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Abstract

Abstract

The Quantum fluctuation relations can be regarded as the more accurate version of
the second law of thermodynamics in the quantum regime. To test the quantum Jarzynski
equality, the two points measurement of the quantum work is required. We utilize the
phonon projective measurement to realize the directive measurement of quantum work
and test the quantum Jarzynski equality with the trapped ion. When realizing the phonon
projective measurement, the shortcut to adiabaticity (STA) for the two level system is
applied. The STA will reduce the long duration required by the adiabatic process to
arbitrarily short one. Later different STA protocols for the motional states are realized and
compared. Among all different protocols, the counter-diabatic driving protocol stands out
for its robustness and without more payment of work. To improve the trapping condition,
a new five segments blade trap is developed and tested. The tools and equipments for
developing the new trap are described in this thesis. Several theoretical calculation and
simulation for the future experiments are also presented.

Key words: Trapped Ion; Quantum Information; Quantum Thermodynamics Quantum
Adiabatic shortcut
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Chapter 1

Introduction

With the development of experimental technology, people are already not just satisfied

with understanding the quantum world, but also trying to utilize the quantum nature of small

particles to realize something that can not be imagined in the classical world, such as the

quantum teleportation[2], quantum computation[3] and quantum simulation[4, 5]. Just like

the hydrogen atom is the best platform to explore the quantum theory at first, at the beginning

of the experimental quantum era, the crystallized trapped ion is also a good platform to

realize some simple quantum machines, which can do something impossible before or save a

lot of time compared with the classical machine. After the first 2-qubit gate[6] was proposed

in the trapped ion system, the experimental quantum computation becomes popular. The

fascinating features of the trapped ion is that it is easy enough to be understood and can be

controlled in many ways. As for the DiVincenzo criteria[7], the trapped ion can fulfill all the

seven requirements in principle. The remaining thing is to scale the small toy up to a real

machine. Along the way to this long term goal, we need to develop new and better ways

to control ions in all kinds of degrees of freedom. In this thesis, I will introduce some new

control methods we developed and some interesting experiments conducted with them. I

hope what we do can contribute to the blooming trapped ion community.



2 Introduction

1.1 Quantum control with the trapped ion

The controllability of quantum systems is a fundamental issue concerning whether one

can drive a quantum system to a desired state. The classical control maintains or changes the

state of a specific system with close or open control loops. For the quantum system, inspired

by the classical way, people also developed similar control tools, such as the quantum lock-in

amplifier[8]. But when we deal with a trapped ion, we should consider more about the unique

quantum features. For example, the quantum measurement is greatly different from the

classical measurement and also a quantum system can be in the coherent superposition state.

For the trapped ion, we should be able to deal with internal states, external motional states

and also the coupling between these two. To finish this job we may need suitable hardwares

and softwares. The Paul trap is a good hardware to control the macroscopic motion state of

ions. It allows people to see the single atom/ion for the first time, before which the single

atom is only a nomenclature in textbooks. In this thesis, I will introduce the blade trap we

develop in order to control the macroscopic motional state better. To control the microscopic

motional state and the internal states, we also develop several new schemes, which can be

seen as the software. These schemes can be in the coherent ways with the unitary evolution

of a closed quantum system, or can be in the dissipated ways. We can use the environment as

a tool to drive the quantum system, where the environment can be natural or an engineered

reservoir. When we drive the quantum state, its time evolution can be in the dynamical ways

or the adiabatic ways. Even the adiabatic driving with an engineered reservoir is proposed[9].

To control a quantum system better, for example when we need to do feedback or to get

the quantum work like in this thesis, we may need to measure a quantum system to get more

information. The von Neumann projective measurement means the measurement projects

the initial state to one of the eigenstate of the orthogonal projectors with the corresponding

probability. There is also another way called the weak or continuous measurement. The

system we are interested in is coupled to another auxiliary system and we apply the projective

measurement on the auxiliary system. Every such measurement only gives us parts of the

information of the original system. It will not destroy all the superposition or mixing of the

original system. These quantum measurements may play an important role in some quantum
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control schemes. I mainly do the experiments during the five years as a Ph.D. candidate.

So this thesis will not cover all the possible quantum control methods but will mainly show

our experiments with some new control schemes realized by us. I will also describe some

schemes which I believe can be realized in the trapped in system. For more back ground of

the quantum control, the reference [10] will be a good choice.

1.2 Thesis organization

In the second chapter, I will first introduce the basic principle and the simulation of the

linear Paul trap. How to get the desired vacuum conditions will also be described. Then I

will focus on the Yb ion. The cooling, pumping and detecting of the trapped ion with high

fidelity are the most basic operations we should realize at first of every project.

In the third chapter, I will introduce the theory of the basic operation to control the

quantum system. These operation can be the laser-ion interaction or the time evolution of the

ion when it contacts with the environment, no matter natural or engineered.

The fourth chapter will be used to show the important hardwares that I have built. It will

be helpful to the younger students.

The following two chapters will be about the two published papers. I will try to not just

repeat the paper material but add more details, unpublished data and more related concerns.

The final chapter will serve as a conclusion.





Chapter 2

Yb ion and ion trap

“...we never experiment with just one electron or atom or (small) molecule.”

—E. Schrödinger, 1952

2.1 The Paul trap

A charged particle can not be hold by the static electric field. According to the Laplace

equation, a 3D potential minimum point should be the position of charges that generate this

field. Such point of charges will overlap with the ion that you want to trap. However, the

Paul trap allows a charged particle trapped by a radio frequency field[11] in the quadrupole

configuration (or even higher order). I have used the four rod and blade trap, both linear

Paul trap. So I will only focus on the basic principle and the simulation of this kind of traps.

Let us start from the simple four rod trap (see Fig. 2.1). To give an intuitive idea, we start

from the instantaneous potential generated by the RF voltage applied on the two rods (see

Fig. 2.2). Once it rotates, the time average effect will work as an harmonic potential to trap

the ion. Now let us derive the exact formula to describe this pseudo-potential. Firstly, we

assume the RF field has no z component and the end cap electrodes are applied with DC

voltage U0. The ion in the center position will feel the electric potential

V (x,y, t) =
V0

2
x2 − y2

R2 cos(Ωt)+κ
U0

2
2z2 − x2 − y2

Z2 , (2.1)
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Fig. 2.1 The Four rod trap. The left 3D drawing shows the holder and the micro-motion
compensation bars with the four rod trap. In the right drawing, we apply the radio frequency
potential V0 cos(Ωt) on two rods and the other two are applied with DC potential W to
separate the degenerate two motional modes along the x̂ and ŷ directions.

where the R is the effective distance from the trap center to the RF rod, Z is the effective

distance from the end cap to the center and κ is the geometric factor. This is easy to

understand. The center point is the extreme point of the potential. So there should not be

the first order term and the leading order should be the second order term. Considering

the Laplace equation, the sign before x2 and y2 should be opposite and the absolute values

should be the same for the RF field. The DC potential from the end caps should be harmonic

along the ẑ direction at the center and it will push the ion away from the center along the x̂

and ŷ directions. Considering the symmetrical geometry and the Laplace equation, the sign

and absolute values of the coefficients of the second order terms should be as Eq. 2.1. The

electric field then should be

E(x,y,z, t) =−V0
xx̂− yŷ

R2 cos(Ωt)−κU0
2zẑ− xx̂− yŷ

Z2 . (2.2)

Here the bias DC on the other two rods are zero. The motion of the ion with charge Q and

mass M still obeys the Newton’s second law. So we can get the motion equation

üi +[ai +2qi cos(Ωt)]
Ω2

4
ui = 0, (2.3)
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Fig. 2.2 The instantaneous potential in the four rod trap. When it rotates, the ion will be hold
at the center position.

where u = uxx̂+uyŷ+uzẑ is the position of the ion using the coordinate system shown in

Fig. 2.1,

ax = ay =−az/2 =−4κQU0

mZ2Ω2 , (2.4)

and

qx =−qy =
2QV0

mR2Ω2 , qz = 0. (2.5)

This is the famous Mathieu equation and its solution can be found in Ref. [12]. When |ai|≪ 1

and |qi| ≪ 1, its approximate solution up to the first order is

ui(t) = u1i cos(ωit +ϕi)[1+
qi

2
cos(Ωt)], (2.6)

where

ωi =
Ω

2

√
ai +

1
2

q2
i . (2.7)

and the phase ϕi is determined by the initial motional state of the ion. The secular motional

frequency ωi is the important parameter for a trap and the cos(Ωt) term is the intrinsic

micro-motion.
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2.2 CPO simulation

Though we get the analytical formula for the trap, the real situation is highly dependent

on the exact geometry condition. To know the exact situation, the first thing when we try

to make a new trap is to simulate the trap potential of the exact model. There are several

different numerical methods to solve this problem (see Ref. [13]). I choose the boundary

element method here. It reduces the complexity a lot and the potential calculated is smoother.

We use the CPO1 program. Its basic operations have been showed step by step in Ref. [14].

However its GUI, model builder and mesh function are really not friendly. So I combine

Autodesk Inventor, Comsol and CPO together to simulate the pseudo potential. Firstly, I use

the Inventor to build the 3D model of the trap. Here we should build only the surface of the

trap and export the model in .stp file or others can be recognized by Comsol. Then I make

the mesh on the surfaces with Comsol. It will adjust the size of the mesh according to the

importance of the area automatically. We should notice the number of the mesh is limited in

CPO. So in Comsol, we should choose the suitable precision. We export these mesh from the

Comsol and in the file all the nodes of the mesh are listed. With the suitable program(I use

Mathematica here), I can make the file that CPO can use to work. The example code can be

found in the Appendix A.

The CPO program can only simulate the potential and field. The pseudo potential

can be calculated through the electric field with some approximation. If in the oscillating

homogeneous electric field, the ion oscillates around its average position, its motion is

described by

Mẍ = Fx(t) = eE0 cos(Ωt), (2.8)

and

x(t) = x̄+ζ (t) = x̄−ζ0 cos(Ωt), x̄ = constant, ζ0 =
eE0

MΩ2 . (2.9)

Here the field strength E0 is homogeneous. In the quadrupole field, the field E0(x(t)) is

however highly inhomogeneous. If we consider the time average effect of the force and do

1http://simion.com/cpo/
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the first order approximation

⟨eE0(x(t))cos(Ωt)⟩ ≈ e⟨[E0(x̄)+
∂E0(x̄)

∂ x̄
ζ
′]cos(Ωt)⟩= e

∂E0(x̄)
∂ x̄

⟨ζ ′ cos(Ωt)⟩ (2.10)

As an approximation we use ζ instead of ζ ′ :

⟨ζ ′ cos(Ωt)⟩=−1
2

ζ0 =−eE0(ζ̄ )

2MΩ2 (2.11)

The force is the deviation of the potential with a negative sign. So from the average force we

derive the effective(or pseudo) potential:

ψ(z̄) =
eE2

0(z̄)
4MΩ2 . (2.12)

Now we see as long as we can get the electric field strength, we get the effective potential.

We can simulate the electric field with CPO program. The detailed code can be found in

Appendix. A. After getting the pseudo potential, we can add the potential from the bias DC

on the DC blades used to separate the degenerate radial motional level. In the similar way we

can also study the effect of the DC on the micro-motion bars and each DC segment on the

Blade. By fitting the potential, we can also find all the non-harmonic high order coefficients.

In the simulation showed in Fig. 2.3, I use 400V on the RF, 10V for the bias DC and 100V

on the micro-motion bar. The position is showed in mm and indicates only 0.08µm displaced

by the micromotion bar. It is too small because of the shielding effect. So I use the bifilar

helical resonator and apply the DC directly on the RF blades through suitable filers.

From the simulation results we know to get 2−3MHz we may need several hundreds of

Volts on the RF blades. In fact, in our blade trap (450×550µm2) at 26MHz driving frequency,

to get 3MHz trap frequency the RF voltage V0 is about 900 volts, which is measured with

the RF pick-up circuit used in the RF power stabilization setup. The commercial RF source

even amplified is not enough to get such high voltage. So people use a λ/4 helical resonator

to change a RF power source to a high voltage low current source [15]. We use a bifilar

configuration and add the pick-up capacitor for the RF power stabilization. Its loaded Q is
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mm

Fig. 2.3 The potential in the center zone of the trap simulated with CPO. The bias DC applied
on the DC blades will separate the two degenerate radial motional modes. The ion position
and the direction of the mode mode can also be figured out. The detailed code can be found in
the Appendix. A. I use 400V on the RF, 10V for the bias DC and 100V on the micro-motion
bar. The position is showed in mm and is too small. Thus we choose to use the bifilar helical
resonator to apply DC on the RF blades through filters.
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Fig. 2.4 The electric field generated by the micro-motion compensation electrodes. The E
field is modified by the blades and its direction is aways along x without any significant y
component. We can see the clear shilding effect from the blade.

about 200 after connected with the blade trap. And we can get 3MHz from 3 W. The bias

DC is applied to separate the degenerate radial reap frequencies. In the Simulation, we find

the electric field from the micro motion compensation bar will be strongly modified by the

blade. In Fig. 2.4, we see the E field is always along the x direction, though the bar is not

place right above the center. Because of the effect of the micro-motion compensation bars

are relatively weak, we apply the micro-motion compensation voltages on the DC and RF

blades. The details of the helical resonator and the RF power stabilization will be discussed

in the fourth chapter.

