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Abstract

Abstract

In scaling up the trapped-ion system, phonons serve an important role as the quantum
bus to mediate multi-qubit operations in the trap. Moreover, phonons by themselves can
be used as the carrier of information to perform quantum simulations and computations.
In this thesis, various control protocols of phonons are discussed and demonstrated,
including the uniform driving, the projective measurement and the generation of arbitrary
NOON states of phonons. The entanglement of a '7'Yb™ ion and a '**Ba* ion through the
Molmer-Serensen interaction is also demonstrated. The trapped-ion system to implement
these protocols consists of a !”'Yb" ion and a '**Ba* ion with the quantum control realized
by stimulated Raman transitions. The details of this system and the experiment techniques

required in constructing the system are discussed as well.

Key words: Phonon; Multi-species trapped-ion system; NOON state; Projective

measurement.
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Introduction

Chapter 1 Introduction

Driven by the unending curiosity, we human try to seek for deeper understanding of
the nature in various directions, and try to make use of what we understand on the way.
As the scale of the system we study gets smaller and smaller, quantum effects start to
manifest themselves and we encounter new phenomenon which are confusing in the
classical realm of physics, such as quantum superposition and entanglement. As Rolf
Landauer put it, information is physical [1], different physics leads to different
informatics. We have extracted the potential of communication and computation from
electrodynamics, and with the power of quantum mechanics we can make it faster and
more secure. In the theory of quantum informatics, there are quite some impressive result,
such as Shor’s factorization algorithm [2], Grover’s search algorithm [3], and various
schemes of quantum simulation [4] [5]. However, in experiment, we experimentalists are
still struggling to realize the beautiful blueprints of a practical quantum computer drawn
by the theorists. So far, many kinds of quantum systems with different nature and their
own advantages are studied and explored, including photonic system [6], neutral atom
system [7], superconducting system [8], trapped-ion system [9] and many else [10] [11].

The trapped-ion system, among others, is better isolated from the noisy environment
and takes the advantage of the uniformity of atomic parameters, which makes it a good
platform for developing and testing basic quantum operations. Now the research interest
of the trapped-ion community lies mainly in integrating these basic operations and scaling
up the system to make it truly superior than classical systems [12]. For scaling up the
system, the interaction between different ions is essential. The collective motion of the
ions in the same trap serves as a good quantum bus for coupling different ions in the same
trap [13]. And the entanglement between ions in different traps has been realized through
photons [14]. However, in order to combine these two protocols together, it would be
convenient to have different species of ions trapped in the same trap with one species
serving as a quantum interface for remote entanglement and others as local memory.
Hence the entanglement operation between different species of ions is an important

technique.
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During the five years of my PhD. program, my research is primarily focused on
developing and implementing quantum control protocols for phonons. As an
experimentalist, | have learnt that details are important for a successful experiment, any
careless mistake tends to come back and bite you in unexpected ways. And if you do the
job with right tricks, the life would be much easier. So in this thesis, other than introducing
our experiment system, summarizing the research projects I have done, I will also share
some experiment techniques I find useful in developing and maintaining the experiment

system. I hope that other fellow experimentalists would also find them useful.



Theory of the Trapped-ion System

Chapter 2 Theory of the Trapped-ion System

2.1 The Paul Trap

According to the Laplace equation, a 3-D static electric field with no charge
distribution should not have local minimum, so it is not possible to steadily hold a charged
particle. However, a Paul trap is able to trap a charged particle with a rotating radio
frequency (RF) electric field, whose averaged pseudopotential is a harmonic potential [9].
For a linear Paul trap, the radial confinement is provided by the RF field, while the axial
confinement is provided by DC voltages.

The trapping effect of a linear Paul trap can be analyzed by calculating the
pseudopotential that the ion experiences in the radial direction. Suppose the RF field has
no axial component, the instantaneous electric field potential is

Vv, 222 —x% —y? V}.xz—yz

a
V(x;y:Z; t) = k?' AZ +§ R2 : COSQt, (21)

in which V1, isthe DC voltage for the axial confinement, A is the effective distance from
the DC electrodes to the center of the trap, V; is the voltage of the RF field, R is the
effective distance between the center and the RF electrodes, Q is the frequency of the
RF field, and k is a geometric factor that accounts for the shape of the electrodes. The
terms in Equ. (2.1) can be understood intuitively in this way. Considering the symmetry
of the system, there should be no first order term in the equation. For the DC part, the
sign of z? is positive because it should provide axial confinement, and the signs of x?
and y? are negative because there should be no local minimum. Also the signs of x?
and y? in the RF part are different for the same reason. From Equ. (2.1), we can derive
the electric field,

kV, Vi cos Qt
E(x,y,2z,t) = A—; (x,y,—22) — FT (x,—y,0). 2.2)

According to the Newton’s second law, the motion of an ion with charge q and mass m
can be described by

d? Q2
2" + T [a; + 2p; cos Qt]r; = 0, (2.3)
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in which (rx, 7y, rz) is the position of the ion, and

o —aq, =22
Y2 A2%m]

2qV, (2.4)
pxz_pyzRZQZm’ pz=0.

This is the Mathieu equation. When |p;|, |a;| < 1, the approximated solution up to the
first order [15] is

r;(t) = 4; [1 + %cos Qt] cos(w;t + ¢;), (2.5)
in which
QO 2
w; =7 |a + p?l (2.6)

are the frequencies of the harmonic oscillation modes of the ion. These frequencies are
important parameters for the quantum control of the motion of the ion, and will be
analyzed later with a different approach in this chapter. From Equ. (2.5), we can see that
the motion of the ion basically consists of two types of oscillation, one is the previously
mentioned harmonic oscillation, and the other one with frequency () is the so-called
“intrinsic micromotion”. Moreover, there is also “excess micromotion’ if the ion is not at
the center of the RF field. It is just the oscillation driven by the RF field and usually has
negative impact to the operations of the ion. This is often the case in experiment when
the background electric field is nonzero. So usually extra DC electrodes are placed near
the trap to compensate the background field.

The trap we use in the experiment is a four-rod trap (Fig. 2.1). The RF signal is
applied to the two RF electrodes and DC voltages is applied to the two needle electrodes
(DC1). The DC voltages can also be applied to the two RF ground electrode (GND) to
break the symmetry of the radial direction. The two auxiliary DC electrodes (DC2, DC3)
are used to compensate the background electric field to minimize the excess micromotion

[16].
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Fig. 2.1 The four-rod trap and the vacuum chamber of our system.
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2.2 '33Ba’Ion

One kind of the ions we use is the *®Ba* ion, which has no nuclear spin. The related
energy levels and operations are in Fig. 2.2. The two Zeeman levels of S;/, are used as
the qubit, with |m = +1) denoted as |{) and |m = —1) as |T). The Landé g-factors
of these levels are also shown in the figure.

The initialization of the qubit is implemented by optical pumping method [17]. A
493 nm laser beam with pure o* polarization is applied to pump the population to |l).
The detection of the qubit state is realized by first shelving the [l) state to metastable
levels, Ds/,, with 1762 nm laser through an electric quadrupole transition [18], and then
excite the cyclic transitions between S;,, and P/, with 493 nm laser to collect the
scattered fluorescence photons. The Doppler cooling operation of the ion is implemented
in the same way, with an additional 614 nm laser to repump the population from Ds,
levels and the 493 nm laser beam is slightly red-detuned. For all the operations involving
493 nm laser, there is a 25% probability that the ion will decay from P;,, to Dj3/,,rather
than S;,,. So a 650 nm laser beam is always applied to repump the population from D3/,
levels. The quantum operation of the qubit states is realized through stimulated Raman
transitions [19] with a 532 nm pulsed laser.

The loading of the **Ba” ion is realized by photoionization. Small shards of barium
metal is placed in a small needle tube oven that can be heated up by applying electric
current. The barium atoms shooting out of the oven are first excited by a 413 nm laser
beam from 1S, to 3D; and then ionized by a 493 nm laser beam around the center of
the trap.

Other isotopes of barium are also used in other groups, such as '*’Ba with hyperfine
structure. The hyperfine qubit has a significantly longer coherence time than the Zeeman
qubit. But the more complicated level structure also requires more complicated laser
configurations. For our system, the '*®Ba” ion is used because the coherence time of the
qubit can be extended to around 1 ms with active compensation of the magnetic field

fluctuation, which is long enough for the experiments.
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Fig. 2.2 The operations and related energy levels of **Ba’ ion.
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— F=1
*P1y
F=0
370 nm
™)
— F=1 |
’S1/2
T F=0 —
Doppler Cooling Detection
-— ~®Continuum
A 7,
L7 N —
Y
V1
[ ] ] :
vl vy
YL
1/2 [
A\ &4
Optical Pumping lonization
gF=1 F=2
gr=5/3
*P3/a F=1

, F=1
P12
F=0
, F=1
S1/2
F=0 —_—
Raman Transition C-G Coefficients

Fig. 2.3 The operations and related energy levels of '7'Yb" ion.
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The C-G coefficients of all the possible transitions have the same absolute value 1/+/3. The
dashed lines indicate the negative ones.

2.3 ''Yb* Ion

The other kind of the ions we use is the '’'Yb* ion with nuclear spin 1/2. The level
structure of the '"'Yb" ion is more complicated due to the nuclear spin (Fig. 2.3). We use
the two hyperfine levels of S;/,, |F =0,m =0) and |[F =1,m = 0), as the qubit,
with the hyperfine splitting of 12.64281212 GHz. These two states have no first order
Zeeman effect, so the coherence time can be very long.

The detection operation of the qubit is realized by exciting the cyclic transition
between levels |F =1,m = 0,%x1) of S;/, and |F = 0) of P/, with 370 nm laser.
For the initialization of the qubit, the 370 nm laser is modulated with an electro-optical
modulator (EOM) to generate a sideband of 2.105 GHz, so that the transitions between
F =1 levels of both S;/,, and P/, are excited and the ion will be pumped to [{)
eventually. Similarly, the Doppler cooling operation of the !7'Yb" ion is implemented by
adding a 14.74 GHz sideband to excite all the possible transitions between S;,, and
P1/, levels. The quantum operation of the qubit state can be realized either by Raman
transition with a 355 nm pulsed laser or by magnetic dipole transition excited by
microwave fields [19]. The loading of the !7'Yb™ ion is also realized by photoionization.
The ytterbium atoms are first excited from 1S, to 'P; by a 399 nm laser beam and then

ionized by a 370 nm laser beams.
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Am=0 Am=+1
90 90
Max
60 60
)
o
2 9]
h2
0
0 o|
0 30 60 90 O 30 60 90 O 30 60 90

A (degree)
Fig. 2.4 The geometry dependency of the Rabi frequency of the quadrupole transition.

2.4 Electric Quadrupole Transitions

The transitions between the Zeeman levels of S;,, and D5/, of the 138Ba* ion are
electric quadrupole transitions. In our system, these transitions are mainly used for
shelving, but they can also be used as qubit transitions if quantum manipulation of the
motion is not required. Since there are two Zeeman levels in S/, and six in Dg/,, and
the electric quadrupole transition is able to couple the levels with Am < 2, these electric
quadrupole transitions are actually quite handy in performing experiments that requires

more than two levels.

The Rabi frequency of an electric quadrupole transition can be calculated by [20]

eE

Q= ﬁ(suzlmsl(e ) (k- i\')le/z»mn) ) 2.7)

in which E is the amplitude of the electric field, € is the unit vector describing the
polarization of the laser field, k is the wave vector and 7 is the position operator for
the valence electron. The formula above can be expanded as

2

eE 1/2 2 5/2
Q= ﬁ(Sl/zIIrZCZIIDs/z) Z (_{ns q Tr{D>Ci(;D€inj ) (2.8)

q=-2

in which (S;/,1I72€?||Ds/;) is the reduced matrix element and is independent of m.

10
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The geometry dependency of the Rabi frequency is contained in g(@ = ci(Jq)einj. The
geometry of the interaction can be modeled by the angle ¢ between the wave vector k
and the magnetic field B and the angle 8 between the polarization vector € and the
vector B projected into the plane of incidence. Without loss of generality, we can assume

B = (0,0,B), k = k(sin¢g,0, cos @),

29
€ = (cosf cos@,sinf,— cos O sin @), 2
and then
1
g©® = > |cos 8 sin 2¢],
1
&ED = —|cos cos2¢ + i sin O cos ¢, 2.10
g \/E (0] Q ( )
g = 1 1cosHsinZ(p + isin @ sin ¢|.
V612

The geometry dependency is illustrated in Fig. 2.4. The configuration used in our system
is 8 = 0° and ¢ = 45°, corresponding to the horizontal polarization of the 1762 nm

laser beam.

2.5 Harmonic Modes of Phonons

When the ions are trapped in a 3-D harmonic potential, the motion of the ions can
be decomposed into harmonic modes with different frequencies. For N ions in the trap,
there are 2N radial modes and N axial modes. The frequency of each mode is
determined by the strength of confinement of the corresponding direction.

For two ions with different mass, m; and m,, in a trap with axial DC voltage V,

and radial RF voltage V;, the classical Hamiltonian of the two ions are

_PlatPir  Phat P

H
2my 2m,
|74 | A4
+ 73 (x%, + x2) + (fr — f) (x2, + x2) @.11)
2
e
+Q[(xla + xZa)2 + (xlr + x2r)2]_1/2' Q - 4-77.'60’

where the terms with subscript “1” are associated with ion 1, and the terms with subscript
“a” are associated with axial direction. In the equilibrium state, the two ions should have
a spacing of d and suppose that the oscillation of the ions in all the modes is way smaller

than d, then we can expand the columb potential term in the vicinity of x;, + x5, = d

11
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and xq. + x5 = 0, which is
1 1 1 1 5
(xla + XZa) = a - ﬁ (xla + Xp4 — d) + $ (xla + Xpq — d)
+0[(x15 + X35 — d)?], (2.12)

1
[d? + (xqp + x2.)%] 72 (x1r + X20)% + O (1 + x20)°].

~d 2d3

When the system is in the equilibrium state, for axial modes we should have

dp; 0H
Pia _ _ =0, (2.13)
dt aX(i)a
which yields
Vax(pa — % =0, (2.14)
and thus
3(2Q d
d = 73, X1a = X = E (2.15)
By substituting
d
x(i)a - E + x(i)a' (2.16)

and neglecting the constant terms, we can simplify the axial part of the Hamiltonian to

2 2
Ha = 21?;; + ;;; + Va(xfa + X32 + X1a%2a)- 2.17)
1 2
Similarly,
pir | Pi 1 A
Hr == _Zm Zm + E (I/I' - ]/a)(xlr + XZr) —_ 5x1rx2r_ (218)
1 2

The two Hamiltonians have the unified form of

2 2
P1 P2
H=—+
2my 2m,

+ V(xf + x% + Cxyx,), (2.19)

for axial modes C =1 and for radial modes C = —V,/(V; —V,). Now consider the
small harmonic oscillation solution of the system,

X1\ _ (A1 Agp) [eleat
(XZ)_<A21 Azz)(ei“)zt)' (2.20)

12
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According to the Hamiltonian equations,
dxl- 0H dpl 0H

==, =—-—= (2.21)
dt 0pl dt axi
we have
pl _ m1 0 ) (All AIZ) (lwl 0 ) (eiwlt)
(pz) = ( 0 m)\4y 4\ 0 iw,) \giwat (222)
and
m; 0 >(A11 A12> wf 0 (ei“’lt> _u(2 C (A11 A12) 293
( 0 my)\Ay A\ 0 w?)\eiwzt) V(C 2) Ay1 A/ 229
This yields
[(2-C)V — mlwiZ]Ali —-[2-0)V - mzwiZ]Azi =0,
{2 = OV - myf]l(2 + OV — mywi] (2.24)

+[(2 = OV — mw?][(2 + OV — myw?]}Ay; = 0.

