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摘 要

摘 要

量子拉比模型是描述二能级系统和玻色场之间的相互作用的模型, 也可以
说是描述光与物质相互作用的最简单、最基础的模型。毫无疑问，量子拉比模

型是在量子光学领域被理论和实验大量研究的著名模型。当光与物质的耦合强

度g与玻色场模式频率相比要小很多的情况下，量子拉比模型在旋转波近似后退

化到Jaynes- Cummings模型。离子阱系统以其高保真度的态制备、态测量以及精
密的态操纵而闻名。这些特征使离子阱系统成为进一步研究Jaynes- Cummings模
型和在旋转波近似无效下的量子拉比模型的理想的实验平台。在本论文中，我们

使用被囚禁在线性射频Paul阱中的单个171Yb+ 离子。我们把离子的两个超精细能
级当作自旋1/2系统, 并通过收集荧光来检测自旋状态。我们应用真空态测量的方
法来研究Jaynes-Cummings模型在相空间中的动力学，通过Q函数状态演化。我们

在相空间中观察到了期间初始相干态高斯峰的分裂和围绕原点的旋转。我们通过

最小二乘法，重构了密度矩阵，并得到了相应的Wigner函数，其负值，表明了非
经典态的出现。此外，我们通过失谐双边带激光模拟了不同耦合强度下的量子拉

比模型.其所展示的量子模拟的可调控性使我们能够在实验中详细的研究量子拉比
模型，如发生在超强耦合 (0.1 < g/ωm)和深强耦合 (g/ωm > 1)情况下的广泛的难
以观测到的现象。在本文中，我们绝热地制备量子拉比模型的基态，在深强耦合

状态下，我们检测到玻色场和二能级系统之间的量子纠缠。此外，当耦合强度增

加时，我们观察到旋转波近似的失效，以及在达到深强耦合状态时，我们观测到

了声子波包的周期性来回移动。

关键词：离子阱；量子光学； Jaynes-Cummings model；量子拉比模型；真空态测
量；绝热
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Abstract

Abstract

The quantum Rabi model(QRM) is arguably one of the most fundamental models
describing quantum light-matter interaction, which consists a quantum two-level system
and a bosonic field. It is a famous model that has been theoretically and experimentally
studied in the context of quantum optics. When the coupling strength g is much smaller
compared to that of the bosonic field mode frequency ωm, it can reduce to the Jaynes-
Cummings model(JCM) after the rotating wave approximation. The trapped ion system
are well known for the high fidelity state preparation, state read-out and more importantly
the precise and versatility control of the ion-laser interaction. These features render the
trapped ion system a ideal platform to further study the JCM and QRM, when the rotating
wave approximation is not valid. In this thesis, we use a single 171Yb+ ion trapped in a
linear radio-frequency Paul trap. Two of the hyperfine states of the ion serve as a spin
1/2 system. We detect the spin state by collecting state-dependent fluorescence. We
apply the capability of the vacuum measurement to study the JCM dynamics. During
the JCM dynamics, the Gaussian peak of the initial coherent state bifurcates and rotates
around the origin of phase space. They merge at the so-called revival time at the other
side of phase space. We reconstruct the density matrix directly from the Q function
with the least square method and obtain the corresponding Wigner function, where we
observe the emergence of non-classical state by the negativity. Further more, We simulate
the QRM in all coupling regimes by means of detuned bichromatic sideband excitations.
The controllability of the demonstrated quantum simulator enables us to experimentally
explore the QRM in detail, including a wide range of otherwise unaccessible phenomena,
such as those happening in the ultrastrong (g/ωm > 0.1) and deep strong (g/ωm > 1)
coupling regimes. In this project, we adiabatically generate the ground state of the QRM
in the deep strong coupling regime, where we detect the nontrivial entanglement between
the bosonic fieldmode and the two-level system. Moreover, we experimentally observe the
breakdown of the rotating-wave approximation when the coupling strength is increased,
and the generation of phonon wave packets that bounce back and forth when the coupling
strength reaches the deep strong coupling regime.

Key words: Trapped ion; Quantum optics; Jaynes-Cummings model; Quantum Rabi
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第1章 Introduction

1.1 Quantum optics with trapped ions

The interaction between the electromagnetic field and matter in atomic system, is
arguably one of the most fundamental physical processes. In recent decades, the study
of light-matter interaction has achieved a variety of technological applications and novel
scientific results. Indeed, the modern research field of quantum optics is based on the
quantum theories of quantum coherence proposaled by Glauber [1]. Since then, the ability
and interest to pursue controllable quantum systems have been growing dramatically,
until reaching the accuracy needed to manipulate light-matter interactions at the single-
photon or single atom level. This remarkable achievement was made possible via the
confinement of atoms through the trapped ion system or confinement of the light in the
cavity quantum electrodynamics (cavity QED) system. In this context, the concept of
light-matter interaction has extended its meaning to that stated as the interaction between
bosonic fields (light) and a two-level system (matter), which come up with the two
famous model quantum Rabi model [2] and Jaynes- Cummings model [3]. The Jaynes-
Cummings model is naturally derived from the quantum Rabi model after the rotating
wave approximation when the coupling strength is much smaller compared to that of the
mode frequency.In fact, the ability to control such interactions was demonstrated in the
seminal works of Serge Haroche and David Wineland. In Serge Haroche’s seminal work,
a stream of atoms controls the field in a microwave cavity [4]. In David Wineland’s work,
the interaction between vibrations of the harmonic oscillator and electronic internal states
of atoms (ions) in a harmonic trap is precisely controlled by means of optical lasers [5].
Both of them have won the Nobel prize in 2012 due to their amazing works.

Here, we particularly focus on the trapped system. In a trapped ion system, the nature
optical or hyperfine states of the ion serve as the qubit, while the bosonic mode is given
by the harmonic oscillations inside the trap. To be more specific, we use the two of the
hyperfine states of 171Yb+ as the internal electric state. The motional mode is cooled
down to its ground state via Raman sideband cooling [6]. The interaction between internal
electronic states and the external motion degree of freedom can be controlled by Raman
laser drivings with precise and full control of intensity and pulse duration. Measurement
of the internal electronic state is done via state-dependent fluorescence techniques, while
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other observables such as bosonic mode population can be obtained in an indirect way,
mapping the expected value to internal state transitions.

The trapped ions system are well known for the high fidelity achieved in state prepara-
tion, read-out, and control with the development of laser technology and optical detection
(high N.A lens) techniques. Single-qubit gates can be implemented by addressing elec-
tronic transitions with laser drivings, while two-photon C-NOT gates [7] are realized using
the motional degrees of freedom as a quantum bus to mediate interactions between distant
ions. These features enable trapped ions as a promising platform not only for quantum
computation but also for the implementation of quantum simulations [8–10].

Of specific interest for the present thesis is the possibility of using a single trapped
ion to study the Jaynes Cummings model in the phase space via Q function and simulation
of the quantum Rabi model in the regime where coupling strength is comparable or even
larger compare to the bosonic mode frequency.

1.2 Quantum harmonic oscillator in phase space

In this section, I will introduce the quantum harmonic oscillator (treated as phonon),
which is the essential part as the motional degree of freedom in trapped ion system,
then I will talk about some important operators that are closely related to the harmonic
oscillator. I will introduce the Husimi Q function and Wigner function, which equivalent
to the density matrix to describe a state in phase space.

1.2.1 Quantum harmonic oscillator

The total the total of a particle with mass m and velocity v in a harmonic potential
V = m

2 ω
2 x̂2 has the form as

Ĥ =
p̂2

2m
+

m
2
ω2 x̂2. (1-1)

Here x̂ and p̂ are the position operator and momentum operator, respectively. We resort
to the annihilation operator â and creation operator â† defined as

â =
√

mω
2~
(x̂ + i

1
mω

p̂),

2
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ℏω
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图 1.1 Quantum harmonic oscillator and its wave-function.

â† =
√

mω
2~
(x̂ − i

1
mω

p̂). (1-2)

We solve these equations. 1-2 and obtain

x̂ =

√
~

2mω
(â† + â),

p̂ = i

√
~mω

2
(â† − â). (1-3)

It is straightforward to rewritten the total Hamiltonian as

Ĥ = ~ω(N̂ +
1
2
), (1-4)

where we define N̂ = â†â as the number operator. Using the commutator relation
[x̂, p̂] = i~, and without going into many mathematical details, we list the form of its
energy eigenfunctions and eigenvalues as

Ψn(x) =
1
√

2nn!
.(

mω
π~
)1/4.exp(−

mωx2

2~
)Hn(

√
mω
~

x),

En = ~ω(N̂ +
1
2
), (1-5)

where Hn(x) are the Hermite polynomials. We plot the first several energy levels and its
corresponding wave-functions in Fig. 1.1. We clearly observe that the wave-function of
odd n and even n belong to the different parities.
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1.2.2 Displacement operator and squeeze operator

Any operator in the quantum phase space could be constructed from the basic two
operators â and â†. Considering a one-dimensional harmonic oscillator, the basic two
operators are displacement operator and the squeeze operator. I will first talk about
displacement operator and then move to the squeeze operator.

The displacement operator is defined as

D̂(λ) = eλâ†−λ∗ â, (1-6)

where λ = |λ |eiφ is a complex number. It is easy to prove that the displacement operator
is an unitary operator, which satisfies D̂†D̂ = 1̂. In this context, if we define Â = λâ† and
B̂ = λ∗â, we calculate the commutator of Â and B̂,

[Â, B̂] = [λâ†, λ∗â]

= λλ∗[â†, â]

= −|λ |2. (1-7)

We have the relations [A, [A, B]] = [B, [A, B]] = 0, then we can use the Baker-Hausdorff
theorem, and immediately get the displacement operator in the following form

D̂(λ) = e−
λ2
2 eλâ†eλ∗ â. (1-8)

Without further mathematical calculation, I list the main two properties
1. D̂†(λ) = D̂−1(λ) = D̂(−λ)

2. D̂(λ1)D̂(λ2) = D̂(λ1 + λ2)eiIm(λ1λ
∗
2)

With the displacement operator, we can naturally generate the coherent state |α〉 by
displacing the vacuum state |0〉, which we shows in Fig. 1.2(a). The coherent state |α〉
can further expanded in the Fock state basis as

|α〉 = e−
λ2
2

+∝∑
i=0

αn

√
n!
|n〉 (1-9)

Subsequently, we can calculate the probability distribution of the phonons in a coherent
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图 1.2 Displacement and squeezing-displacement of the vacuum state |0〉 in phase space.

state, given by

p(n) = |〈n|α〉|2

=
|α |2ne−|α |2

n!

=
|〈n〉|ne−|α |2

n!
. (1-10)

Here 〈n〉 is the average phonon of the system, and thus the coherent state distribution
follows Poisson distribution.

The squeeze operator is defined as

Ŝ(ζ) = e−
1
2 (ζ â

†2−ζ∗ â2), (1-11)

where ζ = |r |eiθ . Ŝ is a unitary operator and therefore obeys Ŝ(ζ)Ŝ†(ζ) = Ŝ†(ζ)Ŝ(ζ) = 1̂.
The squeeze operator is widely used in quantum optics and can operate on any state.
For instance, when acting on the vacuum state |0〉, the squeezing operator produces the
squeezed vacuum state |ζ〉. The squeezing operator can also act on coherent states |α〉 and
produce squeezed coherent states |ζ, α〉 shown in Fig. 1.2(b). We note that the squeezing
operator is not commutate with the displacement operator. The squeezed vacuum state |ζ〉,
which is squeezed vacuum |0〉 in one direction, while stretched in the other direction. The
ratio between this two direction is determined by the |r |. As seen from the Hamiltonian,
the Squeeze operator involves two phonons creation or annihilation, which does not change
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the state’s parity. For the squeezed vacuum state, here we list the phonon distributions as

p2n = |〈2n|ζ〉|2

=
(2n)!

22n(n!)2
tanh2n r
cosh r

,

p2n+1 = 0. (1-12)

1.2.3 The Husimi-Q function

In the quantum optics, to describe a state, their are mainly three functions, which are
equivalent to the densitymatrix, namely the P function, the HusimiQ function andWigner
function W . All of them actually are the Fourier transforms of characteristic functions,
linked to the quantum average of the displacement operator as mentioned above, in a state
described by the density matrix ρ [11,12]. Here for the sake of this these, we focus on the
Husimi Q function and Wigner function.

When operators appear as arguments of a function, we must take their ordering into
consideration. Here we consider the two cases of characteristic function based on the
different order of â and â†, where on the anti-normal order the â always on the left and
the symmetric order with all products of operators are symmetry

Cρ
an(λ) = Tr[ρe−λ∗âeλâ†],

Cρ
s (λ) = 〈D̂

†(λ)〉 = Tr[ρeλâ†−λ∗â] (1-13)

The corresponding Q function and Wigner W function are two dimensional Fourier
transforms of these two characteristic functions, respectively. I will first talk about the Q

function and then move to the Wigner function W .
The Q function is the Fourier transform of the anti-normal-order characteristic func-

tion with the formula

Qρ(α) =
1
π2

ˆ
d2λeαλ∗−α∗λCρ

an(λ). (1-14)

With the help of the close relationship

1
π

ˆ
d2β = 1̂, (1-15)
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and two-dimensional Dirac δ function

δ(λ) =
1
π

ˆ
d2αeαλ∗−α∗λ. (1-16)

We derive it to a simplified version of Q function

Q(α) =
1
π
〈α |ρ|α〉. (1-17)

This Eq. (1-17) can be further extended to the following form

Q(α) =
1
π
〈0|D̂(−α)ρD̂(α)|0〉. (1-18)

In this case, the Q function is equal to the vacuum component in the field displaced by

n=0

n=1

n=2

-4 -2 0 2 4
0

0.1

0.2

0.3

图 1.3 The Q function of the Fock states |n = 0, 1, 2〉.

−α in phase space. For this vacuum measurement method, we will discuss in detail in
Chapter 4. As a simple example, we plot the Q function for the Fock states |n = 0, 1, 2〉,
respectively, as shown in Fig. 1.3, and we clearly see the lower bound of Q function is
zero, while the upper bound is 1

π
. The Q function is suitable to observe dynamic evolution

in phase space, and we extend this study in Chapter 4. However, as for the non-classical
feature, a Wigner function is much helpful due to its sensitivity to the interference, which
I will talk in the following part.
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1.2.4 The Wigner function

The W function is the Fourier transform of the system-order characteristic function
with formula

Wρ(α) =
1
π2

ˆ
d2λeαλ∗−α∗λCρ

s (λ). (1-19)

Omitting the relative complicated calculation, we directly give another equivalent expres-
sion (which used frequently in the experiments to construct the Wigner function)

W(α) =
2
π

Tr[D̂(−α)ρD̂(α)P̂]. (1-20)

The Wigner function is proportional to the expectation value of P̂ in the state obtained
by displacing the state in phase space by the amount by −α. Here the P̂ is the phonon
parity operator with eigenvalues ±1, so the Wigner function is bounded between −2

π
and

2
π
. We particularly point out, the negativity of the Wigner function, demonstrates it is a

non-classical state. Here, to give an impression, we plot the results of Wigner function
for the Fock states |n = 0, 1, 2〉 respectively shown in Fig. 1.4. We see the negativity in
the Fock states |n = 1〉 and |n = 2〉, and their difference is quite obvious.

n=0

n=1

n=2

-4 -2 0 2 4

-0.6

-0.3

0

0.3

0.6

图 1.4 The Wigner function of the Fock states |n = 0, 1, 2〉.
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1.3 Thesis organization

The thesis is organized as follows.
Chapter 2: I will first introduce the basic principle of an ion trap, then I will focus

on the Ytterbium ion, where I will discuss the ionization, cooling, optical pumping and
state-dependent fluorescence detection of the trapped ion. I will show the experimental
setup relates to diode lasers in this chapter.