2.3 Micro-motion compensation

To get a stable and crystalized ion, we should compensate the unwanted DC field EDC at

the RF null. When such field appears, we should rewrite Eq. 2.3 as

üi +[ai +2qi cos(Ωt)]
Ω2

4
ui =

eEDC · ûi

M
. (2.13)
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Its solution expanded to the leading order of ai and qi is

ui(t)≃ [u0i +u1i cos(ωit +ϕi)][1+
qi

2
cos(Ωt)], (2.14)

where

u0i ≃
eEDC · ûi

Mω2
i

. (2.15)

Thus the average position will be displaced by u0i and an excess micro-motion term with the

amplitude of u0iqi/2 and the frequency of the trap driving frequency Ω will appear. When it

is serious, the laser cooling will be highly affected. To see its effects we follow the treatment

in Ref. [16]. When the position of the ion is modulated, the laser field the ion sees will also

be modulated with the trap driving frequency Ω. Assuming the laser field with the amplitude

E0, frequency ωlaser, wave vector k and phase ϕlaser in the rest frame of the ion the laser

field should be

E(t) = E0 cos[ik ·u− iωlasert +ϕlaser]. (2.16)

If the phase of the RF on the two blades are the same, the contribution of the excess micro-

motion in the k ·u is

kiu0iqi cos(Ωt)/2 = β cos(Ωt). (2.17)

Because it is the power component, we can express the modulation with Bessel functions as

exp [iβ cos(Ωt)] =
∞

∑
n=−∞

Jn(β )exp [in(Ωt +π/2)]. (2.18)

With the dipole approximation ⟨e|ex·E|g⟩=P|E| and the weak coupling condition P|E0|/h̄≪

γ , where |e(g)⟩ is the excited(ground) state and γ is the line width of the excited state, we

can get the steady solution for the population of the excited state

Pe =
(P|E0|

h̄

)2 ∞

∑
n=−∞

J2
n(β )

(ωatom −ωlaser +nΩ)2 +(γ/2)2 . (2.19)

In our trap for Yb ion, γ = 2π 20MHz and Ω = 2π 26MHz. Then we can plot the Pe

as Fig. 2.5. We can see that even the slope can be with a different sign with the normal
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Fig. 2.5 The excited state population for different laser detuning under the influence of
micro-motion.

situation(β = 0). In such situation, the cooling laser will not cool but heat the ion. To

reduce the β to 0, we should compensate all the DC field at the RF null. We can use the

time-to-amplitude converter(TAC) to do do this as described in Ref. [16]. However we have

another easier and convenient method that works very well for us. We use only the CCD and

the RF power switch in Appendix. D to do this. At high RF power the ion should be closer to

the best position. So when we increase the RF power, we should see the ion moves to the best

position. Then we can apply the compensation voltage to push the ion to the best position at

the lower power situation until the ion position fixes in different RF power. This will work

for the DC parallel to the image plane. The DC orthogonal to the image plane can be detected

with the count difference of the PMT signal. If the ion is displaced orthogonally to the image

plane, the direction of micro-motion should be in the image plane. In our laser configuration,

the cooling laser is also in the image plane. So the cooling count will be different for the low

and high RF power, if there is DC field orthogonal to the image plane. The two ways should

be applied iteratively until both the position and the PMT count keep for the low and high RF

power of the trap. In the experiment, we use the two DC blades and one RF blade to realize

the micro-motion compensation. Because these blades are just about 300 µm to the RF null,
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the precision for the DC applied is very high. We make a voltage divider to reduce the DC

from the high voltage source by 20 times. Thus the precision is increased by 20 times from

the original 0.1 V from the high voltage board.

2.4 Dimension analysis of the background gas collision rate

To trap the ion, just the suitable quadrupole RF field is not enough. We should provide a

vacuum environment to avoid the collision between the gas molecular and the trapped ion.

Here I will use dimension analysis to solve this collision frequency. Firstly, I find all the

physical factors that can affect the collision frequency and their dimensions (Gauss’s Unit):

• polarization factor of H2 α and for convenient I use α/ε0: [L]3

• ion’s charge q and for convenient I use q2: [M][L]3[T ]−2

• gas pressure p: [M][L]−1[T ]−2

• gas temperature T and for convenient I use kBT : [M][L]2[T ]−2

• mass of H2 M: [M]

• collision frequency f: [T ]−1

In this process, we assume that the ion is fixed, so its mass will disappear. According to

Π theorem, we get 6 quantities and 3 basic dimensions. So we can get 3 non-dimensional

parameters, and they can be:

Π1 =
pα

ε0kBT
Π2 =

q2ε0

Mα
f−2

Π3 =
p2(kBT )
M3 f 6

In order to get the reasonable f, we must consider how these factors affect f: f is bigger when

p, α, q2 get bigger, and f is smaller when M, kBT get bigger. In this way, we can decide

which quantity is the factor of denominator and which is the factor of numerator. After some

trials I get the result:

f ∝
pq

kBT

√
α

Mε0
, (2.20)
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which is derived from Π = Π2
1Π2. Up to now we do not have the coefficient. But this is

not very important. Because we have gotten the information that f is proportional to p.

Under normal operation, we keep the vacuum at 10−10 −10−11 Torr level and the life time

of the bright ion is about several hours. Use this as a standard, we can expect the collision

frequency when we improve the vacuum or reduce the temperature. We should notice that

the collision does not mean the ion is gone. It may be excited to other meta stable states or

forms molecular with H atom. Most times we can recover the dark ion with 638nm laser

(from F states) or the strong 374nm pulse laser (molecular ion or melted ion). Typically the

single ion can stay in the trap for more than one week at 3MHz, during which the cooling

laser is not always on.

2.5 Vapor pressure

To trap the ion, we should firstly make the atom vapor flow in the vacuum. The drawings

are listed in Fig. 4.3. Here the vapor pressure calculation is presented here to know the exact

temperature we need to generate the atom flow. When the solid Yb becomes vapor, the

pressure in side the solid and the vapor should be the same. The pressure of the atom vapor

flow is the same as the vacuum pressure inside the chamber. So from the equation related the

temperature and the vapor pressure, we can get the temperature we need to generate the Yb

atom vapor flow. From the Ref. [17], we know the vapor pressure in general is

P(T ) = 10A− B
T −C log10(T )−DT 3

. (2.21)

From the reference above, we know A = 11.992 B = 8111 C = 1.0849 D = 0 for

Yb. Here the P(T ) is in the unit of Torr and T is the absolute temperature. For 10−11

Torr, the temperature should be 130+273.15K. For 10−8 Torr, the temperature should be

200+273.15K. For 6×10−7 Torr, the temperature should be 260+273.15K. In the baking

stage of the vacuum preparation, the temperature is limited within 200 Celsius degrees and

the vacuum can reach 4×10−8 Torr. Thus the Yb oven is safe when we bake the vacuum

chamber. When the atomic oven is tested for the threshold current with the molecular pump,
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B or

Fig. 2.6 The laser path before the trap for basic operations. We use the polarization maintain-
ing fibers and flipping mirrors to combine several lasers to save the optics for alignment. The
magnetic filed B can be applied in the vertical or horizontal direction to reduce the probability
to realize the coherent population trapping (CPT) in the S levels. Parts of drawings of
components are from the Component Library.

the vacuum is about 6∗10−7 Torr. Thus in the final vacuum of 10−11 Torr, we should reduce

the current heating the oven tube. It should be half of the tested value as a rule of thumb.

More information about the vacuum can be found in the fourth chapter.

2.6 Laser ionization, cooling, pumping and detecting of Yb

ion

For different ion species, we may need different lasers to realize all the basic operations.

In the case of Yb, we follow the suggested scheme and values as described in Ref. [14] and

make some modifications. The laser path before the trap is showed in Fig. 2.6. The ionization
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is realized with two-photon process. We firstly excite the Yb atom from the ground state 1S0

to 1P1 with 398.9108nm laser for 171Yb+ and 398.9115nm laser for 174Yb+ (see Ref. [18]

for the energy levels). The second step from 1P1 to ion state need at least 394.1nm laser.

This can be realized with the strong beam of 369.5nm or 374nm pulse laser (not showed

in Fig. 2.6). Because the power of the pulse laser is much higher than that of the diode

laser, we choose to use the 374nm pulse laser together with the strong beam for the second

step. This pulse laser is used for the Raman transition and coherent control also. The oven

should be perpendicular to the ionization laser to reduce the Doppler shift. The abundance

of 174Y b is 31.8%. If we use the natural Y b oven, we will get 174Y b with high probability.

The abundance of 171Y b is 14.3%. So we need to use the enhanced 171Y b for the oven to

load the corresponding ion. Because the 399nm, the strong beam and the detection beam

are combined in one PM fiber, once we get the ion and align the detection beam well, the

alignment of the ionization beams are automatically optimized. Thus only a small power of

399nm (200 µW) focused down to 40 µm with a lens of 150mm is enough for us.

To cool down the 174Y b+ ion, we use 369.5252nm cooling laser for 2S1/2 to 2P1/2

and 935.1802nm re-pumping laser (2P1/2 has a probability of 0.5% to decay to the meta

stable state 2D3/2) for 2D3/2 to 3[3/2]1/2. The wavelength for 171Y b+ are 369.52633nm and

935.1882nm. However because of the hyperfine splitting of 171Y b+, we need other frequency

added to the cooling laser. The absolute frequency is calibrated with the I2 vapor saturated

absorption spectrum as in Fig.4.12, which will be described in the fourth chapter. The lasers

for cooling, pumping and detecting of 171Y b+ is plotted in Fig. 2.7. For the cooling, we

add a 14.748GHz modulation on the 369.5263nm through the second order sideband of a

7.374GHz EOM. And the cooling laser is red-detuned by Γ/2 = 2π ×10MHz to achieve the

maximum cooling power. For the re-pumping 935nm laser, for the hyperfine splitting reason

we also add a 3.07GHz modulation through the fiber EOM from EOSPACE. In this way, the

closed cycling transition can be used for Doppler cooling. And the ion can be cooled down

to the thermal state of n̄ = 10 average phonon. For the optical pumping, we add a 2.105GHz

modulation through the EOM and only the ground state is not excited. The requirement of

the polarization are similar for cooling and pumping but a little different from detecting. That
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Pumping
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Fig. 2.7 The lasers used for cooling, pumping and detecting of 171Y b+.

is the reason why we combine the cooling and pumping in one PM fiber. The key point for

the detecting is the forbidden transitions in Fig. 2.7. In this way, the excited state is included

in a closed cycling transition to scatter a lot photons and the ground state is far off-resonant

with at least 2.105GHz.

There is another cooling beam you may already notice. We reuse the cooling beam with

a flipping mirror after the laser passing the chamber. When two cooling laser beams overlap

at the ion position, the scattering of the ion will decrease, and even the motion of the ion can

be modulated. We can see the ion becomes a line not a point. This second cooling along the

Raman beam direction is used for the alignment of the Raman beam. It is convenient and

quick compared with other methods.

We also use 638nm laser to re-pump the dark ion from F states, which may be formed

when ion collides with the background gas every several hours. We scan its wavelength from

638.6101− 638.6151nm. Its alignment is guaranteed by coupled to the fiber for 935nm

laser.



Chapter 3

laser-ion interaction

To control the internal states and the motional states, we can use the resonant microwave

for the hyperfine qubit, resonant lasers for the optical qubit and Raman lasers for the

hyperfine qubit. Traditionally because of the small Lamb-Dicke parameter, we can not use

the microwave field to control the motion. And the individual ion addressing with lasers

looks more practical than with microwaves. However the microwave with giant gradients

works. Just like the Raman laser scheme, there is also a huge position-dependent energy

difference. The entanglement operation (see Ref. [19]) even the single qubit addressing have

been realized (see Ref. [20]). I have used only the lasers to realized the coherent control with

one ion and will focus on the theoretical background of what I have really realized.

3.1 Coherent control with lasers

The laser is an extremely coherent electromagnetic field. To improve its coherence, we

also develop different stabilization schemes, which will be described in the next chapter.

Such nature makes lasers suitable for the quantum coherent control. The laser-ion interaction

can be in the dipole or quadrupole ways.
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3.1.1 Radiation patterns and C.G. coefficients

The radiation pattern shows how the direction, polarization of lasers relate to the inter-

action strength. Before we build the beam paths, we should consider the relation between

the directions of the magnetic field, the laser wave vector and also the polarization. The CG

coefficient shows the relative strength and phase for different transitions. It is very important

when the coherent interference happens among all the possible transitions.

We define the direction of magnetic B filed is the vertical z axis. For the dipole interaction

its radiation pattern looks like Fig. 3.1. The results for the quadrupole transition are also

showed in Fig. 3.2. The exact formula can be found in Ref. [21]. In the quadrupole transition,

we notice when δm = 0, the wave vector of lasers should be 45 degree tilted from the

magnetic field in order to maximize the strength of the interaction.

To know the relative phase and strength for different transitions, we should know the CG

coefficient (see Ref. [22]). For the dipole transition, considering the hyperfine interaction,

the angular coupling in the way as

L+S = J J+ I = F, (3.1)

where L is the orbital angular momentum, S is the electron spin and I is the nuclear spin.

We use the subscript e and g to denote the excited and ground states of the two level system.

Then the C.G. coefficients between the Zeeman levels |Le,Fe,me⟩ and |Lg,Fg,mg⟩ is

CG =(−)Fe−Me+Je+I+Fg+k+Le+S+Jg+k
√
(2Jg+1)(2Fg+1)(2Le+1)(2Je+1)(2Fe+1) Fe k Fg

−me q mg

Je k Jg

Fg I Fe


Le k Lg

Jg S Je

 , (3.2)

where k = Le −Lg = 1 and q = me −mg. As a conclusion, all the possible dipole transitions

for 171Y b+ between the 2S1/2 and 2P1/2 states are showed in Fig. 3.3.
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Fig. 3.1 The radiation pattern for the dipole transition. It is homogeneous along the φ

direction. Here I plot the relative strength along the θ direction. For the ∆m = 1 transition,
patterns for different polarization are also listed.
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Fig. 3.2 The radiation pattern for the quadrupole transition. It is homogeneous along the φ

direction. Here I plot the relative strength along the θ direction.
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Fig. 3.3 The CG coefficient for dipole transitions between 2S1/2 and 2P1/2 of 171Y b+.
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For the quadrupole transitions, with the similar definition as the dipole transitions, the

C.G. coefficient is

CG =(−)k+Le+S+Jg+Je+I−Me

√
(2Jg +1)(2Fg +1)(2Le +1)(2Je +1)(2Fe +1)Fg k Fe

Mg q −Me

Le Je S

Jg Lg k


Je Fe I

Fg Jg k

 , (3.3)

where k = 2.

3.1.2 One beam Zeeman qubit flipping with pulse lasers

In experiment, we realize the qubit operation with the pulsed Raman lasers. I have used

the 355nm picosecond pulse laser1 and the 375nm picosecond pulse laser 2. In the following,

I will only describe the calculation based on the Mira lasers. Though we use the pulse laser,

we can still consider the different tooth in the comb as the CW laser for simplicity. For the

treatment in the frequency-comb picture, Ref. [23] is a good reference.

Every time when I begin to build the Raman beam paths, I will start from the single beam

qubit flipping to reduce the uncertainty. When only one beam works, we do not need to

consider the overlap between the two Raman beams and the delay-line. Besides the single

beam flipping can be also a good tool to predict the B field direction.