The frequency w; should be independent of the amplitude, and assuming m; = m,, so

14 A; C 1-8

2 -2 (1+ L.

w; M( t a), 1, 2 3%
m;m; U

p=—r o, B (2.25)
m1+m2 m1+m2

a=\1-(4-C»p, p=1-4p,

in which i = 1 takes the plus sign.

By applying the following linear transformation, the Hamiltonian can be decoupled,
X1 . Xy
(xz) =l (xL)'
[ [A=B@=p) (1 -Pa+p)
L] ¢ (2.26)

1+a 1—«a
V2a \/

U, =

A+p)(a+p) c (1+B)(a—p)
1+a >en 1—a

where sgn C is the sign of C and the subscript “H” and “L” denotes the mode of higher

13
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and lower frequency respectively. The Hamiltonian is thus

2 2
P1 b2

H =
2my + 2m,

+ V(xj + xP).

For the generalized momentums, we assume the linear transformation to be

() =V (o)

.
0= 9
= v(2 o)
= U, 5 (0 =~y 20 (1),
and hence

So the decoupled Hamiltonian is

1+a 1—«a
H=—pa+— i+ Vi + ),

and the effective mass of the two modes are

2 2
T 1+a’ ™I Ty

my

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

For axial modes, the one with higher frequency is the breathing mode (ions moving in the

opposite direction) and the lower the center of mass mode (ions moving in the same

direction). While for radial modes, the higher one is the center of mass mode, the lower

one is the zig-zag mode.

2.6 Sideband Operations of Phonons

The quantized energy of a harmonic mode is described by a kind of bosonic quasi-

particle, phonons. The Hamiltonian of a mode is written as

14
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Iy a1
A =ho (afa + E)’ 2.33)

in which w is the frequency of the mode, a'(@) is the creation (annihilation) operator
of phonons in this mode. Usually the constant 1/2 is omitted and # is taken to be 1, so
the Hamiltonian is simply H = wa’a. The eigenstates of the Hamiltonian are “Fock”
states, i.e. number states of phonon. The effect of the creation or annihilation operator on

the Fock state with n phonons, |n), is just creating or removing a phonon,
atln) =Vvn+1|n + 1), aln) = Vn|n — 1). (2.34)

When an ion is interacting with the laser beam, momentum and energy transfer can
happen between the phonon modes of the ion and the electromagnetic field. For a
stimulated Raman transition, if the wavepacket size of the ion is much smaller than the

wavelength of the laser, the Hamiltonian of the ion is,

~ A
0= Eﬁz + wata + Q6 cos(kx — At + ¢), (2.35)

in which A is the energy gap of the spin, w is the frequency of the modes of interest,
Q is the coupling strength of the Raman transition, k is the wave vector difference of
the two Raman beams projected to the direction of the mode, A is the frequency
difference of the two Raman beams, ¢ is the phase of the coupling, and X is the

position operator of the mode given by

h
2mw

%= a* +a), 230

where m is the effective mass of the mode. The quantity

n=k R (2.37)

2mw
is the Lamb-Dicke parameter, quantifying the coupling strength between the laser and the
phonon modes. If the number of phonons n in the mode is low enough, i.e. in the Lamb-
Dicke regime,

n?(2n+1) <1, (2.38)

the cosine function in the Hamiltonian (2.35) can be expanded only to the first order.
Depending on the value of A, the Hamiltonian can be simplified to the following cases

by taking the interaction picture of A&,/2 and wa'd, and then the rotating wave
15
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approximation,
(D
HC = EO’x A=A
o mﬂ o
\Hg=—(@("at—-67a) 1=A+ow. (2.39)
o mﬂ s-at — &
(Ar = - at—6%a) 1=A-w

Here H:, Hg and Hy is the Hamiltonian of the carrier, blue sideband and red sideband
transition respectively. With these three operations, the state of the phonons can be
controlled.

If more than one ions are trapped in one trap, the form of the Lamb-Dicke parameter
will be more complicated, since the position operator ¥ of Equ. (2.36) is defined per
phonon mode, but the position operator actually involved in the laser-ion interaction [Equ.
(2.35)] is the position operator for each ion. If only one ion is in the trap, the two operators
are identical, but not for more ions. Continue the calculation in the previous section, the

position operators for the high-frequency and low-frequency modes are

h Vi (1 i
. At A LAY T
H = 2myw (ay aH) - 7( Vu ) (a;[I +au),
L (2.40)
R Ao, . VAl—a\g R
Xy, = Iy (a;f a,) = 7( Vi ) (aI +a,)

According to Equ. (2.26), the position operators for the two ions are
X\ _ o (%
() = v (3))
1
O U ((1 +a)2 0 )(&E + aH) 4D
- X 1 ~ ~ .

When ion i is interacting with the laser, the Lamb-Dicke parameter of mode H (L) is just

the coefficient of d;& + ay (dz + &L) in the expansion of kx;, so
(2.42)
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) _kjh(l—ﬁ)(a+ﬁ)
1L — 1 )

4Vu(l — a)
~ Jm +B)(a+p)
Non = ky
4Vu(l + a)
1ot = ks sgn C jh(l +f)@—p)
4Vu(l — a)

Another usage of the sideband transition is to read out the population distribution of
the Fock states. For example, the Rabi frequency of the blue sideband transition for the
Fock state |n) scalesas nQ+vn + 1. So if the blue sideband operation is applied for time
t and the fluorescence detection is applied at the end, the population of each Fock state

P, can be inferred by fitting the fluorescence signal,

P (t) 1(1 Z P nat ) (2.43)
== - CoSs . .
! 2 n " Vn+1

An example of this fitting method is given in Fig. 2.5.
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Fig. 2.5 An example of the measurement of the phonon distribution.
(a) The fluorescence signal of the ion and its fitting. (b) The phonon distribution obtained from
the fitting.
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2.7 Cooling of the Phonon Modes

In order to perform sideband operations of phonons, the ions should first be cooled
down to the Lamb-Dicke regime. Usually the first step of cooling is the Doppler cooling.
The general idea of Doppler cooling is as follows. When a photon of a laser beam is
scattered by an ion, the ion get a net momentum kick from the photon, because the
scattering is omnidirectional and the ion gets no net momentum from the emission. If the
laser beam is red-detuned, the scattering rate is slightly higher due to the Doppler effect
if the ion moves towards the laser, which means on average the ion loses a small amount
of momentum every time when the ion is moving towards the laser beam.

However, the Doppler cooling scheme cannot cool the ion all the way down to the
ground state of motion. Although the net momentum gain from the emission of the
photons is zero, the divergence is not. The recoil of the photon emission contributes to
(p?) rather than (p). When the cooling effect is balanced by this heating effect, the
Doppler cooling reaches its limit. To put it more intuitively, for a certain line shape of the
spectrum and a certain detuning of the laser, the higher the scattering rate, the higher the
limit, the steeper the slope of the spectrum, the lower the limit. For a simple spectrum of
Lorentzian shape, such as '’'Yb", the optimal value of the detuning is just the value that
yields a scattering rate of half of the maximum. But for more complicated cases, such as
138Ba*, this problem is not trivial. However the rule of thumb still holds, steeper slope and
lower scattering.

The resolved sideband cooling is a technique that can cool the ion down from the
Doppler cooling limit to near the ground state. The cooling mechanics of the resolved
sideband cooling is basically a “going down the ladder” process [19]. Successive red
sideband m-pulse for Fock states |n), |n — 1), |n—2), ... are applied with optical
pumping stages in between. Suppose the maximum occupied Fock state is |n), then after
ared sideband m-pulse for that and an optical pumping stage, the population is transferred
to |n — 1), hence each step the maximum phonon number is reduced by one. Because
this process has no heating mechanics, theoretically it can cool the ion all the way down
to the vacuum state |0). But in experiment there are limiting factors like the heating effect
from the environment and the infidelity of the sideband operation and the optical pumping.

Although the resolved sideband cooling can cool the ion down to the vacuum state
with very high fidelity, the requirement for this protocol to apply is relatively demanding.

If we consider all the higher order expansion of Hamiltonian (2.35), the coupling strength
19
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of the red sideband transition for |n > 0) is
Lrlz—1 (772) Q,
Vn

in which £ denotes the generalized Laguerre polynomial. The behavior of this function

Qr(n) = (2.44)

is as shown in Fig. 2.6. When n is too large, the coupling strength is effectively zero. So
the resolved sideband cooling protocol can only be applied when the temperature of the
ion is already pretty low.

Another drawback of the resolved sideband cooling protocol is that it can only cool
down one mode each time, if multiple modes are required to be cooled down, the duration
of the operation can become unfeasible. A less perfect but way more efficient cooling
protocol is the electromagnetically induced transparency (EIT) cooling [21]. The EIT
phenomena is one kind of coherent population trapping in a three level system. As shown
in Fig. 2.2, in a A-type three level system, when a strong pump beam and a weak probe
beam is applied simultaneously with a common detuning to the upper level, the scattering
spectrum of the probe beam exhibits a Fano line shape (the blue curve in Fig. 2.7). The
idea of EIT cooling is that, by arranging the power and the frequency of the probe and
pump beam, the carrier of the electric dipole transition can be made vanishing, and the
coupling to the red sideband transitions is much stronger than to the blue sideband
transitions. In this way, the cooling limit is much lower than the Doppler cooling. The
EIT cooling is very useful when the number of modes to be cooled down is large, since

the peak can cover many modes at the same time (Fig. 2.7).
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Fig. 2.6 The coupling strength of the red sideband transition related to n and 7.
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Fig. 2.7 The EIT cooling scheme.
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2.8 Moelmer-Sorensen Interaction

The Mglmer-Serensen (M-S) interaction is a two-ion entanglement operation
mediated by phonons. This operation is first proposed by Anders Serensen and Klaus
Mpglmer in 1999 [22] [23]. From the very beginning, the idea of the M-S interaction is
something similar to a stimulated Raman transition. As shown in Fig. 2.8, by applying
weak and off-resonant blue and red sideband couplings on both ions with identical
coupling strength ) and detuning § from the sideband resonance,

_ 0 | .
A =2 (6" +67)(ate +ae), (2.45)

only the energy conserving transitions, |[{l) & |TT) and [IT) & |Tl), are excited with
Rabi frequency
QZ

: (2.46)
0

Q=
while all other paths of transition interfere destructively. One important advantage of the

M-S interaction is that the Rabi frequency  is independent of the phonon occupation,

hence the cooling condition of the ions is less demanding.

|TT,n)
0
Nn+ly —k / O\ 7= —— |{T,n+1)
[Td,n) — — [{T,n)
[Tdn-1) —_— Q xNT,n-l)
[44,n)

Fig. 2.8 The scheme of the Mglmer-Sgrensen interaction.
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However, the first version of the M-S interaction is basically a Raman transition of
phonon sidebands which requires (1 <« §. The time required to entangle two ions is very
long. So later the strong coupling scenario of this process is investigated and a fast version
of the interaction is proposed [24]. Both strong and weak coupling can be modeled as
spin-dependent evolution in the phase space of the phonon mode. The state of the ions
acquires geometric phase when the ions are evolving in the phase space. If this evolution
is a “round trip”, i.e. the initial and final state of phonon are identical, the state of the
spins and the state of the phonons are decoupled. So the entanglement operation can be
achieved by controlling the trace of the system in the phase space. Intuitively, for the
weak coupling scenario the trace is just a tiny circle near the origin of the phase space
along which the system trails many times, with each time contributing a small amount of
geometric phase. A simulated time evolution of the weak coupling scenario is shown in
Fig. 2.9(a). The tiny “round trips” in the phase space is revealed by the small oscillation
of the green curve. For the strong coupling scenario, this circle is much bigger [Fig.
2.9(b)]. By controlling the coupling strength and the detuning, the required geometric
phase can be obtained with less trips. For the fastest operation in this model, only one trip
is enough. The detuning is given by § = 2Q). The time required to generate |ll) + |TT)
from [I) is m/Q.

But this is not yet the fastest. Even this fast version is in the adiabatic regime with
respect to the secular motion of the ions. The analysis is actually performed in a rotating
frame of reference with respect to the frequency of the phonon mode. Recently there have
been many theory and experiment research of the ultrafast operation of phonons [25] [26]
[27][28]. The general idea is to model the system in a steady frame of reference and make
use of the secular motion itself. Usually it requires complicated tailoring of the
Hamiltonian to ensure the phase is correct and the trajectory in the phase space is a closed
loop.

I implement the fast version of the M-S interaction in our system with one '"'Yb*

ion and one '**Ba” ion, but the ultrafast version still requires further study.
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Fig. 2.9 The simulated time evolution of the Mglmer-Serensen interaction.

The red and blue curve denotes the population of |11) and [{l) respectively. The populations

of |I1) and |Tl) are identical, and are both denoted as green. (a) The weak coupling scenario.
(b) The strong coupling scenario.
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Chapter 3 Laser Systems

The arrangement of all the laser beams entering the trap is shown in Fig. 3.1. The
arrangement is primarily determined by the polarization requirement of each beam. The
beams for the barium ion and stimulated Raman transitions will be discussed in detail in

this chapter, while the information for lasers for the ytterbium ion can be found in [19].

493: Ba EIT Probe, 370: vb Detection,
Doppler Cooling, pgppler Cooling,
Detection Optical Pumping

650: Repump \ 614: Repump 1762: Shelving

Ba from D3, Ba to Ds/;
413: Ba Ba from D/, 935: Repump
lonization \ Yb from D3/,
399: Yb lB=5.6G
lonization
o
Yb

638: Repump

/ \ Yb from F;,
355: Yb Raman T \
493: Ba Optical Pumping 355: Yb Raman

Fig. 3.1 The arrangement of all the laser beams entering the trap.

3.1 Lasers for Barium Ion

3.1.1 Alignment of 493 nm and 650 nm Diode Laser

The 493 nm diode laser is used to drive the transition between S;,, and P/,
levels of '*¥Ba* ion and implement Doppler cooling, EIT cooling, optical pumping and
fluorescence detection operations. The laser is locked to a F-P cavity stabilized by a

tellurium (Te) vapor cell with Doppler-free spectroscopy [29]. The alignment of the laser
is in Fig. 3.2.
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493 nm / \ D\ Tellurium Reference
100 mm
/] y L oy VLR
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100 mm ’ﬂ_‘ AOM3
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PBS E Polarizer % Waveplate |:‘ Photodiode
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A Prism D-\ Fiber Coupler / Window Plate
Dichroic Mirror

Fig. 3.2 The alignment of the 493 nm laser with the legend of the optical components used in
this chapter.
26



Laser Systems

In designing the alignment of the 493 nm laser, the following aspects are considered.

® We should be able to scan the frequency of the laser as far as possible without
losing lock to the Te reference so that we can measure the spectral line shape of
the beams. So the AOMI is arranged in the double-pass scheme such that the
power to the Te vapor cell is not significantly affected by the frequency scan.

® Aligning the beams to the trap and aiming them to the ion is a tedious work,
while coupling beams to fibers is easy. So the beams are coupled to fibers before
entering the trap, such that changes of the alignment on the laser side do not
affect the trap side.

® The Doppler cooling beam, the detection beam and the probe beam for EIT
cooling requires similar polarization configurations. It would save a lot of
optical components and workload if they can be handled collectively. So in the
alignment all the three beams are generated from a single AOM (AOM?2)
arranged also in double-pass scheme due to the frequency difference.

® By coupling lasers to fibers and using double-pass AOMs, a significant amount
of laser power is lost. So all the AOMs are arranged serially to maximize the
power usage.

The 650 nm diode laser is used to repump the populationin D3/, metastable levels.

The laser is locked to a F-P cavity and an iodine vapor cell reference with the same scheme

as 493 nm laser. The alignment of the laser is in Fig. 3.3.

