

kx̂H(t) ≈ η(âe−iνt + â†eiνt) (3.6)

This equation is only established when η � 1, (|ax, q2
x| � 1). The parameter η is

called as Lamb-Dicke parameter, which is equal to η = kx0 = k
√
~/(2mν). Obvi-
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ously x0 is the extension of the wave package of ground motion state. Lamb-Dicke

parameter is essential parameter in ion trap system. We confine our experiment in

Lamb-Dicke region for η � 1 (in experiment η ≈ 0.098), where harmonic oscillator

can be a ideal approximation.

Now inserting (3.6) into (3.4), in reference [14] the final result is

ĤI =
~Ω0

2
σ̂+ exp [iη(âe−iνt + â†eiνt)]ei(φ−δt) (3.7)

where Ω0 = Ω/(1 + qx/2) is the approximation of solution of low orders in Lamb-

Dicke region. And δ = ω−ω0 is the detuning between light frequency and energy gap

of two level system. Depending on the δ, the interaction Hamiltonian will couple

certain internal state (| ↑〉 or | ↓〉) and motion state (|n〉). With δ = ±sν, the

interaction Hamiltonian can drive different sideband transition between | ↓, n〉 and

| ↑, n ± s〉. The coupling strength, or often called as Rabi frequency, is calculated

as

Ωn,n+s = Ωn+s,n = Ω0|〈n+ s|eiη(â+â†)|n〉|

= Ω0e
−η2/2η|s|

√
n<!

n>!
L|s|n<

(η2) (3.8)

where n<(n>) is the smaller(bigger) one between n and n + s. L(η2) refers to

Laguerre function. However, in Lamb-Dicke region, the higher orders of sideband

transition is too small to neglect. What we are interested in are only 0th and 1st

orders, called as carrier transition (for δ = 0), red sideband transition (for δ = −ν)

and blue sideband transition (for δ = ν). The Hamiltonian can be expressed as:

1. Carrier transition between | ↓, n〉 and | ↑, n〉

Ĥcar =
~Ω0

2
(σ̂+e

iφ + σ̂−e
−iφ) (3.9)
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2. Red sideband transition between | ↓, n〉 and | ↑, n− 1〉

Ĥrsb =
~ηΩ0

2
(âσ̂+e

iφ + â†σ̂−e
−iφ) (3.10)

3. Blue sideband transition between | ↓, n〉 and | ↑, n+ 1〉

Ĥbsb =
~ηΩ0

2
(â†σ̂+e

iφ + âσ̂−e
−iφ) (3.11)

Actually when η is small enough the coupling strength or Rabi frequency can be

approximated as

Ωn,n = Ω0

Ωn,n−1 = ηΩ0

√
n

Ωn,n+1 = ηΩ0

√
n+ 1

(3.12)

in turn correspond to carrier, red sideband and blue sideband transition. Further-

more, to measure the Rabi frequency of Ω0,1 and Ω0,0, we can estimate the value of

Lamb-Dicke parameter with η = Ω0,1/Ω0,0.

For a initial state |Φ(0)〉 =
∑∞

n=0 cn| ↓, n〉, if we drive with blue sideband

transition, the possibility that ion locate in | ↑〉 over time is:

P↑,bsb(t) =
∞∑
n=0

1

2
pn[1− cos(Ωn,n+1t)] (3.13)

where pn = |cn|2 is the initial phonon population in | ↓, n〉 phonon level. For

convenience we note | ↓ n〉 as |n〉 because what we focus on is the phonon distribution

in | ↓〉. At the same way, for red sideband transition, the possibility is:

P↑,rsb(t) =
∞∑
n=1

1

2
pn[1− cos(Ωn,n−1t)] (3.14)

The index begins from n = 1 because the population in | ↓, 0〉 can not go anywhere.
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Figure 3.5: The process of different sideband transitions. Black lines refer to carrier
transition with nearly same speed. Blue lines refer to blue sideband transition with
ratio

√
n+ 1. Red lines refer to red sideband transition with ratio

√
n.

We find that the phonon distributions oscillate between | ↓, n〉 and | ↑, n ± s〉
at Rabi frequency Ωn,n±s. This is called as Rabi oscillation. We define π pulse

(t − t0 = π/Ωn,n±s) which will exchange the distribution of | ↓, n〉 and | ↑, n ± s〉,
while π/2 pulse (t− t0 = π/2Ωn,n±s) will exchange the distribution at half.