The repetition rate of the pulse laser is 76.2106MHz and the hyperfine qubit splitting

is 12.643GHz. Each pair of tooth with 166× 76.2106MHz separation will be only about

8MHz detuned from the qubit splitting. Such detuning can avoid the one beam flipping when

we use the two beam Raman flipping. And this small amount can be covered by the Zeeman

splitting, which means if we adjust the B well (see Fig. 3.4), we should see the transition

between the ground state and one of the Zeeman levels in the up states. The B should be

perpendicular to the optical table, the polarization of the pulse laser should be linear and

tilts away from the B field with a suitable angle. Thus both π and σ++σ− component exist.

From the Fig. 3.4, we know there are two Raman passages. Considering all the related CG

1from HighQ company
2Verdi-Mira from Coherent company
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12.643 GHz

8 MHzN=166

Fig. 3.4 The single beam flipping for the Zeeman qubit. The CG coefficients for all the dipole
interactions are − 1√

3
. The two Raman passages will coherently add together.
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Fig. 3.5 The time evolution of the single beam flipping for the Zeeman qubit.

coefficients are − 1√
3
, they will coherently add. In experiment, after we overlap the pulse laser

with the second cooling laser showed in Fig. 2.6 and make sure of the B and polarization,

we keep the pulse laser on and adjust the strength of the B field. When the Zeeman splitting

reach about 8MHz, we should see the bright count from the PMT. Then we can optimize the

alignment, polarization and B to get the best flipping from one beam as showed in Fig. 3.5.

The Lamb-Dicke parameter of the one beam flipping is zero.

Except for the alignment, another advantage of the one beam flipping is that it can help

us to adjust the direction of the B field well. In the Raman configuration, the direction of

B field and the Raman beams should be the same. We can use the one beam flipping as a

good reference. After we optimize the one beam configuration, we change the direction of

B field to parallel to the Raman beams. If there is small misalignment, the pulse laser will

contain the π component, which will cause the single beam Zeeman qubit flipping. Only

when the B field and the pulse laser are parallel, the pulse laser contains only σ++σ−. In

such situation, we should not see any excitation. By playing with three pairs of B field coils,
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we can align the direction of B field along the Raman beams with the help of the excitation

from one beam of pulse laser.

3.1.3 Two beam Raman qubit flipping

To control the motional states of ions, we use two counter-propagating Raman beams.

In this way, the Lamb-Dicke parameter can be maximized. We have tried three different

configurations as showed in Figure. 3.6. All of them can realize the qubit flipping. If we

want to use the two Raman passages together, the directions of B and polarizations of Raman

beams should be orthogonal to each other. If not, the CG coefficients will give opposite signs

for these two Raman passages, and they will cancel out. If we just use one Raman passage, as

the last configuration, we can also realize the qubit flipping and also the spin dependent-force

or beam splitting operation, where the qubit is not involved. In our final setup, we choose the

last configuration.

I will give a simplified calculation of the Raman transition based on the continued wave

picture and the effective Hamiltonian theory [24]. The real Hamiltonian for the Raman

process is (h̄ = 1):

H =
Ωr

2
|e⟩⟨↑ |ei(∆+δ )t+ikr·x−iφr +

Ωr

2
|e⟩⟨↓ |ei(∆+δ+ωHF )t+ikr·x−iφr

+
Ωb

2
|e⟩⟨↓ |ei∆t+ikb·x−iφb +

Ωb

2
|e⟩⟨↑ |ei(∆−ωHF )t+ikb·x−iφb +H.c. (3.4)

Using the effective Hamiltonian theory, the frequency and operator for each term is

ω1 = ∆−ωHF ĥ†
1 =

Ωb

2
eikb·x−iφb|e⟩⟨↑ | (3.5)

ω2 = ∆ ĥ†
2 =

Ωb

2
eikb·x−iφb|e⟩⟨↓ | (3.6)

ω3 = ∆+δ ĥ†
3 =

Ωr

2
eikr·x−iφr |e⟩⟨↑ | (3.7)

ω4 = ∆+δ +ωHF ĥ†
4 =

Ωr

2
eikr·x−iφr |e⟩⟨↓ | (3.8)
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Fig. 3.6 Three different configurations for the Raman transition to control the qubit. From
top to bottom, in the top two configuration, we use the two Raman passages. Considering the
CG coefficients, we find the B and the polarizations of the two beams have to be orthogonal
to each other. Otherwise, these two Raman passages will get an opposite signs and cancel
out. In the last configuration, we use only one Raman passage by control the polarizations.
Later we will see only this configuration allows us to realize the spin-independent force.
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The second and the third terms contribute the Raman transition mainly. However, in order to

see the whole picture I write down the effective Hamiltonian considering all the terms:

He f f =
1
4

(
|Ωb|2

∆
+

|Ωr|2

∆+δ +ωHF

)
| ↓⟩⟨↓ |

+
1
4

(
|Ωb|2

∆−ωHF
+

|Ωr|2

∆+δ

)
| ↑⟩⟨↑ |

+

[
ΩbΩ∗

r
8

(
1
∆
+

1
∆+δ

)
| ↑⟩⟨↓ |ei(kb−kr)·x−iδ t−i(φb−φr)+H.c.

]
(3.9)

where the fast oscillating terms (faster than δ like ωHF ) have been ignored and the AC Stack

shift of the |e⟩ has been ignored. The differential AC Stark shift reduce the energy gap

between | ↑⟩ and | ↓⟩ as:

∆DAC =
|Ω2

b|
4

(
1

∆−ωHF
− 1

∆

)
+

|Ω2
r |

4

(
1

∆+δ
− 1

∆+δ +ωHF

)
. (3.10)

Normally, ∆ = 14THz and δ takes the value from 0 to several MHz. We can set Ω =

Ω∗
r Ωb
4

(
1
∆
+ 1

∆+δ

)
≈ Ω∗

bΩr
4

(
1
∆
+ 1

∆+δ

)
≈ Ω∗

r Ωb
2∆

, ∆k = kb −kr and φ = φb −φr. After compen-

sating the differential AC Stark shift

He f f =
Ω

2
| ↑⟩⟨↓ |ei∆k·x−iδ t−iφ +H.c. (3.11)

Using the Lamb-Dicke approximation

ei∆k·x = ei(kx·x̂+ky·ŷ)

= eikxx0(ae−iωxt+a†eiωxt)+ikyy0(be−iωyt+b†eiωyt)

= eiηx(ae−iωxt+a†eiωxt)+iηy(be−iωyt+b†eiωyt)

= 1+ iηx(ae−iωxt +a†eiωxt)+ iηy(be−iωyt +b†eiωyt)+ · · · (3.12)

Here we stop to the first order. When δ < Ω ≪ ωx(ωy), the interaction is called carrier

transition

Hcarrier =
Ω

2
σ+e−iδ t−iφ +H.c., (3.13)
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Fig. 3.7 Carrier, blue and red Rabi flipping. Black cureve is for carrier. Blue and red curves
are the blue and red sideband Rabi flipping.

where σ− = | ↓⟩⟨↑ | and the off resonant couplings to the higher order of the motion are

neglected. If the off-resonant coupling to the higher order of the motional modes is considered,

because it is symmetric about the carrier transition, the AC Stark shift cancels out. When

δ ≈ ωx(ωy), the interaction is called blue-sideband transition for the x(y) motional mode

Hblue = i
ηxΩ

2
σ+a†e−i(δ−ωx)t−iφ +H.c.. (3.14)

When δ ≈−ωx(−ωy), the interaction is called red-sideband transition for the x(y) motional

mode

Hred = i
ηxΩ

2
σ+ae−i(δ+ωx)t−iφ +H.c.. (3.15)

In Fig. 3.7 , we show the experiment data for these three transitions.
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CarrierRed Blue
Fig. 3.8 The single beam flipping for the Zeeman qubit. The detuning of the red and blue
sideband are the same amount δ but in different direction.

3.1.4 Spin-dependent force

When we apply the detuned red and blue sidebands as showed in Fig. 3.8. The Hamilto-

nian is

H = i
ηxΩ

2
σ+a†eiδ t−iφb + i

ηxΩ

2
σ+ae−iδ t−iφr +H.c.

=−ηxΩ

2
σφS(ae−iδ teiφM +a†eiδ te−iφM), (3.16)

where φM = φb−φr
2 , φS = π

2 + φb+φr
2 and the spin operator σφS = cosφSσx + sinφSσy =

e−iφSσ++ eiφSσ−. This is the so-called spin dependent force (see more in Ref. [25]). When

φS = π and φM = 0, this is the σx dependent force

H =
ηxΩ

2
σx(ae−iδ t +a†eiδ t). (3.17)

If we start from the spin down state, because | ↓⟩= 1√
2
(|+x⟩+ |−x⟩), the motion will separate

to two parts and entangled with the spin states. After T = 1
δ

, the two parts will recombine at

the original point in the phase space. The radius of the motion is ηxΩ

2δ
[26], and the trajectory

in the phase space looks like Fig. 3.9. In experiment we test the duration scan with a fixed δ

and also the δ scan with a fixed duration. The results are showed in Fig. 3.10.
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Fig. 3.9 The phase space trajectory of the ion experienced the spin dependent force. The
initial state can be decomposed into two parts | ↓⟩ = 1√

2
(|+x⟩+ |−x⟩). Each part will be

displaced by the σx spin dependent force with opposite directions. The radius of the trajectory
is ηxΩ

2δ
. The area enclosed by the trajectory is one half of the geometric phase Φ.
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Fig. 3.10 The spin dependent force test data. On the left side we fix the duration to be 50µs
and scan the detuning δ . On the right side, we fix the detuning δ = 10kHz and scan the
duration. The decay comes from motional heating and decoherence.
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Fig. 3.11 The Spin-independent force scheme. When the detuning between the two Raman
beams is close to the frequency of the motional modes, we can manipulate only the motional
states and ignore the spin part.

3.1.5 Spin-independent force, squeezing, beam splitting operation and

the fidelity measurement.

When the Raman detuning is close to the gap between the motional levels, as showed in

Fig. 3.11, we can manipulate only the motional states and ignore the spin part. Still using the

effective Hamiltonian method, the off resonant coupling terms are

H =
Ωr

2
| ↓⟩⟨e|e−i(∆+δ )t−ikr·x+iφr +

Ωb

2
| ↓⟩⟨e|e−i∆t−ikb·x+iφb +H.c.. (3.18)

The frequency and operators are

ω1 = ∆+δ ĥ1 =
Ωr

2
| ↓⟩⟨e|e−ikr·x+iφr (3.19)

ω2 = ∆ ĥ2 =
Ωb

2
| ↓⟩⟨e|e−ikb·x+iφb. (3.20)
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Then the effective Hamiltonian should be

He f f =

(
|Ωr|2

4(∆+δ )
+

|Ωb|2

4∆

)
(|e⟩⟨e|− | ↓⟩⟨↓ |)

+

[
Ω∗

bΩr

8

(
1
∆
+

1
∆+δ

)
ei∆k·x−iδ t−iφ (|e⟩⟨e|− | ↓⟩⟨↓ |)+H.c.

]
, (3.21)

where ∆k = kb −kr and φ = φb −φr. The first line is the AC Stark shift. When we consider

only the | ↓⟩, it can be ignored. If we define Ω =
|Ω∗

bΩr|
2∆

and the spin is prepared in the spin

ground state, the effective Hamiltonian is

He f f =−Ω

2
ei∆k·x−iδ t−iφ +H.c.. (3.22)

When δ ≈ ωx(ωy), considering the Eq. 3.12, the effective Hamiltonian can be simplified

as the displacement operation

Hdis = i
ηxΩ

2
a†eiνt−iφ +H.c., (3.23)

where ν = ωx −δ and the negative sign has been absorbed in φ . Applying this Hamiltonian,

we can easily displace D̂(α) the ion in the phase space. We show the relationship between

the displacement amount and the duration of the interaction as in Fig. 3.12.

When δ ≈ 2ωx(2ωy), we can expand the Eq. 3.12 to second order terms of ηx(ηy), the

effective Hamiltonian can be simplified as the squeezing operation

Hsqz =
η2

x Ω

4
a†2eiµt−iφ +H.c., (3.24)

where µ = 2ωx −δ . Applying this Hamiltonian, we can easily squeeze Ŝ(r) the ion in the

phase space. The example data is showed in Fig. 3.13.

When δ ≈ ωx −ωy(ωy −ωx), we can expand the Eq. 3.12 to second order terms of

ηx(ηy), the effective Hamiltonian can be simplified as the beam splitting operation

Hbs =
ηxηyΩ

2
a†beiξ t−iφ +H.c., (3.25)
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Fig. 3.12 The size of the coherent states dependent on the time. We apply the spin independent
force for different duration and measure the final amplitude of the coherent state. The time is
in the unit of µs.
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Fig. 3.13 The squeezed state. We apply the spin-independent squeezing operation. After a
period, the squeezed state is prepared.
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Fig. 3.14 The time scan of the Beam splitting operation. To test the BS operation, we apply
the π blue sideband on the X mode. Then we vary the duration of the BS operation. And
apply another π blue sideband on the Y mode. The oscillation indicates the population
transfer between the two motional modes.

where ξ = ωx −ωy − δ and the negative sign has been absorbed in φ . Here we show the

experiment data on this beam splitting operation between two radius modes in Fig. 3.14.

The fidelity measurement based on the beam splitting operation was proposed by our

theory collaborator Professor Myungshik Kim [27]. Here I will show the basic theory. The

fidelity between tow separable states ρ1, ρ2 written with the Wigner distribution is:

F = Tr[ρ1,ρ2] = π

∫
d2

αW1(α)W2(α) (3.26)

W1(2)(α) =
1

π2

∫
d2

λC1(2)S(λ )e
αλ ∗−α∗λ . (3.27)

After using the definition of the δ function in the Fourier transformation form, we can get

F =
1
π

∫
d2

λC1(λ )C2(−λ ). (3.28)

Then we apply the beam splitting operation as showed in Fig. 3.15. With the definition of the
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Fig. 3.15 The beam splitting operation.

characteristic function, we can get

C1(α)C2(−α) = Tr1[ρ1wαa†
1−α∗a1]Tr1[ρ2wαa†

2−α∗a2]

= Tr1,2[ρ1ρ2e−
√

2αb†
2+

√
2α†b2 ]

= Tr2′[ρ2′e
−
√

2αb†
2+

√
2α†b2]

=C2′(−
√

2α). (3.29)

Thus the fidelity is

F =
1
π

∫
d2

αC2′(−
√

2α) =
π

2
W2′(0) = P2′ (3.30)

This means we just need to measure the parity of the mode 2′, we can get the fidelity between

the two input states. The two input states can be pure or mixed states but can not be entangled.