) lodine

Reference

F-P Cavity <=

D\ Trap

650 nm m

Wavelength Meter

Fig. 3.3 The alignment of the 650 nm laser.
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3.1.2 Frequency Arrangements of 493 nm and 650 nm Laser

Fora '"'Yb" ion in Py, levels, the probability to decay to D/, is only 0.5%, so
the spectrum of 370 nm transition, P;,, <> S;/,, has a simple Lorentzian line shape.
However, for **Ba” ion, the probability to leak to D3/, states is 25%, so the line shape
of 493 nm transition is strongly affected by the configuration of the 650 nm laser beam,
and hence the determination of the laser parameters is not a trivial problem.

The interaction between 493nm, 650 nm lasers and the ion can be modeled by the
optical Bloch equations [30]. The numerical analysis of the system can give some insight

for the optimization of the laser parameters.

(@ ﬁ (b) 012
|

0.06

o 0

-150 0 150 -100 0 100
Detuning (MHz) Detuning (MHz)

Population
o
()]
Population of Py,

Fig. 3.4 The numerical simulation of the optical Bloch equations.

(a) The steady state solution for scanning the frequency of the optical pumping beam. The blue
curve shows the population of the |l) state, the red curve shows the total population of D3/,
levels. (b) The steady state solution for scanning the frequency of the Doppler cooling beam.
The red spot indicates a typical frequency configuration of the beam.

For the optical pumping beam, ideally the polarization should purely be o*, but in
experiment this condition is very demanding, there are always a small amount of other
polarization components remaining. As shown in Fig. 3.4(a), if there are 0.1% (power
ratio) of m polarizationand ¢~ polarization remaining, the optical pumping fidelity can
be poor around the resonance and the population mainly goes to D3/, levels. So for our
system, the detuning of the optical pumping beam is set to around +120 MHz, where the
optical pumping fidelity is insensitive to the polarization impurity, and the beam can be
reused for the pumping beam of the EIT cooling. For the Doppler cooling beam, the rule
of thumb is to maximize the slope of the scattering spectrum. As shown in Fig. 3.4(b),
when the frequency of the Doppler cooling beam is near the dark resonance, the slope is

steeper than the normal Lorentzian shape.
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The frequency arrangements of all the 493 nm laser beams are in Fig. 3.5(a). The

spectrum of the 493 nm transition is measured in experiment to verify the resonant

frequency [Fig. 3.5(b)]. This spectrum is measured with the Doppler cooling beam by

scanning the driving frequency of AOMI. It is clear that the resonant frequency is as

depicted in Fig. 3.5(a).

(@) 60

493 Fluorescence
w
(@)

300 340

Frequency of AOM1 (MHz)

380

(b) AOM3: 133x2
AOM1: 370x2 AOM2: 125x2
Pump Beam AOM2: 85x2 ;
of Te Lock: < >
240/2 AOM2: 65x2 ; i
120 | 620 130 | 26 14 | 80 16 | MHz
t ot 1 11
Tellurium Laser Doppler Detection Optical
Reference Output Cooling Pumping
Resonance EIT Probe

Fig. 3.5 The spectrum and frequency arrangements of the 493 nm laser beams.
The numbers above the frequency axis is the frequency difference between each marked

frequency.
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The spectrum of the 650 nm transition are measured in a similar way, but with much
lower intensities for both 493 nm and 650 nm beams to acquire a Lorentzian line shape

[Fig. 3.6(a)]. The frequency arrangements of the 650 nm laser beams are in Fig. 3.6(b).

(@14}

493 Fluorescence
~

160 260 360
Frequency of EOM (MHz)

(b) Fiber EOM: 292
) 250 P34 34 MHz
1 ocoocoooee 1 >
Low T T T T T High
Laser Resonance lodine #2 #3
Output Reference #1

Fig. 3.6 The spectrum and frequency arrangements of the 650 nm laser beam.
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Fig. 3.8 The alignment of the 1762 nm laser.
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3.1.3 1762 nm Fiber Laser and 614 nm Diode Laser

The 1762 nm fiber laser is used to shelve one of the S;/, levelsto Ds,, to enable
the fluorescence detection of the qubit states. While the 614 nm laser is used to repump
the population from D5/, levels.

The 614 nm laser is actually frequency-doubled from a 1228 nm diode laser with a
periodically polarized lithium niobate (PPLN) crystal. The alignment is relatively simple
(Fig. 3.7). The laser is locked to the wavelength meter after frequency-doubling.

The 1762 nm laser is a narrow linewidth fiber laser from NKT Photonics. It is locked
to an ultra-low expansion (ULE) cavity system made by Stable Laser Systems. The locked
linewidth of the laser is around 1 Hz. The alignment is in Fig. 3.8. The stabilized laser
output is first amplified by a boosted optical amplifier (BOA) from Thorlabs (module:
BOA1082P) before entering the trap. Actually the wavelength is out of the specified range
of the module, but it works amazingly well. The power of the laser is amplified from
about 15 mW to 75 mW, and the laser power into the trap is around 45 mW, with
horizontal polarization to maximize the transition of Am = 0. The Rabi frequency of the
transition is around 50 kHz. A typical spectrum of the Am = 0 quadrupole transition of

a single **Ba" ion with phonon sidebands is shown in Fig. 3.9.

1.0

o
o

Population of Sq/

o
N

15 0 15
Detuning of 1762 (MHz)

Fig. 3.9 A typical spectrum of the Am = 0 quadrupole transition of a single '**Ba* ion with
phonon sidebands.
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3.2 Lasers for Stimulated Raman Transitions

3.2.1 Alignment of Raman Lasers

The 355 nm picosecond pulsed laser is used to drive the stimulated Raman transition
for the '7'Yb" ion, and 532 nm for the '*®Ba” ion. The two wavelengths are frequency-
doubled and tripled from the same 1064 nm pulsed laser. The alignment of the lasers is in
Fig. 3.10. The repetition rate of the laser is detected by a fast photodiode (PD) and locked
to a rubidium frequency reference. The polarizations of the 532 nm Raman beams are
carefully adjusted to be linear. In this case, the AC-Stark shift of |{) and |T) caused by
each Raman beams are exactly balanced, hence changing the power of the beam will not
change the resonant frequencies of the operations. The decoherence caused by the
fluctuation of the AC-Stark shift can be minimized in this way.

Usually aligning the Raman beams to the ion is a difficult job. Both beams should
hit the ion, the two pulses should arrive at the ion simultaneously and the frequency
should be resonant. All these requirements should be met to get the signal of the transition.
The common way to align the Raman beams is to place a double-pass AOM in one of the
beams to generate a sideband so that the Raman transition can be excited with one beam
[19]. However, in this way the uncertainty of the alignment and the resonant frequency is
also coupled together. In our system, the Ramsey fringe of 1762 nm transition is used to
align the Raman beams. The 1762 nm laser excites the electric quadrupole transition
between |m =1/2) of Sy, and |m =1/2) of Ds;,,. When 532 nm or 355 nm
Raman beams are applied, they introduce AC-Stark shift to both levels, and this can be
measured with Ramsey measurement, so the alignment of each of the beams can be
optimized by looking at the Ramsey fringes of the 1762 nm transition. In this way, the
frequency of the AOM signal is irrelevant, so all the uncertainties of the Raman beams

can be addressed one by one.
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Fig. 3.10 The alignment of the 355 nm and 532nm pulsed lasers.
The focal length of all the lenses in this figure is 250 mm, except for the two lenses marked as

1000 mm. These two lenses is used to compensate the focal length difference of the lens near
the trap.
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3.2.2 Frequency Arrangement of Raman Lasers

Other than the alignment, the driving frequencies of the AOMs for the Raman laser
beams also require some consideration.

For the '**Ba" ion, the situation is the simplest. The qubit we use is the Zeeman qubit,
the energy level splitting is just tens of MHz, which can be easily covered by the two
AOMs. The pulsed laser is not necessarily required for the **Ba* ion, a continuous-wave
532 nm laser will also do. A typical phonon sideband spectrum of two '*®Ba" ions is

shown in Fig. 3.11.
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Fig. 3.11 A typical phonon sideband spectrum of two '*Ba’ ions.
The detuning is relative to the resonant frequency of the carrier transition.

Ba Fluorescence

For the '"'Yb" ion, it is a bit more complicated. The qubit is a hyperfine qubit. The
energy splitting is 12.64281212 GHz. This large gap cannot be covered by directly
shifting the frequency of the laser beams. Instead, the frequency comb scheme [19] is
used. For a pulsed laser, the shape of its spectrum is roughly a “comb” with Gaussian
envelope. The span in the frequency domain is the inverse of the pulse width in the time
domain, and the distance between neighboring “comb teeth” is the repetition rate of the
pulses. So the GHz level energy gap can be covered by each tooth of one beam and

another tooth of the other beam with higher order. For our HighQ laser, the pulse width
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is around 8 ps, and the repetition rate is around 80 MHz. So this 12 GHz gap can be
covered by one tooth and another 158 orders higher one. And the two AOMs just need to
cover the remaining frequency difference of tens of MHz. More specifically, if the

repetition rate is fg, the driving frequency difference w of the two AOMs is
)
w=w,—kfr, k= f—° . wp =12.64281212 GHz. G.1)
R

A typical phonon sideband spectrum of two '”'Yb" ions is shown in Fig. 3.12.
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Fig. 3.12 A typical phonon sideband spectrum of two '”'Yb" ions.
The detuning is relative to the resonant frequency of the carrier transition.
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Yb Fluorescence

When the two species of ions are involved at the same time, the problem gets tricky.
The polarizations of the 355 nm laser beams cannot be both horizontal or both vertical,
or the coupling strength of the Raman transition is effectively zero. So it has to be one
horizontal one vertical. For 532 nm laser beams the situation is similar. One beam has to
be horizontal to provide m component of polarization, while the other one should be
linear and vertical to maximize the coupling strength and minimize the difference of the
AC-Stark shift between the qubit levels. So the polarization configurations of both
wavelengths are identical, and the detuning is not that large, as shown in Tab. 3.1. This
means there will be crosstalk between the ions. An example of such crosstalk effect is

shown in Fig. 3.13.
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Tab. 3.1 The frequency detuning of the transitions with respect to the lasers.

1384+ 7yt
(THz)
S1/2 © P1j2 | S172 © P32 S172 © P1j2 | S172 © P32
355 nm —237 —186 -33 67
532 nm 44 95 248 348
16/
Carrier
couples to

Zeeman level m=+1

Micromotion red sideband
couples to
Zeeman level m=-1

Yb Fluorescence
(@)

1.3 1.7 2.1
Detuning of 532 (MHz)

Fig. 3.13  The crosstalk effect of the 532 nm Raman beams to the '"'Yb" ion.

The detuning is relative to the resonant frequency of the **Ba’ ion’s carrier transition. The
red line is the spectrum to the red side of the carrier transition, so the detuning is actually
negative.

So altogether, we have two different wavelengths that are both able to excite the
Raman transitions of both ions, each laser has two different frequency components in
order to drive the M-S interaction, both lasers have micromotion sidebands, both lasers
are symmetric in frequency arrangement (as long as the frequency difference between the
two Raman beams is correct, which one has higher frequency is irrelevant), the '"'Yb*
ion has Zeeman levels, and both ions have four phonon sidebands of axial modes. And
all the unwanted couplings should be avoided in experiment. These are a tedious amount
of different frequencies to be analyzed. Some visual aid is required to resolve this
frequency mess (Fig. 3.14). The resonant driving frequency of the carrier transition of the

7'Yb* ion is carefully chosen to avoid the excitation of the 7' Yb* ion by the 532 nm laser
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(the overlap of the green lines with the red lines in the lower spectrum), the excitation of
the Zeeman levels of the '"'Yb" ion by the 355 nm laser’s micromotion sidebands (the
overlap of the thin blue lines with the red lines in the lower spectrum), and the excitation
of the '3®Ba" ion by the 355 nm laser (the overlap of the blue lines with the red lines in
the upper spectrum). And then the repetition rate of the pulsed laser is adjusted according
to Equ. (3.1). The final frequencies used to implement the M-S interaction is listed in Tab.

3.2.

Spec[Clk ] :=
Module[{MM, Zm, Wid, Rect, Lin, BaSpec, YbSpec, L532, L355},
MM =12.4;

Zm =7.88;
Wid=0.1;

BRF =1.34; (x Breathing Mode Frequency

Rect = Rectangle[{# - Wid, -1}, {# +Wid, 1}] & /@
(Abs[xu{-anr, -BRE‘/‘\/?, -0.1,0,0.1, BRE‘/‘\/?, BRF}]) &;

Lin = Rectangle[{#-0.1, -1.5}, {#+0.1, 1.5}] &;

BasSpec = {Rect[22Zm]};

YbSpec = Rect /@ {Clk - Z2m, Clk, Clk + Zm};

L532 = (Lin/e ({#-MM, #-0.1, #, #+0.1, # + MM} &[22Zm + #])) &;
L355 = (Lin /@ ({Abs[#-MM], #-0.1, #, #+0.1, # + MM} &[Clk + #])) &;

Grid[{
{"Ba ", Graphics[{Blue, L355[-BRF], L355[0], L355[BRF], Red, BaSpec},
ImageSize - 500, PlotRange - {{-0.5, 30.5}, {-2, 2}}1},!
{"Y¥b ", Graphics[{Green, L532[-BRF], L532[0], L532[BRF], Blue,

L355[-BRF], L355[0], L355[BRF], Red, YbSpec}, ImageSize - 500,
PlotRange -» {{-0.5, 30.5}, {-2, 2}}1}}]

Ik

Manipulate[Spec[Clk], {{Clk, 12.2}, 7.5, 35}]

Clk

12.2 = > |[+

Fig. 3.14 A small tool used to analyze the crosstalk problem and arrange the frequencies.
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Tab. 3.2 The final frequencies (in MHz) used to implement the M-S interaction.

Carrier Frequency Sideband Frequency
Repetition : -
Rate TIyh* 138t Axial Axial
Breathing Center of Mass
80.095 12.2 15.7 1.34 0.774

3.3 Techniques for Alignment

3.3.1 AOM Alignment

Aligning an AOM is one of the starter’s practice for students majored in AMO
physics experiments. We all know that the input and output beams should be collimated,
and the AOM should be on the focus of the beam. But in practice, these standards are
usually not well met. If the AOM is located too far away from the focus, the first order
beam of different driving frequency may not focus to the same position. This can be a
problem if multiple frequencies is required in a single beam to address the ion and the
intensity ratios of the different frequency components are important. So here I introduce
a procedure which is helpful to align the AOM properly.
® Step 1. Place a reference on the laser beam path to mark the position of the beam.
® Step 2. Place two plano-convex lenses with the plane side facing each other.
Roughly adjust their positions so that the output beam is roughly collimated and
pointing at the mark in step 1.

® Step 3. Put the AOM roughly at the focus of the beam. Carefully adjust the
position of the lenses so that the output beam is as collimated as possible, which
can be checked by comparing the spot size right after the lens and several meters
away. In this way, the extra length of the beam path introduced by the crystal of
the AOM is taken into account.

® Step 4. Align the AOM to see the first order of the diffracted beam. Carefully

adjust the position of the AOM along the beam so that the zeroth order and the
first order are parallel to each other, which can be examined by comparing the
distance between the two spots right after the lens and several meters away.

® Step S. Align the AOM to maximize the power of the desired order.
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Fig.3.15 The diffraction patterns of the laser beam hitting a needle tip, with varying position
of the needle tip along the axis of the beam.

The patterns for positions way before and way behind the focus are also shown. The beam used
to demonstrate this and all the following diffraction patterns has Rayleigh length of zg =
2.5 mm, and beam waist wy = 20 um.

3.3.2 Diffraction Patterns

Aligning the laser beams into the trap is usually a tricky job. The structure of the
trap is frequently used as a reference to put the beam at the geometric center of the trap
by steering the beams to hit different parts of the trap. However, “hitting or not” can be a
very inaccurate criterion, and it is unable to tell if the beam’s focus is also properly
adjusted.