3.3.2 Stimulated Raman Transition

In experiment we use two photons stimulated Raman transition[18] as an effec-

tive way to drive the coupling between internal state and motion state. Considering

three level system(| ↓〉, | ↑〉, |e〉) with allowed transitions | ↓〉 → |e〉 and | ↑〉 → |e〉,
we use two laser beams:

~E1 = ~ε1e
i(~k1~x−ω1t) + c.c

~E2 = ~ε2e
i(~k2~x−ω2t) + c.c

(3.15)

which are detuned by ∆e from |e〉.
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Figure 3.6: Stimulated Raman transition of 171Y b+.

Noting ∆k = ~k2−~k1 and ∆ω = ω2−ω2 = ω0 +δω, courtesy of [14], the effective

Hamiltonian applying on the ion is:

Ĥeff = −~Ω(σ̂+ + σ̂−)

2
(ei(∆kx̂−∆ωt+φ) + e−i(∆kx̂−∆ωt+φ)) (3.16)

where Ω is the Rabi frequency which represents the coupling strength between

| ↓〉, | ↑〉. Noticing that (3.16) is in the same form of (3.3), so in the similar way,

stimulated Raman transition can drive sideband transition to couple motion state

and internal state, where the δ = ∆ − ω0 determines the type of the sideband

transition.

With the realization of sideband transition by stimulated Raman transition, re-

solved sideband cooling (RSB)[21] is an important sub-product. In fact, the phonon

distribution of motional state reflects the motion of the ion, which is related to the

temperature of the ion. Actually the relationship between temperature of the ion

and phonon distribution is: kBT = 〈n〉~ν, where 〈n〉 =
∑

n npn is defined as average

phonon number. In last section, we introduce Doppler cooling to cool the ion. How-

ever, because of Doppler cooling limit, the average phonon number after Doppler
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cooling is still around 10. It is not cool enough to realize precise state preparation.

Thus based on sideband transition, we try to realize sideband cooling.

The principle for resolved sideband cooling is very simple. For a initial state

| ↓, n〉(n > 0), after series sequences of ideal pure carrier transition and red sideband

transition, it will finally go back, or cooling to | ↓, 0〉.

Figure 3.7: Sequence of resolved sideband cooling.

Figure 3.8: Result of resolved sideband cooling. (a) shows the result before resolved
sideband cooling. there are some distributions in high n phonon state, so red side-
band is allowed. (b) shows that, after sideband cooling, red sideband is forbidden
because all phonon is trapped in |0〉 and no level to go.
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Figure 3.9: The path of our Raman laser system. Acousto-optical Modulators
(AOM) are used to add frequency different detuning to Raman 1 laser and Raman
2 laser in order to drive different sideband transition. Two Raman beams propagate
in opposite direction. Frequency stabilization is aimed to stable the frequency of
laser as far as possible.
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Chapter 4

Quantum Damping: Model for Heating Effect

When it comes to quantum computation, one of the most important factor

we concern about is decoherence caused by environment, or interaction with en-

vironment, because the decoherence time determines the effective time to realize

quantum computation. In ion trap system, the decoherence of motional state has

been studied for a long time. In details the decoherence of motional state refers to

the distribution in certain phonon level will tend to flux to nearby levels. It turns

out to be a spread of distribution in motional state:

(a) Initial state |n = 3〉 (b) Simulation result after 1000 µs without

other Hamiltonian

Figure 4.1: Take initial |n = 3〉 for example. In the simulation, the parameters are
set up to experimental case. After only 1000 µs, the distribution spread beyond our
expectation.

Meanwhile, the spread of phonon distribution accompanies with the increasing

of average phonon number. In this reason, this decoherence is regard as heating
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effect. The speed of average phonon increasing is called as heating rate.

In recent researches, the factors inducing heating effect have been studied for

a long time. The most convincing reason is the electronic noise in the trap[22].

Thermal electronic noise and fluctuating patch-potential noise have been studied

for heating dynamics. Several experimental parameters have also been considered.

Geometry of the trap[22], distance between ion and electrodes[22, 23], the frequency

of trap[22, 23] are part of factors affecting heating effect.

Actually the heating effect is regarded as a harmonic oscillator connecting to

a thermal amplitude reservoir [24]. It is called as quantum damping in quantum

optics. Based on Quantum Optics written by Scully[25], we derive and measure

the heating rate in our ion trap system.