3.1.6 Mølmer-Sørensen gate and XY model

When more than one ion is considered, the more interesting multi-body interaction will

appear. As the first example, we consider the famous Mølmer-Sørenson gate [28]. When

we apply the spin dependent force for N ions, considering Eq. 3.17, we can write down the
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Hamiltonian as

H =
N

∑
i=1

2N

∑
m=1

ηi,mΩi

2
σ

i
x(ame−iδmt +a†

meiδmt), (3.31)

where m is used to indicate the different motional modes. Here we use only the radius modes

and each ion will contribute two radius modes. The frequency and the operators are

ωm = δm ĥm =
N

∑
i=1

ηi,mΩi

2
σ

i
xam. (3.32)

Applying the effective Hamiltonian theory, we get

He f f =
N

∑
i ̸= j

(
2N

∑
m=1

ηi,mη j,mΩ∗
i Ω j

4δm

)
σ

i
xσ

j
x . (3.33)

If we include the contribution from the counter-rotating terms and the Raman detuning

relative to the carrier transition is redefined as δ (δm = ωm −δ ), keeping the phase as above,

the off resonant coupling is

H =
N

∑
i=1

2N

∑
m=1

ηi,mΩi

2
σ

i
x(ame−i(ωm−δ )t +a†

mei(ωm−δ )t +ame−i(ωm+δ )t +a†
mei(ωm+δ )t). (3.34)

The effective Hamiltonian is

He f f =
N

∑
i̸= j

(
2N

∑
m=1

ηi,mη j,mΩ∗
i Ω jωm

2(ω2
m −δ 2)

)
σ

i
xσ

j
x . (3.35)

Here we do not include the off-resonant coupling to the carrier transition. The AC Stark shift

caused by the two off resonant blue and red sideband will cancel out.

Now we consider a situation that only the off resonant blue (or red) sideband is applied.

Considering counter-rotating terms and the coupling to the carrier transition, the Hamiltonian

is

H =
N

∑
i=1

2N

∑
m=1

i
ηi,mΩi

2
σ

i
+

(
ame−i(ωm+δ )t−iφb +a†

mei(ωm−δ )t−iφb
)
+

N

∑
i=1

Ωi

2
σ

i
+e−iδ t−iφb +H.c..

(3.36)
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The frequency and the operator in the effective Hamiltonian theory are:

ω1 = ωm −δ ĥ1 =−i
N

∑
i=1

ηi,mΩ∗
i

2
σ

i
−ameiφb (3.37)

ω2 = δ ĥ3 =
N

∑
i

Ωi

2
σ

i
+e−iφb (3.38)

ω3 = ωm +δ ĥ3 = i
N

∑
i=1

ηi,mΩi

2
σ

i
+ame−iφb. (3.39)

The effective Hamiltonian is

He f f =
N

∑
i ̸= j

(
2N

∑
m=1

−ηi,mη j,mΩiΩ
∗
jωm

2(ω2
m −δ 2)

)
σ

i
+σ

j
−

+
N

∑
i=1

(
2N

∑
m=1

η2
i,m|Ωi|2δ

2(ω2
m −δ 2)

(nm +
1
2
)

)
σ

i
z +

N

∑
i=1

−|Ωi|2

4δ
σ

i
z. (3.40)

The ∑
N
i=1 σ i

z operator commutes with the spin exchange operator ∑
N
i ̸= j σ i

+σ
j
−. So the last

two terms can be ignored. This is just the Hamiltonian for the XY model. The Ref. [29]

has realized this scheme for the spin-1 system. And in Ref. [30, 31], the XY Hamiltonian

is realized by increasing the strength of the effective B field. Under the strong effective

magnetic field only the energy conserved terms (the spin exchange terms) remain. Here we

proposed a different and easier ways to get the XY Hamiltonian.

3.1.7 A multi-species entanglement scheme

After the first entanglement scheme, the Cirac-Zoller gate proposed, many other methods

appear, such as the M.S. gate described above and also the geometric phase gate. Even the

reservoir gate hes been realized [32, 33]. Here I will give a new and relatively easy scheme

to entangle two ions.

1. Start from the ground state of spins and motions for two ions: | ↓↓ 0⟩.

2. Apply the blue sideband π/2 pulse on the first ion. The state will be: 1√
2
(| ↓↓ 0⟩+ | ↑↓ 1⟩).

3. Apply the red sideband π pulse on the second ion. The state will be: 1√
2
(| ↓↓⟩+ | ↑↑⟩) |0⟩.
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Only two resonant sideband pulses are enough to entangle two spins. For one specie, we

need the single ion addressing ability. For different kinds of ions, we automatically has such

ability.

3.1.8 The mode of a chain of mixed ions

One important thing missed in the above discussion is the Lamb-Dicke parameter for

the ith ion and the mth motional mode. Here I will simply give the code that can be used to

calculate the position, the motional frequency and the mode vector of a ion chain contained

different kind of ions following the treatment described in Ref. [34, 35]. As the first step,

we should know the position of a mixed ion chain. The position should not be affected

by the mass of ions. The interaction between the ions and between the ion and DC field

is mass independent. To calculate the position, we should minimize the total energy of

the ion chain, where the positions are used as the variables. For an ion chain containing
171Yb+,171Yb+,137Ba+ in a series. The position in an example calculation is showed in

Fig. 3.16. The next step is to get the axial motional frequencies. In the Lagrangian describing

the axial motion, we can get the coupling efficients for all the displacements for any two pairs

or with itself. It can be written as a matrix. To get the normal mode, we need to diagonalize

this matrix. Using the diagonalized results, we can write the Hamiltonian in the decoupled

oscillator forms. The eigen vector is the normal mode and the eigen values are the axial

motional frequency of the normal mode. Here for different mass of ions, it is convenient to

use the mass-weighted coordinates [36]. So after this calculation, we should remember to

change back to the real coordinates.

In the similar way, for the radial mode we should firstly get its Lagrangian. It contains

two parts. The first is the radial interaction caused by the DC along axial direction. Because

of the Laplace equation, in the 3-D potential, the radial part should be −1/2 of the axial part.

So we can get this part of the radial Lagrangian easily from the matrix we get for the axial

motion. The other part of the radial Lagrangian is the interaction caused by the RF applied

on the RF electrodes. It is homogeneous for all ions and only contribute to the diagonal

parts of the potential. By diagonalize this matrix, we can get the eigen frequencies of the
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Fig. 3.16 The position and mode structure of a mixed ion chain. We simulate for
{171Yb+,171Yb+,137Ba+}. In the simulation we use the mass-weighted coordinates. So
after the diagonalize the potential, we should transform the eigen vector to the real coordinate
to get the right normal mode vectors.

radial motion. After transform the eigen vector in mass-weighted coordinates back to the

real coordinates, we can get the normal mode vectors. The example Mathematica code is

showed in Appendix.E.

3.2 Quantum control in the dissipated way

In the above section we have described the basic unitary operation in our trapped ion

system. Following, I will describe the basic non-unitary operation in our system. The trapped

ion is well isolated system from the environment. However, nothing is perfect in reality. In

the coupled whole system, the evolution is still unitary. If we focus only on the sub system,

its evolution can be non-unitary. I will start from the natural reservoir then the engineered

one.
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Fig. 3.17 The optical pumping speed. At 3µs, the state is about 0.023. By fitting the decay,
we get the pumping strength o = 1.42857×107.

3.2.1 Natural reservoir

The first example is the optical pumping or spontaneous emission process. According to

the general reservoir theory [37], the system-environment coupling can be written as

V (t) = ∑
k

gk

(
b†

kσ−e−i(ω−νk)t +bkσ+ei(ω−νk)t
)
. (3.41)

The gk is the mode distribution of the reservoir, bk and νk are the ladder operator and

frequency of the mode k, σ− is for the sin two level system and ω is the energy difference

of the two levels. For the optical pumping process, the reservoir can be regarded as the

zero temperature thermal reservoir. Thus only ⟨bkb†
k⟩ = 1 and all the other correlation is

zero. According to the general reservoir theory and use the Weisskopf-Wigner theory of

spontaneous emission, the evolution of the system is described by

ρ̇ =−o
2
(σ+σ−ρ −2σ−ρσ++ρσ+σ−) . (3.42)

To get the pumping strength o in experiment, we can be fitted through the real data as in

Fig. 3.17.



3.2 Quantum control in the dissipated way 43

This pumping process is very important in the engineered reservoir. Its strength o is very

important to design a good reservoir as described in the next subsection.

The second natural reservoir we encounter in the experiment is the heating reservoir.

The stray electrical field keeps kicking the ion. Such coupling to the environment can be

described by the boson exchange of the phonon of the ion and the mode of the environment

V (t) = ∑
k

gk

(
b†

kae−i(ν−νk)t +a†
kbei(ν−νk)t

)
, (3.43)

where a and b are the ladder operator of the system and the environment respectively and ν

and νk are the energy of the phonon and the mode of the environment respectively. In the

same way as described above and assume the thermal reservoir with average occupation n̄,

we can get the master equation

ρ̇(t) =
γ

2
n̄
(

2â†
ρ(t)â−ρ(t)ââ† − ââ†

ρ(t)
)
+

γ

2
(n̄+1)

(
2âρ(t)â† −ρ(t)â†â− â†âρ(t)

)
,

(3.44)

where γ is used to denote the strength of the heating. The lower γ the better will it be for the

quantum operation. In experiment, we should measuring the heating rate of each new trap.

The heating rate is believe to be proportional to the Negative fourth power of the ion-electrode

distance and is strongly affected by the surface quality of the electrodes [38, 39]. Here we

show the experiment heating rate data for the five segmented blade trap in Fig. 3.18. It is

gold coated and the center zone is 450×550µm2.

Another natural reservoir, we see is the motional dephasing reservoir. It is caused by

the amplitude fluctuation of the RF driving for the trap. The interaction can be a random

Hamiltonian

V (t) = σ(t)n, (3.45)

where ⟨σ(t)⟩= 0 is the fluctuation of the motional energy level and its width is ⟨σ(t)2⟩. We

can directly get the master equation

ρ̇(t) =−Γ(n.n.ρ(t)−2n.ρ(t).n+ρ(t).n.n), (3.46)
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Fig. 3.18 The heating rate measurement of the blade trap. The heating rate γ ≈ 3 phonon/s.

where Γ = ⟨σ2⟩ is the strength of the motional decoherence. We can measure the e−1 time

of the Ramsey decay between the n = 0 and n = 1 motional states and it is just 1
Γ

. To reduce

such noise, we stabilize the RF power after the helical resonator. It will be described in the

next chapter.

3.2.2 Engineered reservoir

The reservoir is not always bad for the experiment. It can also be used to prepare the

useful state [40, 41]. In this section, I will introduce the idea to prepare the coherent state,

the squeezed state, the cat state and also the time dependent reservoir for gate operation.

As the first step, an intuitive illustration from the view of coherent population trap-

ping(CPT) is give in Fig. 3.19. For the coherent state reservoir, we apply red sideband, the

carrier transition and the optical pumping together. The red and carrier will form a small

CPT structure as showed in Fig. 3.19. The ratio cn+1/cn in the dark state is the ratio between

the carrier and red multiplied by the squared root of the phonon numbers c
r
√

n+1
. This is just

a coherent state

|α⟩= e−|α|2/2
∞

∑
i=0

αn
√

n!
|n⟩. (3.47)
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Fig. 3.19 The intuitive illustration from the view of coherent population trapping(CPT) to
explain the engineered reservoir. In the coherent state reservoir, the red and carrier will for a
CPT structure.

In the similar way, if we start from |0⟩ and apply the red, blue sideband and the optical

pumping together, we can get the squeezed state finally

|r⟩= 1√
coshr

∞

∑
i=0

(− tanhr)n

√
(2n)!

2nn!
|2n⟩. (3.48)

To check the theory, the numerical simulation is conducted. We apply the carrier, red sideband

and optical pumping together. The Rabi rate of the carrier transition is α times of that of the

red sideband

(Ωc −Ωra)|ψ⟩= 0 Ωc = αΩr, (3.49)

the solution of which is |ψ⟩= |α⟩.

The strength of the optical pumping is very important. We can fix the time of the

interaction and scan the pumping speed o. Then we check the fidelity between the generated

state and the target state. As an example data, we use α = 2, Ωr =
π

13×10−6 and the time is

t = 5π/Ωc. After we choose the best pumping speed as in Fig. 3.20 , we check the fidelity

against time in Fig. 3.21. After a enough duration, we check the final state as in Fig. 3.22.
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Fig. 3.20 The simulation to choose the best pumping speed. For the specific parameter, we
should choose the best pumping speed. Too small or too large will decrease the evolution
speed in the engineered reservoir.
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Fig. 3.21 The fidelity against time for the coherent state reservoir. We choose the shortest
time to reach the required fidelity. If the time is too long, the decoherence from environment
will decrease the fidelity.
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Fig. 3.22 The phonon distribution and Wigner quasi-distribution of the final state in the
engineered reservoir for coherent state. Here α = 2.



3.2 Quantum control in the dissipated way 47

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0

0.2

0.4

0.6

0.8

n

Fig. 3.23 The phonon distribution and Wigner quasi-distribution of the squeeze state generated
by the engineered reservoir. The state in theory is r = 0.5.

The reservoir for the squeeze state is realized by applying the red, blue and pumping

together. The ratio of the Rabi rate between the blue and red is tanh(r) in Eq. 3.48. We also

need to choose the best pumping speed and the most suitable duration. The final result is

showed in Fig. 3.23.

The cat state is more complicated. We apply the second order red, the carrier and optical

pumping together

(Ω2ra2 −Ωc)|ψ⟩= 0. (3.50)

The Ω2r and Ωc are the strength of the second order red sideband and the carrier. The spin

operator is erased by the pumping process. It has two solutions: α and −α and α =
√

Ωc
Ω2r

.

The finally dark state is highly depended on the initial state [42]. The operations in this

reservoir keep the parity of states. If we start from |0⟩, we will reach the even cat state

|α⟩+ | −α⟩. If |1⟩, we get odd cat state |α⟩ − |−α⟩. To check the theory, we do the

numerical simulation starting from |0⟩. The first step is to choose the best pumping strength

and the suitable duration. The resulted state is showed in Fig. 3.24.