When the laser beam hits an obstacle, it generates diffraction patterns. And actually
quite a lot of information can be inferred from the pattern. Take our four-rod trap as an
example, the two needle tips of the DC electrodes are often used as the reference to
determine the geometric center of the trap. Fig. 3.15 shows the diffraction patterns of the
beam hitting a needle tip. The tip is positioned along the axis of the beam, while the
distance between the tip and the focus of the beam varies from -3 mm to 3 mm. As can
be seen in the figure, if the needle tip is at the focus of the beam, the diffraction pattern is
symmetric, and by observing the direction of the pattern, it is able to distinguish whether

the tip is before or behind the focus.
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Fig. 3.16 The diffraction patterns of the laser beam hitting a needle tip, with varying position
of the needle tip around the focus of the beam.

(a) The patterns for moving the needle tip vertically. (b) The patterns for moving the tip
horizontally.

The diffraction patterns for the positions of the tip around the focus is in Fig. 3.16.
If the tip is vertically at the center of the beam, the pattern is symmetric. If it is not, the
center of the beam is mainly blocked by one edge of the needle, and hence the pattern is
perpendicular to the edge. In this way, the relative position of the tip and the center of the
beam can be determined. While the horizontal position is relatively hard to determine, the

brightness of the pattern can be used as a reference.
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The diffraction patterns of the needle is useful when you try to align multiple beams
into the trap and make sure their focuses are at the same position.

Another frequently used component is the pinhole. The pinhole can be used in 4-F
system as a spacial filter to block unwanted scatterings. It can also be used as a reference
of the position of the beam. The diffraction patterns of the pinhole have similar properties.
As shown in Fig. 3.17(a), the symmetry of the pattern can be used to determine whether
the pinhole is at the focus of the beam. While the patterns in Fig. 3.17(b) can be used to
determine which part of the pinhole is blocking the beam. The direction of the pattern is
perpendicular to the tangent of the edge. This is useful if you want to overlap multiple

beams at the position of the pinhole.
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(a)
-

Diameter:
150 um

(b)

Fig. 3.17 The diffraction patterns of the laser beam hitting a pinhole with a diameter of
150 pm.
(a) The patterns when the beam is cut by left and right edges of the pinhole with varying
position along the beam axis. (b) The patterns when the beam is cut by different part of the
pinhole.
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Chapter 4 Pulse Sequencer

4.1 Function and Performance Goals

A successful experiment requires coordinated operation of all the lasers, signal
generators and detectors. There are logically complicated tasks like generating the control
signal according to the experiment parameters. There are also logically simple but timing
critical tasks like switching the signals on and off with microsecond timing precision. A
typical experiment flow of our system is shown in Fig. 4.1 as an example. Usually, the
complicated tasks are assign to a computer, while the timing critical tasks are handled by
FPGA boards.

In our system, an FPGA based TTL pulse sequencer is implemented to fulfill these
tasks. As the name suggests, a TTL pulse sequencer is able to generate TTL pulse
sequences as instructed by the computer with high timing resolution (Fig. 4.2). The
control structure of our system is shown in Fig. 4.3. The instructions to the signal
generators and the pulse sequencer are issued by the computer, while the pulse sequencer
schedules the execution of the experiment flow. The performance of the sequencer should
fulfill the following requirements.

® The number of channels should be large enough to control all the related

apparatus.

® The timing resolution should be as high as possible to minimize the infidelity of

quantum operations due to timing errors.

® The maximum duration of timing should be long enough for demanding

experiments.

As an example, the most demanding experiment our system has performed is to
demonstrate the coherence time of '7'Yb" qubit exceeding 10 minutes [31]. This
experiment has sequences as long as 10 minutes while the m-time of microwave
operations is as short as 10us.

The newest version of our pulse sequencer is made with an Altera Cyclone III
EP3C25Q240C8 FPGA chip. Its performance is shown in Tab. 4.1.
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Fig. 4.1 A typical pulse sequence in experiment.

Tab. 4.1 The Performance of the pulse sequencer.

Clock Frequency 200 MHz
Timing Resolution S5ns
Minimum Segment Duration 5ns

Maximum Segment Duration

5 % 241 ns = 3.05 hours

Output Channels

32

Maximum Number of Segments

7680

Maximum Repetition of Sequence

224 —1=16777215

Other Functions

External Trigger:

The sequencer can be configured to synchronize the
sequence with an external trigger. This function can
be used to compensate the 50 Hz noise induced by AC
lines.

Embedded Gated Counter:
Four 32-bit counters are also built into the chip that

can be used to count the fluorescence photons
collected by the PMT.
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Fig. 4.2 The TTL pulse sequencer of our system and its user interface.
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Fig. 4.3 The control structure of our system.

4.2 Pipeline Timer and Time Stamp Encoding

Unlike the arbitrary waveform generator (AWG), which generates the output by
continuously pushing amplitude data of each sample point into the digital-to-analog
converter (DAC), the sequencer generates the output discretely so that memory space has
less limitation on the maximum duration of the sequence. Obviously, a TTL sequence can
be decomposed into a number of segments, during which the levels of all the output
channels hold unchanged. So a sequence can be defined by a list, whose each element
contains the duration and output levels of each segment. In this way, the sequencer just
need to count the time and change the output when a new segment starts. So the
performance of the sequencer is determined by its timer module.

A timer is basically a counter T that counts the clock cycles. More specifically, for
each rising edge of the clock signal,

i-1
100l = T, (0101, T[] = Tes [0 [\ T ] 6.
j=0
in which T.[i] denotes the i-th bit of T on clock cycle t. Note that T[i] is computed
through a chain of AND operation. For large i, this could take a considerably long time,
limiting the clock frequency. So it seems that high timing resolution and long timing

duration is mutually exclusive. However, rather than computing the whole combinatorial
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logic chain in one clock cycle, it can be arranged in a pipeline manner,

T; [l] =T [i]®Ct—1 [l]

ki i . 5.2
Clil =Teali =1 ACai—1],  C[0] =1, >2)

in which C[i] is the carry bit of T[i]. In this way, the clock frequency is no longer
limited by the bit width of the timer, but in order to use this type of timer, a bit more
analysis of its behavior is required.

From Equ. (5.2), it is easy to see that the carry propagates one bit further per clock
cycle, so if we start with Tp =0, Cy, =1 and look at S, = {T.[i], Te_1[i —
1], ..., Tr_;[0]}, it is just the binary sequence we have for ordinary timer, 0, 1, 10, 11, 100
etc., as illustrated in Fig. 4.4. So generally

Te[i] = (¢ = D[], (5.3)
i.e., the i-th bit of number t — i. And similarly,
i
Clit = \ Tl =1 (54
j=1
t Ce T, >
0 0001 0000 888(1)
1 0001 0001 0010
2 0011 0000 0011
3 0001 0011 0100
4 0011 0010 0101
5 0101 0001 0110
6 0011 0100 0111
7 0001 01141 1000
8 0011 0110
9 0101 o101  TU
10 1011 0000
11 0001 1011

Fig. 4.4 The states of the T and C register of the pipeline timer.

Usually, the function of a timer is that when a specific number of clock cycles
elapsed, it assert some signal. So it would be convenient if we set T and C to some
initial value T* and C™* so that after the specified number of cycles, the highest bit of
T flips to 1. Keep to the previous example, we see that T[3] flips to 1 on cycle 11.
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According to Equ. (5.3), for a timer T of W + 1 bits, T,[W] first flips to 1 when
t* =2+ Ww. (5.5)

Soifweset T* = Ty«_, and C* = Cy+_,, then after n cycles the signal will be asserted.

The value of T* and C* can be computed by the computer and sent to the
sequencer as time stamp of each sequence segment so that the sequencer can use them
directly. However, from Equ. (5.4), we can see that in fact C* can be computed from T*
and if this computation can be performed on the chip, it would reduce the memory
consumption by half. Note that T,[i] flipsifand onlyif t = k = 2¢ + i and these are the
cycles that C,_,[i] = 1. So C*[i] =1 ifand only if

T*[j] = T,i,;_4[j] forall j <. (5.6)

This is also a combinatorial logic chain and can take quite long time. However, this
computation is only required when a new segment is about to start. So we can arrange an
arbiter module and several parallel lines to distribute this computation among multiple
clock cycles and effectively the computation is finished in one clock cycle. With this
pipeline configuration of the timer, the timing resolution is no longer limited by the bit

width of the timer.

4.3 Structure of the Pulse Sequencer

A pulse sequencer requires supporting modules other than the timer to fulfill the task.
The structure and signal flow of the pulse sequencer is depicted in Fig. 4.5.

The input dispatcher module is used to decode the instructions sent from the
computer via a USB port. When a new transfer session is initiated by the computer, the
input dispatcher module notifies the controller to halt the execution of current sequence
and switch to the receiving state until the last instruction package is received. The
received control parameters are sent to the controller and the descriptions of the segments
are sent to the first-in-first-out (FIFO) array to be stored.

The controller module is used to control the state of the sequencer. When an
instruction transfer session is initiated, it disables the timer and reset the address pointers
of the FIFO array. The controller also counts the number of repetitions of current sequence.
If the external trigger is enabled, the controller hold the sequencer and wait a trigger when

an execution of the sequence is finished.
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The FIFO array consists of five FIFO queues. It stores the TTL levels and time stamp
of each segment and also calculate the initial values of carry bits from the time stamp.
The segments are cyclically distributed among five parallel queues by an input arbiter
during the transfer of a new sequence. Each time the “Tick” signal is asserted by the timer
module, marking an end of current segment, the time stamp, the TTL levels and the carry
bits are read from one of the five queues and that queue immediately initiates the
calculation of the carry bits of the next segment stored in it. The output arbiter is used to
arrange the order of output of the five queues. The FIFO array is designed in this parallel
manner so that the time consuming calculation of the carry bits is effectively distributed
among five clock cycles.

The timer module is as discussed in the last section. When a segment is over, it
asserts a one clock cycle high pulse of “Tick” signal to inform the FIFO array and the
output ports to act.

The output ports changes their levels when “Tick” signal is asserted, and are disabled
during the initialization.

The complete Verilog source code of the pulse sequencer is in Appendix A.
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Fig. 4.5 The module structure and signal flow of the pulse sequencer.



Geometric Landau-Zener-Stiickelberg Interferometry

Chapter 5 Geometric Landau-Zener-Stiickelberg
Interferometry

5.1 Introduction

The Landau-Zener (LZ) transition or Landau-Zener-Stiickelberg (LZS)
interferometry together with Rabi oscillation have been widely used to coherently control
various quantum systems, including atomic or optical systems [32] [33], quantum dots
[34] [35], superconducting qubits [36], nitrogen-vacancy-center systems [37], and spin
transistors [38]. Related to the Rabi operation, composite pulses associated with
dynamical decoupling [39] [40] or adiabatic manipulation with geometric phases [41] [42]
have been extensively studied to reach error rates below the fault-tolerant level with
reasonable limitations of control in feasible physical systems.

Generally, a quantum system subjected to adiabatic driving acquires a geometric
phase (or Berry phase) as well as a dynamic phase. Unlike the dynamic phase, the
geometric phase depends solely on the trajectory of the parameters in the Hamiltonian,
and thus is stable against certain types of fluctuations; this has been experimentally
observed in various systems [43] [44]. Composite-pulse schemes also have a geometric
phase interpretation in nonadiabatic regimes [45]. However, the geometric phase and
robust control in the context of LZ interferometry have not yet been experimentally
investigated and demonstrated [46].

This project is an experimental realization of LZS interferometry controlled
exclusively by the geometric phase. It is inspired by the proposal of Ref. [46] in a single
trapped-ion system, which is capable of simulating other qubit systems. Although the
original proposal is specifically for a superconducting system, I apply the scheme to a
trapped-ion system and observe the robustness of the geometric phase against very great
operational errors in all possible control parameters by artificially introducing noise into
the system. The demonstrated strong immunity sheds light on the possibility of examining
the geometric phase in more complex systems which might be subject to large fluctuations

in control parameters.
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5.2 Landau-Zener Transition

The LZ Transition happens in a quantum two level system described by Hamiltonian

h
H(t) = Eo' * Beg(t), o= (Ux' Oy, Uz):
B.(t) = (Q(t) cos ¢, Q(t) sin g, A(D)),

5.1

when the system is driven through an avoided crossing where A is at minimum.
According to the adiabatic-impulse approach, the transition is considered to happen only
in a small vicinity around the avoided crossing, while the rest of the driving is adiabatic.

In this way, the transition probability in the adiabatic basis {|y_), [Y;)} is characterized

by
Py = iy (5.2)
LZ = €Xp 2|v| , .
where v = i—?| and A, isthe energy splitting at the avoided crossing. The transition

Q=0
is described by the time evolution operator Uy = U,NU, with

N = (e—iqos [1— P | —JPz >, (5.3)
where @g is the Stokes phase [47] and U,y = exp(ifa(b)az) is the operator for
dynamic phase ¢,(;) accumulated after (before) the avoided crossing.

In experiment, the hyperfine levels of the ground state of an !”'Yb" ion is used as the
two level system, and the control of the Bgg is implemented with microwave, as is
mentioned in Chapter 2 of this thesis. The transition probability and transition dynamics

is verified and observed for different speed of driving, as shown in Fig. 5.1.

5.3 Adiabatic Passage

In order to perform the LZ transition, the system should first be prepared in the
eigenstate of the Hamiltonian, Equ. (5.1), with Q > A. In this experiment, the state is
prepared using adiabatic passage with

Q(t) = Bsinwt, A(t) = B cos wt,

B=(2m)50kHz = [Bosl, @ = ——. (54)
e 200 ps

To put it more intuitively, the effective magnetic field B¢ just rotates around an axis on

the equatorial plane with constant angular velocity w and amplitude B. This is a simple
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way to drive the system and yet with pretty good adiabaticity. The simulated trajectories

of the system under such driving and the experiment verification is shown in Fig. 5.2.

@ 1f (b6
0.3}
T,=157 us
o 0.1 2 03 -
0.03¢
001’ 0 : =z ‘ ‘
0 250 500 -0.2 0 0.5
T (us) t/T-0.5

Fig. 5.1 The transition probability and dynamics of the Landau-Zener transition.

(a) LZ transition probability Pz as a function of the total driving time T of linear sweep of
Q from (2m)49.24 kHz to —(2m)49.24 kHz with Ay, = (27)8.68 kHz. The red crosses in
the figure are data points and the black curves are numerical simulation results. (b) The LZ
transition dynamics for three exemplary cases, T = 90 pus, 157 us, 300 us, which provide
tunneling probabilities of 0.5, 0.3, and 0.1 after the transitions. Oscillatory behaviors near the
avoided crossing [37] [48] are clearly observed and precisely in agreement with the results of
the numerical simulation.

(a) Ay (b) 1}

IT)+4)

) 0 200 400
t (us)
Fig. 5.2 The adiabatic passage.
(a) The trajectories of the system under adiabatic evolutions of different w, with the green one

w = 1/(200 ps), the blue one w = /(60 ps) and the red one w — 0. (b) The population
of the |T) state during the adiabatic evolution with w = /(200 ps).
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s2
-—— Set p to ¢y
3b Evolution

/ 5 Rotation
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(b) B, (©) B,
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5 ©

Q1
Fig. 5.3 The procedure of a LZS interferometry.
(a) The control sequences of Q and A in B.gs = (Qcos@,Qsing,A) for the realization of
geometric LZS interferometry. The coloring and numbering of the stages are the same in (b) —
(1). (b) — (d) The trajectories of Bg during the operation in (Bx, By, BZ) space. (¢) — (g) The
evolution of the system in (Bx, By, E ) space, where the hyperbolic curves indicate the energy
of the adiabatic eigenstates. In contrast to the standard energy diagram for the LZ transition,
the geometric LZS interferometer should be illustrated in 3-D due to the phase information.
The volume of the orange spheres corresponds to the population of the adiabatic eigenstates.
(h), (i) The trajectories of B and the system for the adiabatic spin-echo sequences.
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5.4 Geometric Landau-Zener-Stiickelberg Interferometry

The interference of the two adiabatic eigenstates takes place when two LZ transitions
happen successively, similar to the Mach-Zehnder interferometry. In this experiment, the
interference fringes are solely determined by the geometric phase acquired between the
LZ transitions, while the dynamic phase is cancelled out by the symmetric arrangement
of the experiment sequence with a spin-echo stage in the middle.