4.1 Theory of Quantum Damping

Considering a system interacting with a reservoir, we can writing the Master

equation as:

i~ρ̇SR = [V̂ (t), ρSR] (4.1)

where S represents ”system” while R represents reservoir, V̂ (t) is the Hamiltonian of

interaction between system and reservoir. We can formally integrate the equation:

ρSR(t) = ρSR(ti)−
i

~

∫ t

ti

[V̂ (t′), ρSR(t′)]dt′ (4.2)

where ti is the beginning time of interacting. After inserting (4.2) into (4.1), we

find the equation

i~ρ̇SR = − i
~

[V̂ (t), ρSR(ti)]−
1

~2

∫ t

ti

[V̂ (t), [V̂ (t′), ρSR(t′)]]dt′ (4.3)

If the system and the reservoir are independent, the density matrix can be easily

factored into a direct product ρSR(t) = ρS(t)⊗ρR(ti), where we assume the reservoir
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at equilibrium. Due to weak coupling between the system and reservoir, we rewrite

density matrix as

ρSR(t) = ρS(t)⊗ ρR(ti) + ρc(t) (4.4)

However, what we focus on is the density matrix of system, so we have the reduce

matrix ρS = TrR[ρSR]. The master equation of the system can be derived:

ρ̇S = − i
~
TrR[V̂ (t), ρS(ti)⊗ ρR(ti)]

− 1

~2
TrR

∫ t

ti

[V̂ (t), [V̂ (t′), ρS(t′)⊗ ρR(ti)]]dt
′

(4.5)

For further discussion, the second term of the equation tells us that the reduced

density matrix also depends on the past history of the evolution from ti to t′,

described as Markov process. Fortunately, we assume that the damping process

destroys all the memories of past, so we can treat it as non-Markovian. The evolution

can be described as:

ρ̇S = − i
~
TrR[V̂ (t), ρS(ti)⊗ ρR(ti)]

− 1

~2
TrR

∫ t

ti

[V̂ (t), [V̂ (t′), ρS(t)⊗ ρR(ti)]]dt
′ (4.6)

For a certain case, we consider reservoir of harmonic oscillator which can be de-

scribed by operators b̂†k and b̂k coupling to another harmonic oscillator described by

â† and â. So the Hamiltonian of interaction can be written as:

V̂ (t) = ~
∑
k

(gkb̂
†
kâe
−i(ω−νk) + g∗k b̂kâ

†ei(ω−νk)) (4.7)

In this case, when the time scale we measure is larger than the period of harmonic

oscillator, it is fine to consider the process as non-Markov process[26]. So we can
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substitute the interaction Hamiltonian into evolution equation (4.6) and obtain:

ρ̇S = −i
∑
k

gk 〈̂b†k〉[â, ρS(ti)]e
−i(ω−νk)t

−
∫ t

ti

dt′
∑
k,k′

gkgk′2[[ââρS(t′)− 2âρS(t′)â+ ρS(t′)ââ]× e−i(ω−νk)t−i(ω−νk′ )t′ 〈̂b†kb†k′〉

+ [ââ†ρS(t′)− â†ρS(t′)â]× e−i(ω−νk)t+i(ω−νk′ )t′ 〈̂b†kbk′〉

+ [â†âρS(t′)− âρS(t′)â†]× ei(ω−νk)t−i(ω−νk′ )t′ 〈̂bkb†k′〉] +H.c.

(4.8)

If the reservoir is also in thermal equilibrium, the matrix ρR can be represented

as:

ρR =
∏
k

[1− exp(− ~νk
kBT

)] exp(−~νkb̂†kb̂k
kBT

) (4.9)

So we can easily get:

〈̂bk〉 = 〈̂b†k〉 = 0

〈̂b†kb̂k′〉 = n̄kδkk′

〈̂bkb̂†k′〉 = (n̄k + 1)δkk′

〈̂bkb̂k′〉 = 〈̂b†kb̂†k′〉 = 0

(4.10)

where n̄k is the average phonon number

n̄k =
1

exp (
~νk
kBT

)− 1

(4.11)
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Inserting (4.10) into (4.8), we obtain:

ρ̇S =

−
∫ t

ti

dt′
∑
k

|gk|2[[ââ†ρS(t′)− â†ρS(t′)â]n̄ke
−i(ω−νk)(t−t′)

+ [â†âρS(t′)− âρS(t′)â†](n̄k + 1)ei(ω−νk)(t−t′)] +H.c.