Chapter 3: I will introduce the basic ion-laser interaction. Firstly, I will begin with
a simple two-level system atom-laser interaction. Then I will move to the three-level
Λ-type atom-laser interaction, where I will resort to the effective Hamiltonian theory
to derive the basic Hamiltonian. Then I will discuss the experimental part, where we
engineer the Hamiltonian with Raman laser system. In this experimental part, I focus
on the laser configuration, the optimization of our system, the control system, and the
general experimental procedures. I will show some experimental results that we observed.
Finally, I will discuss two imperfections of our motional degree of freedom, the motional
heating rate and dephasing that relate to the motional coherence time.

Chapter 4: I will present the study of the Jaynes-Cummings model. During the
JCM dynamics, we observe the Gaussian peak of the initial coherent state bifurcates and
rotates around the origin of phase space. They merge at the so-called revival time at the
other side of phase space. We reconstruct the density matrix directly from the Q function
with the least square method and obtain the corresponding Wigner function, where we
observe the non-classical state emergence by the negativity.

Chapter 5: I will present the simulation of quantum Rabi model, where we access
deep strong coupling regime and have adiabatically prepared its ground state in this regime.
For the ground state, we observe the property of parity conservation and entanglement.

Chapter 6: The summary and outlook.

9
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第2章 Ytterbium ion

In this chapter, I briefly talk about the principle of the Paul trap, then move to the
171Yb+ ion part. In the 171Yb+ ion part, I talk about the hyperfine clock state, which is
mathematically equivalent to a pseudo spin 1/2 system. After that, I will discuss the
loading of 171Yb+ , and diode lasers that needed to cool, repump, initialize and detect the
internal states of an ion.

2.1 The Paul trap

It was proved by Earnshaw’s theorem that a charge acted on by electrostatic forces
cannot rest in stable equilibrium in an electrical field. Thus, it is impossible to confine an
ion using only an electric static field. This theorem is based on the fact that an electric
field has no divergence in a region without any free charge density distribution, ®∇. ®E = 0.
Zero divergence means there are no sources or sinks in that region of interest, and all
the field lines come in must come out. Similarly, the Gauss’ theorem also shows that the
integral of the normal component of the ®E over the boundary surface equals the volume
of the ®∇. ®E, which is zero

˛
®E .dS =

ˆ ˆ ˆ
®∇. ®Ed3r = 0. (2-1)

In order to get the zero value, the ®E .dS should have different signs over all the surface.
Where ®E .dS < 0, the electric field lines point inward and a positively charged ion will
feel the force to push it back to the volume, while for the surface where ®E .dS > 0, the ion
escapes along that direction. The argument means that not all the field lines are directed
inward for a positive charged ion. Thus any deviation from the equilibrium position will
accelerate the ion away. That position can be described as a saddle point of the electrostatic
potential.

In the work of the trapped ion system, we apply either an oscillating electric (AC)
field (Paul traps [13,14]) or a static magnetic field (Penning traps [15]) together with static
electric field to create an effective time-averaged potential to confine the ion. In our work,
we use a radio-frequency (RF) Paul trap for the experiments.
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2.1.1 Principle of ion trap

As shown in Fig. 2.1, the four rods lie parallel to the z-axis and at the square corner
is the xy-plane. The two opposite electrodes are connected to each other. The rods of the
blue pair are applied the RF signal with V = V0 cos(Ωrft), while the rods of black pair are
connected to the ground. The distance between the two pairs is 2r0, which is much larger
than the distance between two needles. The potential of the varying field satisfies the
Laplace equation ∇2φ = 0 (note ®∇. ®E = 0 and ®E = −∇), thus, we can reasonably assume
the potential that close to the z axis(z = 0) has the general form (with the symmetry
voltage in the electrodes considered)

RF

RF

DC

GND

DC

GND
 z axis

RF

RF

GND

GND

x axisy axis

2r
0

图 2.1 Schematic of four-rod trap. The two blue rods are the RF electric connect with a varying
field V = V0 cos(Ωrft), while two black rods are grounded, the z axis is along the needle direction,
where DC voltage is connected, the xy-plane is clearly shown as in the side view. The z axis is
parallel to the needle direction. The distance between the pairs of electric rod and needle are 2r0

and 2d0, respectively.

φ = a0 + a2(x2 − y2). (2-2)

The coefficients are determined by the boundary conditions

φ = φ0 +
V0

2
cos(Ωrft), x = ±r0, y = 0, (2-3)

φ = φ0 −
V0

2
cos(Ωrft), y = ±r0, x = 0. (2-4)

Thus, the potential can be simplified to

φ = φ0 +
V0

r2
0

cos(Ωrft)(x2 − y2). (2-5)
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This potential has a saddle point in the xy-plane in the middle of the electrodes, a potential
hill in one direction and a valley in the other direction. From the gradient of the potential,
we have the electric field

®E = E0(®r) cos(Ωrft)

= −
V0

r2
0

cos(Ωrft)(xêx − yêy). (2-6)

In the following part, we focus on only x-direction(it is symmetric with y-direction). The
equation for the x-direction is described as

m
d2x
d2t
= −

eV0

r2
0

cos(Ωrft)x. (2-7)

By changing the variable τ = Ωrf t
2 , we derive the equation as

d2x
d2τ
= −

4eV0

mΩ2
rfr

2
0

cos(2τ)x. (2-8)

Eq. (2-8) is a simplified version of the Mathieu equation

d2x
d2τ
+ (ax − 2qx cos(2τ))x = 0, (2-9)

with ax = 0. Here, we define the parameters that in front of the oscillating term cos(2τ)
as 2qx follow the convention. The qx has the form

qx =
2eV0

Ω2
rfmr2

0
. (2-10)

Here, I omit many mathematical details and directly list the solution of this Mathieu
equation as

x = x0 cos(
qxτ
√

2
)(1 +

qx

2
cos(2τ)). (2-11)

Here, the qx and ax are usually less than 1 to validate the solution. From the Eq.( 2-10),
we notice that the motion part of the ion is composed by two parts. One part describes
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the oscillation with angular frequency ωx = qxτ/(
√

2t) = qxΩrf

2
√

2
and amplitude x0, another

part describes the motion with angular frequency ωmicro = 2τ/t and amplitude x0
qx
2 .

Remember that qx � 1, the motion can be understood as harmonic oscillation together
with a small fast oscillation at the drive frequency Ωrf. This fast oscillation part is the
micromotion. We insert the qx into ωx and consider the symmetry situation of the y-axis,
then we get the corresponding angular frequency as

ωx = ωy =
qxΩrf

2
√

2
=

eV0
√

2mΩrfr2
0

. (2-12)

This ωx,y is also called the secular frequency. Note that in this thesis the trap frequency
or radial trap frequency basically means angular frequency. Since I will use frequency
or angular frequency here and there in this thesis, I make s statement here. If I do not
give the exact value, each understand as frequency or angular frequency will not influence
our understanding of the thesis, while if I give the value, as long as we have a bracket
with 2π in front of the value, it represents a angular frequency, other situation, we can
understand as frequency. In the above discussion, we ignore the small RF leakage in the
z-direction due to the endcaps. This leakage drives the motion along the z direction to
be approximated as a harmonic oscillator with secular frequency ωz, which is much less
than the ωx,y. So far, for all the experiments present in this thesis, we only deal with the
corresponding x − y motional mode ωx,y.

Note that the micromotion could heavily reduce the ion’s lifetime. Therefore, before
doing any experiment, we usually minimize the micromotion effects. I will discuss this
part in detail in Chapter 3.

2.1.2 The helical resonator

In the trapped ion experiment, the high-speed manipulation of the external phonon
degree of freedom and the internal electric state freedom requires high secular frequency.
In our trapped ion system, since the Raman laser configuration perpendicular to the z

axis, which limits our coupling between the laser and ion in the radial mode that is ωx,y

(We also call it radial trap frequency). Generally, we run the experiments with radial trap
frequency around (2π) 2.5 MHz. Note here if it reprensent the angular frequency, I will
put a 2π in a braket in front of the frequency value, otherwise it represent the frequency.

The oscillating field V0 is large enough (V0 more than 500 V) to reach a high trap
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frequency. However, the commercial RF source cannot reach such high voltage even
after the amplification, and the reflection signal may destroy the amplifier. To amplify
the voltage, we employ the helical resonator [16], which shown as in Fig. 2.2. In this
configuration, the voltage on the trap electrodes is given by V0 = ε

√
P ∗Q, where ε is

determined by the geometry of the helical resonator, P is the input power of RF and Q

is the quality factor of the resonator. Our helical resonator has a resonance frequency of
25.8MHz, Q = 200. At driven power P = 3W , the radial trap frequency reach around
(2π)3 MHz as shown in Fig. 2.2.

Here, we measure the trap frequency by applying another external modulation RF
source. When we have a single ion in the trap, we apply the external modulation field
and scan the modulation frequency. When the modulation frequency equals to the trap
frequency, we actually displace the ion in the phase space. From the charge-coupled
device (CCD), we clearly observe the stretch of the ion, this demonstrates that resonance
frequency is the trap frequency. When the trap power is larger, it confines the ion more
tightly, we need to increase the modulation amplitude accordingly to see the displacement.
The relationship between the radial trap frequency and its drive power is shown in Fig.
2.2, which follows the square root relation. We particularly point out that we remove the
low pass filter (∼ kHz) for this part of experiments, in this case, the modulation RF source
can pass the circuit and enter into the blades of our trap. One of the advantages of this
trap frequency measurement is that it gives us the sense of the relationship between the
trap frequency and its drive power, which benefits us a lot to distinguish the sidebands of
Raman spectroscopy.

RF input RF output to trap

图 2.2 Schematic of helical resonator to show the inductive coupling between the RF input
antenna and the trap electrodes.
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图 2.3 Relationship between the radial trap frequency and its drive power.

2.2 Trapping 171Yb+

2.2.1 Loading 174Yb+

During the Ph.D. carrier, I have worked in two different types of Paul trap, one is
the four rods trap, the other one is the five segments blade trap. Here, I focus on the
blade trap, which I have spent most of my effort. The blade trap is shown in Fig. 2.4.
We particularly point out here for the sake of avoiding unwanted scattering, we design
as shown in the geometry structure that the vertical distance between two blades is about
450 µm, which is smaller than that of the horizontal distance (550 µm). We carefully
assemble the trap and put it into the chamber, bake the whole system about two weeks
in the temperature around 200◦C. If everything works smoothly, the chamber can reach
the ultra-high vacuum less than 10−10 Torr, which is suitable for the future experiments.
More details about the vacuum part should go to the my colleague’s thesis [17]. Once we
verify the chamber’s vacuum, our work shift to the installation of the helical resonator, the
connection of DC voltage to the segments of the blade, the alignment of the diode laser
system, and the installation of image and photomultiplier tube (PMT) system.

The installation of helical resonator system

The installation of the helical resonator is a great work requires lots of experience.
According to the reference [18], we design the parameters (structure) of the helical resonator,
while to achieve higher Q factor, we test the helical resonator by trial and error and iterate
several times to get proper parameters. Note that we must clean the copper before
assembling. The diameter of the copper tube and coil is 10 cm, and 5 cm, respectively.
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NA=0.6

(a) (b)

(c) (d)

图 2.4 The five segments blade trap. Panel (a) shows the Inventor design of the blade trap. Here
we show the basic sizes of our blade trap. Panel (b) shows the side view of the blade trap is a
rectangle, with width 550 µm height 450 µm. This design is to to reduce the scattering from the
blade.We use the high N.A=0.6 lens to collect the photons emitted by the ion. Panel (c) shows
the specific parameter of the blade. The width of each segment in the DC blade is about 250
µm, and the distance between each segment is design to be approximately 50 µm. Panel (d) is
the assemble blade that present here now is for the teaching of new students to understand the
structure properly.

The number of turns of the coils is around 8. The Q factor of the helical resonator
can achieve 200 after optimization when we connect it to the trap at drive frequency
around 25.8 MHz. For the blade trap, we have to employ the bifilar coil inside the helical
resonator tube. Thus, we can apply an independent DC voltage in one of the RF blades.
The trick thing is that we need to add a capacity with a certain value between the two coils
before connecting to the RF blades. The capacity is around 1nF, which serves as shortcut
operation in the high-frequency AC circuit. Thus, it guarantees the two coils are in phase.

Connection of DC voltages

The DC voltages connected to the blade segments are used to separate the two radial
modes, compensate the micromotion and form the boundary condition of the trapped ion
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along the axial (z) direction. The DC voltages are not directly connected to the blade. To
suppress the AC noise, which may come from the DC voltage or the other AC noise in the
environment that couples to the cable, we design this two Π structure DC low pass filter
with cut frequency at kHz level. Under this situation, we greatly suppress the noise at
the frequency (equal to the trap frequency) that may kick the ion’s motion and thermalize
it. We show the circuit design and real instruments in Fig. 2.5(c,d). In fact, we put a
voltage divider as shown in Fig. 2.5(a,b) before the DC voltage going into the DC low
pass filter, which only samples about 1/20 of the DC voltages input. We do this based on
two reasons. One reason is that our trap only needs a very low voltage (several Volts), the
other reason is that our DC voltage is not precise when its output is low. So we produce
high voltage output, while only sample part of it to improve the precision. In this circuit,
all the resistors are insensitive to the temperature change.

R1=20MΩ

R2=1MΩ

𝑉𝑖𝑛1 𝑉𝑜𝑢𝑡1 𝑉𝑖𝑛2
R3=10kΩ R4=10kΩ R5=10kΩ

C1=0.1𝜇F C2=0.1𝜇F

𝑉𝑜𝑢𝑡2

(a) (c)

(b) (d)

图 2.5 Voltage divider and low pass filter for the DC voltages. Panels(a,b) are the schematic
and substantial of the voltage divider, we sample 1/20 of the input through this divider, and we
increase our manipulation precision 20 times. Panels(c,d) are the schematic and substantial of 2
Π low pass filter structure.
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2.2.1.1 The alignment of the diode laser system

For the trapped ion experiments, we mostly use the lasers to manipulate the states of
the ion. The good thing for 171Yb+ is that we can buy the commercial lasers for all the
relevant energy levels. In this way, we can save a lot of time, which can be used to do
more important things for the experiment. Here, we show the optical path of the diode
laser in Fig. 2.6. In the following several parts, I will explain it in detail.