The complete sequence of the interferometry is shown in Fig. 5.3. The system is first
adiabatically prepared for the LZ transition in stage 1 with Equ. (5.4), as is the same in
stage 3a, 3b, sl, s2 and 5. Then the system is driven through the first LZ transition by
linearly sweeping the value of (), as shown in Fig. 5.3(b)(e). The geometric phase is
acquired in stage 3 with adiabatic driving and phase change ¢, of the control parameter
[Fig. 5.3(c)(f)]. And finally the second LZ transition which is identical to the first one is
performed to complete the interferometry [Fig. 5.3(d)(g)]. In order to make the phase of
the interferometry purely geometric, a spin-echo sequence that swaps the two adiabatic
eigenstates is performed right in the middle of stage 3 [Fig. 5.3(h)(i)], so that for each
adiabatic eigenstate, the dynamic phase and Stokes phase gained during the adiabatic
evolution and the LZ transition in the first half of the experiment sequence exactly

cancelled out with that of the second half.

5.5 Robustness of the Interferometry

With Equ. (5.3), it is easy to calculate the population of the |T) state,
Py = Pz + (1 = Piz)* — 2P 7(1 — Pyz) cos @y, (5.5

In the experiment, we set Pz to 1/2, so in this case

1 — cos
- T"’". (5.6)

One cycle of the interference fringes is demonstrated in Fig. 5.4(a).

The robustness of the contrast of the interference fringes against the deviations of
the control parameters is also experimentally tested by artificially introducing errors into
the parameters. For the strength of the driving field, we assume a scaling error,

Q' =0+6e)Q, (5.7)

simulating the case of an inhomogeneous driving field. While for the driving frequency,
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we assume a bias error in the unit of the energy splitting at the avoided crossing,

A" = A+ 5A,. (5.8)

Both kinds of errors are assumed to be slow enough so that in each run of the experiment
sequence, the values of € and § hold the same. The experiment test of the robustness is
performed by randomly choosing 1139 pairs of {€,d} in the range of —0.5 < € < 0.5,
—03 <6 <03 and measure the value of 1— P;(¢,=0) for each pair. The
experiment result is shown in Fig. 5.4(b), and the corresponding numerical simulation

result is in Fig. 5.4(c).

@ 1 (b) 0.5 / (c) 05
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¢o () Frequency Error § Frequency Error §

Fig. 5.4 The interference fringe and its robustness of the geometric LZS interferometry.
(a) The interference fringe. (b) The experiment result of the robustness test. (¢) The numerical
simulation result.
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Chapter 6 Arithmetic Operations of Phonons

6.1 Introduction

In quantum mechanics, bosonic creation @' and annihilation @ operators bear the

following operator relations,

at = z Vn+1n+1)n|, a= Z Vnln — 1)(n], 6.1)
n=0 n=0

where |n) stands for a Fock state of n bosons. The proportionality factors vn + 1 and
v/n appear due to the symmetric indistinguishable nature of bosons. Thus, the addition
or subtraction in quantum domain involves the modification of the probability amplitude
of state due to the excitation n-dependent factor. The bosonic annihilation and creation
operations have been proposed to be a building block to generate an arbitrary quantum
state [49], to distill entanglement or non-locality [50] and to transform a classical state to
a nonclassical state [51]. In recent times, there have been seminal works to realize the
bosonic operations at the single-boson level for the test of foundations and applications
of quantum mechanics [52] [53] [54] [55] [56] [57]. However, such bosonic operations
are not trace preserving and inherently probabilistic. The probability of success has so far
been extremely low in their implementation for photonic fields. A higher probability may
be obtained at the expense of lowering the performance fidelity [58]. Owing to this, the
number of these operations that can be successively applied has been limited.

The conventional addition and subtraction of a particle can be written as

S+ = Zom + 1)n|, S = Z(:)|n — 1)n|. (6.2)

The addition S* takes the n particle state to the |n + 1) state, whereas the subtraction
operation S~ brings the |n) state to the |n — 1) state without incurring additional
factors. Seeing the form of the operations in Equ. (6.2), we immediately recognize that
S* is a deterministic process while S~ may not be, as it is not possible to subtract a
particle from the vacuum state |0). When the vacuum component of the initial state is
small, the subtraction can be done near-deterministically. In recent times, there have been
theoretical proposals of the operations [Equ. (6.2)] for the generation of an arbitrary
quantum state [59], the measurement of vacuum [60], the transformation to a non-
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classical state [61] and the amplification of a quantum state [62]. In particular, such
arithmetic operations form an important component of a qubit gate operation for ions in
a harmonic potential [63]. The operations were also suggested as the elements of a phase
operator [64].

In this project, the deterministic addition and near-deterministic subtraction
protocols of a phonon is developed and demonstrated. Its application in the projective

measurement of phonons is also explored.

@ 1
Q05
07 L ] L L L
0 40 80 120
t (us)

0 40 80 120

t (us)
© 1
& 05
O’ L L L L
0 40 80 120
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Fig. 6.1 The numerical simulations of the adiabatic driving.
(a) Equ. (6.4) without any optimization, with the red, orange, yellow, green and blue curve

corresponding to k = 1,v/2,v/3,v4,V/5 respectively. (b) With only counter-diabatic term
b = w/2. (c) With scaling factor @ = /3 and counter-diabatic term b = w/2.
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6.2 Uniform Driving of the Phonons

The Rabi frequency of phonon sideband transitions has a factor of v/n, so there is
no simple way to drive m-transitions uniformly for different Fock states at the same time.
However, as demonstrated in Fig. 5.2, an adiabatic process is able to drive the system
around by slowly changing the Hamiltonian. So a straight forward way to implement such
uniform driving is to control the parameters in a similar manner. But first, for the
simplicity of the notation, we can analyze the problem in a two level system with
Hamiltonian

At) N kQ(e) |

2 0, 5 Oy, (6.3)

H() =

since the blue sideband transitions are just multiple independent transitions between
[{,n) and |T,n + 1), and the coefficient k characterize the \/n factor of the Rabi
frequency. So the parameters are controlled similarly as in Chapter 5,

A(t) = Ecoswt, Q(t) = Esinwt. (6.4)

The result of numerical simulation for & = (2m)50kHz, w =&/12, and k =
1,v/2,v/3,V4,V/5 is shown in Fig. 6.1(a). It is obvious that when k gets larger, the
adiabaticity of the process gets drastically worse and the system is not properly driven to
[T).

However, this can be improved. Since in the case of k = 1, the state of the system
is basically rotating around with a constant angular velocity, so it would be better if a
weak counter-diabatic term is applied to drive the rotation dynamically,

A QO
®) . +k (t) . kb _ ©5)

H() = 5 0z > ax+7ay.

The numerical simulation for b = w/2 [Fig. 6.1(b)] shows that the adiabaticity is better.
But for large k the oscillation in the middle is still pretty big, since this optimization
only works when k ~ 1. So we can add a scaling factor a for A to make k/a = 1,

A(t) = a€ cos wt. (6.6)

And this time the result of the numerical simulation for a =+/3 and b = w/2 is way
better than the previous two cases [Fig. 6.1(c)]. The populations of |!) at the end of the
evolution for all the three cases are listed in Tab. 6.1 for reference. To put it more
intuitively, the general idea of this protocol is to take the advantage of both dynamic

driving and adiabatic driving. The weak counter-diabatic term drives the system
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dynamically to improve the adiabaticity of the evolution, while the adiabatic driving

keeps the evolution of the system on track should there be any deviations of the

parameters.

Tab. 6.1 The infidelity of population transfer of the adiabatic process

k 1 V2 V3 V4 V5

(@) | 29x1075[19%x1072 [1.9x1072 | 1.3x 1071 | 7.2 x 1072
(b) | 46x1077 | 51x1073 | 5.0%x 1073 | 4.1x1072 [ 3.5%x 1072
() |26x107°[21x1075|14x107*[3.6x1075|6.4x107*

The rule of thumb to determine the optimal value of a and b can be derived
straightforwardly from the analysis above. Suppose we want this operation to cover a
range of k from Vm to v/n, then the value of a should guarantee that at both ends the
ratio k/a be around 1, which leads to

ym yn _

a a

6.7)

1, a = ymn.

Similar for b, at both ends the deviation of the counter-diabatic term kb from the ideal

value w should be as small as possible, which means b should take the value that

(Vmb — )" + (Vb — w)° (63)
is minimal, and that is
poymEn (6.9)
m+n

For the example above, a = V5~ 1495, b= (1 + \/g)w/6 ~ 0.539%w.

6.3 Arithmetic Operations of the Phonons

The uniform driving operation mentioned in the last section will introduce huge
dynamic phase into the states. However, the addition and subtraction operators in the form
of Equ. (6.2) require also phase coherence. Considering the uniform driving operation
being a symmetric process, the same spin-echo technique can be used, that is, inverting
the sign of A and (0 right in the middle of the process [Fig. 6.2(a)], but typically this
will have a negative impact on the quality of the operation. The numerical simulation and
experiment demonstration of this operation is shown in Fig. 6.2(b).
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Fig. 6.2 The uniform driving with a spin-echo in the middle.

(a) The control parameters. (b) The numerical simulation and experiment demonstration of the
uniform driving with spin-echo for Fock states of n =0 to 5, with € = (2m)38 kHz, w =
(2m)5.5 kHz, a = 1.6, b = (2m)2.9 kHz. The experiment is performed in a radial mode of
the ion with trap frequency of 2.8 MHz.

Arithmetic Addition Arithmetic Subtraction

Coherent T

Uniform _@_ _ Carrier
Driving _@_ - ~

Carrier

v

Finish - _@_ _@_ Yy _@_ Det;;rt:("”:_e_ . _@_ _@_ S

Fig. 6.3 The procedure of the arithmetic addition and subtraction operations.

With this coherent uniform driving operation, the arithmetic addition and subtraction
operation of phonons can be implemented. As shown in Fig. 6.3, an addition operation
consists of a uniform driving operation of blue sideband and a m-pulse of carrier

transition, and the subtraction operation is just the same operations with reversed order
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and with a fluorescence detection stage at the end to eliminate the population in [T). Of
course, if the detection stage yields bright, the subtraction operation fails, so this is a
probabilistic process.

The effect of the arithmetic operations on different states is tested in experiment. The
result for coherent state |a = 0.8) is in Fig. 6.4. Although the fidelity is not ideal, the
preservation of the coherence can still be seen from the fringes of the Wigner function.
The ability to transform a Gaussian state to a non-Gaussian state is also demonstrated, as
there are negative regions in the Wigner function of the states after addition operations.
The results for superposition states are in Fig. 6.5 and Fig. 6.6. The parameters used for
the uniform driving operations are the same as in Fig. 6.2. The purities of the initial and

added/subtracted states are in Tab. 6.2.

8'lv) &) &)
0.6 0.6 0.6 0.6
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Fig. 6.4 The Wigner function and phonon distribution of coherent state |a = 0.8) after 1, 2,
3 times of arithmetic addition operation.
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Tab. 6.2 The purities of the initial and added/subtracted states.

Number of Operations 0 1 2 3
la = 0.8) 0.99 0.93 0.93 0.80
|0) + |1) 0.99 0.92 0.81 0.71
12) +13) 0.73 0.65 0.75 -

S <
< | N | ‘ >
0.4 (0.4 N > 0.4 > 0.4
&/\/\ 02 e o2 \/\\Em,>s 02 o\’\g‘/ 3\\/ 02
~ ‘ 0 - ‘
€¥2€. ° (s N S ORI Y S LSS AL
= 3

>
12 >\

\2\;\/0\/1/2 A4\\,\/1\2 4 343\ \>2>3 L5 34?\/3{\%\3\4 5 6
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Fig. 6.5 The real component of the density matrix of superposition state [0)+|1) after 1, 2, 3
times of arithmetic addition operation.

12) + 13) $=(12) + 13)) ($7)*(12) + 13

Fig. 6.6 The real component of the density matrix of superposition state [2)+|3) after 1, 2 times
of arithmetic subtraction operation.

The method used to reconstruct the density matrices and Wigner functions of the
states is a maximume-likelihood estimation method introduced in [65]. The general idea
of this method is that we start with an initial guess of the density matrix of the system,
and try to correct its eigenvalues and eigenstates iteratively so that the results of certain
measurements performed on it are as close to the experiment results as possible. In this
experiment, a state to be analyzed is displaced along each of the 8 directions with distance

|| = 0.8, and the phonon distribution is measured after the displacement by fitting the
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blue sideband fluorescence signal, as shown in Fig. 6.7. And the 8 distributions serve as
the reference measurements to reconstruct the density matrix, from which the Wigner
function can then be calculated. The significant advantage of this method is that the
estimated density matrix is bound to be physical, otherwise the quantitative analysis such

as calculating the fidelity and purity can be very tricky for a non-physical estimation.

1 0 1
Re(a)

Fig. 6.7 The protocol to reconstruct the density matrix and the Wigner function.
The state is displaced to each of the 8 positions equally spaced on a circle in the phase space,
and then the phonon distribution is measured.

6.4 Projective Measurement of the Fock States

The common way to determine the phonon distribution of a state is to fit the
fluorescence signal of a sideband transition, as mentioned in Chapter 2, and it is not
projective. However, with the uniform driving operation, the projective measurement of
the Fock states can be implemented. As shown in Fig. 6.8, the procedure is very similar
to the arithmetic subtraction operation. Only this time if the detection stage yields bright,
we know that the state is projected to |0). Although the state is destroyed for sure after

the detection stage, due to the scattering of the photons, we can always generate the
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projected state after that, so effectively this is a successful projection. And if the detection
stage yields dark, which means the population of |0) is eliminated, we can repeat the
procedure to project the state to |1), |2), |3), etc. Intuitively, it is just like keep asking

“Is it this one?”” until we get answer “Yes”.

_@_ Go on to project to [1), [2), |3), ...

i /_/__/— —’&_ o0 —

_@_ - > _@_ Projected to |0)
Detection a _@_ ———  Bright y ¥

Fig. 6.8 The protocol of the projective measurement.
Note that phase coherence is not required, so the spin-echo stage can be removed to improve
the population transfer of the uniform driving operation.

Carrier
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Chapter 7 Deterministic Generation of
High NOON States of Phonons

7.1 Introduction

Entanglement is an essential resource for quantum computation and quantum
metrology. Classically, a parameter can be estimated more precisely by using more
particles in the measurement, and the reduction of the statistical error is proportional to
the square root of the particle number. In quantum metrology, the reduction factor can be
improved to be linearly proportional to the particle number, which is called the
Heisenberg limit, by using many-particle entangled states [66] [67] [68]. The ultimate
Heisenberg limit can be achieved with the NOON state for identical indistinguishable
bosons [66] [67], which can be understood by the superposition of two modes with only

one of them occupied by N bosons. The NOON state has the form [69]

1 iN
[WNoon?) = ﬁ(lN' 0) + e™N9s|0, N)), (7.1

where the relative phase ¢g between two modes is linearly proportional to N, showing
the Heisenberg scaling for parameter estimation through the interferometric measurement.
For photonic systems [70], experiments have demonstrated NOON states with particle
numbersupto N =5 [71][72][73] [74]. For distinguishable particles, up to 10 photons
[75] [76] [77] and 14 ions have been prepared into the closely-related GHZ states [78]
[79][80]. NOON states have also been demonstrated in nuclear spins (NMR) [81], atomic
spin waves [82], and microwave photons in superconducting systems [83].