(4.12)

To sum over the k, we can replace sum by integral through all k space.

∑
k

−→ 2
V

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞
0

dk k2 (4.13)

So the final evolution equation is

ρ̇S(t) = −n̄th
Γ

2
[ââ†ρS(t)− 2â†ρS(t)â+ ρS(t)ââ†]

− (n̄th + 1)
Γ

2
[â†âρS(t)− 2âρS(t)â† + ρS(t)â†â]

(4.14)

where

n̄th = n̄k0(k = ω/c) (4.15)

4.2 Damping in Ion Trap system

Now we discuss the damping happening in our system. We still consider the

total Hamiltonian applying on trapped ion,

Ĥ = Ĥm + Ĥe + Ĥd (4.16)

where Ĥd is Hamiltonian of random electric field applying on the ion

Ĥd =
∑
k

gkb̂ke
i(kx̂−νkt) +H.c. (4.17)
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k represents the mode of electric field existing in the trap. Like what we do in

deriving Raman transition, we transform into interaction picture:

ĤD = Û †0ĤdÛ0

= exp [
i

~
(Ĥm + Ĥe)][

∑
k

gkb̂ke
i(kx̂−νkt) +H.c.] exp [− i

~
(Ĥm + Ĥe)]

(4.18)

It is obvious that [Ĥe, Ĥd] = 0 because of [σ̂z, b̂k/b̂
†
k] = [σ̂z, x̂] = 0. So the term

of exponent including Ĥe vanishes. The left term of the interacting Hamiltonian

becomes (For convenience we just discuss one mode) :

ĤD,k = gkb̂ke
−iνkte−iĤm/~eikx̂eiĤm/~ + g∗k b̂

†
ke
−iνkte−iĤm/~e−ikx̂eiĤm/~ (4.19)

Inserting (3.6) into (4.19) with low orders expanding, we obtain the final form of

the Hamiltonian:

ĤD,k = gkb̂ke
−iνkt + g∗k b̂

†
ke
iνkt

+ iηgkâ
†b̂ke

i(ν−νk)t − iηg∗kâb̂†ke−i(ν−νk)t

+ iηgkâb̂ke
−i(ν+νk)t − iηg∗kâ†b̂†kei(ν+νk)t

(4.20)

The first two terms are nothing with interaction so they can be rescaled. The last

term can be neglected because of rotating-wave approximation. The final form of

interacting Hamiltonian is:

ĤD =
∑
k

ĤD,k =
∑
k

[Gkâ
†b̂ke

i(ν−νk)t +G∗kâb̂
†
ke
−i(ν−νk)t] (4.21)

on substituting Gk = iηgk

Now comparing (4.21) with (4.7), we find that these two Hamiltonian are the

same. Considering it is thermal equilibrium in trap space, we assume that the modes

of random electric fluctuation are also thermal equilibrium. So we can directly

obtain that without other driven Hamiltonian, the density matrix will evolve in
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the way described in (4.14). If we take other driven Hamiltonian, just like Raman

transition, into account, the Master equation is like:

ρ̇ = − i
~

[ρ, ĤI ]

− n̄th
Γ

2
[ââ†ρ− 2â†ρâ+ ρââ†]− (n̄th + 1)

Γ

2
[â†âρ− 2âρâ† + ρâ†â]

(4.22)

4.3 Solution to Quantum Damping

Based on the Master equation (4.22), we analysis pure damping process at first

(with ĤI = 0). The evolution equation we have got is:

ρ̇ = −Γ

2
n̄th[ââ

†ρ− 2â†ρâ+ ρââ†]− Γ

2
(1 + n̄th)[â

†âρ− âρâ† + ρâ†â] (4.23)

In fact it is hard to get exact solution of this equation. Instead of solving this

equation directly, we transform it into P -representation, which is one of the most

important representation in quantum optics. In P -representation, a density matrix

can be represented as:

ρ =

∫
P (α, α∗)|α〉〈α|d2α (4.24)

Inserting (4.24) into (4.23), we have∫
Ṗ (α, α∗, t)|α〉〈α|d2α

= −Γ

2
n̄th

∫
P (α, α∗, t)(ââ†|α〉〈α| − 2â†|α〉〈α|â+ |α〉〈α|ââ†)d2α

− Γ

2
(1 + n̄th)