The engineered reservoir can not only prepare state but also be used to perform the gate

operation [9]. We need to modify the parameters of the reservoir adiabatically. Then the

dark state will also evolute. If we start from the even cat state and add the red sideband and

change the parameters to push the |−α⟩ component in the even cat to close a circle. The

area of the circle is just half of the geometric phase added on the |−α⟩ component. If area
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Fig. 3.24 The even cat states generated by the engineered reservoir. Here the relative phase
between the carrier and the second red is π . And the strength of the carrier Ωc = 22Ω2r

.

is 2π , the geometric phase is π and the even cat will become odd. The simulation of this

process is showed in Fig. 3.25. Now we have the σx operation for the single qubit in the cat

code. The σz rotation is relatively complicated. We start from |α⟩= |0α⟩+ |1α⟩ (without

normalization), which is the state on the equator of the Bloch sphere of the cat code. If we

can get the |−α⟩ component as much as we want, we can get the σz operation. We firstly

reduce the α in the reservoir. Then generate the cat state with an angle of φ . Finally rotate

the state with an angle of −φ . In the end, we will get 1+eiφ

2 |α⟩+ 1−eiφ

2 |−α⟩. This is just

|0α⟩+ eiφ |1α⟩. Thus we have realize the σz operation for the cat code. The simulation result

is showed in Fig. 3.26.

Up to now we get all the single qubit gates. We need still the two qubit entanglement

operation. Different from the Ref. [33], we use the beam splitting interaction to realize

entangle cat qubit on two different modes. We start from |
√

2α1⟩+ |−
√

2α1⟩ on the first

mode. Then we apply the beam splitting operation between the first and the second mode.

After a suitable time, we can get the state |α1α2⟩+ |(−α1)(−α2)⟩ (without normalization).

It is just the bell state of the cat code |01
α01

α⟩+ |11
α12

α⟩. Now we have all the gates need for

the cat code.



3.2 Quantum control in the dissipated way 49

Fig. 3.25 The time evolution of the cat states in the time dependent reservoir. The even cat
state after an adiabatic evolution will be the odd cat state. In the cat code this represent a σx
rotation with a angle of π . Here we use |0α⟩= |α⟩+ |−α⟩ and |1α⟩= |α⟩− |−α⟩ without
the normalization. The final picture is cited from Ref. [9].
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Fig. 3.26 The time evolution of the σz operation for the cat code. All the evolution is realized
withe the reservoir. Starting from |α⟩, we firstly reduce the size of the cat state reservoir to
zero. Then increase the size of the cat along an axis of angle of φ . Finally we rotate the cat
state back with a=n angle of −φ . As the final result, we realize the σz rotation. The final
picture is cited from Ref. [9].



Chapter 4

Experimental setup

The purpose of this chapter is to describe what I have build in our lab. It will help the

successors get familiar with the set up quickly.

4.1 The vacuum, blade traps, helical resonators and filters

To prepare the UHV (ultra high vacuum) environment is very important to trap the ion.

To get about hours level collision rate, the vacuum should be 10−11 Torr level. We should

be very careful not to contaminate the inner surface of all the vacuum components by the

body oil. To reduced the out gassing rate of the stainless steel (mainly water vapor), we

should bake the vacuum components for a long time to make all the surface of the steel

yellow (chrome yellow). The thicker the oxidization layer, the smaller the out gassing rate

will be. Typically we bake all the steel components to 300◦C for several days. The joint

components made of steel and glass or ceramic together are not baked separately but baked

after the assembling of the whole vacuum system up to 200◦C for 1−2 weeks.

After assembling everything together, the vacuum system is placed in a big oven. It is

connected with a big ion pump (500L) and a turbo pump with a stainless steel bellows. The

valve inside the big oven should be all metal, because it will be baked up to 200◦C. At first,

we turn on the turbo pump. After several hours, the vacuum will go to 10−7 Torr measured

by the gauge at the turbo pump side. Now we should degas the atomic oven and the Ti
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sublimation pump and also the ion pump. For the atomic oven, we use half of the current

threshold for several minutes. The Ti sublimation pump should be degassed according the

instruction in the manual. The ion pump has a limited life time and it strongly depends on

the current. So in the vacuum condition now, we should not turn it on for a long time. For

degassing and activating it, we just need to turn on and off it for several times. After we

feel the turbo pump is roughly saturated, we close the valve for the turbo pump and on the

valve for the outside big ion pump (500L). This big ion pump keeps heated up by heating

tapes and its vacuum without connected with anything is 1×10−10 Torr. After connected

with the whole system, the vacuum can be 10−8 Torr measured at the big ion pump. Now

we can turn on the inner small ion pump (20L) (turn on and off it for several times at the

beginning). Up to now, the big oven should begin to work. The temperature rising rate

should be smaller than value for all the components we use in our system, which can be

found with the manufacturers. Typically, we increase from the room temperature to 200◦C in

24 hours. During the high temperature condition, we keep recording the vacuum measured

at the inner small and outside big ion pump until the vacuum stops decreasing. Typically

it can be 5×10−8 Torr at the inner pump and takes about 1-2 weeks. If the reading stops

decreasing, we can turn off and on the inner ion pump. Then we turn off the heating tape for

the outside big ion pump. The inside vacuum can drop to 3×10−8 Torr. After it reaches the

room temperature, we begin to reduce the temperature of the big oven with the same rate as

it is increased. After reaching the room temperature, the inside vacuum can be 2×10−10

Torr. Now we open the door of the oven and run the Ti sublimation for several times. During

the first run, after the current is shut down, the vacuum keeps dropping quickly. Once it goes

below the initial vacuum, we close the inside all-metal valve connected to the bellows with

torque wrench and record the torque we use. The torque should be larger than the previous

values. If lucky (all the components are clean enough and no leakages), after the first run, the

vacuum can drop below 5×10−11 Torr and the inner ion pump will show "Low pressure". If

not, we repeat running the Ti sublimation pump. If the vacuum is different from the values I

list above too much, we should check all the sealing points with acetone. If there is leakage
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Fig. 4.1 The vacuum and detecting set up. We use ion pump (the black cube) and Ti
sublimation pump (inside the long vertical tube) to maintain the UHV condition. The
detecting system is designed to allow us to adjust the objective lens in x̂− ŷ− ẑ directions
and also the notch and pitch directions. This imaging set up should allow us to align the
objective lens perfectly.

and the acetone is applied, the pressure will drop quickly and increase back to the initial

value after the acetone evaporates.

The trap is showed in Fig. 4.2. The size should be estimated by the CPO simulation. A

key point for our trap is to make the horizontal distance larger than the vertical distance to

avoid the scattering from the blade into the imaging system. The trap with its holder and the

oven together with the chamber are showed in Fig. 4.3.

After we prepare the trap and the whole vacuum system and put it on the optical table,

we should apply suitable RF and DC to the electrode. The DC voltages are used to separate

the two radial modes, adjust the micro motion conditions and also trap the ion along the axial

direction. The RF filed should be high enough (larger than 500 V) to give us a high enough

trapping frequency. If it is too small, the motional sideband should be too crowded and the

gate speed will also drop a lot to avoid the off resonant coupling. However if we directly apply

the RF from the commercial source and the amplifier, the power is not enough and most of

the power will be reflected to the amplifier and destroy it. To realize the impedance matching
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NA=0.6

Fig. 4.2 The 5 segment blade trap. The basic sizes are showed. We should make the
horizontal distance larger than the vertical distance to avoid the scattering from the blade
into the imaging system.
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Fig. 4.3 The vacuum chamber and the trap with holder and ovens inside. The blades are
placed on the macor holders and the macor holders are supported by two stainless steel X
structure. The ground part of the DC blades are connected to this X structure.
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and amplify the voltage, we use the helical resonator. It is basically a λ/4 resonant and use

the helical coil inside to reduce its length [15]. For example, when the driving frequency is

2π ×25MHz, we need 3m long coaxial tube. If we use the helical resonator, it is just 20cm

long. To trap the ion stably, especially for multi ions, the driving frequency should be at

least 7 times of the trap frequency and minimize the micro-motion along the axial direction.

In experiment, we use 3MHz trap frequency. So we choose 25MHz driving frequency after

connected with the trap. The diameter of the tube is 10cm and the turns of the coils inside

should be about 8−9. Before connecting the trap, the resonant frequency is 33MHz. We

measure its Q value about 400 by dividing the resonant frequency by the measured resonant

line-width from the reflection from the directional coupler after the amplifier. The RF flows

on the surface of the copper. The skin depth is

d =

√
2

ωµµ0σ
= 9µm, (4.1)

where for Cu, σ = (1.673× 10−8Ω ·m)−1, µµ0 = 4π × 10−7H/m and ω = 2π × 50MHz.

To improve Q factor, we use dilute phosphoric acid to clean the copper surface. A example

data for the Q measurement is showed in Fig. 4.4. The capacitance of the blade trap is about

2pF. Connected, it drops to 25MHz and the Q value drops to 200. To compensate the phase

and amplitude difference between the coils, we add a 10nF capacitor between the two wires

after the coil structure. The amplified amplitude of the RF is

V0 = h
√

QP, (4.2)

where h is the geometric factor, Q is the quality factor and P is the power of the RF. The

picture of the helical resonator and the trap frequency-power relation are showed in Fig. 4.5.

We also add the RF power stabilization set up to improve the motional coherence time.

We connect one coil with a RF picker and a rectifier. I simulate the whole set up with the

circuit model as showed in Fig. 4.6. The output voltage is much higher than the reality. And

Q is also too good. The reason I believe is the circuit model can not include the radiation
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Fig. 4.4 Helical resonator’s Q

dissipation. If we increase the resistance in this circuit, we can get the similar result as the

experiment data. Thus the radiation effect can be simulated by adding an effective resistance.

To increase Q we also need to reducing the radiation through reducing the length of RF wires

and ground them by a nearby ground wires. At first we use the rectifier as the drawing made

by ourselves. However we find its speed is not fast enough. Later we find a commercial

RF power detector bought from a local company 1. Its speed is more than hundreds times

faster than the one we make. We use the detected DC voltage as the input of a digital PI

controller and the error signal. At first we feedback the error signal to the AM port of the RF

source. However, we find this function has several µs delay. Finally we use the RF mixer as

the voltage controlled attenuator. It is speed is fast enough compared with the characteristic

dumping frequency of the helical resonator, which is 25MHz
Q=200 = 125kHz for us. The only

problem for the mixer solution is that the output will be distorted as showed in Fig. 4.7. We

use the traditional output as the DC input to control the amplitude of the RF. In experiment

we see this distortion. But the ion is still trapped well. We believe the helical resonator filters

1http://www.shx-sh.com/
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Fig. 4.5 The picture of the helical resonator and the trap frequency-power relation.
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Fig. 4.6 The circuit model simulation of the bifilar helical resonator connected with voltage
picker and the rectifier. To make sure the amplitude and phase same between the two coils,
we add 1 nF capacitor between this two coils. The output voltage is much higher than the
reality, because we do not consider the radiation dissipation. It is used to find the general
features of the helical resonator.
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Fig. 4.7 The simulation of the mixer used as the voltage controlled attenuator. We use the
traditional output as the DC input to control the amplitude of the RF. The shape of the output
will be distorted. In experiment we see this effect. But the ion is still trapped well.

out all the other frequency components other than the resonant frequency. With the RF power

stabilization setup, we improve the motional coherence time four times.

The DC voltages we apply to the blades should be filtered to reduce the noise and short

the RF pick up to the ground within a short loop to reduce the radiation. We find the ceramic

capacitors will generate noise (pulsed tens MHz noise) and a resistor is needed to get rid of

such noise. We need to apply the DC on the DC blades and also to the coil of the helical

resonator. We design two boards that works well without noticeable noise as showed in

Fig. 4.8. We measure the cut off frequency and the suppression at the trap frequency and

the driving frequency to choose the best values of the R and C. We should notice that the

capacitor at low frequency side works as an ideal capacitor. At the high frequency side, the

parasitic inductance will be more important. And the larger the C is, the larger the parasitic

inductance will be. However the smaller the C is, the cut off frequency will be higher also.

We should make a balance.

4.2 Diode laser systems

For ionizing, cooling, pumping and detecting, we use the diode lasers. Depending on the

situation, we may need to stabilize the frequency, power, polarization and pointing stability.
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Fig. 4.8 The board drawings of the filter designed to apply DC on the RF coil and DC blades.

For a two level system, the scattering rate is

Γsc =

I
Isat

Γ

2

1+
I

Isat
+

4∆2
l

Γ2

, (4.3)

where I is the intensity of the incident light; Γ = 1/τ is the spontaneous emission rate of the

transition, with τ the natural lifetime of the excited state, and is related to the natural line

width γ = 2π/Γ; and ∆l is the detuning of the incident light from the resonant frequency. We

have also used the saturation intensity Isat , which is given by

Isat =
πhcΓ

3λ 3Rbr
(4.4)

where Rbr is the branching ratio from the upper level to the lower level. For Yb ion, τ = 8ns

and the line width of the spectroscope is 20MHz, which is too large for the motional sideband

resolving. Typically, we need MHz level stability of the laser frequency to ionize, cool, pump

and detect the ion. If for the quadrupole transition, we need to reduce the line width of the

laser a lot. In this subsection, I will introduce all the stabilization setup I have built and also

the typical beams path.
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We will introduce the PDH lock at first. The reflected fields from cavity is:

F(w) =
Ere f

Einc
=

r(exp(i
w

ν f sr
)−1)

1− r2 exp i
w

ν f sr

(4.5)

Fig. 4.9 Reflected fields from cavity due to several round-trips inside the cavity, cited from
Ref. [1].

For the cavity we make, we estimate the amplitude reflection rates of the 2 mirrors are both

r = 0.993, the length of the cavity is L = 0.15m and the free space range is ν f sr =
c

4L
=

500MHz for the confocal cavity. The finesse is F = πr
1−r2 = 224. We can get the reflection

against frequency and its phase in Fig. 4.10. We find that its phase has different signs when

the laser’s frequency is higher or lower than the resonant frequency. The problem is the

phase is a mathematical concept. It is not an electronic signal that we can directly use as

the error signal. So we need develop some method to change the phase to some kind of

electronic signal. This is the key point of PDH lock. To do this we introduce two kinds of

modulation-demodulation. They can change the phase to some electronic signal. If we add a
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Fig. 4.10 The reflection signal and its phase. The horizontal axis is in the unit of w/ν f sr.

