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摘要

I 

摘  要

以声子为媒介的多离子间的相干操作是实现离子阱系统规模化的重要一环，

而声子系统本身也可以作为平台进行量子模拟和量子计算。本文介绍了一些面向

声子的量子操作技术，包括声子的算术操作、投影测量和任意声子NOON态的制备。

此外也展示了通过 Mølmer-Sørensen 操作实现的镱-171 和钡-138 离子间的量子纠

缠。用于实现这些操作的离子阱系统包含一个镱-171 离子和一个钡-138 离子，离

子内能级和声子的量子相干操作由受激拉曼跃迁实现。该系统的相关细节和搭建

系统所需的实验技术也在文中进行了介绍。 

关键词：声子；多种离子的离子阱系统；NOON 态；投影测量 
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Abstract 

In scaling up the trapped-ion system, phonons serve an important role as the quantum 

bus to mediate multi-qubit operations in the trap. Moreover, phonons by themselves can 

be used as the carrier of information to perform quantum simulations and computations. 

In this thesis, various control protocols of phonons are discussed and demonstrated, 

including the uniform driving, the projective measurement and the generation of arbitrary 

NOON states of phonons. The entanglement of a 171Yb+ ion and a 138Ba+ ion through the 

Mølmer-Sørensen interaction is also demonstrated. The trapped-ion system to implement 

these protocols consists of a 171Yb+ ion and a 138Ba+ ion with the quantum control realized 

by stimulated Raman transitions. The details of this system and the experiment techniques 

required in constructing the system are discussed as well. 

 

Key words: Phonon; Multi-species trapped-ion system; NOON state; Projective 

measurement. 
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Chapter 1  Introduction 

Driven by the unending curiosity, we human try to seek for deeper understanding of 

the nature in various directions, and try to make use of what we understand on the way. 

As the scale of the system we study gets smaller and smaller, quantum effects start to 

manifest themselves and we encounter new phenomenon which are confusing in the 

classical realm of physics, such as quantum superposition and entanglement. As Rolf 

Landauer put it, information is physical [1], different physics leads to different 

informatics. We have extracted the potential of communication and computation from 

electrodynamics, and with the power of quantum mechanics we can make it faster and 

more secure. In the theory of quantum informatics, there are quite some impressive result, 

such as Shor’s factorization algorithm [2], Grover’s search algorithm [3], and various 

schemes of quantum simulation [4] [5]. However, in experiment, we experimentalists are 

still struggling to realize the beautiful blueprints of a practical quantum computer drawn 

by the theorists. So far, many kinds of quantum systems with different nature and their 

own advantages are studied and explored, including photonic system [6], neutral atom 

system [7], superconducting system [8], trapped-ion system [9] and many else [10] [11].  

The trapped-ion system, among others, is better isolated from the noisy environment 

and takes the advantage of the uniformity of atomic parameters, which makes it a good 

platform for developing and testing basic quantum operations. Now the research interest 

of the trapped-ion community lies mainly in integrating these basic operations and scaling 

up the system to make it truly superior than classical systems [12]. For scaling up the 

system, the interaction between different ions is essential. The collective motion of the 

ions in the same trap serves as a good quantum bus for coupling different ions in the same 

trap [13]. And the entanglement between ions in different traps has been realized through 

photons [14]. However, in order to combine these two protocols together, it would be 

convenient to have different species of ions trapped in the same trap with one species 

serving as a quantum interface for remote entanglement and others as local memory. 

Hence the entanglement operation between different species of ions is an important 

technique. 
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During the five years of my PhD. program, my research is primarily focused on 

developing and implementing quantum control protocols for phonons. As an 

experimentalist, I have learnt that details are important for a successful experiment, any 

careless mistake tends to come back and bite you in unexpected ways. And if you do the 

job with right tricks, the life would be much easier. So in this thesis, other than introducing 

our experiment system, summarizing the research projects I have done, I will also share 

some experiment techniques I find useful in developing and maintaining the experiment 

system. I hope that other fellow experimentalists would also find them useful. 
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Chapter 2  Theory of the Trapped-ion System 

2.1  The Paul Trap 

According to the Laplace equation, a 3-D static electric field with no charge 

distribution should not have local minimum, so it is not possible to steadily hold a charged 

particle. However, a Paul trap is able to trap a charged particle with a rotating radio 

frequency (RF) electric field, whose averaged pseudopotential is a harmonic potential [9]. 

For a linear Paul trap, the radial confinement is provided by the RF field, while the axial 

confinement is provided by DC voltages. 

The trapping effect of a linear Paul trap can be analyzed by calculating the 

pseudopotential that the ion experiences in the radial direction. Suppose the RF field has 

no axial component, the instantaneous electric field potential is 

ܸሺݔ, ,ݕ ,ݖ ሻݐ ൌ ݇
ୟܸ

2
⋅
ଶݖ2 െ ଶݔ െ ଶݕ

ଶܣ
൅

୰ܸ

2
⋅
ଶݔ െ ଶݕ

ܴଶ
⋅ cosΩݐ, (2.1)

in which ୟܸ is the DC voltage for the axial confinement, ܣ is the effective distance from 

the DC electrodes to the center of the trap, ୰ܸ is the voltage of the RF field, ܴ is the 

effective distance between the center and the RF electrodes, Ω is the frequency of the 

RF field, and ݇ is a geometric factor that accounts for the shape of the electrodes. The 

terms in Equ. (2.1) can be understood intuitively in this way. Considering the symmetry 

of the system, there should be no first order term in the equation. For the DC part, the 

sign of ݖଶ is positive because it should provide axial confinement, and the signs of ݔଶ 

and ݕଶ are negative because there should be no local minimum. Also the signs of ݔଶ 

and ݕଶ in the RF part are different for the same reason. From Equ. (2.1), we can derive 

the electric field, 

,ݔሺࡱ ,ݕ ,ݖ ሻݐ ൌ
݇ ୟܸ

ଶܣ
ሺݔ, ,ݕ െ2ݖሻ െ

୰ܸ cos Ωݐ

ܴଶ
ሺݔ, െݕ, 0ሻ. (2.2)

According to the Newton’s second law, the motion of an ion with charge ݍ and mass ݉ 

can be described by 

dଶ

dݐଶ
௜ݎ ൅

Ωଶ

4
ሾܽ௜ ൅ ௜݌2 cosΩݐሿݎ௜ ൌ 0, (2.3)
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in which ൫ݎ௫, ,௬ݎ   ௭൯ is the position of the ion, andݎ

ܽ௫ ൌ ܽ௬ ൌ െ
ܽ௭
2
ൌ െ

ݍ4݇ ୟܸ

ଶΩଶ݉ܣ
,

௫݌ ൌ െ݌௬ ൌ
ݍ2 ୰ܸ

ܴଶΩଶ݉
, ௭݌ ൌ 0.

(2.4)

This is the Mathieu equation. When |݌௜|, |ܽ௜| ≪ 1, the approximated solution up to the 

first order [15] is 

ሻݐ௜ሺݎ ൌ ௜ܣ ቂ1 ൅
௜݌
2
cosΩݐቃ cosሺ߱௜ݐ ൅ ߶௜ሻ, (2.5)

in which 

߱௜ ൌ
Ω

2
ඨܽ௜ ൅

௜݌
ଶ

2
(2.6)

are the frequencies of the harmonic oscillation modes of the ion. These frequencies are 

important parameters for the quantum control of the motion of the ion, and will be 

analyzed later with a different approach in this chapter. From Equ. (2.5), we can see that 

the motion of the ion basically consists of two types of oscillation, one is the previously 

mentioned harmonic oscillation, and the other one with frequency Ω is the so-called 

“intrinsic micromotion”. Moreover, there is also “excess micromotion” if the ion is not at 

the center of the RF field. It is just the oscillation driven by the RF field and usually has 

negative impact to the operations of the ion. This is often the case in experiment when 

the background electric field is nonzero. So usually extra DC electrodes are placed near 

the trap to compensate the background field.  

The trap we use in the experiment is a four-rod trap (Fig. 2.1). The RF signal is 

applied to the two RF electrodes and DC voltages is applied to the two needle electrodes 

(DC1). The DC voltages can also be applied to the two RF ground electrode (GND) to 

break the symmetry of the radial direction. The two auxiliary DC electrodes (DC2, DC3) 

are used to compensate the background electric field to minimize the excess micromotion 

[16]. 
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Fig. 2.1  The four-rod trap and the vacuum chamber of our system. 
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2.2  138Ba+ Ion 

One kind of the ions we use is the 138Ba+ ion, which has no nuclear spin. The related 

energy levels and operations are in Fig. 2.2. The two Zeeman levels of ܵଵ ଶ⁄  are used as 

the qubit, with |݉ ൌ ൅1ۧ denoted as |↓ۧ and |݉ ൌ െ1ۧ as |↑ۧ. The Landé ݃-factors 

of these levels are also shown in the figure. 

The initialization of the qubit is implemented by optical pumping method [17]. A 

493 nm laser beam with pure ߪା polarization is applied to pump the population to |↓ۧ. 

The detection of the qubit state is realized by first shelving the |↓ۧ state to metastable 

levels, ܦହ ଶ⁄ , with 1762 nm laser through an electric quadrupole transition [18], and then 

excite the cyclic transitions between ܵଵ ଶ⁄  and ܲଵ ଶ⁄  with 493 nm laser to collect the 

scattered fluorescence photons. The Doppler cooling operation of the ion is implemented 

in the same way, with an additional 614 nm laser to repump the population from ܦହ ଶ⁄  

levels and the 493 nm laser beam is slightly red-detuned. For all the operations involving 

493 nm laser, there is a 25% probability that the ion will decay from ܲଵ ଶ⁄  to ܦଷ ଶ⁄ , rather 

than ܵଵ ଶ⁄ . So a 650 nm laser beam is always applied to repump the population from ܦଷ ଶ⁄  

levels. The quantum operation of the qubit states is realized through stimulated Raman 

transitions [19] with a 532 nm pulsed laser. 

The loading of the 138Ba+ ion is realized by photoionization. Small shards of barium 

metal is placed in a small needle tube oven that can be heated up by applying electric 

current. The barium atoms shooting out of the oven are first excited by a 413 nm laser 

beam from ܵ଴	
ଵ  to ܦଵ	

ଷ  and then ionized by a 493 nm laser beam around the center of 

the trap. 

Other isotopes of barium are also used in other groups, such as 137Ba with hyperfine 

structure. The hyperfine qubit has a significantly longer coherence time than the Zeeman 

qubit. But the more complicated level structure also requires more complicated laser 

configurations. For our system, the 138Ba+ ion is used because the coherence time of the 

qubit can be extended to around 1 ms with active compensation of the magnetic field 

fluctuation, which is long enough for the experiments. 
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Fig. 2.2  The operations and related energy levels of 138Ba+ ion. 
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Fig. 2.3  The operations and related energy levels of 171Yb+ ion. 
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The C-G coefficients of all the possible transitions have the same absolute value 1 √3⁄ . The 
dashed lines indicate the negative ones. 

2.3  171Yb+ Ion 

The other kind of the ions we use is the 171Yb+ ion with nuclear spin 1 2⁄ . The level 

structure of the 171Yb+ ion is more complicated due to the nuclear spin (Fig. 2.3). We use 

the two hyperfine levels of ܵଵ ଶ⁄ ܨ| , ൌ 0,݉ ൌ 0ۧ and |ܨ ൌ 1,݉ ൌ 0ۧ, as the qubit, 

with the hyperfine splitting of 12.64281212 GHz. These two states have no first order 

Zeeman effect, so the coherence time can be very long. 

The detection operation of the qubit is realized by exciting the cyclic transition 

between levels |ܨ ൌ 1,݉ ൌ 0,േ1ۧ of ܵଵ ଶ⁄  and |ܨ ൌ 0ۧ of ܲଵ ଶ⁄  with 370 nm laser. 

For the initialization of the qubit, the 370 nm laser is modulated with an electro-optical 

modulator (EOM) to generate a sideband of 2.105 GHz, so that the transitions between 

ܨ ൌ 1 levels of both ܵଵ ଶ⁄  and ܲଵ ଶ⁄  are excited and the ion will be pumped to |↓ۧ 

eventually. Similarly, the Doppler cooling operation of the 171Yb+ ion is implemented by 

adding a 14.74 GHz sideband to excite all the possible transitions between ܵଵ ଶ⁄  and 

ܲଵ ଶ⁄  levels. The quantum operation of the qubit state can be realized either by Raman 

transition with a 355 nm pulsed laser or by magnetic dipole transition excited by 

microwave fields [19]. The loading of the 171Yb+ ion is also realized by photoionization. 

The ytterbium atoms are first excited from ܵ଴	
ଵ  to ଵܲ	

ଵ  by a 399 nm laser beam and then 

ionized by a 370 nm laser beams. 
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Fig. 2.4  The geometry dependency of the Rabi frequency of the quadrupole transition. 

 

2.4  Electric Quadrupole Transitions 

The transitions between the Zeeman levels of ܵଵ ଶ⁄  and ܦହ ଶ⁄  of the 138Ba+ ion are 

electric quadrupole transitions. In our system, these transitions are mainly used for 

shelving, but they can also be used as qubit transitions if quantum manipulation of the 

motion is not required. Since there are two Zeeman levels in ܵଵ ଶ⁄  and six in ܦହ ଶ⁄ , and 

the electric quadrupole transition is able to couple the levels with Δ݉ ൑ 2, these electric 

quadrupole transitions are actually quite handy in performing experiments that requires 

more than two levels. 

The Rabi frequency of an electric quadrupole transition can be calculated by [20] 

Ω ൌ ฬ
ܧ݁

2԰
ൻܵଵ ଶ⁄ ,݉ௌหሺࣕ ⋅ ࢑ොሻሺ࢘ ⋅ ହܦොሻห࢘ ଶ⁄ ,݉஽ൿฬ, (2.7)

in which ܧ is the amplitude of the electric field, ࣕ is the unit vector describing the 

polarization of the laser field, ࢑ is the wave vector and ࢘ො is the position operator for 

the valence electron. The formula above can be expanded as 

Ω ൌ ቮ
ܧ݁

2԰
ൻܵଵ ଶ⁄ ݎ‖

ଶ࡯ଶ‖ܦହ ଶ⁄ ൿ ෍ ൬
1 2⁄ 2 5 2⁄
െ݉ௌ ݍ ݉஽

൰ ܿ௜௝
ሺ௤ሻ
߳௜ ௝݊

ଶ

௤ୀିଶ

ቮ,	 (2.8)

in which ൻܵଵ ଶ⁄ ݎ‖
ଶ࡯ଶ‖ܦହ ଶ⁄ ൿ is the reduced matrix element and is independent of ݉. 
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The geometry dependency of the Rabi frequency is contained in ݃ሺ௤ሻ ൌ ܿ௜௝
ሺ௤ሻ
߳௜ ௝݊. The 

geometry of the interaction can be modeled by the angle ߮ between the wave vector ࢑ 

and the magnetic field ࡮ and the angle ߠ between the polarization vector ࣕ and the 

vector ࡮ projected into the plane of incidence. Without loss of generality, we can assume 

࡮ ൌ ሺ0,0, ,ሻܤ ࢑ ൌ ݇ሺsin߮ , 0, cos߮ሻ,
ࣕ ൌ ሺcos ߠ cos߮ , sin ߠ ,െ cos ߠ sin߮ሻ,

(2.9)

and then 

݃ሺ଴ሻ ൌ
1

2
|cos ߠ sin 2߮|,

݃ሺേଵሻ ൌ
1

√6
|cos ߠ cos 2߮ ൅ ݅ sin ߠ cos߮|,	

݃ሺേଶሻ ൌ
1

√6
ฬ
1

2
cos ߠ sin 2߮ ൅ ݅ sin ߠ sin߮ฬ.

(2.10)

The geometry dependency is illustrated in Fig. 2.4. The configuration used in our system 

is ߠ ൌ 0° and ߮ ൌ 45°, corresponding to the horizontal polarization of the 1762 nm 

laser beam. 

2.5  Harmonic Modes of Phonons 

When the ions are trapped in a 3-D harmonic potential, the motion of the ions can 

be decomposed into harmonic modes with different frequencies. For ܰ ions in the trap, 

there are 2ܰ  radial modes and ܰ  axial modes. The frequency of each mode is 

determined by the strength of confinement of the corresponding direction.  

For two ions with different mass, ݉ଵ and ݉ଶ, in a trap with axial DC voltage ୟܸ 

and radial RF voltage ୰ܸ, the classical Hamiltonian of the two ions are  

ܪ ൌ
ଵୟ݌
ଶ ൅ ଵ୰݌

ଶ

2݉ଵ
൅
ଶୟ݌
ଶ ൅ ଶ୰݌

ଶ

2݉ଶ

൅
ୟܸ

2
ሺݔଵୟ

ଶ ൅ ଵ୰ݔ
ଶ ሻ ൅ ൬

୰ܸ

2
െ

ୟܸ

4
൰ ሺݔଵୟ

ଶ ൅ ଵ୰ݔ
ଶ ሻ	

൅ܳሾሺݔଵୟ ൅ ଶୟሻݔ
ଶ ൅ ሺݔଵ୰ ൅ ଶ୰ሻݔ

ଶሿିଵ ଶ⁄ , ܳ ൌ
݁ଶ

଴߳ߨ4
,

(2.11)

where the terms with subscript “1” are associated with ion 1, and the terms with subscript 

“a” are associated with axial direction. In the equilibrium state, the two ions should have 

a spacing of ݀ and suppose that the oscillation of the ions in all the modes is way smaller 

than ݀, then we can expand the columb potential term in the vicinity of ݔଵୟ ൅ ଶୟݔ ൌ ݀ 
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and ݔଵ୰ ൅ ଶ୰ݔ ൌ 0, which is 

ሺݔଵୟ ൅ ଶୟሻݔ
ିଵ ൌ

1

݀
െ
1

݀ଶ
ሺݔଵୟ ൅ ଶୟݔ െ ݀ሻ ൅

1

݀ଷ
ሺݔଵୟ ൅ ଶୟݔ െ ݀ሻଶ	

൅ܱሾሺݔଵୟ ൅ ଶୟݔ െ ݀ሻଷሿ,	

ሾ݀ଶ ൅ ሺݔଵ୰ ൅ ଶ୰ሻݔ
ଶሿି

ଵ
ଶ ൌ

1

݀
െ

1

2݀ଷ
ሺݔଵ୰ ൅ ଶ୰ሻݔ

ଶ ൅ ܱሾሺݔଵ୰ ൅ ଶ୰ሻݔ
ଷሿ.