∫
P (α, α∗, t)(â†â|α〉〈α| − 2â|α〉〈α|â† + |α〉〈α|â†â)d2α

(4.25)
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After substituting the relations below,

â|α〉〈α| = α|α〉〈α|

â†|α〉〈α| = (
∂

∂α
+ α∗)|α〉〈α|

|α〉〈α|â† = α∗|α〉〈α|

|α〉〈α|â = (
∂

∂α∗
+ α)|α〉〈α|

(4.26)

we simplify the equation and obtain:∫
Ṗ (α, α∗, t)|α〉〈α|d2α =∫
Γ

2
P (α, α∗, t)(−α ∂

∂α
− α∗ ∂

∂α∗
+ 2n̄th

∂2

∂α∂α∗
)|α〉〈α|d2α

(4.27)

Through integration by parts, we can simplify it further more∫
Ṗ (α, α∗, t)|α〉〈α|d2α =∫
Γ

2
(
∂

∂α
α +

∂

∂α∗
α∗ + 2n̄th

∂2

∂α∂α∗
)P (α, α∗, t)|α〉〈α|d2α (4.28)

For the establishing of (4.28), the integrated parts should be same, which means:

Ṗ =
Γ

2
(
∂

∂α
α +

∂

∂α∗
α∗ + 2n̄th

∂2

∂α∂α∗
)P (4.29)

Now it is still hard to solve the equation (4.29). In order to understand the

result of quantum damping, we want to know how the state becomes after enough

time for damping. The steady solution can satisfy our needs. Assuming Ṗ = 0, we

have steady equation:

Γ

2
(
∂

∂α
α +

∂

∂α∗
α∗ + 2n̄th

∂2

∂α∂α∗
)P = 0 (4.30)
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Considering the solution in Gaussian form:

Pg(α, α
∗) =

1

πµ
exp (−|α− α0|2

µ
) (4.31)

Inserting (4.31) into (4.30), we get

(1− n̄th
µ

) +
n̄th(|α|2 + |α0|2)− µ|α|2

2µ2
+

(αα∗0 + α∗α0)(2n̄th − µ)

2µ2
= 0 (4.32)

It should be established for any α value. The only satisfied solution is

µ = n̄th α0 = 0 (4.33)

So the final steady solution is

Psteady(α, α
∗) =

1

πn̄th
exp (−|α|

2

n̄th
) (4.34)

Figure 4.2: Steady solution in P -representation.

Fortunately, (4.34) is the P -function of thermal state with average phonon

number n̄th. Because the initial P -function is not specific, so this steady solution

is applicative for any initial state. This point means that, whatever initial state is,

after enough time for quantum damping (without any other driven Hamiltonian),
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the state will develop into thermal state. Especially, for an initial thermal state,

the state will keep in thermal with n̄th increasing.

Now we discuss about increasing of average phonon number in quantum damp-

ing process. As I mentioned before the average phonon number express as:

〈n〉 =
∑
i

ipi =
∑
i

iρi,i (4.35)

It is obvious that ρi,i = |ci|2 = pi in Fock state basis. So at the same way we

transform (4.23) into Fock state basis, by multiplying 〈i| and |i〉 at right and left,

the result is

ṗi = −Γn̄th[(i+ 1)pi − ipi−1]− Γ(n̄th + 1)[ipi − (i+ 1)pi+1] (4.36)

We can derived the rate of average phonon changing over time:

〈ṅ〉 =
∑
i

iṗi

=
∑
i

i[−Γn̄th[(i+ 1)pi − ipi−1]− Γ(n̄th + 1)[ipi − (i+ 1)pi+1]]
(4.37)

After reforming, we can simplify (4.37) as

〈ṅ〉 = −
∑
i

[i(i+ 1)Γn̄thpi − (i+ 1)2Γ(n̄th + 1)pi

+ i2Γ(n̄th + 1)pi − i(i− 1)Γ(n̄th + 1)pi]

= [Γn̄th − Γ(n̄th + 1)]
∑
i

ipi + Γn̄th
∑
i

pi

= −Γ〈n〉+ Γn̄th

(4.38)

(4.38) can be easily solved, the common solution is

〈n(t)〉 = n̄th − (n̄th − n̄0)e−Γt (4.39)
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where n̄0 = 〈n(0)〉 is given as boundary condition.