HR

Cooling,Optica
l Pumping

Strong Beam,Detection
and Ionization laser

Repumping beam

Waveplate

Mirror

Aperture

Lens

Fiber

图 2.6 Overview of the diode-laser systemwith respect to the trap. The cooling beam and pump-
ing beam come out from the polarization-maintain fiber, and strong beam, ionization beam(399
nm) beam and detection beam come out from another polarization-maintain fiber. The repumping
beam(638 nmand 935 nm) beam come from another polarization-maintain fiber. All the beams
are aligned to have 45 degree with respect to the z axis (parallel to the HR direction).
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2.2.2 Trapping 171Yb+

When finishing all the above work, it is time to load the ion. Empirically, we try to
load 174Yb+ first to double check the optical alignment. There are mainly two reasons.
One reason is that the 174Yb+ has a zero nuclear spin and has no hyperfine structure in the
electronic ground state which simplifies the lasers needed for the loading. For the other
reason, the lack of hyperfine Zeeman sub-levels avoid the unwanted coherent population
trapping in the dark states [19], and results in an increased fluorescence efficiency, which
makes it sensitive to be detected through the PMT or CCD system. The loading stage is
performed in two steps. Firstly, photoionization of the neutral atom, which emitted from
the oven due to the high temperature that heated by the current. Once we have the 174Yb+ ,
we also need to apply the cooling lasers and repumping lasers to detect the ion through
the CCD or PMT. The photoionization is a two-photon process, which requires the laser
with the wavelength about 398.9115 nm and the strong beam (with large power) around
369.5253 nm. These two beams are coupled to the same polarization (PM) fiber and then
sent to the trap, and then go out together to the chamber as shown in Fig. 2.6, in this
case, we guarantee whether they kick the ion or not simultaneously. Once we optimize
the alignment of the strong beam (means we simultaneously optimize the 398.9115 nm
laser), the next step is aligning the cooling beam. For this purpose, a convenient method
is loading an ion crystal with the strong beam, and then we align the cooling beam with
the block on and off the repumping beam at 935.1802 nm, which modulates with an
electro-optical modulator (EOM) at frequency 3.0695 GHz. If the cooling beam hit the
ion, we observe the count change, otherwise it stays same. By this way, it is not hard to
find the cooling beam (usually the cooling beam is very close to the ion’s position after
the first round alignment by looking at the CCD scattering from the blade). Note that the
repumping beam 935.1802 nm ( 935.1882 nm for the 171Yb+ ) should always keep on due
to the leakage that 2P1/2 has a probability of 0.5 % to decay to the metastable state 2D3/2)
for 2D3/2 to 2[3/2]1/2.

2.2.3 The energy schematic of 171Yb+

After finishing the alignment of the laser for the loading of 174Yb+ , we finally move
to the loading of 171Yb+ . In this case, the wavelength of the photoionization are 398.9108
nm and 369.5263 nm. The main difference is that the hyperfine structure as shown in Fig.
2.7 requires the cooling beam to be modulated with a 14.7440 GHz sideband, which is
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图 2.7 Schematic of 171Yb+ energy levels.

the second sideband of the 7.3720GHz EOM. Recently, our group has bought the 14.7440
GHz EOM, which can have at most 10% efficiency.

2.2.4 Cooling and repumping

The initial kinetic energy of the ion after its capture following photoionization cor-
responds to a huge number of phonons, which must be suppressed before starting any
quantum state manipulation. This is achieved by a combination of two procedures, called
Doppler cooling and sideband cooling. In this section, I only talk about the Doppler
cooling and leave the sideband cooling to Chapter 3.

The 171Yb+ ions are Doppler cooled on the relevant energies between 2S1/2 and 2P1/2,
with a red detuned diode laser from the resonance by about 20 MHz. The cooling process
works as follows, each time the ion absorbs a photon, it acquires a recoil momentum from
the radiation field, where ®k is the momentum vector of the cooling light. When the ion
moves opposite to the direction of beam propagation, the frequency of the light observed
from the ion’s rest frame is shifted to ωl +

k
c
due to the Doppler effect, it is closer to

the atomic resonance, and the ion absorbs more photons. On the other hand, when the
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F=1

F=0

F=1

F=0

𝟐𝑷𝟏/𝟐

𝟐𝑺𝟏/𝟐 12.6428GHz

2.105GHz

图 2.8 Schematic ofDoppler cooling of 171Yb+ . TheDoppler cooling laser covers all the relevant
energy levels. In the experiment, we generate the second sidebands of the 7.3720 GHzEOM,which
can cover all the energy levels in the 2S1/2 and 2P1/2. To cool the three dimensions of an ion, the
cooling beam need to have components along all the ion’s dimension.

atom moves away from the source, it sees a frequency ωl −
k
c
of the cooling beam, which

is far away from the resonance condition and hence absorbs less. Thus, on average, the
ion experiences more momentum kick when moving opposite to the beam propagation
than moving along the beam propagation direction. In the excited state, the ion emits the
photon via spontaneous emission, however, this photon emitted in a random direction and
on average its momentum is zero and the average momentum transferred to the ion from
the cooling beam vanishes. Thus during one cycle, the ion slows down. In order to cool
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图 2.9 The optical path of 369.52 nm diode laser. The cooling beam, pumping beam, and
detection beam are highlighted with blue color, green color and red color, respectively. The
hollow cathode lamp and the balanced PD are used for the laser frequency stabilization. The
398.91 nm laser is coupled from another optical table through the fiber, which then combines
with the strong beam in a PM fiber. Note here we show two digits after the dot of the laser
wavelength for the reason loading 171Yb+ and 174Yb+ is on this range. Also due to we are not
sensitive to the frequency of 398.91 nm laser, and itself is relatively stable in the short time, we
do not stabilize this laser in the experiment.

the ion in three directions, we configure the cooling beam to have components in each
direction as shown in Fig. 2.6.

On the other hand, though the average momentum of the photon emitted by the ion
in the excited state is zero, however, the average kinetic of the phonon is proportion to
< v2 >, which is definitely not zero. This means the ion is heated from the emitted photon.
The cooling process and the heating process end in a steady situation when their effects
cancel each other. Then we reach the limit of Doppler cooling under the situation n̄ = Γ

2ωm

, where Γ is the natural line-width of the cooling transition, n̄ is ∼ 10. Here, ωm is the
radial trap frequency. For this reason, we need the resolved sideband cooling to cool the
motional degree of freedom, which I will discuss in the next chapter.

To cool down a 171Yb+ , we need to take the following relevant energies into consid-
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eration as shown in Fig. 2.8. Here, we use the second order sideband of the 7.3720 GHz
EOM to modulate the cooling laser at 369.5253 nm. The 369.5263 nm laser is stabilized
by the Ytterbium hollow cathode lamp [20]. In the optical path of this 369.5263 nm laser,
we particularly use a blue color to highlight the cooling beam as shown in Fig. 2.9.

9
3
5
.2

n
m

To wavemeter

Fiber EOM
3.0695GHz

6
3
8
.6

n
m

To wavemeter

Faraday
isolator

Lens

Mirrors

Fiber

FP cavity

To trap

Dichroic mirror

Waveplate

图 2.10 The optical path of the 935 nm and 638 nm repumping lasers. The 935 nmlaser
is modulated by the fiber EOM with frequency 3.0695 GHz. We monitor its sideband with a
commerical cavity. The 638 nm and 935 nm laser are coupled to the same fiber, which then sent
to the trap. The 638 nm and 935 nm are both used to repumping the state back to the main cycle.
Note we lock the 935 nm laser through the wavemeter which provides a reference. 638 nm is on
the scan mode when we run the experiments, there no need to lock.

To close the cooling cycle, we apply the repumping laser 935.1882 nm and 638.6101
nm all the time. They are illustrated in Fig. 2.10, the line with purple color is the 935.1882
nm laser, while the red line is the 638.6101 nm laser. We couple these two lasers to the
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same fiber and then direct to the trap in another viewport perpendicular to the cooling
beam as shown in Fig. 2.6.

2.2.5 State initialization and detection

F=1

F=0

F=1

F=0

𝟐𝑷𝟏/𝟐

𝟐𝑺𝟏/𝟐

2.105GHz

12.6428GHz

图 2.11 Schematic of optical pumping and detection of 171Yb+ .

In all my experiments, I only use the clock state pair |↓〉 , |↑〉 as the internal electronic
state, which is insensitive to the first order of the magnetic noise. While in some cases,
we may also use Zeeman pair |↓〉 , |Z+〉 for the alignment of Raman lasers. The Zeeman
symbols are shown in Fig. 2.11. The Zeeman splitting between the two nearby energy
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levels is around 8MHz, which means the magnetic field B is around 5 Gauss.
Before doing any experiment, we initialize the state to |↓〉, which is implemented by

optical pumping. Optical pumping covers the relevant energies with green color as shown
in Fig. 2.11. This pumping is slightly different from that of cooling, it only needs first
sideband of 2.1050 GHz EOM. This 2.1050GHz makes it far detuned from the state |↓〉,
thus has no influence on the |↓〉 state, which eventually drives all the state (around 99.5%)
accumulated to the state |↓〉.

In the optical path, I intentionally highlight the pumping beam with the green color
as shown in Fig. 2.9. We then combine the pumping beam and the cooling beam with a
polarize beam splitter (PBS) and then go to the same PM fiber. We do this for the sake
of simplify the alignment of cooling and optical pumping beam. The optical path of the
detection beam is shown in Fig. 2.9, with the red color highlighted. The detection beam is
combined with the strong beam through the PBS, then enters into the same fiber with the
399 nm laser. We apply the detection laser for a certain of times, during which we collect
the photons through the high N.A =0.63 lens that bought from PhotonGear company and
then sent to the PMT or CCD system. For more details of the detection imaging system,
I recommend you to see my colleague’s thesis [17]. The detection that covers the relevant
energies with red color is shown in Fig. 2.11. If the ion is in the state |↓〉, which is far
detuned from the detection beam and will not be driven to the excited state, thus, we will
collect almost no fluorescence. If the ion is in the state |↑〉, it will be driven to the state
2P1/2, which will emit a lot of photons through the spontaneous radiation. We collect the
photons with PMT for the state analysis.
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第3章 Coherent Control of the ion-laser interaction through
Raman transitions

In this chapter, I illustrate the theoretical part of the ion-laser interaction, then move
to the experimental part of the Raman laser system. In the ion-laser interaction part, I
will talk about the interaction between the two-level system and laser, then extend to the
three-level Λ type system interact with the laser. Finally, we take the motional part of the
ion into consideration, and derive the basic Hamiltonian in the trapped ion system. In
the Raman laser system part, I discuss the laser configuration to implement the Raman
transition and its related sideband cooling of the motional degree of freedom. I show the
effort to improve the performance of our system and describe the experimental procedure
to run an experiment. I show results of some experiments such as the generation of the
coherent state, squeezed vacuum state and SchrÜodinger cat state. Finally, I briefly mention
the imperfection of our system.

3.1 Ion-laser interaction

3.1.1 A two-level system atom-laser interaction

A two-level system atom, which is mathematically equivalent to a spin 1/2 particle.
It has two energy levels and energy eigenstates that can be described by the 2 × 2 Pauli
matrix. Here, we consider a two-level system atom with ground state |↓〉 and excited state
|↑〉 interacts with the monochromatic light as shown in Fig. 3.1, the Hamiltonian of the
system is composed of two parts, the static part H0 and the atom-laser interaction part H1

Ĥ0 =
~
2
ωσz, Ĥ1(t) = e®r . ®E0 cos(ωLt),

whereω andωL are the transition frequency of the two-level atom and the laser frequency,
respectively. The interaction part can be further expanded in the energy representation of
the two-level system as

Ĥ1(t) = (|↓〉 〈↓| + |↑〉 〈↑|)e®r . ®E0 cos(ωLt)(|↓〉 〈↓| + |↑〉 〈↑|)

= ~
Ω

2
(σ+ + σ−)(eiωLt + e−iωLt), (3-1)
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L

图 3.1 A two-level system atom-laser interaction.

where σ− = |↓〉 〈↑| (σ+ = |↑〉 〈↓|) is the raising(lowering) operator, and the Rabi frequency
Ω (Here we assume it is real number) is defined as

Ω =
|e®r . ®E0 |

~
. (3-2)

Here, we assume the electrical field has almost uniform amplitude over the atom wave-
function, so we treat the amplitude as a constant |E0 |. In the interaction picture with
respect to the static Hamiltonian Ĥ0, we transform the interaction part to the Hamiltonian
ĤI(t) = ei

Ĥ0 t
~ Ĥ1(t)e−i

Ĥ0 t
~

ĤI(t) =
~
2
(σ+eiωt + σ−e−iωt)(eiωLt + e−iωLt) =

~
2
(σ+e−i∆t + σ−ei∆t). (3-3)

Here, we use the relation ei
Ĥ0 t
~ σ+e−i

Ĥ0 t
~ = σ+eiωt and ei

Ĥ0 t
~ σ−e−i

Ĥ0 t
~ = σ−e−iωt , and apply

the rotating wave approximation (RWA), where we ignore the fast oscillate term with
frequencies ±(ω + ωL). The ∆ = ωL − ω is the frequency detuning between the laser
frequency and the energy splitting. When the drive frequency is on resonance, we can
observe the full contrast Rabi oscillation between |↓〉 and |↑〉. Moreover, the effect of
such a perturbation slightly change the resonance frequency of the two levels of the atom
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(known as the AC Stark shift), which can be described by an effective Hamiltonian of the
following form

Ĥe f f (t) = −
~Ω2

4
(|↑〉 〈↑| − |↓〉 〈↓|). (3-4)

To simplify the calculation, actually, we will resort to the effective Hamiltonian theory [21].
In such systems, Hamiltonian has the following form

ĤI(t) =
N∑
n=1

(ĥne−iωnt + ĥ†neiωnt), (3-5)

where N is the total number of different harmonic terms in the interaction Hamiltonian.
Then the effective Hamiltonian follows the form

Ĥe f f (t) =
N∑

m,n=1

1
~ω̄mn

[ĥ†m, ĥn]exp(i(ωm − ωn)t), (3-6)

where ω̄mn is the harmonic average of ωm and ωn,

1
ω̄mn
= (

1
ωm
+

1
ωn
). (3-7)

Here, we reconsider the previous two-level atom-laser interaction ĤI(t) in the context of
effective theory. We set ĥ1 =

~Ω
2 |↑〉 〈↓| and ω1 = ∆, then we can quickly get

Ĥe f f (t) = −
~Ω2

4
(|↑〉 〈↑| − |↓〉 〈↓|). (3-8)

This is the effective Hamiltonian for the detuned laser.

3.1.2 A three-level Λ-type system atom-laser interaction

Consider the case of three-level Λ-type system, we have two harmonic terms (apply
two lasers with two detunings), where we assume the direct optical transition between
|↓〉 and |↑〉 is not allowed. Similar to that of the two-level system, we can consider the
three-level system as a combination of two different two-level systems |↓〉 , |e〉 and |↑〉 , |e〉,
which share the excited state |e〉 shown in Fig. 3.2, hence the Hamiltonian of the total
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system is the sum of the two two-level system, written as

ĤI(t) =
~Ω1

2
|e〉 〈↓| e−i∆1t +

~Ω2

2
|e〉 〈↑| e−i∆2t + h.c., (3-9)

where h.c. stands for the Hermitian conjugate part of the preceding terms. We apply the
effective Hamiltonian theory by setting ĥ1 =

~Ω1
2 |e〉 〈↓| and ω1 = ∆1, ĥ2 =

~Ω1
2 |e〉 〈↑| and

ω2 = ∆2. Substituting these terms into Eq. (3-6) and calculate the four commutators, we
obtain the effective Hamiltonian given by

1 2

1
2

e

1 2

图 3.2 A three-level Λ-type system atom-laser interaction.

Ĥeff(t) = −
~Ω2

1

4
(|e〉 〈e| − |↓〉 〈↓|) −

~Ω2
2

4
(|e〉 〈e| − |↑〉 〈↑|)

+
~Ω1Ω2

4∆̄
(|↓〉 〈↑|)exp(i(∆1 − ∆2)t − |↑〉 〈↓| exp(−i(∆1 − ∆2)t)). (3-10)
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Here 1
∆̄
= 1
∆1
+ 1
∆2
. The first two terms are the AC Stark shifts that related to the two lasers,

which drive the corresponding two-level system. The second pair of terms represent
transitions between the |↓〉 and |↑〉, and it is the well known Raman transition, which play
an center role in my experiments. In the Raman transition, the detuning ∆1,2 is much more
larger than that of the coupling strength Ω1,2, thus, we do not have any excitation to the
state |e〉. Therefore, the Eq. (3-10) can be reduced to the effective two-level system as

Ĥeff(t) = −
~Ω2

1

4
Î +

~Ω
2
(σ−exp(i(∆1 − ∆2)t − σ+exp(−i(∆1 − ∆2)t)), (3-11)

where we have used the relation |↓〉 〈↓|+ |↑〉 〈↑| = Î, Î is the identity matrix of the two-level
system and assume Ω1 = Ω2, ∆ = ∆1 = ∆2, Ω = Ω1Ω2

∆
.