(2.12)

When the system is in the equilibrium state, for axial modes we should have 

d݌ሺ௜ሻୟ
dݐ

ൌ െ
ܪ߲

ሺ௜ሻୟݔ߲
ൌ 0, (2.13)

which yields 

ୟܸݔሺ௜ሻୟ െ
ܳ

݀ଶ
ൌ 0, (2.14)

and thus 

݀ ൌ ඨ
2ܳ

ୟܸ

య

, ଵୟݔ ൌ ଶୟݔ ൌ
݀

2
. (2.15)

 

 

By substituting 

ሺ௜ሻୟݔ →
݀

2
൅ ,ሺ௜ሻୟݔ (2.16)

and neglecting the constant terms, we can simplify the axial part of the Hamiltonian to 

ୟܪ ൌ
ଵୟ݌
ଶ

2݉ଵ
൅
ଶୟ݌
ଶ

2݉ଶ
൅ ୟܸሺݔଵୟ

ଶ ൅ ଶୟݔ
ଶ ൅ .ଶୟሻݔଵୟݔ (2.17)

Similarly, 

୰ܪ ൌ
ଵ୰݌
ଶ

2݉ଵ
൅
ଶ୰݌
ଶ

2݉ଶ
൅
1

2
ሺ ୰ܸ െ ୟܸሻሺݔଵ୰

ଶ ൅ ଶ୰ݔ
ଶ ሻ െ

ୟܸ

2
.ଶ୰ݔଵ୰ݔ (2.18)

The two Hamiltonians have the unified form of 

ܪ ൌ
ଵ݌
ଶ

2݉ଵ
൅

ଶ݌
ଶ

2݉ଶ
൅ ܸሺݔଵ

ଶ ൅ ଶݔ
ଶ ൅ ,ଶሻݔଵݔܥ (2.19)

for axial modes ܥ ൌ 1 and for radial modes ܥ ൌ െ ୟܸ ሺ ୰ܸ െ ୟܸሻ⁄ . Now consider the 
small harmonic oscillation solution of the system, 

ቀ
ଵݔ
ଶݔ
ቁ ൌ ൬

ଵଵܣ ଵଶܣ
ଶଵܣ ଶଶܣ

൰ ൬݁
௜ఠభ௧

݁௜ఠమ௧
൰. (2.20)
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According to the Hamiltonian equations, 

dݔ௜
dݐ

ൌ
ܪ߲

௜݌߲
,

d݌௜
dݐ

ൌ െ
ܪ߲

௜ݔ߲
, (2.21)

we have 

ቀ
ଵ݌
ଶ݌
ቁ ൌ ൬

݉ଵ 0
0 ݉ଶ

൰ ൬
ଵଵܣ ଵଶܣ
ଶଵܣ ଶଶܣ

൰ ൬
݅߱ଵ 0
0 ݅߱ଶ

൰ ൬݁
௜ఠభ௧

݁௜ఠమ௧
൰ (2.22)

and 

൬
݉ଵ 0
0 ݉ଶ

൰ ൬
ଵଵܣ ଵଶܣ
ଶଵܣ ଶଶܣ

൰ ቆ
߱ଵ
ଶ 0

0 ߱ଶ
ଶቇ ൬

݁௜ఠభ௧

݁௜ఠమ௧
൰ ൌ ܸ ቀ

2 ܥ
ܥ 2

ቁ ൬
ଵଵܣ ଵଶܣ
ଶଵܣ ଶଶܣ

൰.	 (2.23)

This yields 

ሾሺ2 െ ሻܸܥ െ݉ଵ߱௜
ଶሿܣଵ௜ െ ሾሺ2 െ ሻܸܥ െ݉ଶ߱௜

ଶሿܣଶ௜ ൌ 0,
ሼሾሺ2 െ ሻܸܥ െ݉ଶ߱௜

ଶሿሾሺ2 ൅ ሻܸܥ െ݉ଵ߱௜
ଶሿ

൅ሾሺ2 െ ሻܸܥ െ݉ଵ߱௜
ଶሿሾሺ2 ൅ ሻܸܥ െ݉ଶ߱௜

ଶሿሽܣଵ௜ ൌ 0.

(2.24)

 

 

 

 

The frequency ߱௜ should be independent of the amplitude, and assuming ݉ଵ ൒ ݉ଶ, so 

߱௜
ଶ ൌ

ܸ

ߤ
ሺ1 േ ,ሻߙ

ଵ௜ܣ
ଶ௜ܣ

ൌ
ܥ

2
⋅
1 െ ߚ

ߚ േ ߙ
, 

ߤ ൌ
݉ଵ݉ଶ

݉ଵ ൅݉ଶ
, ߩ ൌ

ߤ

݉ଵ ൅݉ଶ
, 

ߙ ൌ ඥ1 െ ሺ4 െ ,ߩଶሻܥ ߚ ൌ ඥ1 െ ,ߩ4

(2.25)

in which ݅ ൌ 1 takes the plus sign. 

By applying the following linear transformation, the Hamiltonian can be decoupled, 

ቀ
ଵݔ
ଶݔ
ቁ ൌ ܷ௫ ቀ

ୌݔ
୐ݔ
ቁ, 

ܷ௫ ൌ
1

ߙ2√

ۉ

ۈ
ۈ
ܥsgnۇ ඨ

ሺ1 െ ߙሻሺߚ െ ሻߚ

1 ൅ ߙ
ඨ
ሺ1 െ ߙሻሺߚ ൅ ሻߚ

1 െ ߙ

ඨ
ሺ1 ൅ ߙሻሺߚ ൅ ሻߚ

1 ൅ ߙ
െsgnܥ ඨ

ሺ1 ൅ ߙሻሺߚ െ ሻߚ

1 െ ߙ ی

ۋ
ۋ
ۊ

,	
(2.26)

where sgnܥ is the sign of ܥ and the subscript “H” and “L” denotes the mode of higher 
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and lower frequency respectively. The Hamiltonian is thus 

ܪ ൌ
ଵ݌
ଶ

2݉ଵ
൅

ଶ݌
ଶ

2݉ଶ
൅ ܸሺݔୌ

ଶ ൅ ୐ݔ
ଶሻ. (2.27)

For the generalized momentums, we assume the linear transformation to be 

ቀ
ଵ݌
ଶ݌
ቁ ൌ ܷ௣ ቀ

ୌ݌
୐݌
ቁ, (2.28)

 

so 

d

dݐ
ቀ
ଵ݌
ଶ݌
ቁ ൌ െܸ ቀ

2 ܥ
ܥ 2

ቁ ቀ
ଵݔ
ଶݔ
ቁ

ൌ െܸ ቀ
2 ܥ
ܥ 2

ቁܷ௫ ቀ
ୌݔ
୐ݔ
ቁ	

ൌ ܷ௣
d

dݐ
ቀ
ୌ݌
୐݌
ቁ ൌ െܷ௣ ⋅ 2ܸ ቀ

ୌݔ
୐ݔ
ቁ,

(2.29)

and hence 

ܷ௣ ൌ
1

2
ቀ
2 ܥ
ܥ 2

ቁܷ௫. (2.30)

 

 

So the decoupled Hamiltonian is 

ܪ ൌ
1 ൅ ߙ

ߤ4
ୌ݌
ଶ ൅

1 െ ߙ

ߤ4
୐݌
ଶ ൅ ܸሺݔୌ

ଶ ൅ ୐ݔ
ଶሻ, (2.31)

and the effective mass of the two modes are 

݉ୌ ൌ
ߤ2

1 ൅ ߙ
, ݉୐ ൌ

ߤ2

1 െ ߙ
. (2.32)

For axial modes, the one with higher frequency is the breathing mode (ions moving in the 

opposite direction) and the lower the center of mass mode (ions moving in the same 

direction). While for radial modes, the higher one is the center of mass mode, the lower 

one is the zig-zag mode. 

2.6  Sideband Operations of Phonons 

The quantized energy of a harmonic mode is described by a kind of bosonic quasi-

particle, phonons. The Hamiltonian of a mode is written as 
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෡ܪ ൌ ԰߱ ൬ ොܽற ොܽ ൅
1

2
൰, (2.33)

in which ߱ is the frequency of the mode, ොܽற( ොܽ) is the creation (annihilation) operator 

of phonons in this mode. Usually the constant 1 2⁄  is omitted and ԰ is taken to be 1, so 

the Hamiltonian is simply ܪ෡ ൌ ߱ ොܽற ොܽ. The eigenstates of the Hamiltonian are “Fock” 

states, i.e. number states of phonon. The effect of the creation or annihilation operator on 

the Fock state with ݊ phonons, |݊ۧ, is just creating or removing a phonon, 

ොܽற|݊ۧ ൌ √݊ ൅ 1|݊ ൅ 1ۧ, ොܽ|݊ۧ ൌ √݊|݊ െ 1ۧ. (2.34)

When an ion is interacting with the laser beam, momentum and energy transfer can 

happen between the phonon modes of the ion and the electromagnetic field. For a 

stimulated Raman transition, if the wavepacket size of the ion is much smaller than the 

wavelength of the laser, the Hamiltonian of the ion is, 

෡ܪ ൌ
Δ

2
ො௭ߪ ൅ ߱ ොܽற ොܽ ൅ Ωߪො௫ cosሺ݇ݔො െ ݐߣ ൅ ߶ሻ, (2.35)

in which Δ is the energy gap of the spin, ߱ is the frequency of the modes of interest, 

Ω is the coupling strength of the Raman transition, ݇ is the wave vector difference of 

the two Raman beams projected to the direction of the mode, ߣ  is the frequency 

difference of the two Raman beams, ߶  is the phase of the coupling, and ݔො  is the 

position operator of the mode given by 

ොݔ ൌ ඨ
԰

2݉߱
ሺ ොܽற ൅ ොܽሻ, (2.36)

where ݉ is the effective mass of the mode. The quantity 

ߟ ൌ ݇ඨ
԰

2݉߱
(2.37)

is the Lamb-Dicke parameter, quantifying the coupling strength between the laser and the 

phonon modes. If the number of phonons ݊ in the mode is low enough, i.e. in the Lamb-

Dicke regime, 

ଶሺ2݊ߟ ൅ 1ሻ ≪ 1, (2.38)

the cosine function in the Hamiltonian (2.35) can be expanded only to the first order. 

Depending on the value of ߣ, the Hamiltonian can be simplified to the following cases 

by taking the interaction picture of Δߪො௭ 2⁄  and ߱ ොܽற ොܽ , and then the rotating wave 
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approximation, 

ە
ۖ
۔

ۖ
෡େܪۓ ൌ

Ω

2
ො௫ߪ ߣ ൌ Δ

෡୆ܪ ൌ
Ωߟ݅

2
ሺߪොା ොܽற െ ොିߪ ොܽሻ ߣ ൌ Δ ൅ ߱

෡ୖܪ ൌ
Ωߟ݅

2
ሺߪොି ොܽற െ ොାߪ ොܽሻ ߣ ൌ Δ െ ߱

.	 (2.39)

Here ܪ෡େ, ܪ෡୆ and ܪ෡ୖ is the Hamiltonian of the carrier, blue sideband and red sideband 

transition respectively. With these three operations, the state of the phonons can be 

controlled. 

If more than one ions are trapped in one trap, the form of the Lamb-Dicke parameter 

will be more complicated, since the position operator ݔො of Equ. (2.36) is defined per 

phonon mode, but the position operator actually involved in the laser-ion interaction [Equ. 

(2.35)] is the position operator for each ion. If only one ion is in the trap, the two operators 

are identical, but not for more ions. Continue the calculation in the previous section, the 

position operators for the high-frequency and low-frequency modes are 

 

 

 

ොୌݔ ൌ ඨ
԰

2݉ୌ߱ୌ
൫ ොܽୌ

ற ൅ ොܽୌ൯ ൌ
√԰

2
൬
1 ൅ ߙ

ߤܸ
൰

ଵ
ସ
൫ ොܽୌ

ற ൅ ොܽୌ൯,

ො୐ݔ ൌ ඨ
԰

2݉୐߱୐
൫ ොܽ୐

ற ൅ ොܽ୐൯ ൌ
√԰

2
൬
1 െ ߙ

ߤܸ
൰

ଵ
ସ
൫ ොܽ୐

ற ൅ ොܽ୐൯.

(2.40)

According to Equ. (2.26), the position operators for the two ions are 

൬
ොଵݔ
ොଶݔ
൰ ൌ ܷ௫ ൬

ොୌݔ
ො୐ݔ
൰	

ൌ ඨ
԰

4ඥܸߤ
ܷ௫ ൭

ሺ1 ൅ ሻߙ
ଵ
ସ 0

0 ሺ1 െ ሻߙ
ଵ
ସ

൱ ቆ
ොܽୌ
ற ൅ ොܽୌ

ොܽ୐
ற ൅ ොܽ୐

ቇ. 
(2.41)

When ion ݅ is interacting with the laser, the Lamb-Dicke parameter of mode H (L) is just 

the coefficient of ොܽୌ
ற ൅ ොܽୌ	൫ ොܽ୐

ற ൅ ොܽ୐൯ in the expansion of ݇ݔ௜, so 
(2.42)



Theory of the Trapped-ion System 
 

17 
 

ଵ୐ߟ ൌ ݇ଵඨ
԰ሺ1 െ ߙሻሺߚ ൅ ሻߚ

4ඥܸߤሺ1 െ ሻߙ
,

ଶୌߟ ൌ ݇ଶඨ
԰ሺ1 ൅ ߙሻሺߚ ൅ ሻߚ

4ඥܸߤሺ1 ൅ ሻߙ
,	

ଶ୐ߟ ൌ െ݇ଶ sgnܥ ඨ
԰ሺ1 ൅ ߙሻሺߚ െ ሻߚ

4ඥܸߤሺ1 െ ሻߙ
. 

Another usage of the sideband transition is to read out the population distribution of 

the Fock states. For example, the Rabi frequency of the blue sideband transition for the 

Fock state |݊ۧ scales as ߟΩ√݊ ൅ 1. So if the blue sideband operation is applied for time 

 and the fluorescence detection is applied at the end, the population of each Fock state ݐ

௡ܲ can be inferred by fitting the fluorescence signal, 

↑ܲሺݐሻ ൌ
1

2
൬1 െ෍ ௡ܲ cos

ݐΩߟ

√݊ ൅ 1௡
൰. (2.43)

An example of this fitting method is given in Fig. 2.5. 
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Fig. 2.5  An example of the measurement of the phonon distribution. 
(a) The fluorescence signal of the ion and its fitting. (b) The phonon distribution obtained from 
the fitting. 
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2.7  Cooling of the Phonon Modes 

In order to perform sideband operations of phonons, the ions should first be cooled 

down to the Lamb-Dicke regime. Usually the first step of cooling is the Doppler cooling. 

The general idea of Doppler cooling is as follows. When a photon of a laser beam is 

scattered by an ion, the ion get a net momentum kick from the photon, because the 

scattering is omnidirectional and the ion gets no net momentum from the emission. If the 

laser beam is red-detuned, the scattering rate is slightly higher due to the Doppler effect 

if the ion moves towards the laser, which means on average the ion loses a small amount 

of momentum every time when the ion is moving towards the laser beam.  

However, the Doppler cooling scheme cannot cool the ion all the way down to the 

ground state of motion. Although the net momentum gain from the emission of the 

photons is zero, the divergence is not. The recoil of the photon emission contributes to 

 When the cooling effect is balanced by this heating effect, the .ۧ̂݌ۦ ଶۧ rather than̂݌ۦ

Doppler cooling reaches its limit. To put it more intuitively, for a certain line shape of the 

spectrum and a certain detuning of the laser, the higher the scattering rate, the higher the 

limit, the steeper the slope of the spectrum, the lower the limit. For a simple spectrum of 

Lorentzian shape, such as 171Yb+, the optimal value of the detuning is just the value that 

yields a scattering rate of half of the maximum. But for more complicated cases, such as 
138Ba+, this problem is not trivial. However the rule of thumb still holds, steeper slope and 

lower scattering. 

The resolved sideband cooling is a technique that can cool the ion down from the 

Doppler cooling limit to near the ground state. The cooling mechanics of the resolved 

sideband cooling is basically a “going down the ladder” process [19]. Successive red 

sideband ߨ-pulse for Fock states |݊ۧ, |݊ െ 1ۧ, |݊ െ 2ۧ, … are applied with optical 

pumping stages in between. Suppose the maximum occupied Fock state is |݊ۧ, then after 

a red sideband ߨ-pulse for that and an optical pumping stage, the population is transferred 

to |݊ െ 1ۧ, hence each step the maximum phonon number is reduced by one. Because 

this process has no heating mechanics, theoretically it can cool the ion all the way down 

to the vacuum state |0ۧ. But in experiment there are limiting factors like the heating effect 

from the environment and the infidelity of the sideband operation and the optical pumping.  

Although the resolved sideband cooling can cool the ion down to the vacuum state 

with very high fidelity, the requirement for this protocol to apply is relatively demanding. 

If we consider all the higher order expansion of Hamiltonian (2.35), the coupling strength 
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of the red sideband transition for |݊ ൐ 0ۧ is 

Ωୖሺ݊ሻ ൌ
ࣦ௡ିଵ
ଵ ሺߟଶሻ

√݊
Ω, (2.44)

in which ࣦ denotes the generalized Laguerre polynomial. The behavior of this function 

is as shown in Fig. 2.6. When ݊ is too large, the coupling strength is effectively zero. So 

the resolved sideband cooling protocol can only be applied when the temperature of the 

ion is already pretty low.  

Another drawback of the resolved sideband cooling protocol is that it can only cool 

down one mode each time, if multiple modes are required to be cooled down, the duration 

of the operation can become unfeasible. A less perfect but way more efficient cooling 

protocol is the electromagnetically induced transparency (EIT) cooling [21]. The EIT 

phenomena is one kind of coherent population trapping in a three level system. As shown 

in Fig. 2.2, in a Λ-type three level system, when a strong pump beam and a weak probe 

beam is applied simultaneously with a common detuning to the upper level, the scattering 

spectrum of the probe beam exhibits a Fano line shape (the blue curve in Fig. 2.7). The 

idea of EIT cooling is that, by arranging the power and the frequency of the probe and 

pump beam, the carrier of the electric dipole transition can be made vanishing, and the 

coupling to the red sideband transitions is much stronger than to the blue sideband 

transitions. In this way, the cooling limit is much lower than the Doppler cooling. The 

EIT cooling is very useful when the number of modes to be cooled down is large, since 

the peak can cover many modes at the same time (Fig. 2.7). 
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Fig. 2.6  The coupling strength of the red sideband transition related to ݊ and ߟ. 

 

 

 

 
Fig. 2.7  The EIT cooling scheme. 
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2.8  Mølmer-Sørensen Interaction 

The Mølmer-Sørensen (M-S) interaction is a two-ion entanglement operation 

mediated by phonons. This operation is first proposed by Anders Sørensen and Klaus 

Mølmer in 1999 [22] [23]. From the very beginning, the idea of the M-S interaction is 

something similar to a stimulated Raman transition. As shown in Fig. 2.8, by applying 

weak and off-resonant blue and red sideband couplings on both ions with identical 

coupling strength Ω and detuning ߜ from the sideband resonance,  

෡ܪ ൌ
Ω

2
ቀߪො௬

ሺଵሻ ൅ ො௬ߪ
ሺଶሻቁ൫ ොܽற݁௜ఋ௧ ൅ ොܽ݁ି௜ఋ௧൯, (2.45)

only the energy conserving transitions, |↓↓ۧ ↔ |↑↑ۧ and |↓↑ۧ ↔ |↑↓ۧ, are excited with 

Rabi frequency 

Ω෩ ൌ
Ωଶ

ߜ
, (2.46)

while all other paths of transition interfere destructively. One important advantage of the 

M-S interaction is that the Rabi frequency Ω෩ is independent of the phonon occupation, 

hence the cooling condition of the ions is less demanding.  

 

 

 
Fig. 2.8  The scheme of the Mølmer-Sørensen interaction. 
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However, the first version of the M-S interaction is basically a Raman transition of 

phonon sidebands which requires Ω ≪  The time required to entangle two ions is very .ߜ

long. So later the strong coupling scenario of this process is investigated and a fast version 

of the interaction is proposed [24]. Both strong and weak coupling can be modeled as 

spin-dependent evolution in the phase space of the phonon mode. The state of the ions 

acquires geometric phase when the ions are evolving in the phase space. If this evolution 

is a “round trip”, i.e. the initial and final state of phonon are identical, the state of the 

spins and the state of the phonons are decoupled. So the entanglement operation can be 

achieved by controlling the trace of the system in the phase space. Intuitively, for the 

weak coupling scenario the trace is just a tiny circle near the origin of the phase space 

along which the system trails many times, with each time contributing a small amount of 

geometric phase. A simulated time evolution of the weak coupling scenario is shown in 

Fig. 2.9(a). The tiny “round trips” in the phase space is revealed by the small oscillation 

of the green curve. For the strong coupling scenario, this circle is much bigger [Fig. 

2.9(b)]. By controlling the coupling strength and the detuning, the required geometric 

phase can be obtained with less trips. For the fastest operation in this model, only one trip 

is enough. The detuning is given by ߜ ൌ 2Ω. The time required to generate |↓↓ۧ ൅ |↑↑ۧ 

from |↓↓ۧ is ߨ Ω⁄ . 