Assuming Γt is small enough, so (4.39) can be approximated as

〈n(t)〉 ≈ n̄0 + Γ(n̄th − n̄0)t (4.40)

〈ṅ(t)〉 = Γ(n̄th−n̄0) is called as heating rate. Especially, when n̄th � n̄0, the heating

rate is approximately equal to Γn̄th

Figure 4.3: The increasing of average phonon number. The upper one shows the long
time process of phonon increase. The blue solid line shows the phonon increasing
with time and will reach the phonon number of the reservoir (black dashed line)
for infinity time. The lower one shows the linear approximation of increasing is
proper in short time process (red dashed line). But deviation is obvious for long
time process (shown in upper one).

That means, for Γt is small enough, the average phonon number increase lin-

early at the speed of Γn̄th. So does the temperate increase linearly too. It is easy to
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understand why researchers regard quantum damping as a heating effect in the ion

trap system. Moreover, because the off-diagonal terms of density matrix of thermal

state are all zero, so the quantum damping will also destroy the coherence between

phonon state of the initial state.

Finally, considering there are still other heating effects in the system just like

collision with gas molecule, the actual value of Γeff is larger than what we get above.

4.4 Experiments in Ion Trap System

4.4.1 State Preparation

After Optical pumping, Doppler cooling and resolved sideband cooling, the

final state of ion is |0〉. Then with series π pulse of blue sideband transition and

carrier sideband transition, ideally we can get any |n〉 we want.

Considering several effects will affect our process, just like imperfect sideband

transition (make error both in sideband cooling and high n state preparation) and

damping process, so the prepared states are not perfect in state we want. We define

infidelity as 1−√pn, where pn is the population in the Fock state. In this experiment

the value of n is up to 5. The infidelities of the prepared Fock states are showed in

Table 4.1

Table 4.1: Infidelities of Fock State Preparation

n 0 1 2 3 4 5
Measured infidelity(%) 2.3 2.8 5.2 3.9 7.8 10.4
Simulated infidelity(%) 1.4 1.7 2.5 2.9 5.7 8.7

4.4.2 Phonon Reconstruction

After state preparation, we wait certain time (from hundreds of microseconds

to thousands of microseconds) for quantum damping process. After that, we drive
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blue sideband transition and detect its Rabi oscillation. The next problem is that

how we can reconstruct the phonon distribution through the result of Rabi oscilla-

tion. According to (3.13), the Rabi oscillation is composed of several independent

oscillation with certain Rabi frequency Ωn,n+1. So the Fourier transformation is a

choice to realize the phonon reconstruction. However because of damping process,

there are some corrections to (3.13). The experimental results of Rabi oscillation

are in the form of:

P↑,bsb(t) =
∞∑
n=0

1

2
pn[1− e−γnt cos(Ωn,n+1t)] (4.41)

So we can use fitting method to reconstruct phonon distribution[27], the fitting

equation is:

χ2 =
1

N

n=nmax∑
n=0

(P↑,bsb(pn, γn,Ωn,n+1)− Pmeasure)2 (4.42)

Where N is the number of points on the blue transition curve. The aim of fitting

is to find the minimum of (4.42). the nmax is the cutting for the fitting when there

is almost no distribution in high phonon number. And we assume γn = γ for any

quantum number n.

However another problem of fitting is Ωn,n+1. One way is that we choose the

approximate form Ωn,n+1 = ηΩ
√
n+ 1. Another way is to use exact form:

Ωn,n+1 = Ω0e
−η2/2η

√
1

n+ 1
L1
n(η2) (4.43)

Obviously the second way is more precise. In order to determine the value of η, we

prepare enough Fock state from |n = 0〉 to |n = 20〉 then detect Rabi oscillation

to get the value of Rabi frequency of each motional state. We fit the data by the

equation of (4.43) and find the η ≈ 0.098.
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Figure 4.4: Ωn,n+1 for different n. The red line is obtained by fitting the measured
blue sideband Rabi frequency (dots) with the exact formula and the blue line comes
from the approximate expression of

√
n+ 1

Finally, the fitting parameters include pn, γ and Ω0. The set of pn making

(4.42) minimum is the phonon distribution we want to obtain.

4.4.3 Experimental Results

Our steps to measure the damping progress are:

1. Preparing Fock state from |n = 0〉 to |n = 5〉.
2. Waiting certain time for quantum damping process (waiting time is equal to

0, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000 µs).