-0.10 -0.05 0.05 0.10

-0.010

-0.005

0.005

0.010

(a) The slow modulation: Ω = 0.5δν

-0.3 -0.2 -0.1 0.1 0.2 0.3

-1.0

-0.5

0.5

1.0

(b) The fast modulation: Ω = 20δν

Fig. 4.11 The error signal for slow and fast modulation. The horizontal axis is in the unit of
w/ν f sr.

phase modulation by the Pockels cell or frequency mixer, we can get:

Einc ≈ E0[J0(β )eiwt + J1(β )ei(w+Ω)t − J1(β )ei(w−Ω)t ] (4.6)

Ere f = E0[F(w)J0(β )eiwt +F(w+Ω)J1(β )e(w+Ω)t −F(w−Ω)J1ei(w−Ω)t ] (4.7)

So what we can measure is the Ω frequency part in Pre f = |Ere f |2. sin or cos part depends on

the relative phase. The slow modulation means Ω is very small compared with the cavity

linewidth δν =
ν f sr
F ≈ 2MHz. The fast modulation means the Ω is lager than δν . The

numerical results are showed in Fig. 4.11. Between these two kinds of error signals, we

choose the fast modulation. It can give us a wider error signal. That’s the PDH lock. Its
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Locking point
739.0527nm

0

Fig. 4.12 The error signal we get from the Iodine frequency modulation lock. We should
notice that the error signal is not symmetric along the horizontal axis. This is the so called
remained amplitude modulation.

property is the fast reaction to the change of wavelength but may be not reliable in a long

time. So we still need a natural frequency standard.

For this purpose, we build the I2 lock for the 740nm laser, the Te2 lock for the 493nm

laser and the hallow cathode lamp lock for the 370nm laser. The I2 lock set up is similar

to the one described in the Ref. [43]. So I only show the error signal we get in Fig. 4.12.

If we are careful enough, we should notice that the error signal is not symmetric along the

horizontal axis. This is the so called remained amplitude modulation. It may change the

locking point and reduce the locking range. When it is too serious, the error signal will

not pass zero even. When we do the frequency modulation lock, we add the frequency

modulation on the AOM. However, the output power and direction are also modulated by

this frequency modulation. The intensity of the strong beam and the overlap between the



4.2 Diode laser systems 65

+ =FM RAM
Fig. 4.13 The remained amplitude modulated(RAM) error signal. When the strong beam is
modulated with the amplitude or direction, the resulted error signal will be asymmetric.

prob beam will be modulated. This effective strong beam amplitude modulation will modify

the symmetric error to be asymmetric vertically as showed in Fig. 4.13.

To correct this error, in the Te2 lock, I modify the AOM to the double pass configuration.

Then the direction of the output from the AOM will not be modified. I compare the result

with the one pass configuration and the double pass configuration as showed in Fig.4.14. It is

clear that, the double pass configured AOM can reduce the remained amplitude modulation a

lot. For more information on this remained amplitude modulation see Ref.[44].

When the frequency of the laser is close to the crowded molecular transition lines, we can

use different vapor cell to lock. However when I use the 370nm diode laser, the frequency is

too high for most molecular transitions. So we choose to use the hallow cathode lamp of Yb

and the amplitude-modulated polarization spectroscopy [45]. Here we turn on and off the

AOM to get the difference between the saturated prob and non-saturated prob beams. When

the strong saturated laser is on, it will saturate the same polarization component in the prob

beam. The counter propagating configuration will give us the Doppler free signals. We can

also do this with the frequency modulation method. However, the on-off modulation method

will not introduce the remained amplitude modulation. Even we use the double pass AOM

configuration, the AOM efficiency is still frequency dependent. The remained amplitude

modulation still exists though very small. The error signal around the transition of 171Y b+ is

showed in Fig. 4.15.

The problem is the wide error signal. Its width is about 2π × 400MHz. And we can

reduce the error signal to 5mV after locking. Compared with the Vpp = 1V of the error signal,

we estimate the linewidth of the laser is about 400× 1000
5 = 2MHz. It is not that small but

enough for our daily operation. The drawing of this setup is showed in Fig. 4.16.
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Fig. 4.14 The error signal comparison between the one and double pass AOM configuration
in the frequency modulation lock. I use two different cell. So the peaks can not overlap. We
guess the Te2 isotopes are different in the different cells. The black one is filled with the
natural Te2. The red line is for the one pass configuration and the black one is for the double
pass configuration.

Fig. 4.15 The error signal before and after locking with the Yb hallow cathode lamp.
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Fig. 4.16 The beam path of the all fiber solution of the 370nm laser system. The hallow
cathode lamp lock setup is on the top. I use about 2mW for the laser frequency stabilization
and the remained 1.5mW is used for cooling, pumping and detecting.
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The problem I have with this 370nm diode laser is its small power. After the isolator

only 3.5mW left. If I use the same optics as used in the old 740-370 laser system, the power

will not be enough. So I try to use all AOMs in a series. Because operations for ion are not

conducted at the same time, we can reuse the laser power. In order to improve the pointing

stability and also simplify the alignment, I choose to couple all the diode laser beams into

polarization maintaining fibers. To save the fibers and simplify the optics, we combine the

cooling and pumping laser into one fiber, the detecting and the strong ionization and 399nm

ionization beams are combined in one fiber as showed in Fig. 4.16. The beam paths before

the trap is showed in Fig. 2.6. When we use fibers, we should use tilted end fibers (FC/APC)

to reduce the reflection to diode lasers from fibers.

4.3 The pulse laser system

To manipulate the qubit and motional states, we use the pulse laser. The theory has been

described in the third chapter. Here I will introduce all the experiment set up in the lab

related to the pulse laser system. The pulse width is about 10ps. Thus its line width is about

100GHz. The frequency fluctuation compared with the laser linewidth is too small. The

pulse laser operation is based on the repeatation rate. If the the repeatation rate is not stable,

the coherence of all the operation will be destroyed. To lock the repeatation rate, I have tried

two methods: feed forward and feed back. The feed forward method has been well described

in Ref. [46]. I will not introduce more. With the feed forward lock, we can improve the

coherence time of the carrier operation up to tens ms from less than 1 ms. The coherence will

also affected by the laser power fluctuation. The only problem for this set up is that it can not

work when the spin is not involved. In the spin independent force, the feed forward lock will

even make the coherence worth. To solve this problem, I change to use the feed back method.

I try this method in two pulse laser. At first, I use the HighQ laser. It is a SESAM picosecond

pulse Nd:YAG laser. Its frequency is 1064-532-355. The line width of its repeatation rate is

quite narrow measured with the 532nm laser for the detector does not work for the 355nm

directly. Using the ultrafast PD, we see the linewidth at 6.32GHz high harmonic is just about
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several Hz. So I do not need to reduce its linewidth. Just compensating the long term drift is

enough. I feed back through the PLL system with the base frequency at 80MHz. The next

pulse laser I use is the Mira laser from Coherent. It is Ti sapphire laser. We find its linewidth

at the 6.32GHz high harmonic is about 1−2kHz. It is too big. Just using the base frequency

at 76.2MHz is not enough to reduce its linewidth, because the error signal is too slow and P

component in the PI servo controller does not work. It can only guarantee the long term drift.

To solve this problem, I choose to use the high harmonic to lock as showed in Fig. 4.17. At

the high harmonic detected by the ultrafast PD (EOT-4000 from EOT), the error signal will

be much faster than that of the base mode. So we can increase the P components in the servo

controller (LB1005 from New Focus). With this high speed PLL feedback, we can reduce

the linewidth of the repeatation at 12.64GHz within 0.1Hz, which is estimated through the

error signal. Thus the coherent control will not affected by the repeatation rate. Another

decoherence source from the pulse laser is the intensity fluctuation. To reduce it, we add an

AOM at the beginning of the beam path and control the intensity as showed in Fig. 4.17. A

window plate is used to sample the laser power and we use the internal DC source as the

reference. At first we use built-in AM function for the feedback. Later we find this built-in

function has a delay on the scale of tens us level. So we change to use the mixer as a voltage

controlled attenuator. Its speed is just 1µs level.

After this two stabilization, the coherence time of the carrier operation is still tens of ms

level. We believe the main error source is pointing stability of the UV pulse laser. To improve

this, one possible way is to use fiber like the diode laser system. However the normal PM

fiber will be damaged by the UV pulse laser easily. When the power is larger than 10mW,

it is very obvious. The Ref. [47] introduces that hydrogen loading can be used to make the

fibers stronger against the UV. We do this with a photon crystal fiber and find up to 100mW,

the fiber is still safe for the 355nm picosecond pulse laser.

The pointing error can also be introduced by the angle difference of the AOM at different

driving frequency. The first order motional sidebands are 3MHz from the carrier transition.

This frequency difference will affect the alignment of the Raman beam. To compensate this

error, we use the reply imaging. We focus the beam at the AOM and put a 300 mm lens after
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Fig. 4.17 The repeatation rate and intensity noise eater for the pulse laser. In the repeatation
rate lock system, we choose to use the high harmonic to realize the PLL.
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Fig. 4.18 The imaging simulation of the CVI lens at 370 nm. Its N.A. is 0.23. And we can
see an ion clearly without noticeable abbreviation. The detection for n̄ = 10 photons takes
350µs.

the AOM at the focus length of the lens, after which the beam will be parallel. Then we use

two lens to amplify the width of the beams by 3 times to increase the laser intensity at the

ion. We put an 150µm pinhole at the focus point after the first amplification lens. It will

help to clean the scattering and work as a reference for the beam alignment. Finally it will

be focus down by a 100 mm lens. At the ion position the width will be around 15µm. And

the AOM is also imaged at the ion position, which means the beam will be stable when the

frequency of the AOM is changed.

4.4 The detecting system

We have used three different kinds of objective lens. The first is UVO-20.0-10.0-355-532

from CVI. Its N.A. is 0.23. The beam paths, optics and the simulation is showed in Fig. 4.18.

Because its N.A. is still not that large, we can see the ion without noticeable abbreviation.

The detection takes a relatively long duration of 350µs. We also try a similar lens with a

shorter effective focus length from a local company. Later we change to the large N.A.=0.6

lens [48] and get a shorter detection duration of 60µs. However we see a serious abbreviation

as showed in Fig. 4.19. We try to correct the abbreviation by using the cylindrical lens and
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Defocused DefocusedFocused

Fig. 4.19 The imaging simulation of the Photon Gear large N.A. lens at 370 nm. We see the
noticeable abbreviation.
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use the five axis translation stage to align the objective lens. Unfortunately, the image is not

improved.





Chapter 5

Experimental test of the quantum

Jarzynski equality

In this chapter I will add more data, experiment details and theory background of our

publication [49].

5.1 The quantum Jarzynski equality

The Jarzynski equality relates the free-energy diference between two equilibrium states

to the work done on a system through far-from-equilibrium processes. Though the classical

version was discovered at first [50], the quantum version is relatively easy to get in a closed

system

⟨e−βW ⟩=∑
n,m

e−βεn
0

Z0
Pn→me−βW

=∑
n,m

1
Z0

Pn→me−βεm
1

=∑
m

e−βεm
1

Z0

=
Z1

Z0
= e−β∆F (5.1)
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where we use the subscript 0(1) to denote the initial(final) equilibrium system. The partition

function and free energy are

Z = ∑
n

e−βεn
(5.2)

F =−β
−1 lnZ. (5.3)

And the work is defined as

W = ε
m
1 − ε

n
0 . (5.4)

For a more rigorous treatment, the Ref. [51] is a good choice. Traditionally the thermal

dynamics rules are in the inequality form, such as the second law and Clausius inequality

⟨W ⟩ ≥ ∆F. (5.5)

Using the Jensen’s inequality, we can easily get it from the Jarzynski equality. The Jarzynski

equality is a better understanding of fluctuation relation. And it can allow us to measure the

free energy difference with arbitrarily fast process. Its classical version has been tested in

experiment in Ref. [52]. However its quantum version was still an untested theory before

our work. We report an experimental test of the quantum Jarzynski equality with a single
171Y b+ ion. We perform projective measurements to obtain phonon distributions of the initial

thermal state. We then apply a laser-induced force to the projected energy eigenstate and

find transition probabilities to final energy eigenstates after the work is done. By varying

the speed with which we apply the force from the equilibrium to the far-from-equilibrium

regime, we verify the quantum Jarzynski equality in an isolated system.

5.2 The thermal state preparation

As what we have seen in the derivation, the initial thermal state is very important. After

the Doppler cooling, the average phonon is about 10. It is a little too high. So we start from

the resolved sideband cooling. The average phonon is about 0.02 after the resolved sideband
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Fig. 5.1 The |n⟩= |6⟩ thermalization under the natural reservoir. The theory curve is predicted
from Eq.3.44. It proves Eq.3.44 describes the natural environment well.

cooling at the condition of 3.1MHz trap frequency. By simply waiting, the environment noise

will heat the ion. This process should be described by Eq.3.44. But all the previous reports

in the trapped system is just from the engineered thermal reservoir [53]. So we conduct

the number state heating test as showed in Fig. 5.1. It prove the environment is a thermal

reservoir. According to the numerical simulation, we know if the state starts from a vacuum

state and experience the thermal reservoir, the state will always be thermal state. By waiting

for 1ms, we get the thermal state of average phonon of 0.157 as showed in Fig. 5.2. We

measure the phonon with the blue sideband fitting and the projective measurement, which

will be introduced in the next subsection.

5.3 Phonon projective measurement

The projective measurement is the key to realize the two point measurement of the

quantum work [51]. In most situation the projective measurement for the spin is relatively

easy. For other quantum observables, it is not always that easy. The photon QND projective

measurement was realized by Serge Haroche [54]. The phonon projective measurement we

use here was proposed for the Boson sampling problem at first [55]. The basic operation is
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Fig. 5.2 Thermal state preparation of phonon and measurement results. (a) Measurements on
heating rate of trapped ion’s harmonic motion in X-direction. After the ground state cooling,
the average phonon number increases linearly with the waiting time. The temperature
is extracted from the average phonon number n̄ by Teff = h̄ν/kB ln(1+1/n̄), where ν is
effective trap frequency. The projective measurements on the phonon states (red circles) are
performed at various waiting time and the results are compared to those from the phonon-
distribution measurement based on the dependence of the blue-sideband Rabi frequency on
the phonon number (filled blue circles). The measured heating rate by phonon projection is
consistent with that by fitting the blue-sideband transition within error bars. (b) The phonon
distribution (red circles) measured by projective measurement at 1 ms waiting time, fitted by
thermal distribution function Pth

n = n̄n/(n̄+1)n+1 (solid line). The error bars are standard
deviation. (c) The phonon distribution at 1 ms obtained by fitting the data in the inset with a
superposition of Fock states (filled blue circles) and by a thermal distribution with n̄ (solid
line). The error bars come from the one standard deviation in parameter estimations of the
fitting.
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showed in Fig. 5.3. We use the carrier, adiabatic blue sideband and detection to transfer the

phonon projective measurement to the spin projective measurement. One problem of the

scheme showed here is that if we use the bright state for the spin detection, after the detection

the spin up state can be distributed to other Zeeman levels. To overcome this problem, we

can use adiabatic red sideband and carrier to do the same work. To project n = 0, we apply

adiabatic red sideband then detection. If we see the dark count, the state is projected to n = 0.