But this is not yet the fastest. Even this fast version is in the adiabatic regime with 

respect to the secular motion of the ions. The analysis is actually performed in a rotating 

frame of reference with respect to the frequency of the phonon mode. Recently there have 

been many theory and experiment research of the ultrafast operation of phonons [25] [26] 

[27] [28]. The general idea is to model the system in a steady frame of reference and make 

use of the secular motion itself. Usually it requires complicated tailoring of the 

Hamiltonian to ensure the phase is correct and the trajectory in the phase space is a closed 

loop.  

I implement the fast version of the M-S interaction in our system with one 171Yb+ 

ion and one 138Ba+ ion, but the ultrafast version still requires further study. 
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Fig. 2.9  The simulated time evolution of the Mølmer-Sørensen interaction. 
The red and blue curve denotes the population of |↑↑ۧ and |↓↓ۧ respectively. The populations 
of |↓↑ۧ and |↑↓ۧ are identical, and are both denoted as green. (a) The weak coupling scenario. 
(b) The strong coupling scenario.  
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Chapter 3  Laser Systems 

The arrangement of all the laser beams entering the trap is shown in Fig. 3.1. The 

arrangement is primarily determined by the polarization requirement of each beam. The 

beams for the barium ion and stimulated Raman transitions will be discussed in detail in 

this chapter, while the information for lasers for the ytterbium ion can be found in [19]. 

 

 

Yb Ba

1762: Shelving 
Ba to D5/2

614: Repump 
Ba from D5/2

638: Repump 
Yb from F7/2
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Yb from D3/2

532: Ba Raman
355: Yb Raman

493: Ba Optical Pumping
532: Ba Raman

355: Yb Raman

399: Yb 
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370: Yb Detection, 
Doppler Cooling, 
Optical Pumping
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Doppler Cooling, 
Detection
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Ba from D3/2

413: Ba 
Ionization

B=5.6G

 
Fig. 3.1  The arrangement of all the laser beams entering the trap. 

 

3.1  Lasers for Barium Ion 

3.1.1  Alignment of 493 nm and 650 nm Diode Laser 

The 493 nm diode laser is used to drive the transition between ܵଵ ଶ⁄  and ܲଵ ଶ⁄  

levels of 138Ba+ ion and implement Doppler cooling, EIT cooling, optical pumping and 

fluorescence detection operations. The laser is locked to a F-P cavity stabilized by a 

tellurium (Te) vapor cell with Doppler-free spectroscopy [29]. The alignment of the laser 

is in Fig. 3.2.  
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493 nm Tellurium Reference

F-P Cavity

Doppler Cooling,
EIT Probe, Detection

Optical Pumping

75 mm AOM1

AOM2

100 mm

AOM3100 mm

PBS

AOM

Prism Fiber Coupler

Half 
Waveplate

Quarter 
Waveplate

Polarizer

Beam Block

Photodiode

Lens

Mirror
Window Plate
Dichroic Mirror

Fig. 3.2  The alignment of the 493 nm laser with the legend of the optical components used in 
this chapter.  
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In designing the alignment of the 493 nm laser, the following aspects are considered. 

 We should be able to scan the frequency of the laser as far as possible without 

losing lock to the Te reference so that we can measure the spectral line shape of 

the beams. So the AOM1 is arranged in the double-pass scheme such that the 

power to the Te vapor cell is not significantly affected by the frequency scan. 

 Aligning the beams to the trap and aiming them to the ion is a tedious work, 

while coupling beams to fibers is easy. So the beams are coupled to fibers before 

entering the trap, such that changes of the alignment on the laser side do not 

affect the trap side. 

 The Doppler cooling beam, the detection beam and the probe beam for EIT 

cooling requires similar polarization configurations. It would save a lot of 

optical components and workload if they can be handled collectively. So in the 

alignment all the three beams are generated from a single AOM (AOM2) 

arranged also in double-pass scheme due to the frequency difference. 

 By coupling lasers to fibers and using double-pass AOMs, a significant amount 

of laser power is lost. So all the AOMs are arranged serially to maximize the 

power usage. 

The 650 nm diode laser is used to repump the population in ܦଷ ଶ⁄  metastable levels. 

The laser is locked to a F-P cavity and an iodine vapor cell reference with the same scheme 

as 493 nm laser. The alignment of the laser is in Fig. 3.3. 

 

 

Fig. 3.3  The alignment of the 650 nm laser. 
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3.1.2  Frequency Arrangements of 493 nm and 650 nm Laser 

For a 171Yb+ ion in ܲଵ ଶ⁄  levels, the probability to decay to ܦଷ ଶ⁄  is only 0.5%, so 

the spectrum of 370 nm transition, ܲଵ ଶ⁄ ↔ ܵଵ ଶ⁄ , has a simple Lorentzian line shape. 

However, for 138Ba+ ion, the probability to leak to ܦଷ ଶ⁄  states is 25%, so the line shape 

of 493 nm transition is strongly affected by the configuration of the 650 nm laser beam, 

and hence the determination of the laser parameters is not a trivial problem. 

The interaction between 493nm, 650 nm lasers and the ion can be modeled by the 

optical Bloch equations [30]. The numerical analysis of the system can give some insight 

for the optimization of the laser parameters.  

 

Fig. 3.4  The numerical simulation of the optical Bloch equations.  
(a) The steady state solution for scanning the frequency of the optical pumping beam. The blue 
curve shows the population of the |↓ۧ state, the red curve shows the total population of ܦଷ ଶ⁄  
levels. (b) The steady state solution for scanning the frequency of the Doppler cooling beam. 
The red spot indicates a typical frequency configuration of the beam. 

For the optical pumping beam, ideally the polarization should purely be ߪା, but in 

experiment this condition is very demanding, there are always a small amount of other 

polarization components remaining. As shown in Fig. 3.4(a), if there are 0.1% (power 

ratio) of ߨ polarization and ିߪ polarization remaining, the optical pumping fidelity can 

be poor around the resonance and the population mainly goes to ܦଷ ଶ⁄  levels. So for our 

system, the detuning of the optical pumping beam is set to around +120 MHz, where the 

optical pumping fidelity is insensitive to the polarization impurity, and the beam can be 

reused for the pumping beam of the EIT cooling. For the Doppler cooling beam, the rule 

of thumb is to maximize the slope of the scattering spectrum. As shown in Fig. 3.4(b), 

when the frequency of the Doppler cooling beam is near the dark resonance, the slope is 

steeper than the normal Lorentzian shape. 
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The frequency arrangements of all the 493 nm laser beams are in Fig. 3.5(a). The 

spectrum of the 493 nm transition is measured in experiment to verify the resonant 

frequency [Fig. 3.5(b)]. This spectrum is measured with the Doppler cooling beam by 

scanning the driving frequency of AOM1. It is clear that the resonant frequency is as 

depicted in Fig. 3.5(a). 

 

 
 

Fig. 3.5  The spectrum and frequency arrangements of the 493 nm laser beams. 
The numbers above the frequency axis is the frequency difference between each marked 
frequency. 
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The spectrum of the 650 nm transition are measured in a similar way, but with much 

lower intensities for both 493 nm and 650 nm beams to acquire a Lorentzian line shape 

[Fig. 3.6(a)]. The frequency arrangements of the 650 nm laser beams are in Fig. 3.6(b). 
 

 

 

 

 
 
 
 

Fig. 3.6  The spectrum and frequency arrangements of the 650 nm laser beam. 
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Fig. 3.7  The alignment of the 650 nm laser. 

 

 
 

Fig. 3.8  The alignment of the 1762 nm laser. 
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3.1.3  1762 nm Fiber Laser and 614 nm Diode Laser 

The 1762 nm fiber laser is used to shelve one of the ܵଵ ଶ⁄  levels to ܦହ ଶ⁄  to enable 

the fluorescence detection of the qubit states. While the 614 nm laser is used to repump 

the population from ܦହ ଶ⁄  levels. 

The 614 nm laser is actually frequency-doubled from a 1228 nm diode laser with a 

periodically polarized lithium niobate (PPLN) crystal. The alignment is relatively simple 

(Fig. 3.7). The laser is locked to the wavelength meter after frequency-doubling. 

The 1762 nm laser is a narrow linewidth fiber laser from NKT Photonics. It is locked 

to an ultra-low expansion (ULE) cavity system made by Stable Laser Systems. The locked 

linewidth of the laser is around 1 Hz. The alignment is in Fig. 3.8. The stabilized laser 

output is first amplified by a boosted optical amplifier (BOA) from Thorlabs (module: 

BOA1082P) before entering the trap. Actually the wavelength is out of the specified range 

of the module, but it works amazingly well. The power of the laser is amplified from 

about 15 mW to 75 mW, and the laser power into the trap is around 45 mW, with 

horizontal polarization to maximize the transition of Δ݉ ൌ 0. The Rabi frequency of the 

transition is around 50 kHz. A typical spectrum of the Δ݉ ൌ 0 quadrupole transition of 

a single 138Ba+ ion with phonon sidebands is shown in Fig. 3.9. 

 

Fig. 3.9  A typical spectrum of the Δ݉ ൌ 0 quadrupole transition of a single 138Ba+ ion with 
phonon sidebands. 
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3.2  Lasers for Stimulated Raman Transitions 

3.2.1  Alignment of Raman Lasers 

The 355 nm picosecond pulsed laser is used to drive the stimulated Raman transition 

for the 171Yb+ ion, and 532 nm for the 138Ba+ ion. The two wavelengths are frequency-

doubled and tripled from the same 1064 nm pulsed laser. The alignment of the lasers is in 

Fig. 3.10. The repetition rate of the laser is detected by a fast photodiode (PD) and locked 

to a rubidium frequency reference. The polarizations of the 532 nm Raman beams are 

carefully adjusted to be linear. In this case, the AC-Stark shift of |↓ۧ and |↑ۧ caused by 

each Raman beams are exactly balanced, hence changing the power of the beam will not 

change the resonant frequencies of the operations. The decoherence caused by the 

fluctuation of the AC-Stark shift can be minimized in this way. 

Usually aligning the Raman beams to the ion is a difficult job. Both beams should 

hit the ion, the two pulses should arrive at the ion simultaneously and the frequency 

should be resonant. All these requirements should be met to get the signal of the transition. 

The common way to align the Raman beams is to place a double-pass AOM in one of the 

beams to generate a sideband so that the Raman transition can be excited with one beam 

[19]. However, in this way the uncertainty of the alignment and the resonant frequency is 

also coupled together. In our system, the Ramsey fringe of 1762 nm transition is used to 

align the Raman beams. The 1762 nm laser excites the electric quadrupole transition 

between |݉ ൌ 1 2⁄ ۧ  of ܵଵ ଶ⁄  and |݉ ൌ 1 2⁄ ۧ  of ܦହ ଶ⁄ . When 532 nm or 355 nm 

Raman beams are applied, they introduce AC-Stark shift to both levels, and this can be 

measured with Ramsey measurement, so the alignment of each of the beams can be 

optimized by looking at the Ramsey fringes of the 1762 nm transition. In this way, the 

frequency of the AOM signal is irrelevant, so all the uncertainties of the Raman beams 

can be addressed one by one. 
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Fig. 3.10  The alignment of the 355 nm and 532nm pulsed lasers. 
The focal length of all the lenses in this figure is 250 mm, except for the two lenses marked as 
1000 mm. These two lenses is used to compensate the focal length difference of the lens near 
the trap. 
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3.2.2  Frequency Arrangement of Raman Lasers 

Other than the alignment, the driving frequencies of the AOMs for the Raman laser 

beams also require some consideration.  

For the 138Ba+ ion, the situation is the simplest. The qubit we use is the Zeeman qubit, 

the energy level splitting is just tens of MHz, which can be easily covered by the two 

AOMs. The pulsed laser is not necessarily required for the 138Ba+ ion, a continuous-wave 

532 nm laser will also do. A typical phonon sideband spectrum of two 138Ba+ ions is 

shown in Fig. 3.11. 

 
 

 
Fig. 3.11  A typical phonon sideband spectrum of two 138Ba+ ions. 
The detuning is relative to the resonant frequency of the carrier transition. 

For the 171Yb+ ion, it is a bit more complicated. The qubit is a hyperfine qubit. The 

energy splitting is 12.64281212 GHz. This large gap cannot be covered by directly 

shifting the frequency of the laser beams. Instead, the frequency comb scheme [19] is 

used. For a pulsed laser, the shape of its spectrum is roughly a “comb” with Gaussian 

envelope. The span in the frequency domain is the inverse of the pulse width in the time 

domain, and the distance between neighboring “comb teeth” is the repetition rate of the 

pulses. So the GHz level energy gap can be covered by each tooth of one beam and 

another tooth of the other beam with higher order. For our HighQ laser, the pulse width 
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is around 8 ps, and the repetition rate is around 80 MHz. So this 12 GHz gap can be 

covered by one tooth and another 158 orders higher one. And the two AOMs just need to 

cover the remaining frequency difference of tens of MHz. More specifically, if the 

repetition rate is ݂ୖ , the driving frequency difference ߱ of the two AOMs is 

߱ ൌ ߱଴ െ ݂݇ୖ , ݇ ൌ ൤
߱଴

݂ୖ
൨ , ߱଴ ൌ 12.64281212 GHz.	 (3.1)

A typical phonon sideband spectrum of two 171Yb+ ions is shown in Fig. 3.12. 
 

 
Fig. 3.12  A typical phonon sideband spectrum of two 171Yb+ ions. 
The detuning is relative to the resonant frequency of the carrier transition. 

When the two species of ions are involved at the same time, the problem gets tricky. 

The polarizations of the 355 nm laser beams cannot be both horizontal or both vertical, 

or the coupling strength of the Raman transition is effectively zero. So it has to be one 

horizontal one vertical. For 532 nm laser beams the situation is similar. One beam has to 

be horizontal to provide ߨ component of polarization, while the other one should be 

linear and vertical to maximize the coupling strength and minimize the difference of the 

AC-Stark shift between the qubit levels. So the polarization configurations of both 

wavelengths are identical, and the detuning is not that large, as shown in Tab. 3.1. This 

means there will be crosstalk between the ions. An example of such crosstalk effect is 

shown in Fig. 3.13. 
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Tab. 3.1 The frequency detuning of the transitions with respect to the lasers. 

ሺTHzሻ 
138Ba+ 171Yb+ 

ܵଵ ଶ⁄ ↔ ܲଵ ଶ⁄  ܵଵ ଶ⁄ ↔ ܲଷ ଶ⁄ ܵଵ ଶ⁄ ↔ ܲଵ ଶ⁄ ܵଵ ଶ⁄ ↔ ܲଷ ଶ⁄  

355	nm െ237 െ186 െ33 67 

532	nm 44 95 248 348 

 

 
Fig. 3.13  The crosstalk effect of the 532 nm Raman beams to the 171Yb+ ion. 
The detuning is relative to the resonant frequency of the 138Ba+ ion’s carrier transition. The 
red line is the spectrum to the red side of the carrier transition, so the detuning is actually 
negative.  

So altogether, we have two different wavelengths that are both able to excite the 

Raman transitions of both ions, each laser has two different frequency components in 

order to drive the M-S interaction, both lasers have micromotion sidebands, both lasers 

are symmetric in frequency arrangement (as long as the frequency difference between the 

two Raman beams is correct, which one has higher frequency is irrelevant), the 171Yb+ 

ion has Zeeman levels, and both ions have four phonon sidebands of axial modes. And 

all the unwanted couplings should be avoided in experiment. These are a tedious amount 

of different frequencies to be analyzed. Some visual aid is required to resolve this 

frequency mess (Fig. 3.14). The resonant driving frequency of the carrier transition of the 
171Yb+ ion is carefully chosen to avoid the excitation of the 171Yb+ ion by the 532 nm laser 
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(the overlap of the green lines with the red lines in the lower spectrum), the excitation of 

the Zeeman levels of the 171Yb+ ion by the 355 nm laser’s micromotion sidebands (the 

overlap of the thin blue lines with the red lines in the lower spectrum), and the excitation 

of the 138Ba+ ion by the 355 nm laser (the overlap of the blue lines with the red lines in 

the upper spectrum). And then the repetition rate of the pulsed laser is adjusted according 

to Equ. (3.1). The final frequencies used to implement the M-S interaction is listed in Tab. 

3.2. 

 

Fig. 3.14  A small tool used to analyze the crosstalk problem and arrange the frequencies.  



Laser Systems 
 

39 
 

 

Tab. 3.2 The final frequencies (in MHz) used to implement the M-S interaction. 

Repetition 
Rate 

Carrier Frequency Sideband Frequency 

171Yb+ 138Ba+ 
Axial 

Breathing 
Axial 

Center of Mass 

80.095 12.2 15.7 1.34 0.774 

3.3  Techniques for Alignment 

3.3.1  AOM Alignment 

Aligning an AOM is one of the starter’s practice for students majored in AMO 

physics experiments. We all know that the input and output beams should be collimated, 

and the AOM should be on the focus of the beam. But in practice, these standards are 

usually not well met. If the AOM is located too far away from the focus, the first order 

beam of different driving frequency may not focus to the same position. This can be a 

problem if multiple frequencies is required in a single beam to address the ion and the 

intensity ratios of the different frequency components are important. So here I introduce 

a procedure which is helpful to align the AOM properly. 

 Step 1. Place a reference on the laser beam path to mark the position of the beam. 

 Step 2. Place two plano-convex lenses with the plane side facing each other. 

Roughly adjust their positions so that the output beam is roughly collimated and 

pointing at the mark in step 1. 

 Step 3. Put the AOM roughly at the focus of the beam. Carefully adjust the 

position of the lenses so that the output beam is as collimated as possible, which 

can be checked by comparing the spot size right after the lens and several meters 

away. In this way, the extra length of the beam path introduced by the crystal of 

the AOM is taken into account. 

 Step 4. Align the AOM to see the first order of the diffracted beam. Carefully 

adjust the position of the AOM along the beam so that the zeroth order and the 

first order are parallel to each other, which can be examined by comparing the 

distance between the two spots right after the lens and several meters away.  

 Step 5. Align the AOM to maximize the power of the desired order. 
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Fig. 3.15  The diffraction patterns of the laser beam hitting a needle tip, with varying position 
of the needle tip along the axis of the beam. 
The patterns for positions way before and way behind the focus are also shown. The beam used 
to demonstrate this and all the following diffraction patterns has Rayleigh length of ୖݖ ൌ
2.5	mm, and beam waist ݓ଴ ൌ 20	μm.  

3.3.2  Diffraction Patterns 

Aligning the laser beams into the trap is usually a tricky job. The structure of the 

trap is frequently used as a reference to put the beam at the geometric center of the trap 

by steering the beams to hit different parts of the trap. However, “hitting or not” can be a 

very inaccurate criterion, and it is unable to tell if the beam’s focus is also properly 

adjusted.  

When the laser beam hits an obstacle, it generates diffraction patterns. And actually 

quite a lot of information can be inferred from the pattern. Take our four-rod trap as an 

example, the two needle tips of the DC electrodes are often used as the reference to 

determine the geometric center of the trap. Fig. 3.15 shows the diffraction patterns of the 

beam hitting a needle tip. The tip is positioned along the axis of the beam, while the 

distance between the tip and the focus of the beam varies from -3 mm to 3 mm. As can 

be seen in the figure, if the needle tip is at the focus of the beam, the diffraction pattern is 

symmetric, and by observing the direction of the pattern, it is able to distinguish whether 

the tip is before or behind the focus. 
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Fig. 3.16  The diffraction patterns of the laser beam hitting a needle tip, with varying position 
of the needle tip around the focus of the beam. 
(a) The patterns for moving the needle tip vertically. (b) The patterns for moving the tip 
horizontally.  

The diffraction patterns for the positions of the tip around the focus is in Fig. 3.16. 