On the other hand, the phonons have recently received increasing attention beyond
the standard role as the mediator of quantum operations between internal states of ions.
Phonons are proposed as the information carrier for quantum simulation [84] [85], Boson
sampling [12], and quantum computation with continuous variables [86]. Recently, the
NOON state with N = 2 has been generated through interference of phonons in each
localized harmonic potential [87]. The phonons in the trapped ion system can also be
manipulated through the interaction with the internal degree of freedom of an atom,
similar to manipulating photons through an atom in a cavity [88]. In this project, a generic

and deterministic scheme to generate phononic NOON states with arbitrary number of
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bosons N for any two vibrational modes of ions is developed and demonstrated.
Experimental generation of the NOON state with phonon numbers up to N =9 is
demonstrated and the Heisenberg scaling in the lower bound of the sensitivity in the phase

estimation is clearly observed.

7.2 Generation Sequence of the NOON State

The NOON state is generated in a composite-pulse way in two phonon modes
denoted as X mode and Y mode in this experiment. Taking the generation sequence of
N =3 as an example [Fig. 7.1], the state of the system is first initialize to
[{,nx = 0,ny = 0) by optical pumping and sideband cooling, with the first arrow being
the state of the spin and the latter two number being the phonon number of the X and Y
mode. By applying m-pulses of blue sideband and carrier transition successively, the state
is transferred to |!,1,1). Then a 7 /2-pulse is applied to change the state to |T,2,1) +
[{,1, 1). Finally, two composite-pulse operations followed by a blue sideband 7-pulse on

Y mode and a carrier m-pulse are performed to generate the state |{,3,0) + |{,0, 3).

|TO3 |T30

INVAN VANV
.09 \/ \a)( q,\/ 139

(¢

C
L, 0,0)

Fig. 7.1 The generation sequence of |3003) state.

Each node of the grid denotes a Fock state. The blue, red and green arrows indicate the blue
sideband, carrier and composite-pulse operations respectively. The numbers on the arrows
correspond to the order of the operations.
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The composite-pulse operation is inspired by Ref. [89] and is capable of driving -
transitions of blue sideband on two different Fock states, which have different Rabi
frequencies. One such operation consists of three pulses. Suppose we want to drive the
m -transition of |T,1,0) - [{,0,0) and |!,1,0) — |T,2,0) simultancously, we first
apply a m/2-pulse of |1,1,0) - |{,0,0) transition [Fig. 7.2(a)], which is also a 7/v/2-
pulse of |{,1,0) — |T,2,0) transition. Then we apply a m-pulse of |{,1,0) — |T,2,0)
transition witha /2 phase difference than the previous pulse [Fig. 7.2(b)], and the other
transition is not affected since the state is the eigenstate of this operation. Finally another
m/2-pulse of |T,1,0) - |{,0,0) transition is applied which concludes the composite-
pulse operation [Fig. 7.2(¢c)].

With the composite-pulse operation introduced in detail, a generalized description
of the generation sequence of arbitrary NOON states is in Tab. 7.1. The following terms
are defined for notation convenience: R denotes a carrier 7 -pulse, Rx(6,¢,n)
denotes a blue-sideband pulse of the X mode such that the transition between |{, ng, ny)
and |T,nx + 1,ny) hasrotation angle 8 and phase ¢, Ry(6,@,n) issimilarly defined,

Cu(a,b) = Ry(t/2,0,a), Ry(m,m/2,b),Ry(m/2,0,a) (7.2)

denotes a composite-pulse operation on mode M, and finally kx = [(N — 1)/2], ky =
N /2]. It requires a total number of 5N — 2 pulses to generate the NOON state from
[4,0,0).

(@) |10) (b) 110) (c) |110)

A

|+ 00) ' |¢760\> |1 00)

Fig. 7.2 The procedure of the composite-pulse operation.

The evolutions of the two transitions are shown simultaneously. (a) a m/2-pulse of |T,1,0) —
[4,0,0) transition. (b) a m-pulse of [I,1,0) = |T,2,0) transition with a m/2 phase
difference. (c) another 7/2-pulse of |T,1,0) - |{,0,0) transition.
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Tab. 7.1 The generation sequence of arbitrary NOON states.

Step Operation Final State

Start Initialization [{,0,0)

1 Rx(m,0,0), R [{,1,0)

2 Ry(m,0,1),R¢ |4,2,0)

ke Rx(m,0,kx — 1),Rc | 4, kx, 0)

ky +1 Ry(m,0,0), R |4, kx, 1)

N-1 Ry(m,0,ky — 1), Rc | L, kx, ky)

N Rx(m/2,0, ky) T, kx + 1, ky) + |1, ky, ky)

N+1 Cy(ky — 1, ky) N kx + 1, ky — 1) + [T, kg, ky + 1)

N +2 Cx(kx +1,kx —1) | |Tkx+2,ky—1)+ |, kx — L ky + 1)
N +3 Cy(ky —2,ky+1) | L kx+2,ky—2)+ T, kx — 1, ky + 2)
N + 4 Cx(kx +2,kx —2) | IT kx+3,ky —2)+ |, kx — 2, ky + 2)
N+ 2ky — 1| Cy(ky — kx, N —2) | |}, 2ky, ky — kx) +[T,1,N — 1)

N + 2ky Cx (2ky,0) IT, 2ky + 1, ky — ky) + |{,0,N — 1)
Forodd N, ky —kyx =0 and 2kxy =N —1

2N Ry(m,0,N —1),Rc | {,N,0) + [{,0,N)

Foreven N, ky —kx =1 and 2ky

=N-2

2N -1

Cy(0,N — 1)

|‘l’1N_ 110>+ |T101N>

2N

Rx(T[, 0, N — 1), RC

|lIN) 0) + |l' OJN)
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7.3 Fidelity and Quantum Fisher Information

If each phonon is considered to be a distinguishable particle that can either be in X
mode or in Y mode, the NOON state can be written as
|Wynoon) = %(IXXX LX)+ YYY .. Y)). (7.3)
Although this not a strict notation, you can immediately see the similarity between the
NOON states and the GHZ states of the spins,
1
VZ

Since the density matrix of an ideal GHZ state contains only four terms, the fidelity of

Wonz) = =TT - T) + [LLL - ). (7.4)

the GHZ state can be determined by measuring these terms [78]. The two diagonal terms
are just the populations of the “all up” and “all down” components, and are easy to
measure. While the two off-diagonal terms is evaluated by measuring the contrast of the
parity oscillation of the spins after a global 7/2-pulse with varying phase ¢. The parity

of the spins is defined as the expectation value of the parity operator,

Mg = 1_[ &i", (15)
i

According to this similarity, we should be able to determine the fidelity of the generated
NOON state in the same way, if it is possible to rotate the mode of each phonon to
something like a “X + e‘?Y” mode and then measure the parity of the phonons.

The parity operator of a phonon mode is defined as
M = explinatal. (7.6)
And the parity of a given state |W) is just the difference between the total population of

even and odd Fock states,

(PIAN) = > Py = Parya. an
i

So if we define the creation and annihilation operators for this “X + e*?Y” mode as the
linear combinations of those of X and Y mode,

1 . 1 .
al =—=(af +e?al), ap=-—=(ax+e ay), (78)

V2 V2

we should be able to derive the fidelity.
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For now, all the conclusions are just based on analogy and speculations, but they can
be justified theoretically in the following way.
Suppose the density matrix of the generated NOON state is

Pexp = Pnoise T Pyo|N,OXN, 0| + Py [0, NXO, N|

i i (7.9)
+e N ppoon N, 00, N| + e™% poy o0, NXN, 0],

where ppoise Stands for the irrelevant part of the density matrix and is independent of ¢.

Then the fidelity of the generated state to the ideal NOON state

1 .
Ry =—(|N,0) + eM*|0,N 7.10
|WNoon? \/i(l ) + e )) (7.10)
18
F= <lPNOON|pexp|leOON>

1

= E((N' 0|pexp|N' 0) + (O'Nlpexplo'N)
+e™?(N, 0|pexp|0, N) + e~ ?(0, N |pexp [N, 0)) (7.11)

1 o S
=5 [PN,O + Pyy + elN(® ¢)PN0,0N + e Nl ¢)pN0,0N]

1
=3 [P0 + Pon + 2pnoon cos N(g — ¢)].

In experiment, the phase can be calibrated so that ¢ = ¢ = 0. The fidelity is then
1
F= E(PN,O + Pon + 2pnoon)- (7.12)

The values of the two diagonal terms, Py, and Py, can be directly measured by
projective measurement, which will be discussed in detail in the next section. While for
the off-diagonal term pyg oy, in order to show its relation to the parity oscillation, we
first introduce Schwinger’s oscillator model of angular momentum,
.1
Jx=35 (afay + axay),
1

& Ata A At

Jy = -7 (Axay — Axdy), (7.13)
1

TS PP N

Jz = E (axax — aYaY).

Then the density matrix of the system can be expressed in the angular momentum basis
|] =N/2,Myz) as

pexp = PN,O U!])(]!Jl + PO,N Uf _]>Uf _jl

7.14
+onoon LI =J1 + prnoon!, =T + Phoise- 719
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First we consider the form of the parity operator in the X mode,

=

 afa i
Il = exp|irdjay] = exp ?(axax —atay + N)] = exp|in/| exp[in/z]. (7.15)
And then transform it into the “X + e¢*?Y” mode with the following operator,
= exp [——(axaye ¢ — dydve “”)]

= exp —"—-UkCOS¢ ]YSH1¢)] (7.16)

0t (@)N0(p) = e Z e?M@=/D|], M)(J, M.
M==]

The parity measured in the “X + e*?Y” mode is thus

(ﬁ(§0)> = Tr[pexp Ut (‘P)ﬁﬁ(ﬁﬂ)] = szO,ONemN cosN (¢ —m/2). (7.17)

Finally, we have the oscillation of the parity with phase ¢ and the contrast of this

oscillation is
Cp = 2ppno,on- (7.18)

Another closely related quantity is the quantum Fisher information Fy of the
NOON state, which provides the best possible precision on a parameter estimation given
by 1/ \/F_Q [90] [91], known as the Cramér-Rao bound. For N particles without
entanglement, the best possible measurement scales as 1/+/N but for the NOON state,
the lower bound of the precision scales as 1/N, the Heisenberg limit.

The quantum Fisher information of the NOON state can be calculated as follows.

First, we use the diagonal form of peyy,
Pexp = A [P (W1 ] + A2 [P ) (W2 | + proises (7.19)
where
) . )
¥,) = cos > IN,0) + eiNé¢s sin |0, N),
6 6
|¥,) = sin— |N 0) — eNés cosEIO N),
Prnoise = z Anlenxlpnl )
n>2

PN,0+P0,N =AI+AZ’
2pnoon = |41 — 42| sin @ = Cp.

(7.20)
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The definition of quantum Fisher information is written as
Fq = Tr|pexp (¢5)4%], (7.21)

where A is the symmetric logarithmic derivative operator defined by

apexp (¢S) _ 1

T% = E [Apexp (¢S) + Pexp ((»bS)A] (7.22)

With this definition, we can calculate the matrix elements of A in the basis expanded by

|¥:),
1
<qji| ap%(+¢>(j)S) lpi) =5 (G(Wi|A[9;) + 2:(¥i[ 4] w5),
(7.23)
_ 2 apexp(d)s) |
(Pilaf ;) Lt A lp"| ops | 1]

Note that all 4, and |¥,) with n > 2, which form p,ise, are independent of ¢g,

therefore the only non-zero terms are

A=A
(P, A|P,) = —(V,|A|¥,) = 1/11 — Az Nsin6. (7.24)
And hence
N2C}
Fq = (WA W) + A (W, |A%|Y,) = ————— (7.25)
Pyo+ Pon

7.4 [Experiment Protocol to Measure the Fidelity

From the theoretical analysis we derive the fidelity of the generated state [Equ.
(7.12)]. In experiment, the values of Py, and P,y are measured with an extended
version of the projective measurement protocol introduced in Chapter 6. The procedure
to measure P,y is shown in Fig. 7.3. First the fluorescence detection is performed, if it
yields dark, the qubit state is projected to |I) [Fig. 7.3(a)], which removes all the Fock
states associated with |T) due to the imperfections in generating the NOON state. Then
an arithmetic subtraction operation and a m-pulse of carrier transition is applied, which
serves as the uniform driving of red sideband transition in the X mode. The operation
transfers the Fock states with ny =1 from [{) to |T) [Fig. 7.3(b)]. If again no
fluorescence detected, these phonon states are eliminated [Fig. 7.3(c)]. Similarly for the

Y mode, by applying N times of successive arithmetic subtractions and then a detection
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stage, we can “roll” all the Fock states with ny < N to |T) and eliminate them if no
fluorescence is detected [Fig. 7.3(d)(e)]. These operations also transfer [I,0,N) to
[4,0,0). Finally one more subtraction operation and the detection stage are applied [Fig.
7.3(f)(g)]. If this time it yields bright, we know that the original state is projected to
[{,0, N). Altogether, the whole sequence is repeated for 10,000 times and the probability
of detecting fluorescence only at the last stage of detection is the population of the
[{,0,N) state, Pyy.In asimilar manner, Py, can be measured.

For the measurement of the parity in “X + ¢/Y” mode, the excitation of the blue
sideband is required, since the parity can be calculated from the phonon distribution, and
the distribution can be obtained by fitting the sideband fluorescence signal. Such
excitation is realized by exciting the blue sideband transition of both X and Y mode with

balanced strength and phase difference ¢,

A=Ay + Ay
Q Q
= X (55 - 5a) + 120 (%a) - 5-ay)
() .
—‘ °[a+( +ewa¢)-a—(ax+e—way)] (7.26)
lQO

—(6*al —6-ay),
Qo = \/_ 2nxQx = V2 210y Qy.
The experiment is performed with a single !”'Yb" ion, with the two radial modes as
X and Y mode. The trap frequencies of the two modes are wyx = (2m)3.2 MHz and
wy = (2m)2.6 MHz. And the Lamb-Dicke parameters are nx = 0.0538, ny = 0.0597.
The result of the parity oscillation measurement is in Fig. 7.4. The contrast of the parity

oscillation is obtained by fitting the oscillation with

(lI(p)) = Acoskep + Bsinkp +C,  Cp =+ A%+ B2, (7.27)
where A, B, C and k are fitting parameters. The result of the fidelity and the quantum

Fisher information is shown in Fig. 7.5. The scaling of the quantum Fisher information is

clearly below the classical limit and approach the quantum bound.
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Fig. 7.3 The procedure to measure Po,y.
The red sphere indicates the target state, |{,0,N). Ucar denote a m-pulse of the carrier
transition, and Ux_4, Uy_p denotes arithmetic subtraction operation(s).

76



Deterministic Generation of High NOON States of Phonons

(a) Phase ¢

N r T T T 1 CP k

0.93+0.02 1.01+0.01

0.53+0.04 9.04+0.18

2 0.92+0.02 2.01+0.01
3 0.88+0.02 2.98 +0.02
-4 - W 0.87 +0.02 4.03 +0.03
_;> 5 | W 0.81+0.03 4.98 +0.06
| “NS 0.75+0.03 6.07 +0.06
7| V' ) 0.77+0.03 7.10+0.09
0 50 100 150 0123456789
8 | VN o ) 0.59+0.02 7.80 +0.09

Fig. 7.4 The parity oscillations of the generated NOON states from N =1 to N = 9.

(a) The blue dots are experimental data, the red lines are fitting curves, and the green lines
indicate -1, 0, 1, for each parity oscillation. (b) The blue-sideband fluorescence signal with
¢ =0 for the NOON state of N =7 and its fitting. (c) The corresponding phonon
distribution B,.
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Fig. 7.5 The (a) fidelity and (b) quantum Fisher information of the generated NOON states.
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7.5 Optimization and Parameter Calibration

Generating NOON states is a quite demanding experiment, since there are many
details that can affect the fidelity of the generated state. The techniques used in
experiment to optimize the fidelity and calibrate the parameters are discussed in this
section.