1. In this moment, for the sake of understanding the AC Stark in the Raman type tran-
sition. Firstly, we consider the two pairs of two-level system separately (|↓〉 , |e〉,and
|↑〉 , |e〉), but with two lasers with frequencies ω1,2, Rabi frequencies Ω1,2, are ap-
plied together all the time, then the AC Stark shift experienced by the state |↓〉 is
∆AC(|↓〉) = −

~Ω2

4∆ −
~Ω2

4(∆+ω↓↑)
, similarly, the AC Stark shift experienced by the state |↑〉

is ∆AC(|↑〉) = −
~Ω2

4∆ −
~Ω2

4(∆−ω↓↑)
. So the AC Stark difference between the two levels is

∆AC = ∆ac(|↓〉) − ∆ac(|↑〉) (3-12)

= −
~Ω2

4(∆ + ω↓↑)
+ −

~Ω2

4(∆ − ω↓↑)

= −
Ω2

4∆
[(1 −

ω↓↑

∆
) − (1 +

ω↓↑

∆
)]

= −
Ω2

2∆2 ∗ ω↓↑. (3-13)

Here, we have used the Taylor expansion under the assumption that ω↓↑ is much
more smaller than the detuning ∆.

2. ∆AC < 0, means the states |↓〉 and |↑〉 get closer together while interacting with the
beams.

3. ∆AC ∝
1
∆2 , while the two photon Rabi frequency Ω ∝ 1

∆
. Thus, the ratio of the

difference AC Stark shift to the Rabi frequency can be further reduced by increasing
the detuning ∆.
We can remove the difference part by moving into a new rotating frame, where we

adjust the laser beat-note frequency to account for the AC Stark shift. Now when we
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consider the experimental situation when an ion is confined in a harmonic potential, in
which can move freely in the x direction (it can extend to the three dimension easily),
interacting with the equal intensity Raman laser pairs whose frequencies are ω1 and
ω2, respectively. The internal degree of freedom of the ion can be treated as two system,
while the external degree of freedom is described by the equally spaced quantum harmonic
oscillator. Thus, we need to modify the Hamiltonian correspondingly with the position
part ∆kx ®x(t) (∆kx is the net wave-vector of the Raman laser beams along x-direction) as
follows

ĤI(t) =
~Ω
2
σ+ei(∆k. ®x(t)−∆t+φ) + h.c.. (3-14)

Here ∆ is the detuning between the Raman laser and the internal resonance of the ion,
∆kx is the component of the wave vector of the Raman laser along the x-direction and the
operator ∆kx ®x(t) is given by

kx ®x(t) = η(âe−iωmt + â†eiωmt), (3-15)

where â† and â are the creation and annihilation operators for the harmonic oscillator
η = ∆kxx0 = ∆k

√
~

mωm
, m is the mass of the ion, and ωm is the trap frequency. In fact,

the parameter η is very small, hence, we can make the Lamb-Dicke approximation that is
exp(ikxt) ≈ 1 + ikx. This allows us to make the identification of three harmonic terms in
this Hamiltonian

ĤI(t) ≈
~Ω
2
σ+(1 + iâe−iωmt + iâ†eiωmt)e−i∆t+iφ + h.c.. (3-16)

This Hamiltonian is the starting point for the engineering of our system. We can precisely
tune the frequency beat-note to implement the carrier Hamiltonian, the red sideband
(RSB) Hamiltonian and the blue sideband (BSB) Hamiltonian.

1. When the frequency beat-note is equal to the hyperfine splitting ω |↓↑〉, that is ∆ = 0
the Eq. (3-16) can be simplified to carrier Hamiltonian as(under the RWA, where
we ignore the fast oscillating terms with frequency ±ωm)

ĤCarrier(t) =
~Ω
2
(σ+eiφ + σ−e−iφ). (3-17)
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Ω

| ↑, 0⟩

| ↓, 0⟩

| ↑, 1⟩

| ↓, 1⟩

| ↑, 2⟩

| ↓, 2⟩

| ↑, 3⟩

| ↓, 3⟩
Ω

Ω

Ω

图 3.3 Carrier transition. Carrier transition couples the pair |↓, n〉 , |↑, n〉 with constant Rabi
frequency Ω.

For this case, we generate the resonant carrier transition between the state pair
|↓, n〉 , |↑, n〉 as shown in Fig. 3.3, with Rabi frequency Ω. The phase φ can be
precisely controlled and serve as the direction of the rotating vector.

𝜂Ω

√2𝜂Ω
√3𝜂Ω

| ↑, 0⟩

| ↓, 0⟩

| ↑, 1⟩

| ↓, 1⟩

| ↑, 2⟩

| ↓, 2⟩

| ↑, 3⟩

| ↓, 3⟩

图 3.4 Red sideband transition. Red sideband couples the pair |↓, n + 1〉 , |↑, n〉 with Rabi fre-
quency Ωn,n+1 =

√
n + 1Ω.

2. When the frequency beat-note is equal to ω |↓↑〉 −ωm, that is ∆ = −ωm the Eq. (3-16)
can be simplified to the RSB as(under the RWA where we ignore the fast oscillate
terms with frequency ±ωm)

ĤRSB(t) = i
~ηΩ

2
(âσ+eiφ − â†σ−e−iφ). (3-18)

For this case, we generates the resonant red sideband transition between the state
pair |↓, n + 1〉 , |↑, n〉 as shown in Fig. 3.4, with Rabi frequency Ωn,n+1 =

√
n + 1Ω.

We point out that for the state |↓, 0〉, the Rabi sideband has no effect on it.
3. When the frequency beat-note is equal to ω |↓↑〉 + ωm, that is ∆ = ωm the Eq. (3-16)

can be simplified to the BSB as(under the RWA where we ignore the fast oscillate
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𝜂Ω

√2𝜂Ω

√3𝜂Ω| ↑, 0⟩

| ↓, 0⟩

| ↑, 1⟩

| ↓, 1⟩

| ↑, 2⟩

| ↓, 2⟩

| ↑, 3⟩

| ↓, 3⟩

图 3.5 Blue sideband transition. Blue sideband couples the pair |↓, n〉 , |↑, n + 1〉 with Rabi
frequency Ωn,n+1 =

√
n + 1Ω.

terms with frequency ±ωm

ĤBSB(t) = i
~ηΩ

2
(â†σ+eiφ − âσ−e−iφ). (3-19)

For this case, we generate the resonant blue sideband transition between the state
pair |↓, n + 1〉 , |↑, n〉 as shown in Fig. 3.5, with Rabi frequency Ωn,n+1 =

√
n + 1Ω.

4. In our work, we also use the internal state independent Hamiltonian for the engineer
of the displacement operator and the squeeze operator. The displacement operator
is described as Eq. (1-8), which involves the motional phonon degree of freedom,
which only changes one phonon at a time. Thus, we can understand the Hamiltonian
with the help of the excited state |e〉 in the transition as |α, n〉 ↔ |e〉 ↔ |α, n + 1〉
shown in Fig. 3.6(a), in this manner, we have to change the Hamiltonian accordingly
as

ĤI(t) ≈
~Ωd

2 |α〉 〈α | (1 + iâe−iωmt + iâ†eiωmt)e−i∆t+iφ

+
~Ωd

2 |α〉 〈α | (1 − iâe−iωmt − iâ†eiωmt)e−(−i∆t+iφ). (3-20)

Here Ωd =
ηΩ

2 is the displacement Rabi frequency. Since only one of internal
states |↓〉 and state |↑〉 is involved, the detuning ∆ is simply the frequency beat-note
difference between the two Raman lasers. For this case, when ∆ = ±ωm, we derive
the resonance displacement Hamiltonian as

ĤI(t) ≈ i ~Ωd
2 |α〉 〈α | (âe

iφ − â†e−iφ). (3-21)

Here we take out constant part and state |α〉 stands for state |↓〉 or state |↑〉. In the
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图 3.6 A three-level system for the displacement operator and squeeze operator. Panel (a) is the
displacement operator where frequency beat-note between the two Raman lasers is one phonon
difference ωm. Panel (b) is the squeeze operator where frequency beat-note between the two
Raman lasers is two-phonon difference 2ωm.

experiment, we use this Hamiltonian to generate the coherent state.
5. For the squeeze operator, similar to the displacement operator, the main difference

lies that it involves two phonons creation and annihilation simultaneously as shown
in Fig. 3.6(b). When∆ = ±2ωm (consider the second order of the Taylor expression),
we obtain the squeeze Hamiltonian as

ĤI(t) ≈ ~Ωs
2 |α〉 〈α | (â

2eiφ − â†2e−iφ). (3-22)

HereΩs =
η2Ω

2 is the squeeze Rabi strength, and state |α〉 stands for state |↓〉 or state
|↑〉. In the experiment, we generate the squeezed vacuum state.

3.2 Raman pulse laser and control system

In the previous section, we theoretically study the ion-laser interaction. In the follow-
ing part, we will focus on the experimental part of engineering the ion-laser interaction.
Experimentally, to manipulate the motional degree of freedom, we use the Mira picosec-
ond laser to generate the pulse train. The repetition rate of the pulse train is 76.21MHz
and the maximum output power is about 230 mW . This power is large enough for a single
ion experiment, and I use this Mira laser through my entire PhD carrier. Note that we
bought a new Mira which more than twice higher output power from Coherent company.
This new Mira is on the way to deal with the multi-ion experiments in the other optical
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table.
The overview of the optical path for the Raman-laser system is shown in Fig. 3.7.

In the optical path, we use two acousto-optic modulators (AOMs) to control each single
Raman beam individually. We choose the +1 first sideband of the AOMs for the experi-
ment. The intensities and frequencies of these sidebands are directly related to power and
frequency of the modulation local oscillator. In the experiment, we fix AOM1’s frequency
to 213MHz, while tuning the AOM2’s frequency to engineer the carrier, RSB or BSB
as experimental requirement. We particularly note the two pin-holes in the optical path
serve as a reference of the ion. We carefully design the distance between the pin-whole
and ion, such that the ion’s images focus at this two pin-holes. The delay line is used to
adjust the optical length of Raman 1 beam so that it can have the same optical length as
that of Raman 2 beam. Since the delay line can only tune small range of distance, hence,
we need to carefully design the schematic of the optical path in advance.

Mira

HR

Trap

Delay line

AOM1 AOM2

AOM

Waveplate

Waveplate

Mirror

Pinhole

Aperture

Raman1

Raman2

B or B

PD

图 3.7 The optical path of the Raman laser system. We use the +1 first sideband of both AOMs
as the control of single Raman laser. The λ

2 and λ
4 wave-plates are used to gain full control of the

polarization of the Raman beams. The two pinholes are imaged to the ion, which is used for the
alignment of Raman laser. The AOM2’s path has considered the image relay, which images the
AOM2 to ion. The intensity fluctuation is monitored through the output of PD. The delay line is
to equalize the optical path of Raman 1 and Raman 2 beam.

35



第3章 Coherent Control of the ion-laser interaction through Raman transitions

2P1 2

F=1

F=0

2S1 2

F=1

F=0

2.105GHz

12.6428GHz

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

图 3.8 Clebsch-Gordon coefficients between 2S1/2 and 2P1/2 of 171Yb+ . Based on the CG
coefficient, we design the polarizations for the two photon Raman transition.

3.2.1 Alignment of single Raman laser with the hyperfine Zeeman state

Usually, we begin the alignment of the Raman beam by focusing on one single beam.
In our case, we choose the single Raman 1 beam or Single Raman with the help of the
hyperfine Zeeman state Z+. The Zeeman splitting is around 8 MHz, and the hyperfine
splitting 12.6428GHz. The optical frequency from the frequency comb is described as a
series of delta functions spaced according to

f = f0 + n ∗ frep, (3-23)

where f0 is the frequencymodulation that applied to the AOM, and frep is the repetition rate
that determined by the mode-locked laser. Besides the frequency part, we also consider
the transition strength between different levels according to the Clebsch–Gordan (CG)
coefficients. Here, I list the relevant levels that related in our system shown in Fig. 3.8.
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From Fig. 3.8, we clearly see there are two possible combinations to achieve the
transition between the |F = 0,m = 0〉 and |F = 1,m = 1〉 of 2S1/2, which requires the
polarization of π and σ+ or σ− component. Hence, we apply the vertical B (perpendicular
to the optical table) field with a small tilt angle.

N=166

frep

图 3.9 Beat-note from frequency comb of a single Raman beam. The beat note generated from
the self-interference of the frequency comb satisfies n ∗ frep = ωHF + fz. The space between the
two combs is the repetition rate of the pulse laser, which is around 76.21MHz.

Duration s

P

10 20 30 40

0.2

0.4

0.6

0.8

1.0

图 3.10 Rabi oscillation of single Raman beam on the Zeeman state Z+.

The physic behind the transition driven by a single Raman beam is the beat-note
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generated from the self-interference of the frequency comb that satisfies δn∗ frep = fHF+ fz

shown in Fig. 3.9. Here fHF is the hyperfine splitting, fz is the Zeeman frequency. When
it is resonant, we observe the Rabi oscillation as we scan the duration shown in Fig. 3.10.
Once we optimize the Rabi oscillation strength by adjusting the laser alignment, we then
move to the single Raman beam 2. At this moment, we only need to do the overlap with
Raman beam 1. We repeat the same procedure on the Raman beam 1 until we achieve the
optimal Rabi oscillation strength.

Raman1

Raman2
f

N

frep

图 3.11 Beat-note of a pair of Raman beams. The frequency offset ∆ f is determined by the
difference of the modulation frequency on the AOM1 and AOM2.

3.2.2 Manipulation of the 171Yb+ clock state with two Raman lasers

To manipulate the coupling between the internal hyperfine clock state and its corre-
sponding motional state, we need two Raman beams controlled individually with different
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AOMs. In this configuration, we applied the horizontal B field(parallel to the Raman
laser propagation), and the Raman lasers are with only σ+ polarization by adjusting the
λ/2 and λ/4 wave-plate accordingly. The frequency beat-note between the two Raman
beams satisfies f = ∆ f + N ∗ frep shown in Fig. 3.11. Here, the ∆ f is the difference
of the two AOM’s modulation frequency, which is much smaller compared to frep. In
our configuration with a repetition around 76.21 MHz, we draw this beat-note pattern as
shown in Fig. 3.11. In the experiments, generally, we fixed the value of repetition rate,
while change the modulation frequency of AOM2 to change the ∆ f , through this we can
also observe the corresponding sideband transitions.

We scan the frequency of AOM2 and collect the fluorescence signal shown in
Fig.3.12. Generally, it is easy to find the carrier peak, while hard to distinguish the
sidebands. As we discussed in Chapter. 2, the trap frequency is proportional to the square
root of RF drive power Ωrf at the output of the helical resonator, this change can be seen
in the shift of the sidebands in the spectroscopy. Note that we need to minimize the effect
of Zeeman transition by changing the B field. The peaks are shown at the frequency
fpeak = fcarrier + i ∗ ωx + j ∗ ωy, where i and j range from −2 to 2 with step 1, beyond this
range, it is hard to observe due to the much weak coupling strength. Note here that to get
all the relevant information of the peaks, we need to take Zeeman states and its motional
sideband states, and also the micromotion sidebands into consideration.