If the tip is vertically at the center of the beam, the pattern is symmetric. If it is not, the 

center of the beam is mainly blocked by one edge of the needle, and hence the pattern is 

perpendicular to the edge. In this way, the relative position of the tip and the center of the 

beam can be determined. While the horizontal position is relatively hard to determine, the 

brightness of the pattern can be used as a reference. 
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The diffraction patterns of the needle is useful when you try to align multiple beams 

into the trap and make sure their focuses are at the same position. 

Another frequently used component is the pinhole. The pinhole can be used in 4-F 

system as a spacial filter to block unwanted scatterings. It can also be used as a reference 

of the position of the beam. The diffraction patterns of the pinhole have similar properties. 

As shown in Fig. 3.17(a), the symmetry of the pattern can be used to determine whether 

the pinhole is at the focus of the beam. While the patterns in Fig. 3.17(b) can be used to 

determine which part of the pinhole is blocking the beam. The direction of the pattern is 

perpendicular to the tangent of the edge. This is useful if you want to overlap multiple 

beams at the position of the pinhole.  
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Fig. 3.17  The diffraction patterns of the laser beam hitting a pinhole with a diameter of 
150	μ݉. 
(a) The patterns when the beam is cut by left and right edges of the pinhole with varying 
position along the beam axis. (b) The patterns when the beam is cut by different part of the 
pinhole. 
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Chapter 4  Pulse Sequencer 

4.1  Function and Performance Goals 

A successful experiment requires coordinated operation of all the lasers, signal 

generators and detectors. There are logically complicated tasks like generating the control 

signal according to the experiment parameters. There are also logically simple but timing 

critical tasks like switching the signals on and off with microsecond timing precision. A 

typical experiment flow of our system is shown in Fig. 4.1 as an example. Usually, the 

complicated tasks are assign to a computer, while the timing critical tasks are handled by 

FPGA boards.  

In our system, an FPGA based TTL pulse sequencer is implemented to fulfill these 

tasks. As the name suggests, a TTL pulse sequencer is able to generate TTL pulse 

sequences as instructed by the computer with high timing resolution (Fig. 4.2). The 

control structure of our system is shown in Fig. 4.3. The instructions to the signal 

generators and the pulse sequencer are issued by the computer, while the pulse sequencer 

schedules the execution of the experiment flow. The performance of the sequencer should 

fulfill the following requirements. 

 The number of channels should be large enough to control all the related 

apparatus. 

 The timing resolution should be as high as possible to minimize the infidelity of 

quantum operations due to timing errors. 

 The maximum duration of timing should be long enough for demanding 

experiments. 

As an example, the most demanding experiment our system has performed is to 

demonstrate the coherence time of 171Yb+ qubit exceeding 10 minutes [31]. This 

experiment has sequences as long as 10 minutes while the ߨ -time of microwave 

operations is as short as 10us. 

The newest version of our pulse sequencer is made with an Altera Cyclone III 

EP3C25Q240C8 FPGA chip. Its performance is shown in Tab. 4.1. 
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Fig. 4.1  A typical pulse sequence in experiment. 
 

Tab. 4.1 The Performance of the pulse sequencer. 

Clock Frequency 200 MHz 

Timing Resolution 5 ns 

Minimum Segment Duration 5 ns 

Maximum Segment Duration 5 ∗ 2ସଵ ns ൎ 3.05 hours  

Output Channels 32 

Maximum Number of Segments 7680 

Maximum Repetition of Sequence 2ଶସ െ 1 ൌ 16777215 

Other Functions External Trigger: 

The sequencer can be configured to synchronize the 
sequence with an external trigger. This function can 
be used to compensate the 50 Hz noise induced by AC 
lines. 

Embedded Gated Counter: 

Four 32-bit counters are also built into the chip that 
can be used to count the fluorescence photons 
collected by the PMT. 
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Fig. 4.2  The TTL pulse sequencer of our system and its user interface. 
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Fig. 4.3  The control structure of our system. 

4.2  Pipeline Timer and Time Stamp Encoding 

Unlike the arbitrary waveform generator (AWG), which generates the output by 

continuously pushing amplitude data of each sample point into the digital-to-analog 

converter (DAC), the sequencer generates the output discretely so that memory space has 

less limitation on the maximum duration of the sequence. Obviously, a TTL sequence can 

be decomposed into a number of segments, during which the levels of all the output 

channels hold unchanged. So a sequence can be defined by a list, whose each element 

contains the duration and output levels of each segment. In this way, the sequencer just 

need to count the time and change the output when a new segment starts. So the 

performance of the sequencer is determined by its timer module.  

A timer is basically a counter ܶ that counts the clock cycles. More specifically, for 

each rising edge of the clock signal, 

௧ܶሾ0ሿ ൌ ௧ܶିଵሾ0ሿ⨁1, ௧ܶሾ݅ሿ ൌ ௧ܶିଵሾ݅ሿ⨁ሥ ௧ܶିଵሾ݆ሿ

௜ିଵ

௝ୀ଴

, (5.1)

in which ௧ܶሾ݅ሿ denotes the i-th bit of ܶ on clock cycle ݐ. Note that ܶሾ݅ሿ is computed 

through a chain of AND operation. For large ݅, this could take a considerably long time, 

limiting the clock frequency. So it seems that high timing resolution and long timing 

duration is mutually exclusive. However, rather than computing the whole combinatorial 
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logic chain in one clock cycle, it can be arranged in a pipeline manner, 

௧ܶሾ݅ሿ ൌ ௧ܶିଵሾ݅ሿ⨁ܥ௧ିଵሾ݅ሿ
௧ሾ݅ሿܥ ൌ ௧ܶିଵሾ݅ െ 1ሿ ∧ ௧ିଵሾ݅ܥ െ 1ሿ, ௧ሾ0ሿܥ ൌ 1,

(5.2)

in which ܥሾ݅ሿ is the carry bit of ܶሾ݅ሿ. In this way, the clock frequency is no longer 

limited by the bit width of the timer, but in order to use this type of timer, a bit more 

analysis of its behavior is required.  

From Equ. (5.2), it is easy to see that the carry propagates one bit further per clock 

cycle, so if we start with ଴ܶ ൌ 0 ଴ܥ , ൌ 1  and look at ܵ௧ ൌ ሼ ௧ܶሾ݅ሿ, ௧ܶିଵሾ݅ െ

1ሿ, … , ௧ܶି௜ሾ0ሿሽ, it is just the binary sequence we have for ordinary timer, 0, 1, 10, 11, 100 

etc., as illustrated in Fig. 4.4. So generally 

௧ܶሾ݅ሿ ൌ ሺݐ െ ݅ሻሾ݅ሿ, (5.3)

i.e., the i-th bit of number ݐ െ ݅. And similarly, 

௧ሾ݅ሿܥ ൌሥ ௧ܶି௝ሾ݅ െ ݆ሿ

௜

௝ୀଵ

. (5.4)

 

 
Fig. 4.4  The states of the ܶ and ܥ register of the pipeline timer. 

 

Usually, the function of a timer is that when a specific number of clock cycles 

elapsed, it assert some signal. So it would be convenient if we set ܶ and ܥ to some 

initial value ܶ∗ and ܥ∗ so that after the specified number of cycles, the highest bit of 

ܶ flips to 1. Keep to the previous example, we see that ܶሾ3ሿ flips to 1 on cycle 11. 
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According to Equ. (5.3), for a timer ܶ of ܹ ൅ 1 bits, ௧ܶሾܹሿ first flips to 1 when 

∗ݐ ൌ 2ௐ ൅ܹ. (5.5)

So if we set ܶ∗ ൌ ௧ܶ∗ି௡ and ܥ∗ ൌ  .௧∗ି௡, then after ݊ cycles the signal will be assertedܥ

The value of ܶ∗  and ܥ∗  can be computed by the computer and sent to the 

sequencer as time stamp of each sequence segment so that the sequencer can use them 

directly. However, from Equ. (5.4), we can see that in fact ܥ∗ can be computed from ܶ∗ 

and if this computation can be performed on the chip, it would reduce the memory 

consumption by half. Note that ௧ܶሾ݅ሿ flips if and only if ݐ ൌ ݇ ∗ 2௜ ൅ ݅ and these are the 

cycles that ܥ௧ିଵሾ݅ሿ ൌ 1. So ܥ∗ሾ݅ሿ ൌ 1 if and only if 

ܶ∗ሾ݆ሿ ൌ ܶଶ೔ା௜ିଵሾ݆ሿ for all ݆ ൏ ݅. (5.6)

This is also a combinatorial logic chain and can take quite long time. However, this 

computation is only required when a new segment is about to start. So we can arrange an 

arbiter module and several parallel lines to distribute this computation among multiple 

clock cycles and effectively the computation is finished in one clock cycle. With this 

pipeline configuration of the timer, the timing resolution is no longer limited by the bit 

width of the timer. 

4.3  Structure of the Pulse Sequencer 

A pulse sequencer requires supporting modules other than the timer to fulfill the task. 

The structure and signal flow of the pulse sequencer is depicted in Fig. 4.5.  

The input dispatcher module is used to decode the instructions sent from the 

computer via a USB port. When a new transfer session is initiated by the computer, the 

input dispatcher module notifies the controller to halt the execution of current sequence 

and switch to the receiving state until the last instruction package is received. The 

received control parameters are sent to the controller and the descriptions of the segments 

are sent to the first-in-first-out (FIFO) array to be stored. 

The controller module is used to control the state of the sequencer. When an 

instruction transfer session is initiated, it disables the timer and reset the address pointers 

of the FIFO array. The controller also counts the number of repetitions of current sequence. 

If the external trigger is enabled, the controller hold the sequencer and wait a trigger when 

an execution of the sequence is finished. 
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The FIFO array consists of five FIFO queues. It stores the TTL levels and time stamp 

of each segment and also calculate the initial values of carry bits from the time stamp. 

The segments are cyclically distributed among five parallel queues by an input arbiter 

during the transfer of a new sequence. Each time the “Tick” signal is asserted by the timer 

module, marking an end of current segment, the time stamp, the TTL levels and the carry 

bits are read from one of the five queues and that queue immediately initiates the 

calculation of the carry bits of the next segment stored in it. The output arbiter is used to 

arrange the order of output of the five queues. The FIFO array is designed in this parallel 

manner so that the time consuming calculation of the carry bits is effectively distributed 

among five clock cycles.  

The timer module is as discussed in the last section. When a segment is over, it 

asserts a one clock cycle high pulse of “Tick” signal to inform the FIFO array and the 

output ports to act. 

The output ports changes their levels when “Tick” signal is asserted, and are disabled 

during the initialization. 

The complete Verilog source code of the pulse sequencer is in Appendix A. 
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Fig. 4.5  The module structure and signal flow of the pulse sequencer. 
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Chapter 5  Geometric Landau-Zener-Stückelberg 
Interferometry 

5.1  Introduction 

The Landau-Zener (LZ) transition or Landau-Zener-Stückelberg (LZS) 

interferometry together with Rabi oscillation have been widely used to coherently control 

various quantum systems, including atomic or optical systems [32] [33], quantum dots 

[34] [35], superconducting qubits [36], nitrogen-vacancy-center systems [37], and spin 

transistors [38]. Related to the Rabi operation, composite pulses associated with 

dynamical decoupling [39] [40] or adiabatic manipulation with geometric phases [41] [42] 

have been extensively studied to reach error rates below the fault-tolerant level with 

reasonable limitations of control in feasible physical systems. 

Generally, a quantum system subjected to adiabatic driving acquires a geometric 

phase (or Berry phase) as well as a dynamic phase. Unlike the dynamic phase, the 

geometric phase depends solely on the trajectory of the parameters in the Hamiltonian, 

and thus is stable against certain types of fluctuations; this has been experimentally 

observed in various systems [43] [44]. Composite-pulse schemes also have a geometric 

phase interpretation in nonadiabatic regimes [45]. However, the geometric phase and 

robust control in the context of LZ interferometry have not yet been experimentally 

investigated and demonstrated [46]. 

This project is an experimental realization of LZS interferometry controlled 

exclusively by the geometric phase. It is inspired by the proposal of Ref. [46] in a single 

trapped-ion system, which is capable of simulating other qubit systems. Although the 

original proposal is specifically for a superconducting system, I apply the scheme to a 

trapped-ion system and observe the robustness of the geometric phase against very great 

operational errors in all possible control parameters by artificially introducing noise into 

the system. The demonstrated strong immunity sheds light on the possibility of examining 

the geometric phase in more complex systems which might be subject to large fluctuations 

in control parameters. 
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5.2  Landau-Zener Transition 

The LZ Transition happens in a quantum two level system described by Hamiltonian 

ሻݐሺܪ ൌ
԰

2
࣌ ⋅ ,ሻݐ୤୤ሺୣ࡮ ࣌ ൌ ൫ߪ௫, ,௬ߪ ,௭൯ߪ

ሻݐ୤୤ሺୣ࡮		 ൌ ൫Ωሺݐሻ cos ߮ , Ωሺݐሻ sin߮ , Δሺݐሻ൯, 
(5.1)

when the system is driven through an avoided crossing where Δ  is at minimum. 

According to the adiabatic-impulse approach, the transition is considered to happen only 

in a small vicinity around the avoided crossing, while the rest of the driving is adiabatic. 

In this way, the transition probability in the adiabatic basis ሼ|߰ିۧ, |߰ାۧሽ is characterized 

by 

୐ܲ୞ ൌ expቆെ
଴߂ߨ

ଶ

|ݒ|2
ቇ, (5.2)

where ݒ ൌ
ୢஐ

ୢ௧
ቚ
ஐୀ଴

 and Δ଴ is the energy splitting at the avoided crossing. The transition 

is described by the time evolution operator ܷ୐୞ ൌ ܷ௔ܷܰ௕ with 

ܰ ൌ ቆ
݁ି௜ఝ౏ඥ1 െ ୐ܲ୞ െඥ ୐ܲ୞

ඥ ୐ܲ୞ ݁௜ఝ౏ඥ1 െ ୐ܲ୞

ቇ, (5.3)

where ߮ୗ  is the Stokes phase [47] and ܷ௔ሺ௕ሻ ൌ exp൫݅ߦ௔ሺ௕ሻߪ௭൯  is the operator for 

dynamic phase ߦ௔ሺ௕ሻ accumulated after (before) the avoided crossing.  

In experiment, the hyperfine levels of the ground state of an 171Yb+ ion is used as the 

two level system, and the control of the ୣܤ୤୤  is implemented with microwave, as is 

mentioned in Chapter 2 of this thesis. The transition probability and transition dynamics 

is verified and observed for different speed of driving, as shown in Fig. 5.1. 

5.3  Adiabatic Passage 

In order to perform the LZ transition, the system should first be prepared in the 

eigenstate of the Hamiltonian, Equ. (5.1), with Ω ≫ Δ. In this experiment, the state is 

prepared using adiabatic passage with 

Ωሺݐሻ ൌ ܤ sin߱ݐ , Δሺݐሻ ൌ ܤ cos߱ݐ ,

ܤ ൌ ሺ2ߨሻ50	kHz ൌ ,|୤୤ୣ࡮| ߱ ൌ
ߨ

200 μs
.

(5.4)

To put it more intuitively, the effective magnetic field ୣ࡮୤୤ just rotates around an axis on 

the equatorial plane with constant angular velocity ߱ and amplitude ܤ. This is a simple 
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way to drive the system and yet with pretty good adiabaticity. The simulated trajectories 

of the system under such driving and the experiment verification is shown in Fig. 5.2. 

 
 

 
Fig. 5.1  The transition probability and dynamics of the Landau-Zener transition. 
(a) LZ transition probability ୐ܲ୞ as a function of the total driving time ܶ of linear sweep of 
Ω from ሺ2ߨሻ49.24	kHz to െሺ2ߨሻ49.24	kHz with Δ଴ ൌ ሺ2ߨሻ8.68	kHz. The red crosses in 
the figure are data points and the black curves are numerical simulation results. (b) The LZ 
transition dynamics for three exemplary cases, ܶ ൌ 90	μs, 157	μs, 300	μs , which provide 
tunneling probabilities of 0.5, 0.3, and 0.1 after the transitions. Oscillatory behaviors near the 
avoided crossing [37] [48] are clearly observed and precisely in agreement with the results of 
the numerical simulation. 

 

 

Fig. 5.2  The adiabatic passage. 
(a) The trajectories of the system under adiabatic evolutions of different ߱, with the green one 
߱ ൌ ߨ ሺ200	μsሻ⁄ , the blue one ߱ ൌ ߨ ሺ60	μsሻ⁄  and the red one ߱ → 0. (b) The population 
of the |↑ۧ state during the adiabatic evolution with ߱ ൌ ߨ ሺ200 μsሻ⁄ . 
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Fig. 5.3  The procedure of a LZS interferometry. 
(a) The control sequences of Ω and Δ in ୣ࡮୤୤ ൌ ሺΩ cos߮ , Ω sin߮ , Δሻ for the realization of 
geometric LZS interferometry. The coloring and numbering of the stages are the same in (b) – 
(i). (b) – (d) The trajectories of ୣ࡮୤୤ during the operation in ൫ܤ௫, ,௬ܤ  ௭൯ space. (e) – (g) Theܤ
evolution of the system in ൫ܤ௫, ,௬ܤ  ൯ space, where the hyperbolic curves indicate the energyܧ
of the adiabatic eigenstates. In contrast to the standard energy diagram for the LZ transition, 
the geometric LZS interferometer should be illustrated in 3-D due to the phase information. 
The volume of the orange spheres corresponds to the population of the adiabatic eigenstates. 
(h), (i) The trajectories of ୣ࡮୤୤ and the system for the adiabatic spin-echo sequences. 



Geometric Landau-Zener-Stückelberg Interferometry 
 

56 
 

5.4  Geometric Landau-Zener-Stückelberg Interferometry 

The interference of the two adiabatic eigenstates takes place when two LZ transitions 

happen successively, similar to the Mach-Zehnder interferometry. In this experiment, the 

interference fringes are solely determined by the geometric phase acquired between the 

LZ transitions, while the dynamic phase is cancelled out by the symmetric arrangement 

of the experiment sequence with a spin-echo stage in the middle. 

The complete sequence of the interferometry is shown in Fig. 5.3. The system is first 

adiabatically prepared for the LZ transition in stage 1 with Equ. (5.4), as is the same in 

stage 3a, 3b, s1, s2 and 5. Then the system is driven through the first LZ transition by 

linearly sweeping the value of Ω, as shown in Fig. 5.3(b)(e). The geometric phase is 

acquired in stage 3 with adiabatic driving and phase change ߮଴ of the control parameter 

[Fig. 5.3(c)(f)]. And finally the second LZ transition which is identical to the first one is 

performed to complete the interferometry [Fig. 5.3(d)(g)]. In order to make the phase of 

the interferometry purely geometric, a spin-echo sequence that swaps the two adiabatic 

eigenstates is performed right in the middle of stage 3 [Fig. 5.3(h)(i)], so that for each 

adiabatic eigenstate, the dynamic phase and Stokes phase gained during the adiabatic 

evolution and the LZ transition in the first half of the experiment sequence exactly 

cancelled out with that of the second half.  

5.5  Robustness of the Interferometry 

With Equ. (5.3), it is easy to calculate the population of the |↑ۧ state, 

↑ܲ ൌ ୐ܲ୞
ଶ ൅ ሺ1 െ ୐ܲ୞ሻ

ଶ െ 2 ୐ܲ୞ሺ1 െ ୐ܲ୞ሻ cos߮଴. (5.5)

In the experiment, we set ୐ܲ୞ to 1 2⁄ , so in this case 

↑ܲ ൌ
1 െ cos߮଴

2
. (5.6)

One cycle of the interference fringes is demonstrated in Fig. 5.4(a). 