For higher N, the generation sequence can take a quite long time. The decoherence
and thermalization effect is a problem, so the operations should be as fast as possible.
However, if the pulses to drive the phonon sideband transition are too strong, the off-
resonant coupling to the carrier and other transitions will reduce the fidelity. So the pulse-
shaping technique is implemented to address this conflict. Usually the pulses we use in

experiment have a rectangular envelope,

E(t) = Asin[(w — )t + ¢]. (7.28)

In this experiment, a sine-shaped envelope is used instead,
E(t) = A [nt] ' t+ i (2 t — T si zm]) + (7.29)
= —sin|—|sin|w g \2m sin [— Q|- .

The sine-shaped pulse has the advantage that during the application of the pulse, all the
off-resonant transitions are adiabatically following the Hamiltonian and remained as its
eigenstates. The phase term m28(2mt — T sin[2nt/T])/8 is used to compensate the
AC-Stark shift from various origins. The parameters of the pulse that require calibration
are the amplitude factor A, the resonant frequency w and the AC-Stark shift
compensation factor &, while the pulse duration T and phase ¢ is predetermined. The
value of A can be determined with rectangular pulses by observing the Rabi oscillation,
and the resonant frequency w can be measured using Ramsey method with rectangular
pulses. Then &, as the last parameter, can be determined by simply sweeping the value
of it with the sine-shaped pulses, just the same as measuring the driving frequency with
rectangular pulses. According to the numerical simulation, the fidelity reduction of the
generated state is 40% without pulse shaping, which is reduced to 4% with pulse shaping
for N =09.

Another problem is the phase ¢ of the generated state, the phase ¢ used in the
parity measurement needs to be aligned with ¢, so that all the parity measurements are
consistent with each other. However, the phase ¢ is difficult to determine theoretically,

since any small deviations in the resonant frequency of the phonon mode and various AC-
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Stark shift can affect this phase, and it also slowly drifts during the course of the data
taking. So a scheme to quickly determine and compensate this phase is developed. By
exciting the blue sideband transition of the “X + Y mode for a fixed duration with
varying ¢, the state of the spin has similar behavior as the parity oscillation. In [FIG.(a)]
is an example for N = 5, the color indicates the population of |T) with different phase
¢ and rotation angle 8 = Qqgt of the blue sideband transition. If we take 6 = 3.55m,
for a generated state with phase ¢ = 0, we should have an oscillation of P; as in
[FIG.(b)] with no phase shift. So the phase shift of this sine curve can be used to calibrate
the phase ¢ of the generated state by changing the phase of the m/2-pulse in the
generation sequence accordingly. For each N, there is an optimal value of 6 such that

the contrast of this oscillation is maximal.
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Fig. 7.6  The phase calibration scheme.

(a) the theoretical calculation of the dependency of Py on 8 and ¢. The red line indicates
the optimal duration, 8 = 3.55m, for N = 5. (b) Theoretical calculation of P; when ¢ is
scanned and 6 is set to the optimum. (¢) Experimental data of a typical phase scan for N = 5,
the fitting (red line) indicates that ¢ = 0.15mx.
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Chapter 8 Entanglement of 1"'Yb* Ion and *®Ba* Ion

8.1 Introduction

Increasing the number of ions in a single trap is one of the ways to scale up the
trapped-ion system. Recently most of the multi-ion research is done with multiple ions of
same species. However, trapping different species of ions in the same trap can have wider
applications and more advantages. It can be used for sympathetic cooling [92], creation
of entanglement through dissipation [93], or performing quantum non-demolition
measurements [94]. One experiment of our system [31] is to use the !"'Yb" ion to be the
qubit while the **Ba* ion to sympathetically cool down the '"'Yb" ion for minutes-level
operations. For other applications that involves quantum information transfer between the
ions, the entanglement operation for different species of ions is essential. Experimental
implementations of this kind of multi-species trapped-ion systems have been done with a
40Ca” ion and a **Ca™ ion [95], a °Be" ion and a »Mg" ion [96], and also quite recently a
7'Yb* ion and '**Ba* ion [97].

The M-S interaction introduced in Chapter 2 works for different species as well,
since only the coupling to the phonon sidebands is required and nothing else related to
the nature of the ions. But implementing the M-S interaction with different species is
more complicated than with same species and globally addressing laser beams, since the
coupling strengths and driving frequencies of both sidebands of both ions require
independent calibration, effectively doubling the number of control parameters.

In experiment, the axial breathing mode of the '”'Yb" ion and the '**Ba" ion is used
to mediate the M-S interaction. This mode has several advantages to other modes. First,
the coherence time of axial modes is longer than the radial modes because usually the
mechanical instability of the helical resonator will introduce fluctuations to the power of
the RF field. Second, because the ions move in the different direction in the breathing
mode, the background electric field noise is less likely to drive the motion. Hence the
heating rate of the breathing mode is much lower than the center of mass mode. Third,
the frequency of the breathing mode is higher, so the off-resonant coupling to the carrier
transition is lower. And finally, the Lamb-Dicke parameters for both ions are more

balanced for the breathing mode than the center of mass mode. According to Fig. 3.1 and
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Equ. 2.42, the ratios of the Lamb-Dicke parameters can be calculated,

Nyb,H Nyb,L

= 1.09,
NBa,H NBa,L

= 1.67. (8.1

And the mode with higher frequency, the breathing mode, has more balanced Lamb-Dicke
parameters.

The excitation of both sidebands of the !7'Yb" ion and the '**Ba* ion is realized by
controlling the signals driving the AOMs of the Raman beams. For the two 355 nm laser
beams and the two 532 nm laser beams, one of each is driven by a DDS that provides a
constant single frequency signal as the base frequency. While the control of the
parameters of all the quantum operations is done by changing the signals from two AWGs
that drive the other two Raman beams. So basically, implementing the M-S interaction is
to generate the following waveform with the two AWGs,

Ey(t) = AYR sin wyrt + AYB sin wygt,

8.2
Eg(t) = Aggsin wgrt + Apg Sin wggt, ¢.2)

with correct values of the parameters A and w. The subscripts of the terms in Equ. 8.2
indicate the purpose of the terms, with the first letter “Y” denoting the '7'Yb" ion, “B”
the **Ba’ ion, the second letter “B” the blue sideband and “R” the red sideband.

Ideally, the four frequencies can be determined by Ramsey measurements and the
four amplitudes by scanning the Rabi oscillations of the sideband transitions. However,
the real situation is way trickier. An ideal AOM has linear amplitude response and is
independent of the driving frequency, but a real AOM is not. Half the driving signal
amplitude for a real AOM is likely to yield a more than half driving strength of the ion,
and two different frequency components both with half the amplitude is yet another
different thing. As for the four frequency parameters, the cross-talk AC-Stark shift should
be taken into account, so the results of Ramsey measurements are not exactly the correct

values. Hence the calibration of these parameters requires carefully designed procedures.
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8.2 Parameter Calibration

8.2.1 Coarse Calibration

The calibration protocol starts by coarsely measuring the values of the resonant
frequencies w and Rabi frequencies () of the carrier, blue sideband and red sideband

transitions of both ions. The 12 parameters calibrated in this step are denoted as

Yb:  {Qyci, Qyri, Qyp1, Wyci, Wyr1, Wyp1)

(8.3)
Ba:  {Qpc1, Qpr1, QBB1, Wpc1, WpR1, WBB1)

with the second letter “C” in the subscripts indicating the carrier transition and the third
number “1” indicating the first step. All the calibrations in this step are performed with
maximum output amplitude of the AWGs, 4 = 1.

The six resonant frequencies are measured by scanning the frequencies and measure
the population of the |T) state. Then the measured spectrum is fitted with Gaussian
functions to determine the frequency of the peak. Note that the resonant frequencies of
the sideband transitions measured in this way contain the AC-Stark shift from the
coupling to the carrier transition. Then the Rabi frequencies can be determined simply by
fitting the Rabi oscillations. Only that the Rabi oscillations of the sideband transitions
should be fitted with the thermal state one,

i 1(p2
PO =A4D ) e cos 5%3 =

(8.4)

instead of the sine function. In Equ. 8.4, A, B are relaxation parameters, C 1is the fitting
parameters for the average phonon number of the thermal state, D = 1/(2Q) is the
fitting parameters for the m-time of the transition, s is the polarity of the signal, being 1
for blue sideband signal and -1 for red sideband signal, and 7 is the Lamb-Dicke

parameter of the phonon mode.

8.2.2 Fine Calibration

In this step, the Rabi frequencies and resonant frequencies of the sideband transitions
are more precisely calibrated. Because of the nonlinear response of the AOMs, the Rabi
frequencies should be calibrated in a way that is as close to the experiment situation as
possible. So the Rabi frequencies of the sideband transitions are calibrated again with half
the amplitude along with a far detuned frequency component such that the overall power

driving the AOMs is same as the experiment situation. Take the blue sideband of the
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7Yb* ion as an example, the waveform used to calibrate Qyg, is

1 1t
Ey(t) = ESin wypyt + ESiHE (SwYC1 - 3(UYB1), (8.5)

in which wyp, is the resonant frequency for this situation that should be measured in
advance with this waveform and the frequency (5wyc; — 3wyg1)/2 is roughly in the
middle between the red sideband of the breathing mode and the second order red sideband
of the center of mass mode, and is not able to drive any transition.

In the experiment situation, the driving strengths of the blue and red sideband
transitions are the same, so the resonant frequencies should be free of AS-Stark shift from
the carrier transition. Hence the Ramsey measurement is used to determine these
frequencies. The AC-Stark shift introduced by applying the Raman beams for the other
ion will be addressed in the next step of calibration. Usually the Ramsey measurement is
performed by scanning the duration of the gap between the two m/2 pulses and
observing the Ramsey fringes. But this way is not convenient for automated calibration.
Instead, the Ramsey measurement can be performed by scanning the frequency with fixed
duration of the gap. The waveform used to calibrate wygs is

sin wyg;t 0<t<typ
Ey(t) =10 tup <t<tgp+g |, (8.6)
—sin[wyp; (¢ — g) + wypzg] tup+ g <t <2typ+g
in which typ = m/(2Qyg,) and g is the duration of the gap. If the scan range of wygs
is [w. —m/g,w. + m/g], the measured curve is just one cycle of a sine curve with the
lowest point indicating the resonant frequency. The parameter g can be tuned to adjust
the precision of this measurement. A smaller value of g can be used first to roughly
determine the resonant frequency, and then a larger value of g is used to increase the
precision of the measurement. It would be helpful if the first scan is centered at the
theoretical prediction of the resonant frequency,
O%p:

+ .
2(wyp; — wyc1)

W = Wypq (8.7)

Moreover, this measurement is also insensitive to the distribution of the phonons in the
sense that all the Fock states are “brought back™ by the second pulse if the phase is

precisely matched.

83



Entanglement of !”'Yb* Ion and *®Ba* Ion

-2
-2 -1 0 1 2
Op/L

Fig. 8.1 The fidelity diagram of the Molmer-Serensen interaction with respect to the
detuning of the driving frequencies.

8.2.3 Final Calibration

The Rabi frequencies measured in the last step can be used as the final reference to

balance the amplitude of the driving signals,

A= , i =Y,B, = B,R,
T 20y, ' J (8.8)

Q = min(Qygz, Qypz, Qr2, UBB2)-
But there is one last problem for the resonant frequencies. When all the four Raman laser
beams are applied together, the 355 nm beams may introduce AC-Stark shift to the carrier
transition of the '*®*Ba* ion, and vice versa for the 532 nm beams and the '"'Yb" ion. A
straightforward solution is to apply half a cycle of the M-S interaction and maximize the
population of |[TT) by scanning the common detuning § of both sidebands for one of

the ions each time,

ij = ij3 + ay, ij = (‘)Bj3 + 6]3, ] = B, R. (8.9)
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However, a better way is to scan the common detuning & and differential detuning &y,

of both ions,

wyj = wyjz + 6¢c — bp, wgj = wgjz + 6¢ + p, j=B,R (8.10)
This can be justified with numerical simulations. Fig. 8.1 shows the population of |TT)
with varying &c and 6p. The Q is as defined in Equ. 8.8. If the initial values of §¢ and
Op are anywhere within the black ellipse, one scan of each is sufficient to get to the peak.

However, if the variables are 8y and dg, with which the figure is effectively rotated by

45°, it requires successive scans of each parameter to converge to the peak.

8.3 Fidelity of the Melmer-Serensen Interaction

When a quarter cycle of the M-S interaction is applied, the entangled state |TT) +
[4l) is generated from |ll). The fidelity of the generated state can be evaluated in the

same way as introduced in Chapter 7 [78],

1
F =§(PTT+PH+CP)' (8~11)

where Cp is the contrast of the parity oscillation. The parity of the spins is measured
after applying a global /2 pulse with varying phase ¢ on both ions and is defined as

[(p) = Py + Py — Py — Py (8.12)
A preliminary experiment result is shown in Fig. 8.2 with

Ph+P,=073+003  Cp=056+0.05 F=0.65=0.06. (8.13)

The unfeasible fidelity is mainly due to the fluctuations of the AC-Stark shift of the
38Ba* jon and the scattering of the Raman laser beams that slowly changes the

environment of the trap.
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Fig. 8.2 The experiment result of the Malmer-Serensen interaction.
(a) The time evolution of the system. (b) The parity oscillation.
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Chapter 9 Conclusion and Outlook

During my Ph.D. career, my effort on hardware mainly lies in developing the TTL
pulse sequencer and establishing the laser system for the '*®Ba* ion. The pulse sequencer
is implemented with a pipeline design and is capable of generating TTL pulse sequences
with both high timing resolution and long duration. It serves as the central scheduler of
the experiment flow. The laser system consists of diode lasers and fiber lasers to cool
down the ion, to initialize and detect its quantum state, and pulsed lasers to manipulate
both internal and motional quantum states of the ion.

While my study in theory is focused in developing and demonstrating control
protocols for phonons. A uniform driving operation of phonons is implemented with rapid
adiabatic passage scheme. The ability to perform arithmetic operations on phonon states
is demonstrated in experiment. A protocol to deterministically generate phononic NOON
states to arbitrary high number of phonons is also developed with composite pulse scheme.
This protocol is demonstrated in experiment up to N =9, and the fidelities of the
generated states are evaluated. Moreover, the entanglement operation of one '’'Yb* ion
and one *®Ba’ ion through Melmer-Serensen interaction is demonstrated in experiment.

As for the plan of near future, the upgrade of the pulse sequencer is now under
development by my colleagues. Currently the sequencer is only capable of generating the
sequence sequentially. But for experiments involving conditional operations, the
branching structure is required in the sequences. One way to implement complicated logic
structure yet maintaining the high timing resolution is to build the sequencer in new FPGA
chips with embedded microprocessors. The FPGA circuit still do the timing, while the
microprocessors control the behavior of the sequencer.