To project n = 1, we apply adiabatic red, carrier and adiabatic red then detection. When it is

bright, the state is larger than 1. If we detect the dark count, the initial n = 1 goes to 0 now

and the initial 0 goes to 1. Then we apply another adiabatic red sideband and detection. If

it is dark, we project to the original n = 1 by preparing n = 1 from n = 0. The probability

of n = 1 is P1 = D1D2. For n = 2, we apply adiabatic red, carrier, adiabatic red, carrier and

adiabatic red then detection. When we see the dark count, the state is projected to n ≤ 2.

Then we apply one adiabatic red sideband and detection. If it is dark, we project to the initial

n = 2 by preparing n = 2 from n = 0 unitarily. The state is not destroyed by the detection in

this way. The disadvantage is that the post selection process decreases the efficiency. In the

adiabatic blue sideband method, every count result has its meaning. In experiment, we find

the result of these two methods are almost the same.

The most important technique is the adiabatic motional sideband. The waveforms we use

to realized it is showed in Fig. 5.4. To reduce the duration required by the adiabatic operation,

we use the transition-less driving theory [56, 57] and add a small amount of σy component in

the driving filed. The idea behind it is not that difficult. When we change the Hamiltonian

adiabatically and change to the instantaneous framework, we can get the instantaneous

Hamiltonian. If the speed is not infinitesimal, despite the energy eigen-Hamiltonian we get

more terms. The diagonal terms will contribute to the famous Berry phase. The non-diagonal

terms will introduce the non-adiabatic transitions. To reduce this excitation, we can add an

auxiliary filed called the counter-diabatic Hamiltonian HCD with an opposite sign with the

non-diagonal terms to cancel therm out. By change back to the lab framework, we know

what the HCD we should apply in the lab framework. Now let us derive. The time dependent
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Projective measurements of phonons

to +

1

1 2

Fig. 5.3 The phonon projective measurement. We use the carrier and adiabatic blue sideband
together to realize the phonon projective measurement. The probability of the phonon state n
is Pn = Pn−1

D PB. After the first bright detection, we reverse the whole sequence to prepare the
|n⟩ state.
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Fig. 5.4 The adiabatic blue sideband. We use the cos and sin waveform to change the
Hamiltonian adiabatically. The state will follow the Hamiltonian. In this way we compensate
the different Rabi frequency for different |n⟩. The problem of this simple way is the long
duration. If we just use 7 times of dynamical blue π duration, the fidelity will drop to 80%
for |10⟩. If the duration is too long, the heating and decoherence will destroy the state we
want to measure. To solve this problem, we add a small amount of σy. It we cancel out a lot
of the non-adiabatic transition. Up to |10⟩, the fidelity in experiment is larger than 98%.
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Hamiltonian H0 and its eigen-state is

H0(t)|n(t)⟩= En(t)|n(t)⟩. (5.6)

When we apply H0(t) adiabatically, the evolution is

i|ψ̇n(t)⟩= H0|ψ(t)⟩. (5.7)

Berry points out the relation between |ψn(t)⟩ and |n(t)⟩. If we assume

|ψn(t)⟩= exp
(
−i
∫

En(t ′)dt ′
)

exp(iγn(t)) |n(t)⟩ (5.8)

and insert it into Eq. 5.7, we can easily find

|ψn(t)⟩= exp
(
−i
∫

En′(t
′)dt ′−

∫
⟨n(t ′)|ṅ(t ′)⟩dt ′

)
|n(t)⟩. (5.9)

We can find a new Hamiltonian H(t) that can generate the dynamic solution of |ψn(t)⟩.

Considering

H(t) = iU̇(t)U†(t) (5.10)

and

U(t) = ∑
n

exp
(
−i
∫

En(t ′)dt ′−
∫
⟨n(t ′)|ṅ(t ′)⟩

)
|n(t)⟩⟨n(0)|, (5.11)

we can get

H(t) = ∑
n

En|n(t)⟩⟨n(t)|+ i∑
n
(|ṅ(t)⟩⟨n(t)|− |n(t)⟩⟨ṅ(t)|n(t)⟩⟨n(t)|)≡ H0 +H1. (5.12)

The derivation looks not that convenient. Considering

⟨m|ṅ⟩= ⟨m|Ḣ0|n⟩
En −Em

, (5.13)
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we can get a simple for of H1 as

H1 = i ∑
m ̸=n

|m⟩⟨m|Ḣ0|n⟩⟨n|
En −Em

. (5.14)

For two level system, it is not that difficult to get the waveforms we use in experiment.

5.4 Applying work with spin dependent force and the fast

effective adiabatic ramp

After determining and preparing the projected energy eigenstate |n⟩, we apply work to

the system. We apply the laser-induced force of Eq.3.16 on the prepared state for durations

of 5µs, 25µs and 45µs with a linearly increasing strength to the same maximum value, as

shown in Fig. 5.5. We already prepare the spin on the eigen state of σ x and the spin part can

be traced out. Here in order to drag the harmonic oscillator, we add a detuning ν on this

force. The interaction in th lab framework is

H(t) =
ηΩ(t)

2

(
ae−iνt +a†eiνt

)
. (5.15)

Then we change to laser frequency framework, the interaction is

H(t) = ν(a†a+1/2)+
ηΩ(t)

2

(
a+a†

)
. (5.16)

This is the dragged harmonic oscillator model.

After the work process, we need another phonon measurement to realize the two point

measurement to get the quantum work. However when the spin dependent force laser is on,

we can not measure. We add another adiabatic process to transform back to the lab framework

and turn off the forcing laser. Traditionally such process may require tens of the oscillating

periods. In experiment, we find when we reduce the force linearly in the duration of integral

times of the oscillating period, this process is also an effective adiabatic process. The same

phenomenon has been found in the cold atoms and real space ion transport experiment
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Fig. 5.5 The waveforms used to apply the work and the adiabatic transformation. We apply
the laser-induced force on the prepared spin eigen state for durations of 5µs, 25µs and 45µs
with a linearly increasing strength to the same maximum value.
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Fig. 5.6 Test of the rapid adiabatic process.

[58, 59]. This can be explained by the time evolution of the whole experiment. We can

express the time evolution in the form of displacement operator D(α) = exp(α â† −α∗â) (a

common phase neglected). When we increase the laser intensity in Tw and decrease in Ta

linearly, the displacement is

α =−i
∆kx0Ωmax

2

(eiTwν(1− iTwν)−1
Twν2 +

eiTwν(1− eiTaν + iTaν)

Taν2

)
(5.17)

where Ωmax = 2π × 378 kHz and the detuning ν = 2π × 20 kHz in our experiment. The

first item is the displacement for the leading edge and the second for the falling edge. It

is interesting that α is the same for Ta = +∞ or k
2π

ν
(k = 1,2,3 . . .). As a consequence,

if we set Ta =
2π

ν
= 50 µs, we can change the frame about Ĥ0 to the lab frame rapidly

without changing the phonon distribution. We test this rapid effective adiabatic process

by fitting the coherent state generated by applying the force from vibrational ground state.

We fit α or average phonon ⟨n⟩ = |α|2 in two cases: change Tw = Ta together or change

Tw with Ta = 50µs fixed Fig. 5.6. The result is in line with Eq. 5.17. From Fig. 5.6a, we

can see the ion’s reaction clearly. At first, the pushing speed is too fast, the ion can not

response immediately (2 µs). If we increase the Tw and Ta, the ion’s displacement will

be accumulated (5 and 10 µs). After a maximal point (20 µs), the displacement will be

accumulated destructively (30 and 40 µs). When Tw = Ta =
2π

ν
(50 µs), the ion will be not
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Fig. 5.7 The dissipated work distribution, the Jarzynski equality and Crooks relation results.
We show only the Crooks relation for the fastest situation. Only in this situation, the work
distribution is large enough compared with errors.

displaced at all. Some smaller excitations follow on. From Fig.5.6b, we see the faster pushing

time Tw results in a larger phonon excitation within 50 µs. We choose Tw = 5, 25, 45 µs as

the samples for the fastest, medium and slowest pushing speed in our experiment.

5.5 Work distribution, Jarzynski equality and the Crooks

relation

The experimental work distribution, the Jarzynski equality and the Crooks relation results

are showed in Fig. 5.7. When we consider the detailed fluctuation relation as Crooks relation,

we need add a time reversed process. The work distribution for the forward and backword

has a simple relation
PF(W )

PB(−W )
= e−β (W−∆F). (5.18)
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This is the Crooks relation [60]. By integrate the backword process, we can easily get the

Jarzynski equality. The Crooks relation has deep relation with the detailed balance principle.

Its classical version has been tested in experiment [61]. To test quantum Crooks relation can

deepen our understanding of the quantum fluctuation and thermal dynamics. In the dragged

harmonic oscillator model, the for- and backword process have the same work distribution.

We do not need to take the data for the backword process. We show only the result for the

fastest dragging. Because the work distribution is wider, the signal noise ration is higher.

The result still looks linear as in Fig. 5.7. When the work distribution is more condensed,

the signal at the large work side will be dominated by experiment errors. The ration in the

Crooks relation at large work will be strongly distorted by these errors. Because of the

limited experimental precision and the special identical work distribution, we do not claim

we have tested the quantum Crooks relation. However the linear relation showed at least

shows our data quality is very good.





Chapter 6

Experimental realization of Shortcut to

adiabaticity

The application of adiabatic protocols in quantum technologies is severely limited by

environmental sources of noise and decoherence. As what we have seen in the previous

chapter, the shortcut to adiabaticity is very important for the experiment. The next step

for us is to study the adiabatic shortcut techniques more systematically [62]. Shortcuts

to adiabaticity by counter-diabatic driving constitute a powerful alternative that speed up

time-evolution while mimicking adiabatic dynamics. We present the first experimental

implementation of counter-diabatic driving in a continuous variable system, a shortcut to the

adiabatic transport of a trapped ion. The resulting dynamics is equivalent to a “fast-motion

video” of the adiabatic trajectory. The robustness of this protocol is shown to surpass that

of competing schemes based on classical local controls and Fourier optimization methods.

In Fig. 6.1, we show a classical analog of the transition-less driving. We can use a counter-

diabatic Hamiltonian to compensate the non-adiabatic transition. We can also notice that the

counter-diabatic should be orthogonal to the adiabatic state of the original Hamiltonian. Thus

the added counter-diabatic Hamiltonian will not introduce any quantum work in the system.

We accelerate the adiabatic process without do work on the system. Such property makes the

transitionless driving suitable for the quantum heat engine. It can be used to improved the

efficiency and power of the quantum heat engine at the same time [63, 64].



90 Experimental realization of Shortcut to adiabaticity

Fig. 6.1 The classical analog of adiabatic shortcut. When we drive and turn around a corner, if
fast enough, we will feel a strong centrifugal force pushing us away from the trajectory. It is
similar to the situation when we change the Hamiltonian and the non-adiabatic transition will
make the state different from the adiabatic ground state of the Hamiltonian. In the classical
situation, we compensate the centrifugal force by turn the direction of the car different from
the trajectory we want to follow. In the transition-less driving, we add counter-diabatic
Hamiltonian to the original Hamiltonian to compensate the non-adiabatic transitions.
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6.1 Transport in the phase space

Different from the Jarzynski work, we use the spin independent force 3.11 to transport

the ion in the phase space. We test and compare three different kinds of shortcuts including

the transitionless driving. The comparison are showed in Fig.6.2. Similar as in the spin

dependent force, we also add a detuning ν = 20kHz to the spin independent force

H =
ηΩ

2
(ae−i(νt+φ)+a†ei(νt+φ)). (6.1)

Change to the laser frequency framework, we get the dragged harmonic hamiltonia

H ′
x(t) =

p2

2m
+

1
2

mν
2x2 + f (t)x (φ = 0) (6.2)

H ′
p(t) =

p2

2m
+

1
2

mν
2x2 +h(t)p (φ = π/2) (6.3)

We can add the momentum operator to the dragged harmonic oscillator by changing the

relative phase of the Raman laser by π/2. Up to now we have all the operation needed in the

following subsections.

6.2 Transitionless driving

The most important and the first proposed shortcut to adiabaticity is the transitionless

driving. For the transport problem, we can get the counter diabatic Hamiltonian without

using the general formula 5.14. When we transport the ion with force f (t) as in Fig. 6.3, the

Hamiltonian is

H0 =
p2

2m
+

1
2

mν
2x2 + f (t)x. (6.4)

The time evolution is defined as D(α), we can change to the instantaneous framework of H0

with U = D(−α) and get the Hamiltonian in the instantaneous framework

HU =UH0U† + iU̇U† =
p2

2m
+

1
2

mν
2x2 +

ḟ (t)
mν2 p. (6.5)
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Fig. 6.2 The comparison between different transportation schemes.
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Fig. 6.3 The illustration for the transitionless transport.

The last term will introduce the non-adiabatic and disappear in the adiabatic limitation. We

can add an auxiliary Hamiltonian to cancel it out. Because momentum operator is conserved

under the transformation, we can find the counter-diabatic Hamiltonian

HCD =− ḟ (t)
mν2 p. (6.6)

6.3 Unitarily equivalent driving

The Hamiltonian we want to apply is

H = H0 +HCD. (6.7)

However the momentum operator can not be realized in the lab with only electric filed,

we solve this problem with an unitary transformation U . It should be a momentum shift
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Fig. 6.4 The illustration for the unitarily equivalent transport.
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operation

U = ei ḟ x/ν2
. (6.8)

After this transformation, we can get rid of the momentum term and obtain a new force term

HC = H0 +
f̈ (t)
ν2 x. (6.9)

In the transformed framework, we can realize the transitionless driving with HC in the lab

framework. To get the ground state also in the lab framework, we should make sure

U(0) = I U(t f ) = I, (6.10)

which means the overlap between these two framework at the begin and the final points of

the transport. Thus we have two groups of boundary conditions

f (0) = 0 f (t f ) = fmax (6.11)

ḟ (0) = 0 ḟ (t f ) = 0. (6.12)

Under these boundary conditions, we can construct the suitable waveforms of f (t). Higher

order boundary conditions can also be added to make the waveforms smoother as showed

in Fig. 6.5. Fig. 6.5(d) shows the comparison of the robustness against the trap frequency

errors for the case of s = 1. The robustness of the first order waveform is the best, which is

consistent to the result in Ref. [65]. However, it requires the instantaneous switching of the

control field, which is difficult in our experimental system. Therefore, we use the second

order polynomial waveform in the experiment.