The robustness of the contrast of the interference fringes against the deviations of 

the control parameters is also experimentally tested by artificially introducing errors into 

the parameters. For the strength of the driving field, we assume a scaling error,  

Ωᇱ ൌ ሺ1 ൅ ߳ሻΩ, (5.7)

simulating the case of an inhomogeneous driving field. While for the driving frequency, 
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we assume a bias error in the unit of the energy splitting at the avoided crossing, 

Δᇱ ൌ Δ ൅ .Δ଴ߜ (5.8)

Both kinds of errors are assumed to be slow enough so that in each run of the experiment 

sequence, the values of ߳ and ߜ hold the same. The experiment test of the robustness is 

performed by randomly choosing 1139 pairs of ሼ߳, ሽ in the range of െ0.5ߜ ൑ ߳ ൑ 0.5, 

െ0.3 ൑ ߜ ൑ 0.3  and measure the value of 1 െ ↑ܲሺ߮଴ ൌ 0ሻ  for each pair. The 

experiment result is shown in Fig. 5.4(b), and the corresponding numerical simulation 

result is in Fig. 5.4(c).  

 

Fig. 5.4  The interference fringe and its robustness of the geometric LZS interferometry. 
(a) The interference fringe. (b) The experiment result of the robustness test. (c) The numerical 
simulation result. 
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Chapter 6  Arithmetic Operations of Phonons 

6.1  Introduction 

In quantum mechanics, bosonic creation ොܽற and annihilation ොܽ operators bear the 

following operator relations, 

ොܽற ൌ ෍√݊ ൅ 1|݊ ൅ |݊ۦ1ۧ

௡ୀ଴

, ොܽ ൌ ෍√݊|݊ െ |݊ۦ1ۧ

௡ୀ଴

, (6.1)

where |݊ۧ stands for a Fock state of ݊ bosons. The proportionality factors √݊ ൅ 1 and 

√݊ appear due to the symmetric indistinguishable nature of bosons. Thus, the addition 

or subtraction in quantum domain involves the modification of the probability amplitude 

of state due to the excitation ݊-dependent factor. The bosonic annihilation and creation 

operations have been proposed to be a building block to generate an arbitrary quantum 

state [49], to distill entanglement or non-locality [50] and to transform a classical state to 

a nonclassical state [51]. In recent times, there have been seminal works to realize the 

bosonic operations at the single-boson level for the test of foundations and applications 

of quantum mechanics [52] [53] [54] [55] [56] [57]. However, such bosonic operations 

are not trace preserving and inherently probabilistic. The probability of success has so far 

been extremely low in their implementation for photonic fields. A higher probability may 

be obtained at the expense of lowering the performance fidelity [58]. Owing to this, the 

number of these operations that can be successively applied has been limited. 

The conventional addition and subtraction of a particle can be written as 

መܵା ൌ ෍|݊ ൅ |݊ۦ1ۧ

௡ୀ଴

, መܵି ൌ ෍|݊ െ |݊ۦ1ۧ

௡ୀ଴

. (6.2)

The addition መܵା takes the ݊ particle state to the |݊ ൅ 1ۧ state, whereas the subtraction 

operation መܵି  brings the |݊ۧ  state to the |݊ െ 1ۧ  state without incurring additional 

factors. Seeing the form of the operations in Equ. (6.2), we immediately recognize that 

መܵା is a deterministic process while መܵି may not be, as it is not possible to subtract a 

particle from the vacuum state |0ۧ. When the vacuum component of the initial state is 

small, the subtraction can be done near-deterministically. In recent times, there have been 

theoretical proposals of the operations [Equ. (6.2)] for the generation of an arbitrary 

quantum state [59], the measurement of vacuum [60], the transformation to a non-
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classical state [61] and the amplification of a quantum state [62]. In particular, such 

arithmetic operations form an important component of a qubit gate operation for ions in 

a harmonic potential [63]. The operations were also suggested as the elements of a phase 

operator [64]. 

In this project, the deterministic addition and near-deterministic subtraction 

protocols of a phonon is developed and demonstrated. Its application in the projective 

measurement of phonons is also explored. 

 

 

Fig. 6.1  The numerical simulations of the adiabatic driving. 
(a) Equ. (6.4) without any optimization, with the red, orange, yellow, green and blue curve 
corresponding to ݇ ൌ 1, √2, √3, √4, √5  respectively. (b) With only counter-diabatic term 
ܾ ൌ ߱ 2⁄ . (c) With scaling factor ܽ ൌ √3 and counter-diabatic term ܾ ൌ ߱ 2⁄ . 
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6.2  Uniform Driving of the Phonons 

The Rabi frequency of phonon sideband transitions has a factor of √݊, so there is 

no simple way to drive ߨ-transitions uniformly for different Fock states at the same time. 

However, as demonstrated in Fig. 5.2, an adiabatic process is able to drive the system 

around by slowly changing the Hamiltonian. So a straight forward way to implement such 

uniform driving is to control the parameters in a similar manner. But first, for the 

simplicity of the notation, we can analyze the problem in a two level system with 

Hamiltonian 

ሻݐ෡ሺܪ ൌ
Δሺݐሻ

2
ො௭ߪ ൅

݇Ωሺݐሻ

2
,ො௫ߪ (6.3)

since the blue sideband transitions are just multiple independent transitions between 

|↓, ݊ۧ  and |↑, ݊ ൅ 1ۧ , and the coefficient ݇  characterize the √݊  factor of the Rabi 

frequency. So the parameters are controlled similarly as in Chapter 5, 

Δሺݐሻ ൌ ࣟ cos߱ݐ , Ωሺݐሻ ൌ ࣟ sin߱ݐ. (6.4)

The result of numerical simulation for ࣟ ൌ ሺ2ߨሻ50	kHz , ߱ ൌ ࣟ 12⁄ , and ݇ ൌ

1, √2, √3, √4, √5 is shown in Fig. 6.1(a). It is obvious that when ݇  gets larger, the 

adiabaticity of the process gets drastically worse and the system is not properly driven to 

|↑ۧ. 

However, this can be improved. Since in the case of ݇ ൌ 1, the state of the system 

is basically rotating around with a constant angular velocity, so it would be better if a 

weak counter-diabatic term is applied to drive the rotation dynamically, 

ሻݐ෡ሺܪ ൌ
Δሺݐሻ

2
ො௭ߪ ൅

݇Ωሺݐሻ

2
ො௫ߪ ൅

ܾ݇

2
.ො௬ߪ (6.5)

The numerical simulation for ܾ ൌ ߱ 2⁄  [Fig. 6.1(b)] shows that the adiabaticity is better. 

But for large ݇ the oscillation in the middle is still pretty big, since this optimization 

only works when ݇ ൎ 1. So we can add a scaling factor ܽ for Δ to make ݇ ܽ⁄ ൎ 1, 

Δሺݐሻ ൌ ܽࣟ cos߱ݐ. (6.6)

And this time the result of the numerical simulation for ܽ ൌ √3 and ܾ ൌ ߱/2 is way 

better than the previous two cases [Fig. 6.1(c)]. The populations of |↓ۧ at the end of the 

evolution for all the three cases are listed in Tab. 6.1 for reference. To put it more 

intuitively, the general idea of this protocol is to take the advantage of both dynamic 

driving and adiabatic driving. The weak counter-diabatic term drives the system 
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dynamically to improve the adiabaticity of the evolution, while the adiabatic driving 

keeps the evolution of the system on track should there be any deviations of the 

parameters.  

Tab. 6.1 The infidelity of population transfer of the adiabatic process 

݇ 1 √2 √3 √4 √5 

(a) 2.9 ൈ 10ିହ 1.9 ൈ 10ିଶ 1.9 ൈ 10ିଶ 1.3 ൈ 10ିଵ 7.2 ൈ 10ିଶ 

(b) 4.6 ൈ 10ି଻ 5.1 ൈ 10ିଷ 5.0 ൈ 10ିଷ 4.1 ൈ 10ିଶ 3.5 ൈ 10ିଶ 

(c) 2.6 ൈ 10ିହ 2.1 ൈ 10ିହ 1.4 ൈ 10ିସ 3.6 ൈ 10ିହ 6.4 ൈ 10ିସ 

 

The rule of thumb to determine the optimal value of ܽ  and ܾ  can be derived 

straightforwardly from the analysis above. Suppose we want this operation to cover a 

range of ݇ from √݉ to √݊, then the value of ܽ should guarantee that at both ends the 

ratio ݇ ܽ⁄  be around 1, which leads to 

√݉

ܽ
⋅
√݊

ܽ
ൌ 1, ܽ ൌ √݉݊

ర
. (6.7)

Similar for ܾ, at both ends the deviation of the counter-diabatic term ܾ݇ from the ideal 

value ߱ should be as small as possible, which means ܾ should take the value that 

൫√ܾ݉ െ ߱൯
ଶ
൅ ൫√ܾ݊ െ ߱൯

ଶ
(6.8)

is minimal, and that is 

ܾ ൌ
√݉ ൅ √݊

݉ ൅ ݊
⋅ ߱. (6.9)

For the example above, ܽ ൌ √5
ర

ൎ 1.495, ܾ ൌ ൫1 ൅ √5൯߱ 6⁄ ൎ 0.539߱. 

6.3  Arithmetic Operations of the Phonons 

The uniform driving operation mentioned in the last section will introduce huge 

dynamic phase into the states. However, the addition and subtraction operators in the form 

of Equ. (6.2) require also phase coherence. Considering the uniform driving operation 

being a symmetric process, the same spin-echo technique can be used, that is, inverting 

the sign of Δ and Ω right in the middle of the process [Fig. 6.2(a)], but typically this 

will have a negative impact on the quality of the operation. The numerical simulation and 

experiment demonstration of this operation is shown in Fig. 6.2(b). 
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Fig. 6.2  The uniform driving with a spin-echo in the middle.  
(a) The control parameters. (b) The numerical simulation and experiment demonstration of the 
uniform driving with spin-echo for Fock states of ݊ ൌ 0 to 5, with ࣟ ൌ ሺ2ߨሻ38	kHz, ߱ ൌ
ሺ2ߨሻ5.5	kHz, ܽ ൌ 1.6, ܾ ൌ ሺ2ߨሻ2.9	kHz. The experiment is performed in a radial mode of 
the ion with trap frequency of 2.8 MHz. 

 

Fig. 6.3  The procedure of the arithmetic addition and subtraction operations. 

 

With this coherent uniform driving operation, the arithmetic addition and subtraction 

operation of phonons can be implemented. As shown in Fig. 6.3, an addition operation 

consists of a uniform driving operation of blue sideband and a ߨ -pulse of carrier 

transition, and the subtraction operation is just the same operations with reversed order 
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and with a fluorescence detection stage at the end to eliminate the population in |↑ۧ. Of 

course, if the detection stage yields bright, the subtraction operation fails, so this is a 

probabilistic process. 

The effect of the arithmetic operations on different states is tested in experiment. The 

result for coherent state |ߙ ൌ 0.8ۧ is in Fig. 6.4. Although the fidelity is not ideal, the 

preservation of the coherence can still be seen from the fringes of the Wigner function. 

The ability to transform a Gaussian state to a non-Gaussian state is also demonstrated, as 

there are negative regions in the Wigner function of the states after addition operations. 

The results for superposition states are in Fig. 6.5 and Fig. 6.6. The parameters used for 

the uniform driving operations are the same as in Fig. 6.2. The purities of the initial and 

added/subtracted states are in Tab. 6.2. 

 

 

 

Fig. 6.4  The Wigner function and phonon distribution of coherent state |ߙ ൌ 0.8ۧ after 1, 2, 
3 times of arithmetic addition operation. 
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Tab. 6.2 The purities of the initial and added/subtracted states. 

Number of Operations 0 1 2 3 

ߙ| ൌ 0.8ۧ 0.99 0.93 0.93 0.80 

|0ۧ ൅ |1ۧ 0.99 0.92 0.81 0.71 

|2ۧ ൅ |3ۧ 0.73 0.65 0.75 െ 

 
 

 

 
|0ۧ ൅ |1ۧ መܵାሺ|0ۧ ൅ |1ۧሻ ൫ መܵା൯

ଶ
ሺ|0ۧ ൅ |1ۧሻ ൫ መܵା൯

ଷ
ሺ|0ۧ ൅ |1ۧሻ 

 

Fig. 6.5  The real component of the density matrix of superposition state |0⟩+|1⟩ after 1, 2, 3 
times of arithmetic addition operation. 

 

 
|2ۧ ൅ |3ۧ መܵିሺ|2ۧ ൅ |3ۧሻ ൫ መܵି൯

ଶ
ሺ|2ۧ ൅ |3ۧሻ 

 

Fig. 6.6  The real component of the density matrix of superposition state |2⟩+|3⟩ after 1, 2 times 
of arithmetic subtraction operation. 

 

The method used to reconstruct the density matrices and Wigner functions of the 

states is a maximum-likelihood estimation method introduced in [65]. The general idea 

of this method is that we start with an initial guess of the density matrix of the system, 

and try to correct its eigenvalues and eigenstates iteratively so that the results of certain 

measurements performed on it are as close to the experiment results as possible. In this 

experiment, a state to be analyzed is displaced along each of the 8 directions with distance 

|ߙ| ൌ 0.8, and the phonon distribution is measured after the displacement by fitting the 
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blue sideband fluorescence signal, as shown in Fig. 6.7. And the 8 distributions serve as 

the reference measurements to reconstruct the density matrix, from which the Wigner 

function can then be calculated. The significant advantage of this method is that the 

estimated density matrix is bound to be physical, otherwise the quantitative analysis such 

as calculating the fidelity and purity can be very tricky for a non-physical estimation. 

 

 
Fig. 6.7  The protocol to reconstruct the density matrix and the Wigner function. 
The state is displaced to each of the 8 positions equally spaced on a circle in the phase space, 
and then the phonon distribution is measured. 

6.4  Projective Measurement of the Fock States 

The common way to determine the phonon distribution of a state is to fit the 

fluorescence signal of a sideband transition, as mentioned in Chapter 2, and it is not 

projective. However, with the uniform driving operation, the projective measurement of 

the Fock states can be implemented. As shown in Fig. 6.8, the procedure is very similar 

to the arithmetic subtraction operation. Only this time if the detection stage yields bright, 

we know that the state is projected to |0ۧ. Although the state is destroyed for sure after 

the detection stage, due to the scattering of the photons, we can always generate the 
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projected state after that, so effectively this is a successful projection. And if the detection 

stage yields dark, which means the population of |0ۧ is eliminated, we can repeat the 

procedure to project the state to |1ۧ, |2ۧ, |3ۧ, etc. Intuitively, it is just like keep asking 

“Is it this one?” until we get answer “Yes”. 

 

 

 

 

Fig. 6.8  The protocol of the projective measurement. 
Note that phase coherence is not required, so the spin-echo stage can be removed to improve 
the population transfer of the uniform driving operation. 
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Chapter 7  Deterministic Generation of 
High NOON States of Phonons 

7.1  Introduction 

Entanglement is an essential resource for quantum computation and quantum 

metrology. Classically, a parameter can be estimated more precisely by using more 

particles in the measurement, and the reduction of the statistical error is proportional to 

the square root of the particle number. In quantum metrology, the reduction factor can be 

improved to be linearly proportional to the particle number, which is called the 

Heisenberg limit, by using many-particle entangled states [66] [67] [68]. The ultimate 

Heisenberg limit can be achieved with the NOON state for identical indistinguishable 

bosons [66] [67], which can be understood by the superposition of two modes with only 

one of them occupied by ܰ bosons. The NOON state has the form [69] 

|Ψ୒୓୓୒ۧ ൌ
1

√2
൫|ܰ, 0ۧ ൅ ݁௜ேఝ౏|0, ܰۧ൯, (7.1)

where the relative phase ߮ୗ between two modes is linearly proportional to ܰ, showing 

the Heisenberg scaling for parameter estimation through the interferometric measurement. 

For photonic systems [70], experiments have demonstrated NOON states with particle 

numbers up to ܰ ൌ 5 [71] [72] [73] [74]. For distinguishable particles, up to 10 photons 

[75] [76] [77] and 14 ions have been prepared into the closely-related GHZ states [78] 

[79] [80]. NOON states have also been demonstrated in nuclear spins (NMR) [81], atomic 

spin waves [82], and microwave photons in superconducting systems [83]. 

On the other hand, the phonons have recently received increasing attention beyond 

the standard role as the mediator of quantum operations between internal states of ions. 

Phonons are proposed as the information carrier for quantum simulation [84] [85], Boson 

sampling [12], and quantum computation with continuous variables [86]. Recently, the 

NOON state with ܰ ൌ 2 has been generated through interference of phonons in each 

localized harmonic potential [87]. The phonons in the trapped ion system can also be 

manipulated through the interaction with the internal degree of freedom of an atom, 

similar to manipulating photons through an atom in a cavity [88]. In this project, a generic 

and deterministic scheme to generate phononic NOON states with arbitrary number of 
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bosons ܰ  for any two vibrational modes of ions is developed and demonstrated. 

Experimental generation of the NOON state with phonon numbers up to ܰ ൌ 9  is 

demonstrated and the Heisenberg scaling in the lower bound of the sensitivity in the phase 

estimation is clearly observed.  

7.2  Generation Sequence of the NOON State 

The NOON state is generated in a composite-pulse way in two phonon modes 

denoted as X mode and Y mode in this experiment. Taking the generation sequence of 

ܰ ൌ 3  as an example [Fig. 7.1], the state of the system is first initialize to 

|↓, ݊ଡ଼ ൌ 0, ݊ଢ଼ ൌ 0ۧ by optical pumping and sideband cooling, with the first arrow being 

the state of the spin and the latter two number being the phonon number of the X and Y 

mode. By applying ߨ-pulses of blue sideband and carrier transition successively, the state 

is transferred to |↓, 1, 1ۧ. Then a ߨ 2⁄ -pulse is applied to change the state to |↑, 2, 1ۧ ൅

|↓, 1, 1ۧ. Finally, two composite-pulse operations followed by a blue sideband ߨ-pulse on 

Y mode and a carrier ߨ-pulse are performed to generate the state |↓, 3, 0ۧ ൅ |↓, 0, 3ۧ.  

 

Fig. 7.1  The generation sequence of |3003⟩ state. 
Each node of the grid denotes a Fock state. The blue, red and green arrows indicate the blue 
sideband, carrier and composite-pulse operations respectively. The numbers on the arrows 
correspond to the order of the operations.  
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The composite-pulse operation is inspired by Ref. [89] and is capable of driving ߨ-

transitions of blue sideband on two different Fock states, which have different Rabi 

frequencies. One such operation consists of three pulses. Suppose we want to drive the 

ߨ -transition of |↑, 1, 0ۧ → |↓, 0, 0ۧ  and |↓, 1, 0ۧ → |↑, 2, 0ۧ  simultaneously, we first 

apply a ߨ 2⁄ -pulse of |↑, 1, 0ۧ → |↓, 0, 0ۧ transition [Fig. 7.2(a)], which is also a ߨ √2⁄ -

pulse of |↓, 1, 0ۧ → |↑, 2, 0ۧ transition. Then we apply a ߨ-pulse of |↓, 1, 0ۧ → |↑, 2, 0ۧ 

transition with a ߨ 2⁄  phase difference than the previous pulse [Fig. 7.2(b)], and the other 

transition is not affected since the state is the eigenstate of this operation. Finally another 

ߨ 2⁄ -pulse of |↑, 1, 0ۧ → |↓, 0, 0ۧ transition is applied which concludes the composite-

pulse operation [Fig. 7.2(c)]. 