After we carefully distinguish all the peaks in the spectroscopy, we know all the
ingredients for the sideband cooling, that is the carrier fCar frequency, red sideband
frequencies ( fRedX, fRedY). Here, we show the three main basic transitions, the carrier,
RSB and BSB transition. In Fig. 3.13, we show the carrier peak, and its corresponding
Rabi oscillation.

Generally, at the first glance, we may not know the exact π-pulse duration of the
carrier (the duration that transferring |↓〉 to |↑〉 completely). Initially, we set a relatively
large duration, then scan the frequency of AOM2 and get the on resonance frequency fcar

through fitting, then we fix the frequency of AOM2, while scanning the duration of the
carrier pulse, and observe the Rabi oscillation, through which we get the π-pulse time πcar

of carrier by fitting. By iterating these steps, we get the precise fcar and πcar.
The BSB shown in Fig. 3.14 is almost the same as carrier, the main difference is its

narrow peak width and slow Rabi oscillation. This is understandable as the coupling to
the motional mode is of order η small than than of the carrier.
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图 3.12 Spectroscopy of AOM2’s frequency scan. When the frequency is resonant to the carrier
or sidebands, which will drive to the state |↑〉. The follows detection pulse then drive it to the
excited state, which emits a lot of photons and show as the peak in the spectroscopy.
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图 3.13 The frequency scan of carrier’s peak and its Rabi oscillation.

The blue sideband is an important tool to extract the phonon number distribution,
where it can map the phonon degree of freedom to the internal state, which can then be
detected by the state-dependent fluorescence measurement. We use this method quite a
lot in our experiments.

After sideband cooling, all the phonon populations are accumulated to the state |↓, 0〉.
Since the RSB will not drive the |↓, 0〉, to find the resonance peak of the RSB, we should
apply the carrier π pulse before the RSB pulse, the procedure to get the precise value of
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图 3.14 The frequency scan of of the peak of blue sideband and its Rabi oscillation.

fred and πred is the same. Here we show its peak and Rabi oscillation signal in Fig.3.15.
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图 3.15 Scanning of the peak of red sideband and its Rabi oscillation.

We point out that we intentionally flip the data of Fig.3.15(a) for the sake of fitting,
where it shows |↓〉. The red sideband is essential for the initialization of the state to the
|↓, 0〉, which require the sideband cooling.

3.2.3 Raman sideband cooling

Due to the Doppler cooling limit, the average phonon number is about 10, which
is still very hot. The ion needs to be further cooled by mapping the motional degree of
freedom to the spin and then removing the spin’s entropy from the system through optical
pumping technique, which we discussed previously. Fig. 3.16 shows the pulse sideband
cooling scheme [6].

The ion in the |↓, n + 1〉 will be driven to |↑, n〉 through a resonant RSB π pulse, then
followed by an optical pumping pulse, which drives the ion to the excited state, the state
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| ↑, 𝑛 − 1⟩

| ↓, 𝑛 − 1⟩

| ↑, 𝑛⟩

| ↓, 𝑛⟩

| ↑ 𝑛 + 1⟩

| ↓, 𝑛 + 1⟩

𝟐𝑷𝟏/𝟐

𝟐𝑺𝟏/𝟐
𝝎𝐦

图 3.16 Scheme of Raman sideband cooling. The |↓, n + 1〉 state will be completely transferred
to |↑, n〉 by a RSB π pulse, then the optical pumping pulse drive the state to excited state, which
quickly decay back to |↓, n〉.

will soon decay back to the state |↓, n〉, this forms a closed cycle. During one cycle, we
remove the population from |↓, n + 1〉 to |↓, n〉. By repeating this process, we finally move
all the phonon populations to the ground state |↓, 0〉, where the RSB pulse has no effect
anymore. Note that we cool the mode X and mode Y before doing the experiment. It is
better to cool them simultaneously rather than cooling one mode first and then cooling the
other mode. During the cooling of the other mode, the mode that cooled will be heated
from the environment. Since the cooling process requires longer time.

3.2.4 Optimization of the system performance

Before running any experiments, we optimize the system performance to reach a
stable status. The unstable part of our system mainly include the fluctuation of Raman
laser intensity and the drift of repetition rate, the unstable of trap power Ωrf and the
micromotion. I will discuss them in turn.

3.2.4.1 Stabilization of Raman laser intensity

The fluctuation of the power of the Raman laser will introduce noise into the system.
We stabilize the intensity with the schematic shown in Fig. 3.17.
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图 3.17 Schematic of the Raman intensity lock.

We use another AOM0 to sample parts of the power by its first order, we sample 1 %
of the total power by the window plate (similar to a 1:99 BS) to the PD, which connects
to the input of the proportional integral derivative (PID) controller, then feedback to the
local RF source through the amplitude modulation. Since this drift is relatively slow, we
do not need fast feedback.

3.2.4.2 Stabilization of Raman repetition rate

The repetition of the Raman laser, which is the key element to tune the beat-note,
should also be stabilized. The schematic of the repetition rate is shown in Fig. 3.18. The
basic idea [22] is expressed as follows, firstly, sample the higher order signal with a fast
PD (ET-4000, from eot company), then we use a bandpass filter to take out the frequency
around half of the hyperfine splitting ωHF, then we amplify this signal and mix it with the
local oscillator through the mixer. The output of the mixer is sent to a frequency double,
which connects to a low pass filter and then connects to the PID as a input. The output of
the PID will be applied to the piezoelectric transducer (PZT), which can slightly change
the length of the cavity in the Mira. In the experiment, we bought a stepper motor actuator
(TRA25PPD) and its controller SMC100 from the Newport company, which tunes the
range of repetition more than 0.2MHz. If the repetition is drift too much, we have to
first move it back with this stepper motor. Note that there are mainly two reasons that we
do not directly lock to the ωHF. One is that we do not have such bandpass filter at such
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frequency, the other is that the power at such high frequency is quite small.

Mixer
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tAMira ~753nm

OpticalOptical Spectral Analyzer
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2
Waveplate

LO
  I
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图 3.18 Schematic of the repetition rate lock. We sample the higher order of the Fast PD signal
by a bandpass filter at frequency n ∗ frep around ωHF/2, then we use a mixer to get the difference
between the sample signal n ∗ frep and the local oscillator (LO) source fLO. The difference
|n ∗ frep − fLO | is sent to a frequency double, which followed by a low pass filter to choose the
frequency at 2|n ∗ frep − fLO | . The output of the frequency double is sent to the PID controller as
a input, which produce the output to the PZT in the Mira laser.

3.2.4.3 Stabilization of trap power

The trap frequency ωx,y is determined by the Eq. (2-12), where V0 is proportional to
the square root of the applied trap power. This is basically the only parameter that we
can tune to change the trap frequency since Ωrf is more or less fixed once we fixed the
turn of the coil. The schematic of this intensity lock is shown as Fig. 3.19. Since the
capacity of our trap is estimated about 2pF, so the capacity divider should be very small
in order not to change the resonant helical frequencyΩrf, and we sample the output of this
capacity divider, which is about 1% of the total amplitude. This fast oscillation signal is
then transformed to the DC voltage with the rectifier (fast response time around ns level),
then we send this to the PID controller as input, which generate the output to the mixer.
Here the mixer serves as the voltage controlled attenuator [23]. In this case, the feedback
speed is around 1 µs, much compared to the amplitude modulation method that I use to
mention the intensity fluctuation of the Raman laser (around 20 µs). After stabilizing the
trap power, we enhance our motional coherence time around 5 times.
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图 3.19 Schematic of intensity stabilization of the trap power. We use the fast response rectifier.
The capacity divider sample 1/100 voltage of that to the trap and send it the PID controller, whose
output goes to the mixer, which serves as voltage controller attenuator.

3.2.4.4 Compensation of micromotion

As discussed in Chapter 2, the micromotion will heavily reduce the ion’s lifetime
and make every thing worse. Thus, we need to minimize its effect before doing any
serious experiments [24]. We use the trap power switch between the large power and the
small power (7 dBm attenuator). I design this power switch on the basis of two switches
(ZASW-2-50DR+) bought from the mini-circuit company. It is reasonable to assume the
ion’s position in large power is closer to the ideal position than that of small drive power.
We mark this position in the CCD and switch to the small power, by looking at the ion’s
position we can adjust the DC voltage to move it to the marked position. Meanwhile, we
alignment the beam to follow the ion. We iterate this step several times, and eventually
we compensate the micromotion in x − y plane quite well.

For the z direction, which is perpendicular to the optical table (perpendicular to the
CCD), the position change in this direction cannot be seen by the CCD (but the brightness
of ion is different if there is heavy micromotion in this direction). However, if there
is any position difference in z direction between the large power and small power, this
difference will show clearly in counts that collected by the PMT. By adjusting the DC
voltage, we can reduce this difference in the counts. By iterating these two methods, we
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shall arrive the same position and roughly same counts in the PMT. Note that we also
experimentally minimize the effect via the Rabi oscillation of the micromotion sideband.
If the micromotion is weak, we shall have small Rabi oscillation strength. For this
micromotion compensation method, the target is to get the minimum Rabi oscillation
strength by adjusting the DC voltages. Actually, the Rabi oscillation strength we get is
only 1% of the carrier one under the same Raman intensity power, which is good enough
to do the experiments.

3.3 The control system

To run a experiment, we pay much attention to the control system. As shown in
Fig. 3.20, the key part is the sequencer which is implemented by the field programmable
gate array(FPGA). This sequencer sends TTLs with predetermined duration to the RF
switches, which control the modulations status of AOMs. If the modulation is on, then the
AOM will have +1 sideband (we use only the first +1 sideband of AOM), which sent to
the trap. If the modulation is off, then no beam passes. By controlling each laser’s on and
off individually, we implement the operations in sequence. The sequencer is controlled
by the PC through the LabView and the Mathematica programming. The ion’s scattering
is collected by the PMT, which sent back to the FPGA as the input, the FPGA counts the
number of the pulse during the detection pulse duration, and then sends the data to the
LabView. The LabView shows the results dynamically.

To synchronize the pulse sequence, the FPGA uses the external 50MHz square
wave as the clock signal, which has a 10 MHz external reference from the Rb atomic
clock. We note all the RF sources that used in the experiments are synchronized with
the same Rb atomic clock. The PC communicates with FPGA through RS232 serial
port. The PC can remote control the analog signal generator’s frequency and amplitude
via the Ethernet protocol by the Mathematica or LabView programming. The arbitrary
waveform generator (AWG) generates waves with special form and duration according
to the experimental requirement. Note that during the experiments, to manipulate the
quantum state, we fix the frequency and amplitude of AOM1, while we only change that
of AOM2’s through AWG. Thus, we engineer all the Hamiltonian from this AWG as
experiment requires.

The RF sources can be replaced by the high-quality direct-digital-synthesizer (DDS)
source, which is of good quality in the context of phase noise. We bought the evaluation
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图 3.20 Overview of our control system. The key part of the control system is the sequencer
which generates the TTLs to the switch on and off the RF signal that applied to the AOMs. The
sequences are predetermined by the LabView in PC, which communicate with FPGA through
RS232 serial port. All the parameters (amplitude, frequency) of RF sources are controlled by the
PC through Ethernet protocol. The AWG is controlled through the PCI bus. All the RF sources
and the AWG, 50MHz external clock of the FPGA are synchronized with the same 10 MHz Rb
atomic clock.

board of AD9912 and AD9910 from the ADI company, and I designed the power source
for the circuit. I implemented the Verilog code for the control of the DDS through the
FPGA. We send the parameters of the wave to FPGA through RS232 serial port. The
FPGA can tune the DDS at a high speed around MHz. The AD9910 has eight profiles,
which can initialize 8 wave parameters with different frequencies, amplitudes and phases.
However, the AD9910 has only one output at a time, thus we select one of the 8 profiles
by setting the address register value through external control TTLs signal. The advantage
of AD9910 over AWG is that the pulse duration is not limited by the memory, which is
extremely helpful for the long coherence time experiment [25]. The DDS could be widely
used when wemanipulate the multi-ion experiments. Though I developed these schematic
and code for the DDS, I did not use this DDS for any of my experiments.
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图 3.21 Procedures of a general experiment. The state manipulation is the essential part of the
experiment, which is controlled by the AWG and dependent on the experiments request.

3.4 Experimental procedures and experimental results

After we illustrate the experimental control system, it would be quite straightforward
to understand the experimental procedures. In Fig. 3.21, I draw a flowchart for a generally
experimental procedure. We first Doppler cool the ion for about 1ms, thenwe initialize the
system to state |↓〉 with optical pumping pulse (about 3 µs), follows by a sideband cooling
pulse (around 600 µs) to cool the ion to the state |↓, 0〉, which is the starting point for
most of our experiments that involve phonon degree of freedom, then is the experimental
operation to manipulate the state evolution (the pulse duration usually dependent on
experiment request, this part usually requires our AWG), finally, state detection pulse with
about 60 µs, during which we collect the photons emitted from the ion’s scattering. Note
here that the pulse duration is valid for a single ion.
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3.4.1 Generation of coherent state

The generation of a coherent state could serve as an example of how we implement
the state manipulation. When the beat-note frequency of Raman beams (ωR1 − ωR2) is
equal to the trap frequency ωX (Here I only use X mode), the effective Hamiltonian in the
interaction picture is described by

ĤD =
i~ηΩD

2
(â†eiφ − âe−iφ), (3-24)

where ΩD = gR1gR2/∆P is the vacuum Rabi frequency of the Raman transition from two
laser beams, which are coupled to the transition 2S1/2 ↔

2 P1/2 with the Rabi frequencies
of gR1, gR2 and detuning ∆P. The parameter φ is the relative phase of the two beams.
The application of the Hamiltonian (3-24) performs the displacement operation D̂(α) =

eαâ
†−α∗ â, where α = iηΩDt/2.
The displacement operation is nearly-equal performed for both qubit states {|↓〉 , |↑〉}

due to the large detuning ∆P ≈ −(2π)12.9 THz. The difference in the strengthΩD between
|↓〉 and |↑〉 can be written as g2

2∆P
−

g2

2(∆P+ωHF)
≈

g2

2∆P

ωHF
∆P
= ΩD

ωHF
∆P

, where g = gR1 = gR2.
Therefore, the strength difference should be less than ωHF

∆P
≈ 10−3, which is not detectable

in our current method.
We first apply the state independent pulse for a proper duration, then we apply the

resonant blue sideband pulse for a fixed duration, finally we detect it. While we scan the
blue sideband duration, we can get the Rabi oscillation signal as shown in Fig. 3.22(a).
We get the phonon distribution as shown in Fig. 3.22(b) under the assumption that the
state is coherent state.

We repeat the same procedures as previous and measure a series of state-dependent
force pulse duration. We fit the Rabi oscillation signal and obtain the amplitude of
the coherent state. We summarize the results in Fig. 3.23, the results indicate that the
amplitude linearly increases with the pulse duration.

3.4.2 Generation of squeezed vacuum state

The generation of squeezed vacuum state is similar to that of the coherent state, the
difference is that we need to tune the frequency beat-note of two Raman lasers to be 2ωX.
Thus, the Hamiltonian is reduced to Eq. (3-22). We show an experimental result for the
squeezed vacuum state with |ζ | = 0.86 ± 0.22 in Fig. 3.24. Panel (a) shows the Rabi
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图 3.22 The Rabi oscillation of the coherent state with amplitude |α | = 0.84 ± 0.037. Panel
(a) The Rabi oscillation is observed by applying a series of the resonance blue sideband pulse on
the coherent state. Panel (b) is the corresponding phonon number distribution obtained by fitting
under the assumption that it is a coherent state
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图 3.23 The displacement amplitude with the pulse duration. The amplitude of the coherent
state linearly increases as duration increases.

oscillation signal, and panel (b) shows the phonon population distributed in even number
states.