3. Applying blue sideband transition after certain time.

4. Reconstructing phonon distribution by analyzing the interference pattern from

different frequencies of Rabi oscillation depending on motional quantum num-

ber.

First we measure the quantum damping process of |0〉, which as I mentioned

before the state will keep in thermal over the whole damping process. So we obtain

the Rabi oscillation of blue sideband transition at each certain time, then reconstruct

the phonon distribution of each time. Additionally, for thermal state, the phonon
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distribution is

pn = (n̄th)
n/(n̄th + 1)n+1 (4.44)

where n̄th is average phonon number and n is quantum number of motional state.

Finally we fit the phonon distribution again by the form (4.44) then get the average

phonon number of each time. The results of Rabi oscillation and reconstruction of

phonon distribution are shown below:

(a) t=0 µs

(b) t=250 µs
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(c) t=500 µs

(d) t=750 µs

(e) t=1000 µs

(f) t=1500 µs
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(g) t=2000 µs

(h) t=2500 µs

(i) t=3000 µs

(j) t=4000 µs
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(k) t=5000 µs

(l) t=6000 µs

(m) t=7000 µs

Figure 4.5: Quantum damping process of initial thermal state |0〉.

To fit the phonon distribution of each time, we get the average phonon number

at certain time:
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Table 4.2: Average phonon number in quantum damping

time (µs) 〈n〉
0 0.103 ± 0.059

250 0.106 ± 0.033

500 0.179 ± 0.045

750 0.188 ± 0.026

1000 0.223 ± 0.026

1500 0.311 ± 0.063

2000 0.352 ± 0.023

2500 0.483 ± 0.100

3000 0.445 ± 0.045

4000 0.771 ± 0.090

5000 0.903 ± 0.122

6000 0.727 ± 0.083

7000 0.870 ± 0.126

According to Table 4.2, heating rate can be obtained if we fit the data in the

form of (4.40), with n̄th − n̄0 ≈ n̄th:

Figure 4.6: Average phonon number increases over time with initial state |0〉. The
increasing can be nearly regarded as linear increasing.
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According to the fitting result, the heating rate Γn̄th is approximately equal

to 121 Hz. Actually damping process of |1〉 to |5〉 also has been done. In order

to understand process of quantum damping more intuitively, we also simulate the

process of quantum damping in Mathematica. To compare the results between

simulation and experiment, we plot them together:

(a) Initial state |0〉

(b) Initial state |1〉
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(c) Initial state |2〉

(d) Initial state |3〉

(e) Initial state |4〉 – 45 –
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(f) Initial state |5〉

Figure 4.7: Evolution of phonon distribution by quantum distribution. (a) to (f)
represents initial state from |0〉 to |5〉 separately.

It is obviously to see that the results of simulation and experiment are consis-

tent. We also notice that, with increasing of the quantum number of initial state,

the damping speed also increase. According to (4.36), we find that the rate from

|n〉 to |n − 1〉 and from |n〉 to |n + 1〉 is proportional to
√
n and

√
n+ 1, which is

the result of â and â†. Thus for the state of high quantum number, the spreading

of distribution is more fast.
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Conclusion

The quantum damping is just the simplified model of motional decoherence and

heating effect in ion trap system. Although the decoherence caused by quantum

damping will destroy the phase relationship between motional state, reduce the

efficiency of quantum detection. Sometimes it is helpful when we want to generate

some special state. Take thermal state for example. As I mentioned before, the

state will keep in thermal if the initial state is thermal state. For the state after

ideal optical pumping, ion is located at |0〉 which is the simplest thermal state for

n̄ = 0. So if we generate |0〉 at first, without other driving Hamiltonian, we can get

any thermal state with any average phonon number theoretically.

For our recent research about quantum Jarzynski equality[28], an initial ther-

mal state is required. If we apply a force on the ion, the work (W ) done on the

ion and the difference of the free energy ∆F between initial state and state after

obtaining work have relationship below:

〈e−(W−∆F )/kBT 〉 = 1 (5.1)

Jarzynski equality is the generalization of Clausius inequality. The former can be

applied to any situation even far-away from equilibrium, while the latter is only

suitable for equilibrium for W = ∆F .

Additionally, on the one hand, we will do further research on Crooks fluctuation
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theorem[29], which thermal state is still required. On the other hand, lowering the

heating rate is also required for more precise experiment, for example the projective

measurement and the construction of Wigner function[30].
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