With the composite-pulse operation introduced in detail, a generalized description 

of the generation sequence of arbitrary NOON states is in Tab. 7.1. The following terms 

are defined for notation convenience: ܴେ  denotes a carrier ߨ	 -pulse, ܴଡ଼ሺߠ, ߮, ݊ሻ 

denotes a blue-sideband pulse of the X mode such that the transition between |↓, ݊ଡ଼, ݊ଢ଼ۧ 

and |↑, ݊ଡ଼ ൅ 1, ݊ଢ଼ۧ has rotation angle ߠ and phase ߮, ܴଢ଼ሺߠ, ߮, ݊ሻ is similarly defined,  

,୑ሺܽܥ ܾሻ ≡ ܴ୑ሺߨ 2⁄ , 0, ܽሻ, ܴ୑ሺߨ, ߨ 2⁄ , ܾሻ, ܴ୑ሺߨ 2⁄ , 0, ܽሻ (7.2)

denotes a composite-pulse operation on mode M, and finally ݇ଡ଼ ൌ ሺܰہ െ 1ሻ 2⁄ ଢ଼݇ ,ۂ ൌ

ܰہ 2⁄ It requires a total number of 5ܰ .ۂ െ 2 pulses to generate the NOON state from 

|↓, 0, 0ۧ. 

 

 

Fig. 7.2  The procedure of the composite-pulse operation. 
The evolutions of the two transitions are shown simultaneously. (a) a ߨ 2⁄ -pulse of |↑, 1, 0ۧ →
|↓, 0, 0ۧ  transition. (b) a ߨ -pulse of |↓, 1, 0ۧ → |↑, 2, 0ۧ  transition with a ߨ 2⁄  phase 
difference. (c) another ߨ 2⁄ -pulse of |↑, 1, 0ۧ → |↓, 0, 0ۧ transition. 
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Tab. 7.1 The generation sequence of arbitrary NOON states. 

Step Operation Final State 

Start Initialization |↓, 0, 0ۧ

1	 ܴଡ଼ሺߨ, 0, 0ሻ, ܴେ |↓, 1, 0ۧ

2	 ܴଡ଼ሺߨ, 0, 1ሻ, ܴେ |↓, 2, 0ۧ

…	 …	 …

݇ଡ଼	 ܴଡ଼ሺߨ, 0, ݇ଡ଼ െ 1ሻ, ܴେ |↓, ݇ଡ଼, 0ۧ

݇ଡ଼ ൅ 1	 ܴଢ଼ሺߨ, 0, 0ሻ, ܴେ |↓, ݇ଡ଼, 1ۧ

…	 …	 …

ܰ െ 1	 ܴଢ଼ሺߨ, 0, ݇ଢ଼ െ 1ሻ, ܴେ |↓, ݇ଡ଼, ݇ଢ଼ۧ

ܰ	 ܴଡ଼ሺߨ 2⁄ , 0, ݇ଡ଼ሻ |↑, ݇ଡ଼ ൅ 1, ݇ଢ଼ۧ ൅ |↓, ݇ଡ଼, ݇ଢ଼ۧ	

ܰ ൅ 1	 ଢ଼ሺ݇ଢ଼ܥ െ 1, ݇ଢ଼ሻ |↓, ݇ଡ଼ ൅ 1, ݇ଢ଼ െ 1ۧ ൅ |↑, ݇ଡ଼, ݇ଢ଼ ൅ 1ۧ	

ܰ ൅ 2	 ଡ଼ሺ݇ଡ଼ܥ ൅ 1, ݇ଡ଼ െ 1ሻ |↑, ݇ଡ଼ ൅ 2, ݇ଢ଼ െ 1ۧ ൅ |↓, ݇ଡ଼ െ 1, ݇ଢ଼ ൅ 1ۧ	

ܰ ൅ 3	 ଢ଼ሺ݇ଢ଼ܥ െ 2, ݇ଢ଼ ൅ 1ሻ |↓, ݇ଡ଼ ൅ 2, ݇ଢ଼ െ 2ۧ ൅ |↑, ݇ଡ଼ െ 1, ݇ଢ଼ ൅ 2ۧ	

ܰ ൅ 4	 ଡ଼ሺ݇ଡ଼ܥ ൅ 2, ݇ଡ଼ െ 2ሻ |↑, ݇ଡ଼ ൅ 3, ݇ଢ଼ െ 2ۧ ൅ |↓, ݇ଡ଼ െ 2, ݇ଢ଼ ൅ 2ۧ	

…	 …	 …

ܰ ൅ 2݇ଡ଼ െ 1	 ଢ଼ሺ݇ଢ଼ܥ െ ݇ଡ଼, ܰ െ 2ሻ |↓, 2݇ଡ଼, ݇ଢ଼ െ ݇ଡ଼ۧ ൅ |↑, 1, ܰ െ 1ۧ	

ܰ ൅ 2݇ଡ଼	  X X2 , 0C k 	 |↑, 2݇ଡ଼ ൅ 1, ݇ଢ଼ െ ݇ଡ଼ۧ ൅ |↓, 0, ܰ െ 1ۧ	

For odd ܰ, ݇ଢ଼ െ ݇ଡ଼ ൌ 0 and 2݇ଡ଼ ൌ ܰ െ 1 

2ܰ	 ܴଢ଼ሺߨ, 0, ܰ െ 1ሻ, ܴେ |↓, ܰ, 0ۧ ൅ |↓, 0, ܰۧ 

For even ܰ, ݇ଢ଼ െ ݇ଡ଼ ൌ 1 and 2݇ଡ଼ ൌ ܰ െ 2 

2ܰ െ 1	 ,ଢ଼ሺ0ܥ ܰ െ 1ሻ |↓, ܰ െ 1, 0ۧ ൅ |↑, 0, ܰۧ

2ܰ	 ܴଡ଼ሺߨ, 0, ܰ െ 1ሻ, ܴେ |↓, ܰ, 0ۧ ൅ |↓, 0, ܰۧ
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7.3  Fidelity and Quantum Fisher Information 

If each phonon is considered to be a distinguishable particle that can either be in X 

mode or in Y mode, the NOON state can be written as 

|Ψ୒୓୓୒ۧ ൌ
1

√2
ሺ|XXX…Xۧ ൅ |YYY…Yۧሻ. (7.3)

Although this not a strict notation, you can immediately see the similarity between the 

NOON states and the GHZ states of the spins, 

|Ψୋୌ୞ۧ ൌ
1

√2
ሺ|↑↑↑ ⋯ ↑ۧ ൅ |↓↓↓ ⋯ ↓ۧሻ. (7.4)

Since the density matrix of an ideal GHZ state contains only four terms, the fidelity of 

the GHZ state can be determined by measuring these terms [78]. The two diagonal terms 

are just the populations of the “all up” and “all down” components, and are easy to 

measure. While the two off-diagonal terms is evaluated by measuring the contrast of the 

parity oscillation of the spins after a global ߨ 2⁄ -pulse with varying phase ߮. The parity 

of the spins is defined as the expectation value of the parity operator, 

Π෡ୗ ൌෑ ො௓ߪ
ሺ௜ሻ

௜
. (7.5)

According to this similarity, we should be able to determine the fidelity of the generated 

NOON state in the same way, if it is possible to rotate the mode of each phonon to 

something like a “X ൅ ݁௜ఝY” mode and then measure the parity of the phonons.  

The parity operator of a phonon mode is defined as 

Π෡ ൌ expሾ݅ߨ ොܽற ොܽሿ. (7.6)

And the parity of a given state |Ψۧ is just the difference between the total population of 

even and odd Fock states, 

Ψ|Π෡|Ψۧۦ ൌ෍ ଶܲ௜ െ ଶܲ௜ାଵ

௜

. (7.7)

So if we define the creation and annihilation operators for this “X ൅ ݁௜ఝY” mode as the 

linear combinations of those of X and Y mode, 

ොܽ୓
ற ൌ

1

√2
൫ ොܽଡ଼

ற ൅ ݁௜ఝ ොܽଢ଼
ற൯, ොܽ୓ ൌ

1

√2
൫ ොܽଡ଼ ൅ ݁ି௜ఝ ොܽଢ଼൯, (7.8)

we should be able to derive the fidelity. 
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For now, all the conclusions are just based on analogy and speculations, but they can 

be justified theoretically in the following way. 

Suppose the density matrix of the generated NOON state is 

୶୮ୣߩ ൌ ୬୭୧ୱୣߩ ൅ ேܲ,଴|ܰ, ,ܰۦ0ۧ 0| ൅ ଴ܲ,ே|0, ,0ۦۧܰ ܰ|

൅݁ି௜ேథߩே଴,଴ே|ܰ, |ܰ,0ۦ0ۧ ൅ ݁௜ேథߩ଴ே,ே଴|0, ,ܰۦۧܰ 0|,
(7.9)

where ߩ୬୭୧ୱୣ stands for the irrelevant part of the density matrix and is independent of ߶. 

Then the fidelity of the generated state to the ideal NOON state 

|Ψ୒୓୓୒ۧ ൌ
1

√2
൫|ܰ, 0ۧ ൅ ݁௜ேఝ|0, ܰۧ൯ (7.10)

is 

ܨ ≡ ൻΨ୒୓୓୒หୣߩ୶୮หΨ୒୓୓୒ൿ

ൌ
1

2
൫ൻܰ, 0หୣߩ୶୮หܰ, 0ൿ ൅ ൻ0, ܰหୣߩ୶୮ห0, ܰൿ	

൅݁௜ேఝൻܰ, 0หୣߩ୶୮ห0, ܰൿ ൅ ݁ି௜ேఝൻ0, ܰหୣߩ୶୮หܰ, 0ൿ൯	

ൌ
1

2
ൣ ேܲ,଴ ൅ ଴ܲ,ே ൅ ݁௜ேሺఝିథሻߩே଴,଴ே ൅ ݁ି௜ேሺఝିథሻߩே଴,଴ே൧	

ൌ
1

2
ൣ ேܲ,଴ ൅ ଴ܲ,ே ൅ ே଴,଴ேߩ2 cosܰሺ߮ െ ߶ሻ൧.

(7.11)

In experiment, the phase can be calibrated so that ߶ ൌ ߮ ൌ 0. The fidelity is then 

ܨ ൌ
1

2
൫ ேܲ,଴ ൅ ଴ܲ,ே ൅ .ே଴,଴ே൯ߩ2 (7.12)

The values of the two diagonal terms, ேܲ,଴  and ଴ܲ,ே , can be directly measured by 

projective measurement, which will be discussed in detail in the next section. While for 

the off-diagonal term ߩே଴,଴ே, in order to show its relation to the parity oscillation, we 

first introduce Schwinger’s oscillator model of angular momentum, 

መଡ଼ܬ ൌ
1

2
൫ ොܽଡ଼

ற ොܽଢ଼ ൅ ොܽଡ଼ ොܽଢ଼
ற൯,

መଢ଼ܬ ൌ
1

2݅
൫ ොܽଡ଼

ற ොܽଢ଼ െ ොܽଡ଼ ොܽଢ଼
ற൯,	

መ୞ܬ ൌ
1

2
൫ ොܽଡ଼

ற ොܽଡ଼ െ ොܽଢ଼
ற ොܽଢ଼൯.

(7.13)

Then the density matrix of the system can be expressed in the angular momentum basis 

ܬ| ൌ ܰ 2⁄  ୞ۧ asܯ,

୶୮ୣߩ ൌ ேܲ,଴|ܬ, ,ܬۦۧܬ |ܬ ൅ ଴ܲ,ே|ܬ, െܬۦۧܬ, െܬ|

൅ߩே଴,଴ே|ܬ, ,ܬۦۧܬ െܬ| ൅ ,ܬ|ே଴,଴ேߩ െܬۦۧܬ, |ܬ ൅ .୬୭୧ୱୣߩ
(7.14)
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First we consider the form of the parity operator in the X mode, 

Π෡ ൌ expൣ݅ߨ ොܽଡ଼
ற ොܽଡ଼൧ ൌ exp ൤

ߨ݅

2
൫ ොܽଡ଼

ற ොܽଡ଼ െ ොܽଢ଼
ற ොܽଢ଼ ൅ ܰ൯൨ ൌ expൣ݅ܬߨመ൧ expൣ݅ܬߨመ୞൧.	 (7.15)

And then transform it into the “X ൅ ݁௜ఝY” mode with the following operator, 

෡ܷ ൌ exp ൤െ
ߨ݅

4
൫ ොܽଡ଼

ற ොܽଢ଼݁
௜ఝ െ ොܽଡ଼ ොܽଢ଼

ற݁ି௜ఝ൯൨

ൌ exp ൤െ
ߨ݅

2
൫ܬመଡ଼ cos ߮ െ መଢ଼ܬ sin߮൯൨ ,	

෡ܷறሺ߮ሻΠ෡ ෡ܷሺ߮ሻ ൌ ݁௜గே ෍ ݁ଶ௜ெሺఝିగ ଶ⁄ ሻ|ܬۦۧܯ,ܬ, െܯ|

௃

ெୀି௃

.

(7.16)

The parity measured in the “X ൅ ݁௜ఝY” mode is thus 

ൻΠ෡ሺ߮ሻൿ ൌ Trൣୣߩ୶୮ ෡ܷ
றሺ߮ሻΠ෡ ෡ܷሺ߮ሻ൧ ൌ ே଴,଴ே݁ߩ2

௜గே cosܰሺ߮ െ ߨ 2⁄ ሻ.	 (7.17)

Finally, we have the oscillation of the parity with phase ߮  and the contrast of this 

oscillation is 

୔ܥ ൌ .ே଴,଴ேߩ2 (7.18)

Another closely related quantity is the quantum Fisher information ୕ܨ  of the 

NOON state, which provides the best possible precision on a parameter estimation given 

by 1 ඥ୕ܨ⁄  [90] [91], known as the Cramér-Rao bound. For ܰ  particles without 

entanglement, the best possible measurement scales as 1 √ܰ⁄  but for the NOON state, 

the lower bound of the precision scales as 1 ܰ⁄ , the Heisenberg limit.  

The quantum Fisher information of the NOON state can be calculated as follows. 

First, we use the diagonal form of ୣߩ୶୮, 

୶୮ୣߩ ൌ |Ψଵۦଵ|Ψଵۧߣ ൅ |Ψଶۦଶ|Ψଶۧߣ ൅ ,୬୭୧ୱୣߩ (7.19)

where 

|Ψଵۧ ൌ cos
ߠ

2
|ܰ, 0ۧ ൅ ݁௜ேథ౏ sin

ߠ

2
|0, ܰۧ,

|Ψଶۧ ൌ sin
ߠ

2
|ܰ, 0ۧ െ ݁௜ேథ౏ cos

ߠ

2
|0, ܰۧ,	

୬୭୧ୱୣߩ ൌ ෍ߣ௡|Ψ௡ۧۦΨ௡|

௡வଶ

,	

ேܲ,଴ ൅ ଴ܲ,ே ൌ ଵߣ ൅ ,ଶߣ
ே଴,଴ேߩ2 ൌ ଵߣ| െ |ଶߣ sin ߠ ≡ .୔ܥ

(7.20)
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The definition of quantum Fisher information is written as 

ܨ୕ ൌ Trൣୣߩ୶୮ሺ߶ୗሻܣ
ଶ൧, (7.21)

where ܣ is the symmetric logarithmic derivative operator defined by 

୶୮ሺ߶ୗሻୣߩ߲

߲߶ୗ
ൌ
1

2
୶୮ሺ߶ୗሻୣߩܣൣ ൅ .൧ܣ୶୮ሺ߶ୗሻୣߩ (7.22)

With this definition, we can calculate the matrix elements of ܣ in the basis expanded by 

|Ψ௜ۧ, 

ൽΨ௜ฬ
୶୮ሺ߶ୗሻୣߩ߲

߲߶ୗ
ฬΨ௝ඁ ൌ

1

2
൫ߣ௝ൻΨ௜หܣหΨ௝ൿ ൅ ,หΨ௝ൿ൯ܣ௜ൻΨ௜หߣ

ൻΨ௜หܣหΨ௝ൿ ൌ
2

௜ߣ ൅ ௝ߣ
ൽΨ௜ฬ

୶୮ሺ߶ୗሻୣߩ߲

߲߶ୗ
ฬΨ௝ඁ.

(7.23)

Note that all ߣ௡  and |Ψ௡ۧ with ݊ ൐ 2, which form ߩ୬୭୧ୱୣ , are independent of ߶ୗ , 

therefore the only non-zero terms are 

Ψଶۧ|ܣ|Ψଵۦ ൌ െۦΨଶ|ܣ|Ψଵۧ ൌ ݅
ଵߣ െ ଶߣ
ଵߣ ൅ ଶߣ

ܰ sin .ߠ (7.24)

And hence 

ܨ୕ ൌ ܣ|Ψଵۦଵߣ
ଶ|Ψଵۧ ൅ ܣ|Ψଶۦଶߣ

ଶ|Ψଶۧ ൌ
ܰଶܥ୔

ଶ

ேܲ,଴ ൅ ଴ܲ,ே
. (7.25)

7.4  Experiment Protocol to Measure the Fidelity 

From the theoretical analysis we derive the fidelity of the generated state [Equ. 

(7.12)]. In experiment, the values of ேܲ,଴  and ଴ܲ,ே  are measured with an extended 

version of the projective measurement protocol introduced in Chapter 6. The procedure 

to measure ଴ܲ,ே is shown in Fig. 7.3. First the fluorescence detection is performed, if it 

yields dark, the qubit state is projected to |↓ۧ [Fig. 7.3(a)], which removes all the Fock 

states associated with |↑ۧ due to the imperfections in generating the NOON state. Then 

an arithmetic subtraction operation and a ߨ-pulse of carrier transition is applied, which 

serves as the uniform driving of red sideband transition in the X mode. The operation 

transfers the Fock states with ݊ଡ଼ ൒ 1  from |↓ۧ  to |↑ۧ  [Fig. 7.3(b)]. If again no 

fluorescence detected, these phonon states are eliminated [Fig. 7.3(c)]. Similarly for the 

Y mode, by applying ܰ times of successive arithmetic subtractions and then a detection 
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stage, we can “roll” all the Fock states with ݊ଢ଼ ൏ ܰ to |↑ۧ and eliminate them if no 

fluorescence is detected [Fig. 7.3(d)(e)]. These operations also transfer |↓, 0, ܰۧ  to 

|↓, 0, 0ۧ. Finally one more subtraction operation and the detection stage are applied [Fig. 

7.3(f)(g)]. If this time it yields bright, we know that the original state is projected to 

|↓, 0, ܰۧ. Altogether, the whole sequence is repeated for 10,000 times and the probability 

of detecting fluorescence only at the last stage of detection is the population of the 

|↓, 0, ܰۧ state, ଴ܲ,ே. In a similar manner, ேܲ,଴ can be measured. 

For the measurement of the parity in “X ൅ ݁௜ఝY” mode, the excitation of the blue 

sideband is required, since the parity can be calculated from the phonon distribution, and 

the distribution can be obtained by fitting the sideband fluorescence signal. Such 

excitation is realized by exciting the blue sideband transition of both X and Y mode with 

balanced strength and phase difference ߮, 

෡ܪ ൌ ෡ଡ଼ܪ ൅ 	෡ଢ଼ܪ

ൌ
ଡ଼Ωଡ଼ߟ݅
2

൫ߪොା ොܽଡ଼
ற െ ොିߪ ොܽଡ଼൯ ൅

ଢ଼Ωଢ଼ߟ݅
2

൫ߪොା ොܽଢ଼
ற െ ොିߪ ොܽଢ଼൯	

ൌ
݅Ω୓

2√2
ොା൫ߪൣ ොܽଡ଼

ற ൅ ݁௜ఝ ොܽଢ଼
ற൯ െ ොି൫ߪ ොܽଡ଼ ൅ ݁ି௜ఝ ොܽଢ଼൯൧	

ൌ
݅Ω୓
2
൫ߪොା ොܽ୓

ற െ ොିߪ ොܽ୓൯,	

Ω୓ ≡ ଡ଼Ωଡ଼ߟ2√ ൌ .ଢ଼Ωଢ଼ߟ2√

(7.26)

The experiment is performed with a single 171Yb+ ion, with the two radial modes as 

X and Y mode. The trap frequencies of the two modes are ߱ଡ଼ ൌ ሺ2ߨሻ3.2	MHz and 

߱ଢ଼ ൌ ሺ2ߨሻ2.6	MHz. And the Lamb-Dicke parameters are ߟଡ଼ ൌ ଢ଼ߟ ,0.0538 ൌ 0.0597. 