3.4.3 Generation of SchrÜodinger cat state

The most interesting thing in the quantum mechanic is to generate a SchrÜodinger cat
state. In trapped ion community, researchers have used state-dependent force to generate
it. Here, I reproduce the experimental results.

For this experiment, the state manipulation is merely the state dependent force. The
state dependent force requires us to apply the BSB and RSB simultaneously with the same
detuning but with opposite sign. The experimental scheme described in Fig. 3.25, where
δb = −δr and Ωb = Ωr.
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图 3.24 Squeezed vacuum state with |ζ | = 0.86± 0.22. The squeezed vacuum state is produced
by applying the state independent squeeze operation, and the Rabi oscillation is observed by
applying a series of the resonance blue sideband pulses.
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图 3.25 Experimental scheme to implement the state dependent force. The blue sideband and red
sideband are applied simultaneously with equal Rabi frequency Ω = Ωb = Ωr, and the detuning
satisfied δb = −δr.

In the experiment, we notice that the unequal AC Stark shifts for the BSB and RSB
even when they have the same Rabi frequency (Ωb = Ωr). In other words, when we apply
these two beams together, they actually produce extra AC Stark shift (they can not cancel
each other). We show the experimental AC Stark shift for both BSB and RSB in Fig. 3.26.
Here, we do not take the AC Stark signs into consideration, but we note that blue and
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图 3.26 Imbalanced AC Stark shift of blue and red sideband. The horizontal is the amplitude of
the AWG output, it ranges from 0 to 1, and the vertical axis is the absolute value of AC Stark.

red are with different signs. In Fig. 3.26, we clearly observe the blue sideband transition
brings larger AC Stark shift than that of the red sideband. Experimentally, the AC Stark
can be compensated by another far detuned pulse or compensated this part by adding or
subtracting the extra AC Stark shift [26].

When we compensate the AC Stark shift well, we are able to see the results as shown
in Fig. 3.27(a), where we set the δb = −δr = −(2π)10 kHz, in the ideal case without
any decoherence, the ion should rotate back to the original at time t = 2π

δ|b,r |
. Actually,

this evolution reproduces the SchrÜodinger cat state follows 1
√

2
(|↓, α(t)〉 + |↑,−α(t)〉) with

α(t) = g

|δb−δr |
(1 − ei |δb−δr |t) [27]. At t = 0, the two part are overlap in the original position,

as time moves on, the two parts rotate in different directions, the two parts reach the
maximum distance in phase space at t = π

δ |b,r | as shown in Fig. 3.27(b), at later time it
begin to revival, finally at t = 2π

δ |b,r | they merge together as shown in Fig. 3.27(c). Ideally,
it come back to the original position, however, due to the heating and motional dephasing,
its contrast reduced. For the case of δb = −δr = 0, we clearly observe at time stamp e that
the two parts totally separate as shown in Fig. 3.27(d). Since the displacement amplitude
increases linearly with time, the two parts will continue to separate further and further,
until they have no interference at all as shown in Fig. 3.27(e). This is demonstrated by the
population of spin P(↑) stabilized at 0.5.

3.5 Imperfections of the system

Though we try our best to optimize the system here and there, unavoidable decoher-
ence is still left there [28]. Here, I will present two main natural reservoirs, the heating
reservoir and the dephasing reservoir, which interact with our phonon mode.
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图 3.27 SchrÜodinger cat state generated from the state dependent force. Panel (a) with parameters
δb = −δr = −(2π)10 kHz, the state follows the evolution 1√

2
(|↓, α(t)〉 + |↑,−α(t)〉) with α(t) =

g
|δb−δr |

(1 − ei |δb−δr |t ). Panels (b-c) gives the sense for the state evolution when δb = −δr =
−(2π)10 kHz. Panel (d) shows the situation when δb = δr = 0, we observe here the two parts go
far away and finally without any interference between the phonon state, panel (e) shows the two
trajectories have no interference after time stamp e.

3.5.1 Heating rate measurement

The stray electrical field in the trap serves as the heating reservoir, which keeps
kicking the ion and thermalizes the ion’s phonon mode. Assume nth is the average phonon
number of the environment when it is equivalent with the system, it then follows the
master equation [12]

Û̂ρ(t) = −
γ

2
nth

(
ââ† ρ̂(t) − 2â† ρ̂(t)â + ρ̂(t)ââ†

)
−
γ

2
(nth + 1)

(
â†â ρ̂(t) − 2â ρ̂(t)â† + ρ̂(t)â†â

)
. (3-25)

Here γ is the coupling strength between the ion motion and the thermal reservoir, nth

is the average phonon number when the system is in equilibrium with the environment. In
our model, the effective temperature of the thermal reservoir is infinite, which makes nth

extremely large and thus we have γnth ≈ γ(nth+1). It is natural to define the heating rate as
γnth, which is measured as 3 quanta s−1 in our system. However, the heating rate is worse
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图 3.28 The heating rate of the phonon mode of our blade trap. We measure the heating rate by
measuring the average phonon of the system that interacts with the environment heat bath for a
proper time after the sideband cooling. The heating rate is estimated to be γnth ≈ 3 phonon/s.

around 70 quanta s−1 when I run the experiment simulation of quantum Rabi model. We
do not have a clear explanation of it. It probably due to the pollution of the surface of the
blade from the oven.

3.5.2 Motional coherence measurement

The motional dephasing reservoir comes from the drift of trap frequency ωm, which
is dominated by the fluctuation of driving power of the trap.

Û̂ρ(t) = −Γ
(
ρ̂(t)â†ââ†â − 2â†â ρ̂(t)â†â + â†ââ†â ρ̂(t)

)
. (3-26)

Here Γ is the dephasing parameter. Wemeasure the coherence time τ through the Ramsey-
type experiments of the superposition motional states (|0〉 + |1〉) |↑〉, which is 1/Γ. The
Ramsey type measurement is performed as follows: First, we apply a carrier π

2 pulse, the
state evolves from |↓, 0〉 to 1

√
2
(|↓, 0〉 + |↑, 0〉), then we apply a BSB π pulse, which end

with the state 1
√

2
(|↑, 0〉 + |↑, 1〉), then we delay for a time ∆T , follows that we reverse the

process by applying the BSB π pulse and the carrier π
2 pulse. We extract the contrast and

plot it show in Fig. 3.29. We fit the data with formula A ∗ E xp(−t/τ) and obtain τ around
2.5 ms. Note that before the stabilization of the driving power, τ is only about 500 µs.
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图 3.29 Ramsey-type measurement of the superposition state (|0〉 + |1〉) |↑〉. We extract the
contrast that decay to 1/e as the coherence time τ with the fitting function A ∗ E xp(−t/τ).
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第4章 Reconstruction of the Jaynes-Cummings field state

4.1 Introduction

Reconstructing the state of a quantum system through measurements reveals all the
statistical properties of the system. Thus schemes to reconstruct a quantum state are
useful, for example, to ensure the quantum state generated and to test the fidelity of quan-
tum operations. The quantum state is equivalently represented by its density matrices or
quasiprobability functions in phase space [29]. Among the quasiprobability functions, the
Wigner function has been used mainly for the study of non-classicality of the state, which
is manifested by negativities [30]. The Q-function has been used to study the essence of the
dynamics of a quantum-state evolution in phase space [11,31–39]. Recently, there have been
many developments in reconstructing the state of a quantum field in various physical sys-
tems including photonic systems [40,41], atomic systems [42], molecular systems [43], trapped
ion systems [44–47], cavity-QED [48] and circuit-QED systems [49,50], which are mostly related
to the reconstruction of Wigner functions by the parity measurements of the states.

TheQ-function requires only the measurement of the vacuum component of the field,
which looks relatively easy to implement. The reconstruction of the Q-function also does
not require a heavy numerical process as the probability of the state being in the vacuum
is the value of the Q-function in each point of phase space. However, the measurement
of the vacuum state is not straightforward. In a cavity, as an example, the existence of a
photon can be detected by an atomic state through an atom-photon interaction like Jaynes-
Cummings model (JCM) [3]. If the cavity has no photons, an atom initially prepared
in its ground state will remain there forever. However, by merely measuring the atom
in its ground state we cannot say that the cavity is empty because the Rabi oscillations
periodically bring the atom back to the ground state even with many photons in the cavity.
The oscillation frequency depends on how many photons are present in the cavity. The
authors in Refs. [11,36,37] demonstrated a scheme of vacuum measurement that works for
their particular cavity-QED system. For the circuit-QED system [39], a measurement of
the vacuum component and the Q-function reconstruction was demonstrated based on the
system-specific strong-nonlinear coupling between the cavitymode and the artificial atom.
Recently a generic scheme of the vacuum measurement was proposed for the cavity-QED
system with the standard JCM coupling [51].
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While it is desirable to find the Q-function and the Wigner function based on one
set of measurement, this has not been achieved due to the measurement inefficiencies
of the vacuum state. Here, we report a generic and efficient detection of vacuum with
98.5(±0.3)% efficiency for the phononic states in the vibrational mode of a harmonic
trap, which is realized by the adiabatic passage schemes [52–54] based on counter-diabatic
methods [55–57]. The demonstrated adiabatic passages have been significantly improved in
order to measure the vacuum component of a reasonably large phonon state up to 〈n〉 ∼ 25
phonons. Typically, in trapped ion systems, phonon number distributions are measured
by the Fourier transformation of the phonon-number dependent Rabi oscillations [58–60].
For this, a long observation time is necessary. Our scheme does not require such a
long observation time, but at each measurement, we obtain a binary result; the vacuum
or the complementary states. We simply need to repeat the measurement sequence for
the probabilities of the vacuum state, which by nature of the measurement excludes the
negativity problem of theQ-function shown inRef. [39]. We efficientlymeasure the vacuum
probabilities in phase space to observe the dynamics of the JCM field. The measured
Q-function is highly accurate, which enables us to reconstruct the density matrix and the
Wigner function by its deconvolution. We showagood agreement of our quasiprobabilities
with the theoretical predictions.

The JCM is one of the most fundamental interaction models in quantum mechan-
ics [3], where a single two-level atom resonantly interacts with a single-mode field. The
JCM has enabled theoretical and experimental investigations of the basic properties of
quantum electrodynamics such as Rabi oscillations of the energy transfer between the two
subsystems and collapses and revivals of the oscillations [61]. More recently, the model
has been widely studied for its rich properties of quantum control, coherent superposition
and entanglement which are closely related to the current development of quantum tech-
nology. In order to see the nonclassical effects due to quantum interaction, the JCM is
often studied with the state initially prepared in a coherent field and the atom in its energy
eigenstate. It has been shown that the field and the atom are entangled [31] as soon as the
interaction starts, but at a certain time they are nearly disentangled to bring the field into
a superposition of two coherent states of a π phase difference [32,33]. Earlier, Eiselt and
Risken [34,35] showed that the Gaussian probability distribution of the initial coherent state
in phase space breathe at the initial points of interaction, reflecting the Rabi oscillations.
Then the Gaussian peak bifurcates to travel around a circle in opposite direction in phase
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图 4.1 Raman laser schemes and the vacuum measurement. (a) The Hilbert space of the
system is comprised of the direct product of qubit states {|↓〉 , |↑〉} and phonon number states
{|n = 0〉 , |1〉 , |2〉 , ...}. Raman laser beams, which have σ− polarization and are detunned by ∆p ≈

12.9 THz from the P1/2 manifold, perform anti-JCM, displacement operation and the vacuum
measurement by adjusting their beating frequencies. (b) The vacuum component is measured by
transferring the population of |↓, n〉 to that of |↑, n − 1〉 for any value of n at the same duration
of pulse. The atom remaining in no fluorescence state |↓〉 indicates the phononic state being in
|0〉. (c) The uniform transfer for any phononic state |n〉 to |n − 1〉 is accomplished by the scheme
of shortcuts to the adiabaticity, where Ωut = (2π)22.7 kHz, β = 0.075, ∆ut = 1.9Ωut and the
total duration Tut = 198.2µs. (d) Q-function of the phononic Fock state n = 0, 1, 2 depending on
the amount of displacement |α |. The points with error bars are the experimental results while
the dashed lines are by the theory. The error bars are obtained by the standard deviation of the
quantum projection noise with 100 repetitions.

space. The bifurcation is a consequence of quantum nature of interaction and was ex-
perimentally probed through the measurement of field phase distribution [36,37]. However,
the full reconstruction of the dynamics of the JCM field has not been experimentally
demonstrated.

We realize the JCM or anti-JCM by applying a pair of counter-propagating Raman
beams that have the frequency differences of (ωR1 − ωR2) = ωHF ∓ ωX, respectively, as
shown in Fig. 4.1(a). In the interaction picture, the Raman laser interactions can be
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described by the following JCM and anti-JCM Hamiltonians

ĤJC (φ) =
~ηΩ

2
(
âσ̂+eiφ + â†σ̂−e−iφ

)
,

ĤaJC (φ) =
~ηΩ

2
(
â†σ̂+eiφ + âσ̂−e−iφ

)
. (4-1)

Here, â† and â are the phonon creation and annihilation operators, σ̂+ (σ̂−) =

|↑〉 〈↓| (|↓〉 〈↑|) the spin-raising (lowering) operator, Ω the vacuum Rabi frequency of
(anti-)JCM and η = ∆k

√
~/mωX the Lamb-Dicke parameter with ∆k the net wave-vector

of the Raman laser beams, m the mass of the 171Yb+ ion and φ the phase difference of
the Raman laser beams. The JCM and anti-JCM dynamics share more or less the same
behavior. For technical reasons, we perform experiments for the anti-JCM interaction.

4.2 Efficient vacuum measurement

The essence of the vacuum-component measurement is in the realization of the
uniform population transfer of |↓, n〉 → |↑, n − 1〉 for any n as shown in Fig. 4.1(b). After
the uniform transfer, all the phonon states except the vacuum component |n = 0〉 are in the
bright electronic state |↑〉, which emits photons during the standard fluorescence detection
sequence. Therefore, the atom being in the dark electronic state |↓〉 after the uniform
transfer indicates the phonon state in the vacuum. By measuring the vacuum probability
of the state after displacing it by α, we can directly measure the Q-function Q(α). The
Q-function allows to study the core of the dynamics of a quantum state in phase space and
has well been a preferred choice of study theoretically [31–35] and experimentally [11,36–39].
The definition of the Q-function is Q(α) = 1

π
〈0| D̂†(α)ρ̂D̂(α) |0〉, where D̂(α) is the

displacement operator [62]; the value of the Q-function is merely the weight of the vacuum
component of a given state once it is displaced in phase space.

In general, the frequency of the Rabi oscillations between |↓, n〉 and |↑, n − 1〉 has
√

n

dependency due to the nature of JCM coupling. To accomplish the uniform transfer, we
basically apply an adiabatic passage, but in much shorter time than what is required for
the adiabatic evolution; the so-called shortcuts to adiabaticity [53–57]. Here, as shown in
Fig. 4.1(c), the detuning ∆ ≡ (ωR1 − ωR2) − (ωHF − ωX) and the amplitude Ω of Raman
laser beams are swept by ∆(t) = ∆ut cos(πt/Tut) and Ω(t) = Ωut [sin(πt/Tut) + iβ], where
iβ is the counter-diabatic field that is applied at a constant amplitude with a 90 degree out
of phase with the driving field to suppress excitations during the fast evolution [53–57].