6.4 Multi-frequency driving

In this section we briefly describe the STA protocol based on the Fourier optimization

scheme, which is well-explained in Ref. [66]. The method exploits the fact that when a force

f (t) is applied to a particle in the ground state from f (0) = 0 to f (t f ) with the first order
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Fig. 6.5 Waveforms of (a) the first, (b) second and (c) third order polynomials and (d) their
robustness against trap frequency errors. In (d), the robustness for different solutions against
the trap frequency errors is compared for the case of s = 1.
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boundary conditions ḟ (0) = ḟ (t f ) = 0, the final excitation energy is written by

∆E(ω0) =

∣∣∣∣∫ t f

0
f̈ (t ′)e−iωt ′dt ′

∣∣∣∣/mω
2, (6.13)

where ω is the trap frequency. If we’d like to optimize the protocol for two-different trap

frequencies ω1,ω2, we have to minimize the excitation ∆E(ω1) and ∆E(ω2) with proper

f (t). If we set ω1 = ω2 = ω , the robustness of the protocol against the trap frequency error

is increased. An auxiliary function g(t) is introduced to satisfy the following condition,

f̈ (t) =
d4g
dt4 +(ω2

1 +ω
2
2 )

d2g
dt2 +ω

2
1 ω

2
2 g(t), (6.14)

with the boundary conditions g(0) = g(t f ) = ġ(0) = ġ(t f ) = g̈(0) = g̈(t f ) =
...g (0) =

...g (t f ) =

0. Combining Eq. (6.13) and (6.14), we get

∆E(ω) =

∣∣∣∣(ω2 −ω
2
1 )(ω

2 −ω
2
2 )
∫ t f

0
e−iωt ′g(t ′)dt ′

∣∣∣∣ (6.15)

and find ∆E(ω1) = ∆E(ω2) = 0. Therefore, we can choose a polynomial function g(t) to

satisfy the boundary conditions for g(t) as well as f (t). For this kind of the order N = 2, we

can choose g(t) ∝ (t/t f )
4(1− t/t f )

4(1−2t/t f ). The technique can be generalized for the

multiple frequency cases by satisfying the condition of ∆E(ωi) = 0 for a set of frequencies

{ωi|i = 1, . . . ,N}. By setting these frequencies to be degenerate, the protocol exhibits

an enhanced robustness against frequency errors with the order N. For the N-order case

g(t) ∝ (t/t f )
2N(1− t/t f )

2N(1− 2t/t f ), from which one can derive f (t). In our paper we

show the waveform of order N = 3 for s= 1.5 due to the limitation of f (t)/ fmax < 1. Here we

compare waveforms of different values of N and their robustness against the trap frequency

errors 6.6. We can see the maximum amplitude of the control field of this protocol is

extremely sensitive to N and s. And for a fixed protocol duration a higher robustness can be

achieved by increasing the amplitude of the control field.

As the final results, we test the instantaneous excitation and the robustness comparison

for different waveforms in Fig. 6.7.
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Fig. 6.6 Waveforms for the Fourier optimization scheme of different order N and their
robustness against the trap frequency errors. (a) The maximum amplitude of f (t) increases
rapidly with the order N and decreases quickly with the shortcut ratio s. (b) With the same
s = 1, the robustness would be better for a larger order N. With the same order N = 3, the
robustness would be better for a larger shortcut ratio s.
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(b) To study the robustness of different STA pro-
tocols against the trap frequency drift, we change
the trap frequency ω to ω ′ during the shortcut
transports, whose waveforms are still designed
for the nominal trap frequency ω = 2π ×20kHz.
Finally we measure the average values of excited
phonons. For a fair comparison, we set s = 1.5
for all three STA protocols.

Fig. 6.7 Phonon excitations in the instantaneous frame during different STA protocols and
the robustness against trap frequency errors.



Chapter 7

Conclusion and outlook

In this thesis, I have show my effort to improve the quantum control ability both on the

hardware side, such as the blade trap, and the software side including the phonon projective

measurement, adiabatic shortcut and so on. We conduct the first experiment test of the

quantum Jarzynski equality and realize the adiabatic shortcut in both spin and phonon system.

Our work contributes some techniques to the trapped ion community. As the next step with

our set up, there are several important directions we may go for as discussed bellow.

The first thing we can do easily is to check the fidelity measurement between two motional

modes with the beam splitting operation 3.25. When two modes are the same, we get the

purity. In experiment, this operation has been used to detect the entanglement entropy [67].

The beam splitting operation can also be used in the quantum thermal dynamics study. It can

be used to connect a system to the environment.

Another direction we can pursue is the reservoir engineering 3.50. Up to now, the purely

motional cat states are still not realized in experiment. If we can improve the motional

coherence to a good enough condition or change to the axial modes, we should also try this.

The cat code including the holonomic quantum controls should also be realized with this

engineered reservoir. The beam splitting operation can be used to generate the entangled

states for the cat codes.
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The quantum Crooks relation up to now is still not tested with the projective work

measurement. If we change from the dragged harmonic oscillator model to the trap frequency

quench model, we should see different work distribution for the for- and backward processes.

The new entanglement scheme 3.1.7 can also be tested for different spices or the same

kind of ions. The requirement of this operation is similar as the Cirac-Zoller gate. We need

the ground state cooling, and the individual ion addressing ability for the same kind of ions.

If two different spices, just ground state cooling is enough. But the operation itself is easier.

In an ion chain, if we just apply the same off-resonate motional sideband to two ions,

their spin will be exchanged. Such spin exchange interaction 3.40 can also be used to realize

the XY model. It is different from the existing method by increasing the effective magnetic

filed strength in the Ising model.

Finally, the most important thing is to scale up the number of ions we can manipulate

well. The blade trap is a promising platform. To compensate the micro-motion along the

axial direction should be the next step to get a stable ion chain with high trap frequency.

The single ion addressing also should be considered. There are still a lot of things to do for

successors and myself.
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Appendix A

Codes related with CPO

Fig. A.1 The potential of the blade trap.

The longer blades are the RF rods and the micromotion compensation bars are grounded.
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To get the potential and field of the blade trap, we define the global constants at first.

Then we take out the position of the nodes of the mesh generated by Comsol.
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Finally we generate the file that CPO can use.

Here I show an example code for the effective potential of the blade trap(1V on the

RF rods) in Fig. A.2. Only the pseudo potential is not enough for the real situation. In

experiment, we add bias DC W on the ground blades. Its field should looks like Fig. A.3. If

we use the micro-motion compensation bars to correct the DC field, the simulated potential of

one bar is showed in Fig. A.4. Now we can add the effective potential, the bias DC potential
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Fig. A.2 The effective potential calculated from the electric field simulated with CPO.

Fig. A.3 The potential generated by the bias DC on the ground blades.
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Fig. A.4 The potential generated by the micro-motion compensation electrodes.

and the micro-motion compensation potential together to get the whole potential. The codes

in Fig. A.5 show how to get the ion position, the motional axis and the trap frequency. If

necessary, we can simulate the potential generated from each DC section to get the effect of

each DC section.
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Fig. A.5 The codes and results of the final results of the CPO simulation.



Appendix B

Breit-Rabi-Zeeman splitting

When we apply the magnetic field, the Zeeman levels will separate. In the weak field

situation, this is simply the Zeeman splitting. When the B is large enough, the splitting is no

longer linear. The exact formula is named after Breit-Rabi-Zeeman

EF=I±J(m,B) =− HF

2(2I +1)
−gIµBmB/104

± HF

2

√
1+

4m(gJ +gI)µBB/104

HF(2I +1)
+

(
(gJ +gI)µBB/104

HF

)2

, (B.1)

Where the magnetic field B is in the unit of Gauss and all constants can be found in Ref.

[68]. If the slop of the energy level is the same, the clock qubit is robust against the magnetic

filed up to the first order of B. Such intermediately field clock qubit have been reported for
9Be+ and 43Ca+. In our lab, we use 171Y b+ and 137Ba+. I also try to study whether we can

also use this intermediately field to improve the coherence of the qubit. Here I will show

the example code to calculate the energy levels and the magnetic filed strength for the clock

qubit. For 9Be+, the code is showed in Fig. B.1. I try to search all the pairs of energy levels

for the qubit. And try to find the lowest magnetic field for all the possible pair. We compare
9Be+, 43Ca+, 137Ba+ and 171Y b+ in Fig. . For 137Ba+, the strength of the magnetic field

is 767.875Gauss. It is relatively too high for us. For 171Y b+, the strength of the magnetic

field is 0Gauss. However, if B = 0, the cooling for the ion will not work for the coherent
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Fig. B.1 The code to calculate the energy levels and the magnetic filed strength for the clock
qubit. We consider 9Be+ here. All the constant is founded in the book [68].
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Fig. B.2 The energy level and the strength of the magnetic field for the clock qubit. The
strength of B field for 9Be+, 43Ca+, 137Ba+ and 171Y b+ are 119.64, 146.091, 767.875 and
0Gauss respectively. The energy levels are in the unit of MHz.
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population trapping between the Zeeman levels. We use 8Gauss in our experiment. Thus we

can not realize the clock qubit in our lab.





Appendix C

Debye-Waller factor and the

Lamb-Dicke parameter

In the Lamb-Dicke regime we expect the Rabi rate between | ↓,n⟩ → | ↑,n+1⟩ is

Ωn,n+1 =
√

n+1ηΩ. (C.1)

This simple form is not the exact formula, because we only consider a†. The terms such as

aia†(i+1) will also contribute to this transitions. Only when η → 0, which means the ion is

an ideal point, the Eq. C.1 is exact. Now we try to give an exact formula for the Rabi rate.

The interaction as Eq. 3.11 between the phonon and spin states is

⟨↑,n′|He f f | ↓,n⟩=
Ω

2
e−iδ t−iφ ⟨n′|eiη(ae−iωt+a†eiωt)|n⟩

=
Ω

2
e−iδ t−iφ

∞

∑
j=0

⟨n′|
(
iη(ae−iωt +a†eiωt)

) j |n⟩
j!

. (C.2)

When δ = (n′ − n)ω + ν , only the proper oscillating terms are left with rotating wave

approximation. It can be simplified as

⟨↑,n′|He f f | ↓,n⟩=
Ω

2
e−iνt−iφ

∞

∑
j=0

⟨n′|
(
iη(a+a†)

) j |n⟩
j!

=
Ω

2
e−iνt−iφ ⟨n′|eiη(a+a†)|n⟩ (C.3)
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Fig. C.1 The Rabi rate dependence on the phonon number. For the carrier transition, we find
when n is large enough, Ωn can change the sign, For the blue sideband, we find when n is
large enough, Ωn,n+1 can even be bent. Here we use the Lame-Dicke parameter η = 0.1.

The Debye-Waller factor is

⟨n′|eiη(a+a†)|n⟩= Dn′,n. (C.4)

Its explicit form is

Dn′,n = e−η2/2
(

n<!
n>!

)1/2

η
|n′−n|L|n′−n|

n< (η2), (C.5)

where n< is the smaller one between n′ and n and Lα
n is the associated Laguerre polynomial

Lα
n (x) =

∞

∑
m=0

(−)mCn−m
n+α

xm

m!
, (C.6)

and Ck
n =

n!
k!(n−k)! is the Binomial coefficient. For the carrier transition, the phonon dependent

Rabi frequency is

Ωn = Ωe−η2/2Ln(η
2). (C.7)

For the blue sideband n′ = n+1, ν = 0 and φ = 0, the Rabi rate is

Ωn,n+1 = Ω
ηe−η2/2
√

n+1
L1

n(η
2). (C.8)

The Rabi rate for the red sideband is similar as the blue sideband.

To test whether the ion motion is within the Lamb-Dicke regime and measure η , we

generate number states up to n = 20 and compare the exact formula fitting with the approxi-
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Fig. C.2 Ωn,n+1 for different n.

mation Fig. C.2. It is clear that the approximation holds for n ≤ 5 and η = 0.098.





Appendix D

RF switch without dead time and the

drawing of the invar confocal cavity

In the micro-motion compensation subsection, we switch the RF power between high

and low power. Here I will show the illustration of the power switch we make without dead

time in Fig.D.1. When we simply use the single-pole, double-throw switch (SPDT), there

will be a dead time for the RF output, and the ion will disappear. When we use a two stage

switch, the dead time is minimized and the ion can still be hold.

When we realize the PDH laser frequency lock, we use the invar cavity designed as

showed in Fig. D.2. We also use it to monitor the laser spectrum.
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Fig. D.1 RF switch without dead time. SPDT is the single-pole, double-throw switch.

Fig. D.2 Invar confocal design used for PDH lock and F-P monitor.



Appendix E

The code used to calculate the position

and mode structure of a mixed ion chain

As the first step, we should know the position of a mixed ion chain. In this code we just

need to write down the mass of the ion in a list. For two Yb ion and one Ba ion from the

left to right one by one, we should write {171,171,137} , the axial voltage V and the axial

distance ρin the corresponding place in the code in Fig. E.1.

The next step is to get the axial motional frequencies as showed in Fig. E.2. Here we

should give the RF voltage U , the driving frequency Ω and also the ion-electrode distance

ρρ in the code. Finally we can get the radial frequencies and also the mode vector as showed

in Fig. E.3. Once we get the mode vector, we can multiply it with η to get ηi,m.
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Fig. E.1 The Mathematica code used to get the position of an ion chain. We just need to
configure the mass of different ion one by one in the list and the axial voltage, we can get the
axial frequencies and the position of different ions.
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Fig. E.2 The Mathematica code used to get the axial frequencies and mode vector of the axial
mode of an ion chain. We should give the RF voltage U , frequency Ω and the ion-electrode
distance ρρ .
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Fig. E.3 The Mathematica code used to get the radial frequencies and mode vector of an ion
chain.
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