The result of the parity oscillation measurement is in Fig. 7.4. The contrast of the parity 

oscillation is obtained by fitting the oscillation with 

Πሺ߮ሻۧۦ ൌ ܣ cos ݇߮ ൅ ܤ sin ݇߮ ൅ ,ܥ ୔ܥ ൌ ඥܣଶ ൅ ,ଶܤ (7.27)

where ܥ ,ܤ ,ܣ and ݇ are fitting parameters. The result of the fidelity and the quantum 

Fisher information is shown in Fig. 7.5. The scaling of the quantum Fisher information is 

clearly below the classical limit and approach the quantum bound. 
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Fig. 7.3  The procedure to measure P0,N. 
The red sphere indicates the target state, |↓, 0, ܰۧ. ܷେ୅ୖ  denote a ߨ-pulse of the carrier 
transition, and ܷଡ଼ିଵ, ܷଢ଼ିே denotes arithmetic subtraction operation(s). 
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Fig. 7.4  The parity oscillations of the generated NOON states from ܰ ൌ 1 to ܰ ൌ 9. 
(a) The blue dots are experimental data, the red lines are fitting curves, and the green lines 
indicate -1, 0, 1, for each parity oscillation. (b) The blue-sideband fluorescence signal with 
߮ ൌ 0  for the NOON state of ܰ ൌ 7  and its fitting. (c) The corresponding phonon 
distribution ௡ܲ. 

 

 

Fig. 7.5  The (a) fidelity and (b) quantum Fisher information of the generated NOON states. 
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7.5  Optimization and Parameter Calibration 

Generating NOON states is a quite demanding experiment, since there are many 

details that can affect the fidelity of the generated state. The techniques used in 

experiment to optimize the fidelity and calibrate the parameters are discussed in this 

section. 

For higher ܰ, the generation sequence can take a quite long time. The decoherence 

and thermalization effect is a problem, so the operations should be as fast as possible. 

However, if the pulses to drive the phonon sideband transition are too strong, the off-

resonant coupling to the carrier and other transitions will reduce the fidelity. So the pulse-

shaping technique is implemented to address this conflict. Usually the pulses we use in 

experiment have a rectangular envelope, 

ሻݐሺܧ ൌ ܣ sinሾሺ߱ െ ݐሻߜ ൅ ߮ሿ. (7.28)

In this experiment, a sine-shaped envelope is used instead, 

ሻݐሺܧ ൌ
ܣߨ

2
sin ൤

ݐߨ

ܶ
൨ sin ቈ߱ݐ ൅

ߜଶߨ

8
൬2ݐߨ െ ܶ sin ൤

ݐߨ2

ܶ
൨൰ ൅ ߮቉.	 (7.29)

The sine-shaped pulse has the advantage that during the application of the pulse, all the 

off-resonant transitions are adiabatically following the Hamiltonian and remained as its 

eigenstates. The phase term ߨଶߜሺ2ݐߨ െ ܶ sinሾ2ݐߨ ܶ⁄ ሿሻ 8⁄  is used to compensate the 

AC-Stark shift from various origins. The parameters of the pulse that require calibration 

are the amplitude factor ܣ , the resonant frequency ߱  and the AC-Stark shift 

compensation factor ߜ, while the pulse duration ܶ and phase ߮ is predetermined. The 

value of ܣ can be determined with rectangular pulses by observing the Rabi oscillation, 

and the resonant frequency ߱ can be measured using Ramsey method with rectangular 

pulses. Then ߜ, as the last parameter, can be determined by simply sweeping the value 

of it with the sine-shaped pulses, just the same as measuring the driving frequency with 

rectangular pulses. According to the numerical simulation, the fidelity reduction of the 

generated state is 40% without pulse shaping, which is reduced to 4% with pulse shaping 

for ܰ ൌ 9. 

Another problem is the phase ߶ of the generated state, the phase ߮ used in the 

parity measurement needs to be aligned with ߶, so that all the parity measurements are 

consistent with each other. However, the phase ߶ is difficult to determine theoretically, 

since any small deviations in the resonant frequency of the phonon mode and various AC-
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Stark shift can affect this phase, and it also slowly drifts during the course of the data 

taking. So a scheme to quickly determine and compensate this phase is developed. By 

exciting the blue sideband transition of the “X ൅ ݁௜ఝY” mode for a fixed duration with 

varying ߮, the state of the spin has similar behavior as the parity oscillation. In [FIG.(a)] 

is an example for ܰ ൌ 5, the color indicates the population of |↑ۧ with different phase 

߮ and rotation angle ߠ ൌ Ω୓ݐ of the blue sideband transition. If we take ߠ ൌ  ,ߨ3.55

for a generated state with phase ߶ ൌ 0 , we should have an oscillation of ↑ܲ  as in 

[FIG.(b)] with no phase shift. So the phase shift of this sine curve can be used to calibrate 

the phase ߶  of the generated state by changing the phase of the ߨ 2⁄ -pulse in the 

generation sequence accordingly. For each ܰ, there is an optimal value of ߠ such that 

the contrast of this oscillation is maximal. 

 

 

Fig. 7.6  The phase calibration scheme. 
(a) the theoretical calculation of the dependency of ܲ↑ on ߠ and ߮. The red line indicates 
the optimal duration, ߠ ൌ ܰ for ,ߨ3.55 ൌ 5. (b) Theoretical calculation of ܲ↑ when ߮ is 
scanned and ߠ is set to the optimum. (c) Experimental data of a typical phase scan for ܰ ൌ 5, 
the fitting (red line) indicates that ߶ ൌ  .ߨ0.15
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Chapter 8  Entanglement of 171Yb+ Ion and 138Ba+ Ion 

8.1  Introduction 

Increasing the number of ions in a single trap is one of the ways to scale up the 

trapped-ion system. Recently most of the multi-ion research is done with multiple ions of 

same species. However, trapping different species of ions in the same trap can have wider 

applications and more advantages. It can be used for sympathetic cooling [92], creation 

of entanglement through dissipation [93], or performing quantum non-demolition 

measurements [94]. One experiment of our system [31] is to use the 171Yb+ ion to be the 

qubit while the 138Ba+ ion to sympathetically cool down the 171Yb+ ion for minutes-level 

operations. For other applications that involves quantum information transfer between the 

ions, the entanglement operation for different species of ions is essential. Experimental 

implementations of this kind of multi-species trapped-ion systems have been done with a 
40Ca+ ion and a 43Ca+ ion [95], a 9Be+ ion and a 25Mg+ ion [96], and also quite recently a 
171Yb+ ion and 138Ba+ ion [97].  

The M-S interaction introduced in Chapter 2 works for different species as well, 

since only the coupling to the phonon sidebands is required and nothing else related to 

the nature of the ions. But implementing the M-S interaction with different species is 

more complicated than with same species and globally addressing laser beams, since the 

coupling strengths and driving frequencies of both sidebands of both ions require 

independent calibration, effectively doubling the number of control parameters.  

In experiment, the axial breathing mode of the 171Yb+ ion and the 138Ba+ ion is used 

to mediate the M-S interaction. This mode has several advantages to other modes. First, 

the coherence time of axial modes is longer than the radial modes because usually the 

mechanical instability of the helical resonator will introduce fluctuations to the power of 

the RF field. Second, because the ions move in the different direction in the breathing 

mode, the background electric field noise is less likely to drive the motion. Hence the 

heating rate of the breathing mode is much lower than the center of mass mode. Third, 

the frequency of the breathing mode is higher, so the off-resonant coupling to the carrier 

transition is lower. And finally, the Lamb-Dicke parameters for both ions are more 

balanced for the breathing mode than the center of mass mode. According to Fig. 3.1 and 
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Equ. 2.42, the ratios of the Lamb-Dicke parameters can be calculated, 

ଢ଼ୠ,ୌߟ
୆ୟ,ୌߟ

ൌ 1.09,
ଢ଼ୠ,୐ߟ
୆ୟ,୐ߟ

ൌ 1.67. (8.1)

And the mode with higher frequency, the breathing mode, has more balanced Lamb-Dicke 

parameters. 

The excitation of both sidebands of the 171Yb+ ion and the 138Ba+ ion is realized by 

controlling the signals driving the AOMs of the Raman beams. For the two 355 nm laser 

beams and the two 532 nm laser beams, one of each is driven by a DDS that provides a 

constant single frequency signal as the base frequency. While the control of the 

parameters of all the quantum operations is done by changing the signals from two AWGs 

that drive the other two Raman beams. So basically, implementing the M-S interaction is 

to generate the following waveform with the two AWGs, 

ሻݐଢ଼ሺܧ ൌ ଢ଼ୖܣ sin߱ଢ଼ୖݐ ൅ ଢ଼୆ܣ sin߱ଢ଼୆ݐ ,
ሻݐ୆ሺܧ ൌ ୆ୖܣ sin߱୆ୖݐ ൅ ୆୆ܣ sin߱୆୆ݐ,

(8.2)

with correct values of the parameters ܣ and ߱. The subscripts of the terms in Equ. 8.2 

indicate the purpose of the terms, with the first letter “Y” denoting the 171Yb+ ion, “B” 

the 138Ba+ ion, the second letter “B” the blue sideband and “R” the red sideband. 

Ideally, the four frequencies can be determined by Ramsey measurements and the 

four amplitudes by scanning the Rabi oscillations of the sideband transitions. However, 

the real situation is way trickier. An ideal AOM has linear amplitude response and is 

independent of the driving frequency, but a real AOM is not. Half the driving signal 

amplitude for a real AOM is likely to yield a more than half driving strength of the ion, 

and two different frequency components both with half the amplitude is yet another 

different thing. As for the four frequency parameters, the cross-talk AC-Stark shift should 

be taken into account, so the results of Ramsey measurements are not exactly the correct 

values. Hence the calibration of these parameters requires carefully designed procedures. 
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8.2  Parameter Calibration 

8.2.1  Coarse Calibration 

The calibration protocol starts by coarsely measuring the values of the resonant 

frequencies ߱ and Rabi frequencies Ω of the carrier, blue sideband and red sideband 

transitions of both ions. The 12 parameters calibrated in this step are denoted as 

Yb: ሼΩଢ଼େଵ, Ωଢ଼ୖଵ, Ωଢ଼୆ଵ, ߱ଢ଼େଵ, ߱ଢ଼ୖଵ, ߱ଢ଼୆ଵሽ,

Ba: ሼΩ୆େଵ, Ω୆ୖଵ, Ω୆୆ଵ, ߱୆େଵ, ߱୆ୖଵ, ߱୆୆ଵሽ,
(8.3)

with the second letter “C” in the subscripts indicating the carrier transition and the third 

number “1” indicating the first step. All the calibrations in this step are performed with 

maximum output amplitude of the AWGs, ܣ ൌ 1. 

The six resonant frequencies are measured by scanning the frequencies and measure 

the population of the |↑ۧ state. Then the measured spectrum is fitted with Gaussian 

functions to determine the frequency of the peak. Note that the resonant frequencies of 

the sideband transitions measured in this way contain the AC-Stark shift from the 

coupling to the carrier transition. Then the Rabi frequencies can be determined simply by 

fitting the Rabi oscillations. Only that the Rabi oscillations of the sideband transitions 

should be fitted with the thermal state one, 

↑ܲሺݐሻ ൌ ܣ ൅
ݏܤ

2
෍

௜ܥ

ሺ1 ൅ ሻ௜ାଵܥ
cos ቈ

ࣦ௜
ଵሺߟଶሻ

√1 ൅ ݅
⋅
ݐߨ

ܦ
቉

௜
, (8.4)

instead of the sine function. In Equ. 8.4, ܤ ,ܣ are relaxation parameters, ܥ is the fitting 

parameters for the average phonon number of the thermal state, ܦ ൌ 1 ሺ2Ωሻ⁄  is the 

fitting parameters for the ߨ-time of the transition, ݏ is the polarity of the signal, being 1 

for blue sideband signal and -1 for red sideband signal, and ߟ  is the Lamb-Dicke 

parameter of the phonon mode. 

8.2.2  Fine Calibration 

In this step, the Rabi frequencies and resonant frequencies of the sideband transitions 

are more precisely calibrated. Because of the nonlinear response of the AOMs, the Rabi 

frequencies should be calibrated in a way that is as close to the experiment situation as 

possible. So the Rabi frequencies of the sideband transitions are calibrated again with half 

the amplitude along with a far detuned frequency component such that the overall power 

driving the AOMs is same as the experiment situation. Take the blue sideband of the 
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171Yb+ ion as an example, the waveform used to calibrate Ωଢ଼୆ଶ is 

ሻݐଢ଼ሺܧ ൌ
1

2
sin߱ଢ଼୆ଶݐ ൅

1

2
sin

ݐ

2
ሺ5߱ଢ଼େଵ െ 3߱ଢ଼୆ଵሻ, (8.5)

in which ߱ଢ଼୆ଶ is the resonant frequency for this situation that should be measured in 

advance with this waveform and the frequency ሺ5߱ଢ଼େଵ െ 3߱ଢ଼୆ଵሻ 2⁄  is roughly in the 

middle between the red sideband of the breathing mode and the second order red sideband 

of the center of mass mode, and is not able to drive any transition.  

In the experiment situation, the driving strengths of the blue and red sideband 

transitions are the same, so the resonant frequencies should be free of AS-Stark shift from 

the carrier transition. Hence the Ramsey measurement is used to determine these 

frequencies. The AC-Stark shift introduced by applying the Raman beams for the other 

ion will be addressed in the next step of calibration. Usually the Ramsey measurement is 

performed by scanning the duration of the gap between the two ߨ 2⁄  pulses and 

observing the Ramsey fringes. But this way is not convenient for automated calibration. 

Instead, the Ramsey measurement can be performed by scanning the frequency with fixed 

duration of the gap. The waveform used to calibrate ߱ଢ଼୆ଷ is 

ሻݐଢ଼ሺܧ ൌ ൝

sin߱ଢ଼୆ଵݐ 0 ൑ ݐ ൏ ୌ୔ݐ
0 ୌ୔ݐ ൑ ݐ ൏ ୌ୔ݐ ൅ ݃

െ sinሾ߱ଢ଼୆ଵሺݐ െ ݃ሻ ൅ ߱ଢ଼୆ଷ݃ሿ ୌ୔ݐ ൅ ݃ ൑ ݐ ൑ ୌ୔ݐ2 ൅ ݃
,	 (8.6)

in which ݐୌ୔ ൌ ߨ ሺ2Ωଢ଼୆ଵሻ⁄  and ݃ is the duration of the gap. If the scan range of ߱ଢ଼୆ଷ 

is ሾ߱ୡ െ ߨ ݃⁄ ,߱ୡ ൅ ߨ ݃⁄ ሿ, the measured curve is just one cycle of a sine curve with the 

lowest point indicating the resonant frequency. The parameter ݃ can be tuned to adjust 

the precision of this measurement. A smaller value of ݃ can be used first to roughly 

determine the resonant frequency, and then a larger value of ݃ is used to increase the 

precision of the measurement. It would be helpful if the first scan is centered at the 

theoretical prediction of the resonant frequency, 

߱ୡ ൌ ߱ଢ଼୆ଵ ൅
Ωଢ଼୆ଵ
ଶ

2ሺ߱ଢ଼୆ଵ െ ߱ଢ଼େଵሻ
. (8.7)

Moreover, this measurement is also insensitive to the distribution of the phonons in the 

sense that all the Fock states are “brought back” by the second pulse if the phase is 

precisely matched.  
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Fig. 8.1  The fidelity diagram of the Mølmer-Sørensen interaction with respect to the 
detuning of the driving frequencies.  

8.2.3  Final Calibration 

The Rabi frequencies measured in the last step can be used as the final reference to 

balance the amplitude of the driving signals, 

௜௝ܣ ൌ
Ω

2Ω௜௝ଶ
, ݅ ൌ Y, B, ݆ ൌ B, R,

Ω ൌ minሺΩଢ଼ୖଶ, Ωଢ଼୆ଶ, Ω୆ୖଶ, Ω୆୆ଶሻ.

(8.8)

But there is one last problem for the resonant frequencies. When all the four Raman laser 

beams are applied together, the 355 nm beams may introduce AC-Stark shift to the carrier 

transition of the 138Ba+ ion, and vice versa for the 532 nm beams and the 171Yb+ ion. A 

straightforward solution is to apply half a cycle of the M-S interaction and maximize the 

population of |↑↑ۧ by scanning the common detuning ߜ of both sidebands for one of 

the ions each time, 

߱ଢ଼௝ ൌ ߱ଢ଼௝ଷ ൅ ,ଢ଼ߜ ߱୆௝ ൌ ߱୆௝ଷ ൅ ,୆ߜ ݆ ൌ B, R. (8.9)



Entanglement of 171Yb+ Ion and 138Ba+ Ion 

85 
 

However, a better way is to scan the common detuning ߜେ and differential detuning ߜୈ 

of both ions, 

߱ଢ଼௝ ൌ ߱ଢ଼௝ଷ ൅ େߜ െ ,ୈߜ ߱୆௝ ൌ ߱୆௝ଷ ൅ େߜ ൅ ,ୈߜ ݆ ൌ B, R.	 (8.10)

This can be justified with numerical simulations. Fig. 8.1 shows the population of |↑↑ۧ 

with varying ߜେ and ߜୈ. The Ω is as defined in Equ. 8.8. If the initial values of ߜେ and 

 .ୈ are anywhere within the black ellipse, one scan of each is sufficient to get to the peakߜ

However, if the variables are ߜଢ଼ and ߜ୆, with which the figure is effectively rotated by 

45°, it requires successive scans of each parameter to converge to the peak. 

8.3  Fidelity of the Mølmer-Sørensen Interaction 

When a quarter cycle of the M-S interaction is applied, the entangled state |↑↑ۧ ൅

|↓↓ۧ is generated from |↓↓ۧ. The fidelity of the generated state can be evaluated in the 

same way as introduced in Chapter 7 [78], 

ܨ ൌ
1

2
ሺ ↑ܲ↑ ൅ ↓ܲ↓ ൅ ,୔ሻܥ (8.11)

where ܥ୔ is the contrast of the parity oscillation. The parity of the spins is measured 

after applying a global ߨ 2⁄  pulse with varying phase ߮ on both ions and is defined as 

Πሺ߮ሻ ൌ ↑ܲ↑ ൅ ↓ܲ↓ െ ↑ܲ↓ െ ↓ܲ↑. (8.12)

A preliminary experiment result is shown in Fig. 8.2 with 

P↑↑ ൅ P↓↓ ൌ 0.73 േ 0.03, C௉ ൌ 0.56 േ 0.05, F ൌ 0.65 േ 0.06.	 (8.13)

The unfeasible fidelity is mainly due to the fluctuations of the AC-Stark shift of the 
138Ba+ ion and the scattering of the Raman laser beams that slowly changes the 

environment of the trap. 
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Fig. 8.2  The experiment result of the Mølmer-Sørensen interaction.  
(a) The time evolution of the system. (b) The parity oscillation. 
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Chapter 9  Conclusion and Outlook 

During my Ph.D. career, my effort on hardware mainly lies in developing the TTL 

pulse sequencer and establishing the laser system for the 138Ba+ ion. The pulse sequencer 

is implemented with a pipeline design and is capable of generating TTL pulse sequences 

with both high timing resolution and long duration. It serves as the central scheduler of 

the experiment flow. The laser system consists of diode lasers and fiber lasers to cool 

down the ion, to initialize and detect its quantum state, and pulsed lasers to manipulate 

both internal and motional quantum states of the ion.  

While my study in theory is focused in developing and demonstrating control 

protocols for phonons. A uniform driving operation of phonons is implemented with rapid 

adiabatic passage scheme. The ability to perform arithmetic operations on phonon states 

is demonstrated in experiment. A protocol to deterministically generate phononic NOON 

states to arbitrary high number of phonons is also developed with composite pulse scheme. 