59



第4章 Reconstruction of the Jaynes-Cummings field state

Note the idea behind this uniform red sideband is transition-less driving. When
the driving speed is not infinitesimal, despite the energy eigen-Hamiltonian we get more
terms. The diagonal terms will contribute to the famous Berry phase, while the non-
diagonal terms will introduce extra non-adiabatic transitions. To suppress this excitation,
we can add an auxiliary field called the counter-diabatic Hamiltonian with an opposite
sign with the non-diagonal terms to cancel them out in the σy direction, which is shown in
the formula with sign i. The derivation of this counter-diabatic Hamiltonian has used the
reverse engineering [56]. In reality, when we slow the speed, its influence is also reduced,
therefore in experiments we give a average value β to optimal the whole process.

As in this experiment, we employ the uniform red sideband transition, which canmove
all the phonon from|↓, n = 1〉 to |↓, n = nmax〉 to the spin up simultaneously. Bymeasuring
the spin up state’s total population p↑(total), and we thus get p(0) = 1− p↑(total) directly.
Note in experiment when we vary the amplitude, we have to compensate the AC stark
shift, which mainly comes from the off-resonant coupling of the carrier transition. In this
experiments, ∆Car = Ω2

0
2ωXη2 ∼ 21 kHz, where Ω0 ∼ 22KHz, the Lamb Dicke parameter

η = 0.089. The AC stark shift is written as |Ω(t) |
2

2∆ , and the real red sideband frequency can
be written as ωreal

rsb
= ωmea

rsb
+
|Ω(t) |2

2∆ . We apply the time dependent pulse, whose waveform
written as follows,

Ω0[sin(
πt
T
) cos[

ˆ t

0
(ωreal

rsb + ∆(t
′

))dt] − β sin[
ˆ t

0
(ωreal

rsb + ∆(t
′

)), dt]], (4-2)

where

ˆ t

0
(ωreal

rsb + ∆(t
′

))dt =
ˆ t

0
(ωmea

rsb +
|Ω(t)|2

2∆
+ ∆(t

′

))dt

= ωmea
rsb t + ∆0

T
π

sin(
πt
T
) +
Ω2

0

2∆r

ˆ t

0
(
1
2
−

cos(2πt
T
)

2
+ β2)dt

= ωmea
rsb t + ∆0

T
π

sin(
πt
T
) +
Ω2

0

4∆r
[(1 + 2β2)t −

T
2π

sin(
2πt
T
)]. (4-3)

We evaluate the reliability of the uniform transfer by performing the Q-function measure-
ments for the phonon number states |n = 0, 1, 2〉 as shown in Fig. 4.1(d). Here, we prepare
the phonon number states |n = 0, 1, 2〉 and displace them along one direction in phase
space. We note that we do not observe serious imperfection over the quantum projection
noise.
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4.3 Trace of the internal states

Before measuring the field state, we trace over the internal (qubit) degree of freedom
by the standard optical pumping technique, which transfers the population of |↑〉 state to
|↓〉 state through the scattering of a few photons. A phonon number state is changed by
a factor of √nph

(
1 − e−η2∆n

)
by nph photon scattering, where ∆n is the phonon number

difference. In our experimental condition, the probability of phonon number change by
one is around three percentage through 10-photon scattering.

We experimentally study the modification of the phonon number distribution by
optical pumping sequence as follows. First, we prepare a coherent state in |↓〉 and
measure the phonon number distribution by observing the oscillations of P(|↑〉)(t) after
applying the blue-sideband transition. Then we prepare the same coherent state in |↑〉
and apply the optical pumping to bring it to |↓〉 state, and measure the phonon number
distributions. Besides, we also employ the vacuum measurement method to study this
effects. For both cases, We do not observe a significant change in the phonon number
distribution Fig. 4.2
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图 4.2 Test the influence of optical pumping sequence to the phonon number distribution. (a)
The coherent states prepared in |↓〉 state (red circles) are compared with those prepared in |↑〉 state
by an optical pumping pulse (blue circles). (b) The vacuum part of the coherent states prepared in
|↓〉 state (red circles) are compared with those prepared in |↑〉 state by an optical pumping pulse
(blue circles). Here we have used the vacuum measurement method. For both cases, the amount
of the displacement |α | is measured by coherent-state fitting to the phonon number distribution.
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4.4 JCM dynamics

It was found that the atom and the field in the JCMor anti-JCMare nearly disentangled
during the course of interaction if the atom is initially prepared in a superposition of |↑〉
and |↓〉 and the field is initially in the coherent state |α〉 of its amplitude α with |α | � 1.
Let us consider the initial state of the atom |Ψ±A〉 = (|↑〉 ∓ i |↓〉) /

√
2. By the interaction

(4-1), the atom-field state evolves to |Ψ±A−P(t)〉 = |Ψ
±
P(t)〉 ⊗ |Ψ

±
A(t)〉

[63], where

|Ψ±A(t)〉 =
(
e±iπt/trev |↓〉 ∓ i |↑〉

)
/
√

2, (4-4)

|Ψ±P(t)〉 = exp

(
∓it

ηΩ
√

n̂
2

)
|αe±iπt/trev〉 . (4-5)

From this, it is clear that if the atom is prepared in its ground state |↓〉[
=

(
|Ψ−A〉 − |Ψ

+
A〉

)
/
√

2i
]
, the atom-phonon state will be in the superposition of |Ψ±A−P(t)〉.

The phonon state will rotate in phase space, where trev =
4π |α |
ηΩ

is the corresponding revival
time.

In the experiment, we prepare a coherent state of β = 1.62(0.05) with the internal
state |↓〉 by displacing the |n = 0〉 state after the standard Raman-sideband ground-state
cooling as we mentioned in Chapter 3. Then we apply Raman laser beams for the anti-
JCM interaction and observe the dynamics of the atom and the field. For the internal
state of the atom, we measure the probability of being in the |↑〉 state, P (|↑〉) by the
standard fluorescence detection scheme. For the field, we choose five different interaction
times t = (0, 1

4,
1
2,

3
4, 1) trev in the anti-JCM. After the interaction time t, we displace the

state by α and trace over the internal degree of freedom by the standard optical pumping
sequence, which does not produce any noticeable change of the phonon distribution. Then
we measure the vacuum component to reconstruct Q(α).

Figs. 4.3(b) and (c) show the experimental and theoretical time evolution of the
initial coherent state under the anti-JCM interaction. The theoretical results are obtained
by the numerical simulation of the master equation of anti-JCM Hamiltonian including
experimental imperfections [53]. At t = 0, P(|↑〉) = 0 and Q(α) is Gaussian, which
represents the coherent state. At time t = trev/4, while the Rabi oscillations begin to
collapse, the Gaussian peak splits into two, which can be understood by the separation of
two atom-phonon states |Ψ±A−P〉. The two components of the atom-phonon entangled state
evolve in the opposite phases as shown in Eqs. (4-4) and (4-5). At the half revival time
t = trev/2, the two atomic states in Eq. (4-4) become identical except the global phase,
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图 4.3 The time evolution of the Q-function for an initial coherent state under anti-JCM in-
teraction. (a) Collapse and revival of the Rabi oscillation signal, (b) experimentally measured
and (c) numerically calculated Q-functions of the phonon field with the initial coherent state
|β = 1.62(0.05)〉 depending on the duration of anti-JCM interaction. (a) P(|↑〉) is the probability
of detecting the atom in |↑〉. The points are obtained after 100 repetitions. The solid line is from
fitting the data with

∑
n=0

1
2

[
1 − e−γt cos

(√
n + 1ηΩt

)]
, where γ is the empirical decay constant.

At (b) and (c), the time for each snapshot of the Q-functions are labeled as (i)-(v) in the unit of
the revival time trev, where trev =

4π |α |
ηΩ = 108.8 µs. In (b), each Q-function is obtained from 100

repetitions of the vacuum measurements after 384 different displacements, where the amplitude
and the phase of displacement |α |eiϕ are scanned from 0 to 3.0 with the step size of 0.2 and from
0 to 2π with the 24 steps, respectively.

which results in disentanglement of the atomic state from the phonon state (see also Fig.
4.7). In the Q-function, the phonon state shows two clearly separated peaks that are
located at the opposite phases in phase space. This can be understood as the superposition
of two coherent states [63]. Further evolution of the phonon state is shown in Figs. 4.3(iv)
and (v). At the revival time t = trev, the two phonon peaks merge at the opposite position
of the initial coherent state, which causes the revival of the Rabi oscillations. Due to the
quadratic phase term in Eq. (4-5), the amplitude of the Rabi oscillations is reduced.

Here we show that the relation between Rabi contrast, purity and atomic coherence
as shown in Fig. 4.4. At the revival time trev =

4π |α |
ηΩ
= 108.8 µs, the contrast of the Rabi

oscillations does not seem to be maximum, as the largest contrast occurs around 130 µs. It
is mainly caused by the relatively small initial coherent state |β〉 = 1.62(0.05), which has
small frequencies of Rabi oscillations and the contrast cannot reveal the information of
purity or coherence of the qubit states. According to our numerical simulation, however,
the maximum purity or the largest atomic coherence (the off-diagonal part of the atomic
density matrix) occurs near the revival time, 108.8 µs not around 130 µs.
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图 4.4 The relation between Rabi contrast, purity and atomic coherence. The red curve is the
Rabi oscillation signal, the blue one is the the purity of the phononic state and the green one is the
atomic coherence, the absolute value of the off-diagonal elements of the atomic density matrix
after tracing over the phononic field state. All curves are obtained by the numerical calculations
without the dissipation terms.

4.5 Coherence test: Time reverse process

In order to confirm the whole dynamics keeping coherence, we perform the time
reversal operation, which forces the phonon state evolved under the anti-JCM interaction
to retrace its past trajectory in the opposite direction by the generalized echo scheme [64].
For the echo method, we introduce a π phase shift in the second half of the anti-JCM
interaction, i.e., e−i t

2~HaJC(π) = e+i t
2~HaJC . The process is called time-reversal as in Ref. [65].

We apply the reverse process at the half revival time t = trev/2 and observe that the state
is brought back to the initial coherent state at the time t = trev with the fidelity of 0.914(4)
through the Q-function measurement shown in Fig. 4.5. Since keeping the coherence
of the interaction is at the heart of the time reversal, our result of time reversal clearly
confirms that the process occurs in quantum regime.

We also study another way of reversing the anti-JCM by applying the JCM as shown
in Fig. 4.6. [66]. These two have the similar results.
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图 4.5 (a) Generalized echo-sequence time reversal of anti-JCM evolution for the interaction
time t = trev/2. The φ = π phase of the anti-JCM Hamiltonian produces the negative sign;
HaJC(π) = −HaJC(0), which performs the time reversal operation. (b) The measured Q-function
of the phononic state after time reversal operation of (a). The total number of measurements for
the Q-function reconstruction is same as that in Fig. 4.3.

4.6 Direct reconstruction of density matrix from the Q-function

In addition to the time-reversal process, we demonstrate the coherence property by
detecting non-classicality generated during the evolution, in particular, interferences of
the composite states of the two peaks in phase space. For this purpose, we reconstruct the
Wigner function from our measured Q-function.

The relation between the Q-function and the density matrix is describe as

Q(α) =
1
π
〈α | ρ |α〉

=
1
π

nmax∑
n=0

nmax∑
m=0

〈α |n〉 〈n|ρ|m〉 〈m|α〉

=
e−|α |

2
αm (α∗)n

π
√

m!n!

nmax∑
n=0

nmax∑
m=0

ρn,m, (4-6)

where nmax is the maximum phonon number that we include for the reconstruction. With
the sufficient number of measured values of Q-function over nmax × nmax, we can inverse
the multiple equations of Eq. (4-6) and reconstruct the density matrix elements. Mainly
due to the quantum projection noise in the measurements, however, the direct inverse of
the equations may result in unphysical results including the negativity of the diagonal
components in the density matrix. In order to avoid the problem, we apply a method
of convex optimization of least square function with constraints. Here we first define a
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图 4.6 Time reversal of anti-JCM by JCM. (a) JCM sequence for the time reversal of anti-JCM
evolution for the interaction time t = trev/2. The JCM coupling is realized by a σx pulse and
the anti-JCM coupling. The phase π

2 of the second anti-JCM pulse is chosen to maximize the
fidelity of the reverse operation. (b) Measured Q-function of the phononic state after the reversal
operation. We realize the JCM interaction by applying the π-carrier pulse σx and anti-JCM
pulse, which can be understood as e−i t

2~HaJCσx = σxe−i
t

2~HJC . In experiment, we do not apply the
additional σx pulse for convenience, since we trace out the internal degree of freedom. We note
that the JCM reverse method provides relatively lower fidelity of the final state than that of the
echo scheme since the JCM reverse works better as the initial coherent state becomes larger.

function F as follows.

F =

imax∑
i=0

|Qexp(α) −Qrec(α)|2 , (4-7)

=

imax∑
i=0

�����Qexp(α) −
e−|α |

2
αm (α∗)n

π
√

m!n!

nmax∑
n=0

nmax∑
m=0

ρn,m

�����2 (4-8)

where Qexp(α) and Qrec(α) are the experimentally measured and the numerically recon-
structed Q-functions, respectively, at α in phase space. Then we minimize the function F

with the constraints of density matrix, which should be positive semi-definite of trace 1.
We first find the density matrix by deconvoluting the Q-function by the convex-

optimization and reconstruct the Wigner function from the density matrix. Fig. 4.7(a),
which is reconstructed from the experimental data of the Q-function measurement, clearly
manifests interference patterns of the composite states at the half revival time and negativ-
ities in other interaction times. The experimental reconstruction of theWigner function of
Fig. 4.7(a) is in good agreement with the direct theoretical reconstruction of the Wigner
function shown in Fig. 4.7(b). We also obtain the purities Tr

(
ρ2) of the states from the
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experimentally reconstructed density matrix. At t = trev/2, the purity is 0.82(0.05), which
indicates the phonon state is not entirely pure, possibly because of its entanglement with
the internal state. Theoretical studies [32] suggest that the purity reaches ideally at unity as
the size of initial coherent state increases.