The coherence time and the fidelity of the Molmer-Serensen interaction still requires
improvement. One experiment that can be done immediately when the fidelity is feasible,

is the loophole-free verification of quantum contextuality.
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Appendix A

Appendix A Verilog Code of the Pulse Sequencer

A.1 Top Module

module PulseSequencer(clk, rxd, ptrg, out, led1, led2);

parameter TW = 40;
parameter OW = 32-1;
parameter RW = 24;

input  clk;

input  rxd;

input  ptrg;

output [OW : 0] out;
output ledl;

output led2;

wire led1 = ~hold;
wire c0 = clk;

wire [RW-1 : 0] rep;

wire [TW+OW : 0] seq;

wire ftrg;

wire hedrcv;

wire seqrev;

wire endrcv;

PS InputDispatcher #(TW, OW, RW, 10) INPD(c0, rxd, rep, seq, ftrg, hedrcv, seqrcv,

endrcv);

wire hold;
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wire init;

PS_Controller # RW) CTRL(c0, hedrcv, endrcv, rep, sfin, ptrg, ftrg, hold, init, led2);

wire [TW : 0] str;

wire [TW : 0] cry;

wire [OW : 0] Ivl;

wire sfin;

reg rst = 0;

always @ (posedge c0) rst <= hedrcv;

PS FIFO Assembly #(TW, OW) FIFO(c0, seq, tick, seqrcv, rst, str, cry, lvl, sfin);

wire tick;
Core Ticker RP #(TW, 1'b0) TIMER(cO, 1'bl1, {str[TW] | init, str[TW-1:0]}, cry, hold,

tick);

reg [OW : 0] out=0;
always @ (posedge c0) if (tick) out <= 1vl & {(OW+1){~init} };

endmodule

A.2 Input Dispatcher

module PS_InputDispatcher(clk, rxd, rep, seq, ftrg, hedrcv, seqrcv, endrcv);

parameter TW = 40;
parameter OW = 32-1;
parameter RW = 24;
parameter Byt = 10;

parameter Len = Byt*8-1;

input  clk;

input  rxd;
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output [RW-1 : 0] rep;
output [TW+OW : 0] seq;
output ftrg;

output hedrcv;

output seqrcv;

output endrcv;

wire [Len : 0] str;
wire tmp;

RS232 StringRecv #(Byt, 50, 1) SRCV(clk, rxd, str, tmp);

reg [RW-1 : 0] rep = 0;
always @ (posedge clk) if (t[2]) rep <= strf[RW-1:0];

reg ftrg = 0;
always @ (posedge clk) if (t[2]) ftrg <= str[Len-3];

reg [TW+OW : 0] seq = 0;
always @ (posedge clk) if (t[1]) seq <= str[TW+OW:0];

reg [2:0]t=0;

reg hedrcv = 0;

reg seqrev = 0;

reg endrcv = 0;

always @ (posedge clk)

begin
t <=str[Len:Len-2] & {3{tmp}};
{hedrcv, seqrcv, endrcv} <=t;

end

endmodule

module RS232 ByteRecv(clk, in, byt, recv, brk);

100



Appendix A

parameter Baud = 17;

parameter StopBit = 1;

parameter BaudCnt = Baud - 1;

input  clk;

input  in;

output [7: 0] byt;
output recv;

output brk;

reg idle = 1;
always @ (posedge clk) idle <= (idle & in) | recv;

wire tick;

Core_Ticker #(BaudCnt) BAUD(clk, 1'bl, idle, tick);

wire brk;

Core_Ticker #(BaudCnt<<20) RBRK(clk, idle, recv, brk);

wire smp;

Core_Ticker #((BaudCnt>>1)+2) SAMP(cIk, in, tick, smp);

reg cbt=0;
always @ (posedge clk) cbt <= (smp | cbt) & ~tick;

reg [7+StopBit : 0] tmp = 0;
wire [7 : 0] byt = tmp[7:0];
always @ (posedge clk) if (tick) tmp <= {cbt, tmp[7+StopBit:1]};

reg [8+StopBit : 0] cnt = 2;
always @ (posedge clk) if (tick) cnt <= {cnt, cnt[8+StopBit]};
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reg recv = 0;

always @ (posedge clk) recv <= tick & cnt[0];

endmodule

module RS232 StringRecv(clk, in, str, recv);

parameter Len = 1;
parameter BaudCnt = 159;
parameter StopBit = 1;

input  clk;
input  in;
output [Len*8-1: 0] str;

output recv;

wire [7 : 0] byt;
wire tick;
wire brk;

RS232 ByteRecv #(BaudCnt, StopBit) BRCV(clk, in, byt, tick, brk);

reg [Len*8-1 : 0] str = 0;
always @ (posedge clk) if (tick) str <= {str, byt};

reg [Len-1: 0] cnt = 2;
always @ (posedge clk) if (brk) cnt <= 2; else if (tick) cnt <= {cnt, cnt[Len-1]};

reg recv = 0;

always @ (posedge clk) recv <= tick & cnt[0];

endmodule
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A.3 Controller

module PS_Controller(clk, hedrcv, endrcyv, rep, sfin, ptrg, ftrg, hold, init, led);

parameter RW = 24;

input  clk;

input  hedrev;

input  endrcv;

input  [RW-1: 0] rep;
input  sfin;

input  ptrg;

input  ftrg;

output hold;

output init;

output led;

wire led = etrg;

reg [12 : 0] dly = 0;

reg init = 0;

always @ (posedge clk) dly <= {dly, endrcv};

always @ (posedge clk) if (endrcv) init <= 1; else if (dly[12]) init <= 0;

regtl =0;

regt2 =0;

reg trg = 0;

always (@ (posedge clk) tl <= ptrg;

always (@ (posedge clk) t2 <=t1;

always @ (posedge clk) trg <= (tl & ~t2) | ftrg;

reg etrg = 0;
always @ (posedge clk) if (dly[12]) etrg <= 1; else if (sfin & rcnt[RW] | hedrev) etrg <=
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0;

reg hold = 1;
always @ (posedge clk) if (sfin | hedrcv | dly[12]) hold <= 1; else if (dly[0] | trg & etrg)
hold <= 0;

reg [RW : 0] rent = {(RW+1){1'bl}};
always @ (posedge clk) if (dly[0]) rent <= {1'b0, rep} - 1; else if (sfin) rcnt <=rent - 1

endmodule

A4 FIFO Array

module PS_FIFO_Assembly(clk, din, reqr, reqw, rst, str, cry, Ivl, sfin);

parameter TW = 40;
parameter OW = 32-1;

input  clk;

input  [TW+OW : 0] din;
input  reqr;

input  reqw;

input  rst;

output [TW : 0] str;
output [TW : 0] cry;
output [OW : 0] Ivl;

output sfin;

reg [4 : 0] rpnt = 1 /* -pragma maxfan = 24 */;

reg[4:0] wpnt=1;

always @ (posedge clk or posedge rst) if (rst) rpnt <= 1; else if (reqr) rpnt <= {rpnt[3:0],
rpnt[4]};

always @ (posedge clk or posedge rst) if (rst) wpnt <= 1; else if (reqw) wpnt <=
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{wpnt[3:0], wpnt[4]};

wire [TW : 0] trO = {(TW+1){rpnt[0]} };

wire [TW : 0] trl = {(TW+1){rpnt[1]}};

wire [TW : 0] tr2 = {(TW+1){rpnt[2]}};

wire [TW : 0] tr3 = {(TW+1){rpnt[3]}};

wire [TW : 0] tr4 = {(TW-+1){rpnt[4]}};

reg [TW:0]tll =0; reg[TW:0]t21=0; reg[TW:0]t31=0;

reg [TW:0]t12=0; reg[TW:0]t22=0; reg[TW:0]t32=0;

reg [OW:0]t13=0; reg[OW:0]t23=0; reg[OW :0]t33=0;

reg [TW : 0] str=0;

reg [TW : 0] cry = 0;

reg [OW : 0] Ivl = 0;

always @ (posedge clk) if (reqr)

begin
t1l <=(st0 & tr0) | (stl & trl); 21 <=st2 & tr2; t31 <=(st3 & tr3) | (st4 & trd);
t12 <= (cr0 & tr0) | (crl & trl); 22 <=cr2 & tr2; t32 <=(cr3 & tr3) | (crd & trd);
t13 <=(Iv0 & tr0) | (Ivl & trl); 23 <=Iv2 & tr2; 33 <=(lv3 & tr3) | (Iv4 & tr4);
str<=tl1 | t21 | t31;
cry <=t12 | t22 | t32;
Ivl <=t13 | t23 | t33;

end

wire [TW : 0] stO;
wire [TW : 0] cr0;
wire [OW : 0] Iv0;
PS_FIFO #(TW, OW) QUEO(clk, din, reqr & rpnt[0], reqw & wpnt[0], rst, st0, cr0, 1v0);

wire [TW : 0] stl;
wire [TW : 0] crl;
wire [OW : 0] Iv1;
PS_FIFO #(TW, OW) QUEI(clk, din, reqr & rpnt[1], reqw & wpnt[1], rst, stl, crl, Ivl);
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wire [TW : 0] st2;
wire [TW : 0] cr2;
wire [OW : 0] Iv2;
PS _FIFO #(TW, OW) QUE2(clk, din, reqr & rpnt[2], reqw & wpnt[2], rst, st2, cr2, Iv2);

wire [TW : 0] st3;
wire [TW : 0] cr3;
wire [OW : 0] 1v3;
PS_FIFO #(TW, OW) QUE3(clk, din, reqr & rpnt[3], reqw & wpnt[3], rst, st3, cr3, 1Iv3);

wire [TW : 0] st4;

wire [TW : 0] cr4;

wire [OW : 0] 1v4;

PS_FIFO #(TW, OW) QUEA4(clk, din, reqr & rpnt[4], reqw & wpnt[4], rst, st4, cr4, 1v4,
sfin);

endmodule

module PS_FIFO(clk, din, reqr, reqw, rst, str, cry, Ivl, sfin);

‘include "Functions.v"

parameter TW = 40;
parameter OW = 32-1;

parameter [TW-1 : 0] Zero = Ticker Conv_Start(0, TW);

input  clk;
input  [TW+OW : 0] din;
input  reqr;
input  reqw;
input  rst;
output [TW : 0] str;
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output [TW : 0] cry;
output [OW : 0] Ivl;

output sfin;

reg dreq = 0;
always @ (posedge clk) dreq <= reqr;

reg tr = 0;

reg rclk = 0;

always @ (posedge clk) begin tr <= dreq; rclk <= dreq | tr; end

reg tw = 0;

reg welk = 0;

always @ (posedge clk) begin tw <= reqw; wclk <=reqw | tw; end

reg [10: 0] h=0;

reg [10:0]t=0;

reg [10: 0] £=0;

always @ (posedge rclk or posedge rst) if (rst) h <= 0; else if (h==f) h<=0; else h<=h
+1;

always @ (posedge wclk or posedge rst) if (rst) t <= 0; else t <=t + 1;

always @ (posedge wclk) f <=t;

reg [TW+OW : 0] ram [0 : 1535];
always @ (posedge wclk) ram[t] <= din;

reg [TW+OW : 0] tmp = 0;
always @ (posedge rclk) tmp <= ram[h];

wire [OW : 0] tlv = tmp[OW:0];

wire [TW : 0] tst = {(tmp[TW+OW:1+OW] == Zero), tmp[ TW+OW:1+OW]};
wire [TW : 0] ter;

TIC Converter #(TW) CONV(tst[ TW-1:0], tcr);
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reg [OW : 0] Ivl = 0;
reg [TW : 0] str=0;
reg [TW : 0] cry = 0;
always @ (posedge clk) if (dreq)
begin
vl <= tlv;
str <= tst;
cry <= tcr;

end

reg[1:0]d=0;
reg sfin = 0;
always @ (posedge clk)
begin
d<={d, (h==2)};
sfin <=d[0] & ~d[1];

end

endmodule

module TIC_Converter(str, cry);

parameter CntWid = 1;

parameter MaxWid = 48;

input  [CntWid-1 : 0] str;
output [CntWid : 0] cry;

wire [MaxWid-1 : 0] s = str;

wire [CntWid : 0] cry = c[CntWid : 0];

reg [MaxWid : 0] ¢ = 0;
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always

begin

c[00] <= 1'bl;

c[01] <= (s[00:0] == 00);
c[03] <= (5[02:0] == 00);
c[05] <= (5[04:0] == 02);
c[07] <= (s[06:0] == 04);
c[09] <= (s[08:0] == 06);
c[11] <= (s[10:0] == 00);
c[13] <= (s[12:0] == 10);
c[15] <= (s[14:0] == 12);
c[17] <= (s[16:0] == 14);
c[19] <= (s[18:0] == 08);
c[21] <= (s[20:0] == 18);
c[23] <= (s[22:0] == 20);
c[25] <= (s[24:0] == 22);
c[27] <= (s[26:0] == 16);
c[29] <= (s[28:0] == 26);
c[31] <= (s[30:0] == 28);
c[33] <= (s[32:0] == 30);
c[35] <= (s[34:0] == 24);
c[37] <= (s[36:0] == 02);
c[39] <= (s[38:0] == 36);
c[41] <= (s[40:0] == 38);
c[43] <= (s[42:0] == 32);
c[45] <= (s[44:0] == 42);
c[47] <= (s[46:0] == 44);

c[02] <=(s[01:0] == 01);
c[04] <= (s[03:0] == 03);
c[06] <= (s[05:0] == 01);
c[08] <= (s[07:0] == 07);
c[10] <= (s[09:0] == 05);
c[12] <= (s[11:0] == 11);
c[14] <= (s[13:0] == 09);
c[16] <= (s[15:0] == 15);
c[18] <=(s[17:0] == 13);
c[20] <= (s[19:0] == 03);
c[22] <=(s[21:0] == 17);
c[24] <= (s[23:0] == 23);
c[26] <= (s[25:0] == 21);
c[28] <= (s[27:0] == 27);
c[30] <= (5[29:0] == 25);
c[32] <=(s[31:0] == 31);
c[34] <= (s[33:0] == 29);
c[36] <= (s[35:0] == 19);
c[38] <= (s[37:0] == 33);
c[40] <= (s[39:0] == 39);
c[42] <= (s[41:0] == 37);
c[44] <= (s[43:0] == 43);
c[46] <= (s[45:0] ==41);
c[48] <= (s[47:0] == 47);,

end

endmodule
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A.5 Timer

module Core_Ticker RP(clk, trg, str, cry, set, tic);

parameter CntWid = 32;

parameter PwrTic = 1'bl;

input  clk;
input  trg;
input  [CntWid : 0] str;
mmput  [CntWid : 0] cry;
input  set;

output tic;

reg tic = PwrTic;
reg [CntWid-1 : 0] c0 = 0;
reg [CntWid : 0] c1 =0;

always @ (posedge clk)
if (tic | set)
begin
{tic, c0} <= str;
cl <=cry;
end
else if (trg)
begin
{tic, c0} <= {tic, c0} " cl;
cl <= {c0 & c1[CntWid-1 : 0], I'bl};

end

endmodule
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A.6 Common Modules and Functions

module Core_Ticker(clk, trg, set, tic);

‘include "Functions.v"

parameter Interval = 1;

parameter CntWid = GetSize(Interval);

parameter [CntWid : 0] Start = Ticker Conv_Start(Interval, CntWid);
parameter [CntWid : 0] Carry = Ticker Conv_Carry(Interval, CntWid);

input  clk;
input  trg;
input  set;
output tic;

reg tic = Start[CntWid] /* -pragma maxfan = 11 */;
reg [CntWid-1 : 0] c0 = Start[CntWid-1:0];
reg [CntWid : 0] cl = Carry;

always @ (posedge clk)
if (tic | set)
begin
{tic, c0} <= Start;
cl <= Carry;
end
else if (trg)
begin
{tic, c0} <= {tic, c0} " cl;
cl <= {c0 & c1[CntWid-1 : 0], I'bl};

end
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endmodule

function integer GetSize;

input [63 : 0] Num;

integer S;
begin
S=0;
while (Num > 0)
begin
S=S+1;

Num = Num >> 1;
end
if (S == 0) GetSize = 64; else GetSize = S;

end

endfunction

function [63 : 0] Ticker_Conv_Start;

input [63 : 0] Num;
input integer Wid;

integer i,
reg [63 : 0] tO;
reg [63 : 0] t1;

begin
t0 = 0;
tl1 =0;

Num = (1 << Wid) + Wid - Num;
for(i=0;i<=Wid;i=1+1)
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begin

tO[i] = Num[i];

tl[i] = (t0 <1i) | (t0 >= (1 <<i) +1);
end
Ticker Conv_Start =tl1;

end

endfunction

function [63 : 0] Ticker Conv_Carry;

input [63 : 0] Num;
input integer Wid;

integer i,
reg [63 : 0] t0;
reg [63 : 0] t1;

begin
t0=0;
tl =0;

Num = (1 << Wid) + Wid - Num;
for(i=0;1i<Wid;i=1+1)
begin

t0[1] = Num[i];

t1[i+1] = (t0 ==1);,
end
t1[0] = 1'bl;
Ticker Conv_Carry = tl;

end

endfunction
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