This protocol is demonstrated in experiment up to ܰ ൌ 9 , and the fidelities of the 

generated states are evaluated. Moreover, the entanglement operation of one 171Yb+ ion 

and one 138Ba+ ion through Mølmer-Sørensen interaction is demonstrated in experiment. 

As for the plan of near future, the upgrade of the pulse sequencer is now under 

development by my colleagues. Currently the sequencer is only capable of generating the 

sequence sequentially. But for experiments involving conditional operations, the 

branching structure is required in the sequences. One way to implement complicated logic 

structure yet maintaining the high timing resolution is to build the sequencer in new FPGA 

chips with embedded microprocessors. The FPGA circuit still do the timing, while the 

microprocessors control the behavior of the sequencer. 

The coherence time and the fidelity of the Mølmer-Sørensen interaction still requires 

improvement. One experiment that can be done immediately when the fidelity is feasible, 

is the loophole-free verification of quantum contextuality. 
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Appendix A  Verilog Code of the Pulse Sequencer 

A.1  Top Module 

 

module PulseSequencer(clk, rxd, ptrg, out, led1, led2); 

 

parameter TW = 40; 

parameter OW = 32-1; 

parameter RW = 24; 

 

input   clk; 

input   rxd; 

input   ptrg; 

output  [OW : 0] out; 

output  led1; 

output  led2; 

 

wire led1 = ~hold; 

 

wire c0 = clk; 

 

wire [RW-1 : 0] rep; 

wire [TW+OW : 0] seq; 

wire ftrg; 

wire hedrcv; 

wire seqrcv; 

wire endrcv; 

PS_InputDispatcher #(TW, OW, RW, 10) INPD(c0, rxd, rep, seq, ftrg, hedrcv, seqrcv, 

endrcv); 

 

wire hold; 
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wire init; 

PS_Controller #(RW) CTRL(c0, hedrcv, endrcv, rep, sfin, ptrg, ftrg, hold, init, led2); 

 

wire [TW : 0] str; 

wire [TW : 0] cry; 

wire [OW : 0] lvl; 

wire sfin; 

reg rst = 0; 

always @ (posedge c0) rst <= hedrcv; 

PS_FIFO_Assembly #(TW, OW) FIFO(c0, seq, tick, seqrcv, rst, str, cry, lvl, sfin); 

 

wire tick; 

Core_Ticker_RP #(TW, 1'b0) TIMER(c0, 1'b1, {str[TW] | init, str[TW-1:0]}, cry, hold, 

tick); 

 

reg [OW : 0] out = 0; 

always @ (posedge c0) if (tick) out <= lvl & {(OW+1){~init}}; 

 

endmodule 

A.2  Input Dispatcher 

 

module PS_InputDispatcher(clk, rxd, rep, seq, ftrg, hedrcv, seqrcv, endrcv); 

 

parameter TW = 40; 

parameter OW = 32-1; 

parameter RW = 24; 

parameter Byt = 10; 

 

parameter Len = Byt*8-1; 

 

input   clk; 

input   rxd; 
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output  [RW-1 : 0] rep; 

output  [TW+OW : 0] seq; 

output  ftrg; 

output  hedrcv; 

output  seqrcv; 

output  endrcv; 

 

wire [Len : 0] str; 

wire tmp; 

RS232_StringRecv #(Byt, 50, 1) SRCV(clk, rxd, str, tmp); 

 

reg [RW-1 : 0] rep = 0; 

always @ (posedge clk) if (t[2]) rep <= str[RW-1:0]; 

 

reg ftrg = 0; 

always @ (posedge clk) if (t[2]) ftrg <= str[Len-3]; 

 

reg [TW+OW : 0] seq = 0; 

always @ (posedge clk) if (t[1]) seq <= str[TW+OW:0]; 

 

reg [2 : 0] t = 0; 

reg hedrcv = 0; 

reg seqrcv = 0; 

reg endrcv = 0; 

always @ (posedge clk) 

begin 

 t <= str[Len:Len-2] & {3{tmp}}; 

 {hedrcv, seqrcv, endrcv} <= t; 

end 

 

endmodule 
 

module RS232_ByteRecv(clk, in, byt, recv, brk); 
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parameter Baud = 17; 

parameter StopBit = 1; 

 

parameter BaudCnt = Baud - 1; 

 

input   clk; 

input   in; 

output  [7 : 0] byt; 

output  recv; 

output  brk; 

 

reg idle = 1; 

always @ (posedge clk) idle <= (idle & in) | recv; 

 

wire tick; 

Core_Ticker #(BaudCnt) BAUD(clk, 1'b1, idle, tick); 

 

wire brk; 

Core_Ticker #(BaudCnt<<20) RBRK(clk, idle, recv, brk); 

 

wire smp; 

Core_Ticker #((BaudCnt>>1)+2) SAMP(clk, in, tick, smp); 

 

reg cbt = 0; 

always @ (posedge clk) cbt <= (smp | cbt) & ~tick; 

 

reg [7+StopBit : 0] tmp = 0; 

wire [7 : 0] byt = tmp[7:0]; 

always @ (posedge clk) if (tick) tmp <= {cbt, tmp[7+StopBit:1]}; 

 

reg [8+StopBit : 0] cnt = 2; 

always @ (posedge clk) if (tick) cnt <= {cnt, cnt[8+StopBit]}; 
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reg recv = 0; 

always @ (posedge clk) recv <= tick & cnt[0]; 

 

endmodule 

 

module RS232_StringRecv(clk, in, str, recv); 

 

parameter Len = 1; 

parameter BaudCnt = 159; 

parameter StopBit = 1; 

 

input   clk; 

input   in; 

output  [Len*8-1 : 0] str; 

output  recv; 

 

wire [7 : 0] byt; 

wire tick; 

wire brk; 

RS232_ByteRecv #(BaudCnt, StopBit) BRCV(clk, in, byt, tick, brk); 

 

reg [Len*8-1 : 0] str = 0; 

always @ (posedge clk) if (tick) str <= {str, byt}; 

 

reg [Len-1 : 0] cnt = 2; 

always @ (posedge clk) if (brk) cnt <= 2; else if (tick) cnt <= {cnt, cnt[Len-1]}; 

 

reg recv = 0; 

always @ (posedge clk) recv <= tick & cnt[0]; 

 

endmodule 
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A.3  Controller 

 

module PS_Controller(clk, hedrcv, endrcv, rep, sfin, ptrg, ftrg, hold, init, led); 

 

parameter RW = 24; 

 

input   clk; 

input   hedrcv; 

input   endrcv; 

input   [RW-1 : 0] rep; 

input   sfin; 

input   ptrg; 

input   ftrg; 

output  hold; 

output  init; 

output  led; 

 

wire led = etrg; 

 

reg [12 : 0] dly = 0; 

reg init = 0; 

always @ (posedge clk) dly <= {dly, endrcv}; 

always @ (posedge clk) if (endrcv) init <= 1; else if (dly[12]) init <= 0; 

 

reg t1 = 0; 

reg t2 = 0; 

reg trg = 0; 

always  @ (posedge clk) t1 <= ptrg; 

always  @ (posedge clk) t2 <= t1; 

always  @ (posedge clk) trg <= (t1 & ~t2) | ftrg; 

 

reg etrg = 0; 

always @ (posedge clk) if (dly[12]) etrg <= 1; else if (sfin & rcnt[RW] | hedrcv) etrg <= 
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0; 

 

reg hold = 1; 

always @ (posedge clk) if (sfin | hedrcv | dly[12]) hold <= 1; else if (dly[0] | trg & etrg) 

hold <= 0; 

 

reg [RW : 0] rcnt = {(RW+1){1'b1}}; 

always @ (posedge clk) if (dly[0]) rcnt <= {1'b0, rep} - 1; else if (sfin) rcnt <= rcnt - 1; 

 

endmodule 

A.4  FIFO Array 

 

module PS_FIFO_Assembly(clk, din, reqr, reqw, rst, str, cry, lvl, sfin); 

 

parameter TW = 40; 

parameter OW = 32-1; 

 

input   clk; 

input   [TW+OW : 0] din; 

input   reqr; 

input   reqw; 

input   rst; 

output  [TW : 0] str; 

output  [TW : 0] cry; 

output  [OW : 0] lvl; 

output  sfin; 

 

reg [4 : 0] rpnt = 1 /* -pragma maxfan = 24 */; 

reg [4 : 0] wpnt = 1; 

always @ (posedge clk or posedge rst) if (rst) rpnt <= 1; else if (reqr) rpnt <= {rpnt[3:0], 

rpnt[4]}; 

always @ (posedge clk or posedge rst) if (rst) wpnt <= 1; else if (reqw) wpnt <= 
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{wpnt[3:0], wpnt[4]}; 

 

wire [TW : 0] tr0 = {(TW+1){rpnt[0]}}; 

wire [TW : 0] tr1 = {(TW+1){rpnt[1]}}; 

wire [TW : 0] tr2 = {(TW+1){rpnt[2]}}; 

wire [TW : 0] tr3 = {(TW+1){rpnt[3]}}; 

wire [TW : 0] tr4 = {(TW+1){rpnt[4]}}; 

reg [TW : 0] t11 = 0;  reg [TW : 0] t21 = 0;  reg [TW : 0] t31 = 0; 

reg [TW : 0] t12 = 0;  reg [TW : 0] t22 = 0;  reg [TW : 0] t32 = 0; 

reg [OW : 0] t13 = 0;  reg [OW : 0] t23 = 0;  reg [OW : 0] t33 = 0; 

reg [TW : 0] str = 0; 

reg [TW : 0] cry = 0; 

reg [OW : 0] lvl = 0; 

always @ (posedge clk) if (reqr) 

begin 

 t11 <= (st0 & tr0) | (st1 & tr1);  t21 <= st2 & tr2;  t31 <= (st3 & tr3) | (st4 & tr4); 

 t12 <= (cr0 & tr0) | (cr1 & tr1);  t22 <= cr2 & tr2;  t32 <= (cr3 & tr3) | (cr4 & tr4); 

 t13 <= (lv0 & tr0) | (lv1 & tr1);  t23 <= lv2 & tr2;  t33 <= (lv3 & tr3) | (lv4 & tr4); 

 str <= t11 | t21 | t31; 

 cry <= t12 | t22 | t32; 

 lvl <= t13 | t23 | t33; 

end 

 

wire [TW : 0] st0; 

wire [TW : 0] cr0; 

wire [OW : 0] lv0; 

PS_FIFO #(TW, OW) QUE0(clk, din, reqr & rpnt[0], reqw & wpnt[0], rst, st0, cr0, lv0); 

 

wire [TW : 0] st1; 

wire [TW : 0] cr1; 

wire [OW : 0] lv1; 

PS_FIFO #(TW, OW) QUE1(clk, din, reqr & rpnt[1], reqw & wpnt[1], rst, st1, cr1, lv1); 
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wire [TW : 0] st2; 

wire [TW : 0] cr2; 

wire [OW : 0] lv2; 

PS_FIFO #(TW, OW) QUE2(clk, din, reqr & rpnt[2], reqw & wpnt[2], rst, st2, cr2, lv2); 

 

wire [TW : 0] st3; 

wire [TW : 0] cr3; 

wire [OW : 0] lv3; 

PS_FIFO #(TW, OW) QUE3(clk, din, reqr & rpnt[3], reqw & wpnt[3], rst, st3, cr3, lv3); 

 

wire [TW : 0] st4; 

wire [TW : 0] cr4; 

wire [OW : 0] lv4; 

PS_FIFO #(TW, OW) QUE4(clk, din, reqr & rpnt[4], reqw & wpnt[4], rst, st4, cr4, lv4, 

sfin); 

 

endmodule 

 

module PS_FIFO(clk, din, reqr, reqw, rst, str, cry, lvl, sfin); 

 

`include "Functions.v" 

 

parameter TW = 40; 

parameter OW = 32-1; 

 

parameter [TW-1 : 0] Zero = Ticker_Conv_Start(0, TW); 

 

input   clk; 

input   [TW+OW : 0] din; 

input   reqr; 

input   reqw; 

input   rst; 

output  [TW : 0] str; 
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output  [TW : 0] cry; 

output  [OW : 0] lvl; 

output  sfin; 

 

reg dreq = 0; 

always @ (posedge clk) dreq <= reqr; 

 

reg tr = 0; 

reg rclk = 0; 

always @ (posedge clk) begin tr <= dreq; rclk <= dreq | tr; end 

reg tw = 0; 

reg wclk = 0; 

always @ (posedge clk) begin tw <= reqw; wclk <= reqw | tw; end 

 

reg [10 : 0] h = 0; 

reg [10 : 0] t = 0; 

reg [10 : 0] f = 0; 

always @ (posedge rclk or posedge rst) if (rst) h <= 0; else if (h == f) h <= 0; else h <= h 

+ 1; 

always @ (posedge wclk or posedge rst) if (rst) t <= 0; else t <= t + 1; 

always @ (posedge wclk) f <= t; 

 

reg [TW+OW : 0] ram [0 : 1535]; 

always @ (posedge wclk) ram[t] <= din; 

 

reg [TW+OW : 0] tmp = 0; 

always @ (posedge rclk) tmp <= ram[h]; 

 

wire [OW : 0] tlv = tmp[OW:0]; 

wire [TW : 0] tst = {(tmp[TW+OW:1+OW] == Zero), tmp[TW+OW:1+OW]}; 

wire [TW : 0] tcr; 

TIC_Converter #(TW) CONV(tst[TW-1:0], tcr); 
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reg [OW : 0] lvl = 0; 

reg [TW : 0] str = 0; 

reg [TW : 0] cry = 0; 

always @ (posedge clk) if (dreq) 

begin 

 lvl <= tlv; 

 str <= tst; 

 cry <= tcr; 

end 

 

reg [1 : 0] d = 0; 

reg sfin = 0; 

always @ (posedge clk) 

begin 

 d <= {d, (h == 2)}; 

 sfin <= d[0] & ~d[1]; 

end 

 

endmodule 

 

module TIC_Converter(str, cry); 

 

parameter CntWid = 1; 

 

parameter MaxWid = 48; 

 

input   [CntWid-1 : 0] str; 

output  [CntWid : 0] cry; 

 

wire [MaxWid-1 : 0] s = str; 

wire [CntWid : 0] cry = c[CntWid : 0]; 

 

reg [MaxWid : 0] c = 0; 
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always 

begin 

  c[00] <= 1'b1; 

  c[01] <= (s[00:0] == 00);  c[02] <= (s[01:0] == 01); 

  c[03] <= (s[02:0] == 00);  c[04] <= (s[03:0] == 03); 

  c[05] <= (s[04:0] == 02);  c[06] <= (s[05:0] == 01); 

  c[07] <= (s[06:0] == 04);  c[08] <= (s[07:0] == 07); 

  c[09] <= (s[08:0] == 06);  c[10] <= (s[09:0] == 05); 

  c[11] <= (s[10:0] == 00);  c[12] <= (s[11:0] == 11); 

  c[13] <= (s[12:0] == 10);  c[14] <= (s[13:0] == 09); 

  c[15] <= (s[14:0] == 12);  c[16] <= (s[15:0] == 15); 

  c[17] <= (s[16:0] == 14);  c[18] <= (s[17:0] == 13); 

  c[19] <= (s[18:0] == 08);  c[20] <= (s[19:0] == 03); 

  c[21] <= (s[20:0] == 18);  c[22] <= (s[21:0] == 17); 

  c[23] <= (s[22:0] == 20);  c[24] <= (s[23:0] == 23); 

  c[25] <= (s[24:0] == 22);  c[26] <= (s[25:0] == 21); 

  c[27] <= (s[26:0] == 16);  c[28] <= (s[27:0] == 27); 

  c[29] <= (s[28:0] == 26);  c[30] <= (s[29:0] == 25); 

  c[31] <= (s[30:0] == 28);  c[32] <= (s[31:0] == 31); 

  c[33] <= (s[32:0] == 30);  c[34] <= (s[33:0] == 29); 

  c[35] <= (s[34:0] == 24);  c[36] <= (s[35:0] == 19); 

  c[37] <= (s[36:0] == 02);  c[38] <= (s[37:0] == 33); 

  c[39] <= (s[38:0] == 36);  c[40] <= (s[39:0] == 39); 

  c[41] <= (s[40:0] == 38);  c[42] <= (s[41:0] == 37); 

  c[43] <= (s[42:0] == 32);  c[44] <= (s[43:0] == 43); 

  c[45] <= (s[44:0] == 42);  c[46] <= (s[45:0] == 41); 

  c[47] <= (s[46:0] == 44);  c[48] <= (s[47:0] == 47); 

end 

 

endmodule 
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A.5  Timer 

 

module Core_Ticker_RP(clk, trg, str, cry, set, tic); 

 

parameter CntWid = 32; 

parameter PwrTic = 1'b1; 

 

input   clk; 

input   trg; 

input   [CntWid : 0] str; 

input   [CntWid : 0] cry; 

input   set; 

output  tic; 

 

reg tic = PwrTic; 

reg [CntWid-1 : 0] c0 = 0; 

reg [CntWid : 0] c1 = 0; 

 

always @ (posedge clk) 

if (tic | set) 

begin 

 {tic, c0} <= str; 

 c1 <= cry; 

end 

else if (trg) 

begin 

 {tic, c0} <= {tic, c0} ^ c1; 

 c1 <= {c0 & c1[CntWid-1 : 0], 1'b1}; 

end 

 

endmodule 
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A.6  Common Modules and Functions 

 

module Core_Ticker(clk, trg, set, tic); 

 

`include "Functions.v" 

 

parameter Interval = 1; 

 

parameter CntWid = GetSize(Interval); 

parameter [CntWid : 0] Start = Ticker_Conv_Start(Interval, CntWid); 

parameter [CntWid : 0] Carry = Ticker_Conv_Carry(Interval, CntWid); 

 

input   clk; 

input   trg; 

input   set; 

output  tic; 

 

reg tic = Start[CntWid] /* -pragma maxfan = 11 */; 

reg [CntWid-1 : 0] c0 = Start[CntWid-1:0]; 

reg [CntWid : 0] c1 = Carry; 

 

always @ (posedge clk) 

if (tic | set) 

begin 

 {tic, c0} <= Start; 

 c1 <= Carry; 

end 

else if (trg) 

begin 

 {tic, c0} <= {tic, c0} ^ c1; 

 c1 <= {c0 & c1[CntWid-1 : 0], 1'b1}; 

end 
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endmodule 

 

function integer GetSize; 

 

input [63 : 0] Num; 

 

integer S; 

begin 

 S = 0; 

 while (Num > 0) 

 begin 

  S = S + 1; 

  Num = Num >> 1; 

 end 

 if (S == 0) GetSize = 64; else GetSize = S; 

end 

 

endfunction 

 

function [63 : 0] Ticker_Conv_Start; 

 

input [63 : 0] Num; 

input integer Wid; 

 

integer i; 

reg [63 : 0] t0; 

reg [63 : 0] t1; 

 

begin 

 t0 = 0; 

 t1 = 0; 

 Num = (1 << Wid) + Wid - Num; 

 for (i = 0; i <= Wid; i = i + 1) 
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 begin 

  t0[i] = Num[i]; 

  t1[i] = (t0 < i) | (t0 >= (1 << i) + i); 

 end 

 Ticker_Conv_Start = t1; 

end 

 

endfunction 

 

function [63 : 0] Ticker_Conv_Carry; 

 

input [63 : 0] Num; 

input integer Wid; 

 

integer i; 

reg [63 : 0] t0; 

reg [63 : 0] t1; 

begin 

 t0 = 0; 

 t1 = 0; 

 Num = (1 << Wid) + Wid - Num; 

 for (i = 0; i < Wid; i = i + 1) 

 begin 

  t0[i] = Num[i]; 

  t1[i+1] = (t0 == i); 

 end 

 t1[0] = 1'b1; 

 Ticker_Conv_Carry = t1; 

end 

 

endfunction
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