4.7 Conclusion

We have shown a highly efficient scheme to detect the vacuum which is used to
reconstruct the dynamics of the JCM field for the first time. In our experimental demon-
stration, the size of the initial coherent state |β〉 could be increased by improving our ion
trap system in which way the approximated analytical theory can be better compared with
experimental data. The main current limitation comes from the unreliable displacement
operation for a large scale above α ≈ 4.8, which is caused by the heating of the phonon
mode. The reduction of an order of magnitude in the heating rate would allow us to
reach an order of magnitude large phonon number state. Our developed technique of
Q-function measurement can be performed in a single detection and used to probe many
other dynamics of the phonon field. Our approach is generic and would also be applied
to other physical platforms including opto-mechanics and cavity QED system.
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图 4.7 The Wigner function reconstruction from the Q-function at various times of the anti-
JCM evolution, t = 1

4,
1
2,

3
4 trev. The negativities of the Wigner functions indicate the emergence

of nonclassical state during the dynamic evolution. (a) The Wigner functions are reconstructed
from the density matrix obtained by deconvoluting the experimentally measured values of the
Q-functions shown in Fig. 4.3(b). The density matrices are reconstructed by deconvoluting the
Q-functions with the convex-optimization. We note that we use the data |α | ≤ 1 for the optimum
fidelity and it is necessary to use proper initial guess of the density matrix for the convergence of
the deconvolution. (b) The Wigner functions are directly obtained by the numerical calculation
of the anti-JCM dynamics.
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第5章 Quantum simulation of the quantum Rabi model

5.1 Introduction

The interaction between light and matter is one of the most fundamental and ubiqui-
tous physical processes. The semi-classical Rabi model was proposed in 1936 to analyze
the effect of a varying, weakmagnetic field on an oriented atom possessing nuclear spin [2].
It describes the dipolar interaction between a classical monochromatic field and a two-
level system, successfully explaining the challenging experimental data in Ref. [67]. When
the field is promoted to a quantum description, resulting in the simplest fully-quantum
model of light-matter interaction, it is called the quantum Rabi model (QRM). Typically,
the coupling strength in a light-matter system is much lower than the field frequency. In
this scenario, the QRM can be simplified to the Jaynes-Cummings model (JCM) under the
rotating-wave approximation (RWA) [3]. The JCM is an analytically solvable model that
has been studied in cavity quantum electrodynamics(CQED) [11,68,69], atomic physics [70],
quantum dots [71], circuit quantum electrodynamics (cQED) [72,73] and trapped ions [58–60,74],
among other quantum platforms. Recent experimental achievements have shown the ac-
cessibility to the ultrastrong coupling (USC) regime [75] or even to the deep strong coupling
(DSC) regime [76,77], where the coupling strength is comparable to or larger than the mode
frequency. In these strong-coupling regimes, the RWA breaks down, rendering the JCM
as a restricted description of the system, and requiring the use of the full QRM to cor-
rectly describe the emerging physical phenomena [78]. It is noteworthy to mention that,
in such regimes, exotic dynamical properties of light-matter interaction [79] and potential
applications to quantum information technologies [80] have been predicted and proposed.

The Hamiltonian associated with the QRM can be expressed as (~ = 1)

ĤQRM =
ω0

2
σ̂z + ωmâ†â + g(σ̂+ + σ̂−)(â + â†), (5-1)

where â†(â) is the creation (annihilation) operator in the Fock space of a bosonic mode
with frequency ωm, and σ̂+ (σ̂−) = |↑〉 〈↓| (|↓〉 〈↑|) and σ̂z = |↑〉 〈↑| − |↓〉 〈↓| are the raising
(lowering) and the Pauli z-basis operators, respectively, of a two-level system, an effective
spinwith energy splittingω0, and g is the coupling strength. Threemajor coupling regimes
are defined depending on the ratio between the coupling strength g and the field mode
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frequencyωm, namely, theweak coupling or Jaynes-Cummings regime, with g/ωm � 0.1,
the USC regime with 0.1 . g/ωm, and the DSC regime with 1 . g/ωm. In the Jaynes-
Cummings regime, co-rotating terms âσ̂+ and â†σ̂− dominate in Hamiltonian (5-1). In
other words, the RWA is valid and the QRM reduces to the JCM, of which the whole
Hilbert space consists of a series of independent two-fold subspaces {|↑, n〉 , |↓, n + 1〉},
where n is the quantum number of Fock state |n〉. In the USC/DSC regimes, however,
the counter-rotating terms âσ̂− and â†σ̂+ cannot be neglected. These two terms connect
different two-fold subspaces, break the simple structure of the JCM and do not preserve
the number of excitations. These excitation-nonconserving terms make it difficult to find
an analytical solution of the QRM, which was found only recently [81]. Although the
total excitation number is not conserved, it has been pointed out that the parity operator
Π̂ = σze−iπ â

† â, with eigenvalues ±1, is still a conserved quantity. The Fock space can be
divided in two parts, each spanned by states of a given parity. The notion of parity chain
was introduced in [79] to address the set of states | ↓ (↑), n〉 with the same parity ordered
in ascending n. It is known that wave packets in the Fock space evolve within the same
parity chains when in the USC/DSC regimes [79]. Recently, it has also been predicted that
the ground states of the QRM in the USC/DSC regimes reveals the conservation of parity
and the entanglement between spin and mode with large excitation numbers [82–85].

In the last years, experimental efforts have been made to reach the DSC regime [76,77],
which stimulates the study of exotic physics of the QRM in the USC/DSC regimes. The
phenomenon of photon number wave packets bouncing back and forth along the parity
chains [79] has been observed in a classical simulator of a photonic waveguide system [86]

and in analogue and digital quantum simulations in cQED systems [87,88]. However, the
study of the ground state in DSC regime is still an open challenge [82].

In this work, we report the analog quantum simulation of the quantum Rabi model
with a single trapped ion for all relevant coupling regimes. Among the results, we
generate and observe the ground state of the QRM in the DSC regime in a trapped-ion
quantum simulator for the first time. We demonstrate the full controllability and tunability
of the QRM in a single trapped-ion system as proposed in Ref. [82], which enable us to
generate the exotic ground state in the DSC regime by the adiabatic transfer from the
simple ground state of the JCM. Moreover, we apply the capability of the ground state
preparation to experimentally measure the energy spectrum of the QRM Hamiltonian (
4-1). The total Hamiltonian of the system is composed of the uncoupled Hamiltonian and
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the ion-laser interaction. The uncoupled Hamiltonian describing such a system is given
by Ĥ0 =

ωHF
2 σ̂z +ωXâ†â. When a pair of counterpropagating Raman laser beams is driven

onto the ion, the ion-laser interaction is described by

Ĥion−laser = ~Ωb,r cos
(
kb,r x̂ − ωb,rt + φb,r

)
σ̂x. (5-2)

Here, Ωb,r is the Rabi strength proportional to the product of both laser field amplitudes
for blue-sideband or red-sideband transitions, ∆kb,r is the net wave vector component of
the Raman laser beams on the direction of the motion of the ion x̂ = x0(â + â†) is the
position operator of the ion, with ground-state wave-packet width x0 =

√
~/2MωX, where

M is the mass of the 171Yb+ ion, and ωb,r and φb,r are the differences of frequencies and
phases of the Raman laser beams, respectively [74].
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图 5.1 Spin and phonon dynamics under the QRM for different coupling regimes. (a, b, c)
correspond to the population of the excited state of the two-level system for the coupling ratios
g/ωm = 0.04, 0.6, and 1.2, respectively. (d, e, f) correspond to the evolution of the average number
of phonons for the same coupling ratios. Finally, (g) shows the evolution of the total number of
excitations for the three cases considered above. In all panels, theoretical predictions are plotted
with continuous lines, while dots and their associated error bars represent the experimental data.
The lower number of points in the plots of 〈a†a〉 is because their measurement process (described
in Methods C) is more time consuming.

Under suitable optical and vibronic RWAs, and also in the Lamb-Dicke regime,
the ion-laser interaction can be turned into a(n) (anti-)Jaynes-Cummings interaction
by tuning the laser frequency close to the red(blue)-sideband as ωr = ωHF − ωX − δr

(ωb = ωHF + ωX − δb), with a small detuning δr(b) � ωX in the most general case. Red-
sideband and blue-sideband interactions are described in the interaction picture with
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respect to the uncoupled Hamiltonian Ĥ0 =
ωHF

2 σ̂z + ωXâ†â by the Hamiltonians [53,74]

Ĥred (t) =
ηΩr

2
(
âσ̂+eiδr t + â†σ̂−e−iδr t

)
,

Ĥblue (t) =
ηΩb

2
(
â†σ̂+eiδb t + âσ̂−e−iδb t

)
. (5-3)

Here, η = ∆kb,rx0 is the Lamb-Dicke parameter.
When both red and blue sideband interactions are simultaneously applied with equal

strength, such that Ω = Ωr = Ωb, one can write the total Hamiltonian in the interaction
picture as

Ĥbr (t) =
ηΩ

2
σ̂+

(
âeiδr t + â†eiδb t

)
+ H.c.. (5-4)

Equation (5-4) corresponds to the interaction picture Hamiltonian with respect to the
uncoupled Hamiltonian Ĥ

′

0 =
δb+δr

4 σ̂z +
δb−δr

2 â†â for the following effective Hamiltonian,

Ĥeff =
(δb + δr)

4
σ̂z +

(δb − δr)

2
â†â

+
ηΩ

2
(σ̂+ + σ̂−)(â + â†), (5-5)

where the parameters of the simulated QRM can be associated with the experimental
ones as ω0 =

δb+δr
2 , ωm =

δb−δr
2 and g =

ηΩ

2 . Thus, such an experimental setup serves as a
quantum simulator of the QRM, where one can simulate a wide range of coupling regimes
by suitably tuning the laser intensities and detunings to match the desired ratio g/ωm.
It is important to point out that the observables of interest {â†â, σ̂z, |n〉 〈n|}, commute
with all the adopted interaction-picture transformations, which are always with respect
to a Hamiltonian of the form αâ†â + βσ̂z , such that their expectation values will remain
unaltered in the laboratory reference frame [82].

Coupling regimes and breakdown of the RWA

For the experiment, we fix the coupling strength to g = (2π)12.5 kHz, and the
detuning of the red sideband to δr = 0, leaving δb as a tunable parameter. In this manner
we will be simulating a resonant QRM where the ratio g/ωm will be determined by the
selected detuning δb. We experimentally explore three paradigmatic coupling regimes,
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namely the Jaynes-Cummings, the USC and the DSC regimes, accordingly selecting the
values of the detuning for the blue sideband as δb = 2ωm = (2π){625, 83.4, 41.6} kHz,
which correspond to the ratios g/ωm = {0.04, 0.6, 1.2}, respectively.

The experiment is carried out as follows. First, we perform standard Doppler and
sideband cooling, which prepares the system in the state |↓, n = 0〉 [6], and then, we transfer
the system to the initial state |↑, n = 0〉 by applying a carrier π pulse. After that, we turn
on the red-sideband and blue-sideband transitions, with suitably chosen intensities and
detunings, to implement the QRM Hamiltonian in the desired regime. We observe the
dynamics of the QRM by measuring the average excitations of the spin 〈σ̂+σ̂−〉 and the
phononic degrees of freedom

〈
â†â

〉
at specific evolution times t. We measure the average

excitation of the spin 〈σ̂+σ̂−〉 by spin-dependent fluorescence detection, where only spin-
|↑〉 state scatters photons. We obtain the average excitation of phonons

〈
â†â

〉
from the

measured phonon number distribution, which is deduced from fitting the blue-sideband
signal to Eq. (5-8) in Methods C.

In Figs. 5.1(a) and (d), the measurements for the simulation of the Jaynes-Cummings
regime are plotted. Rabi oscillations, with a complete collapse and posterior revival of the
excitation probability of the two-level system are clearly observed. In the same manner,
the average number of phonons in the bosonic mode oscillates between 0 and 1, consistent
with the notion that the wavefunction of the system should live in the space spanned by the
corresponding JCM doublet {|0, ↑〉, |1, ↓〉}, as expected for such a regime. Figures 5.1(b)
and (e) show the evolution of the same initial state in the USC regime for the coupling
ratio g/ωm = 0.6. In this case, collapses and revivals of the excitation probability are not
complete and the average number of phonons exceeds 1, indicating that the dynamics does
not anymore happen exclusively in the JCM doublet. This departure from the JCM physics
is associated with the breakdown of the RWA due to the large coupling ratio. In the DSC
regime, plotted in Figs. 5.1(c) and (f) for the coupling ratio g/ωm = 1.2, the effects of the
RWA breakdown are even clearer, where not even oscillations can be identified and where
the average number of phonons grows above 6 for the plotted example. We also show in
Fig. 5.1(g) the evolution of the total excitation number 〈N̂〉 = 〈|↑〉 〈↑|〉 + 〈n̂〉, which is a
conserved quantity when the RWA is valid, but has a dynamical behavior as soon as the
RWA breaks down.
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图 5.2 Phonon-number wave packets bouncing back and forth in the DSC regime. In (a) and (
b) we plot the population of state |n = 0〉, after tracing out the spin, as the system evolves under
the QRM in the DSC regime. In particular, (a) shows the degenerate case, ω0 = 0, and (b) the
non-degenerate case, with ω0 = 0.8g. For both cases, the coupling ratio is fixed to g/ωm = 1.25.
Dashed and solid lines represent theoretical calculations with and without decoherence of the
motional mode, respectively. The vertical dashed lines indicate the motional revival times k 2π

ωm
,

where k = 1, 2, .... The data points with error bars correspond to the experimental results.
We obtain the zero-phonon population following the method in Ref. [74] after tracing out the
spin. ( c-h) show the phonon number distribution sampled at several instants during one period
T = 2π

ωm
= 100 µs of the QRM Hamiltonian for the degenerate case. The phonon distribution is

obtained by fitting the standard blue-sideband signals to Eq. (5-8) after tracing out the spin (see
Methods C). At the first revival time, the phonon state is back to the initial state as predicated by
the QRM. The imperfections can be attributed to decoherence of the motional degrees of freedom.

5.2 DSC regime and phonon wavepackets

We focus now on the DSC regime and explore two scenarios, namely the degenerate
case with ω0 = 0 and the non-degenerate case with ω0 , 0. In contrast to the weak
coupling regime (JCM regime) of the natural light-matter interaction, in the USC/DSC
regime the spin-field interaction can survive even when the spin is degenerate. Therefore,
we expect to observe quantum dynamics due to the strong coupling effect. We note that
the degenerate case has been investigated thoroughly for the production of SchrÜodinger’s
cat states [27,44,47,91,91–93] and the calibration of two-qubit Mølmer-Sørensen gates [94–99] in
trapped ion systems. Although the spin-dependent force is a well-developed technique for
the trapped ion community, it has never been viewed as the simulation of a special case of
the QRM. For this experiment, we fixed the coupling strength to g = (2π)12.5 kHz, and
vary δr and δb, while keeping always a ratio g/ωm = 1.25. For the degenerate case, we
use detunings δb = −δr = (2π)10 kHz, while for the non-degenerate case we use δr = 0
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and δb = (2π)20 kHz, which corresponds to ω0 = 0.8g. For the initial state, we choose
the ground state of the JC model |↓, 0〉, which should have no dynamical properties when
the coupling strength g/ωm is small enough. In Fig. 5.2, we show that the situation is
different when considering the DSC regime. First of all, in panels (a) and (b), we show
the evolution of the population of Fock state |0〉, after tracing out the spin degree of
freedom. For the degenerate case, we can clearly observe that this population collapses to
zero and that it is stabilized at zero except every one period of the mode frequency, k 2π

ωm
, k

being an integer, where a full revival of the population is detected. On the other hand, the
non-degenerate case shows long-time degradation of these revivals, as it was predicted in
Ref. [79].

Additionally, we sample several points during one period T = 2π
ωm
= 100µs of the

evolution of the degenerate case and measure its phonon distribution, as shown in panels
(c-h). At time zero, the population is concentrated on Fock state |0〉, and as time elapses
higher Fock states are populated. In fact, the quantum dynamics is exactly solvable and the
time-dependent state evolves as 1

√
2
(|↓, α(t)〉 + |↑,−α(t)〉) with α(t) = g

2ωm
(1 − ei2ωmt) [27].

The evolution resembles a wavepacket that travels along a chain of Fock states up to a
maximum determined by ∼ 4(g/ωm)

2 and then comes back to the initial states at one
period of the mode frequency. This phenomenon was theoretically predicted in Ref. [79]

as characteristic of the DSC regime, and it is referred to as the bouncing back and forth
of phonon-number wave packets. We note that similar reconstruction of the state can be
found in Ref. [27] in the context of spin-dependent force. It has been also pointed out that
the simulation of the Dirac equation can be interpreted as the simulation of the QRM in
the DSC regime with infinite ratio by setting ωm = 0 [82,100–102].

5.3 Adiabatic ground-state preparation

As mentioned in the previous section, the ground state of the QRM in the Jaynes-
Cummings regime (g � ωm) is given by the state |↓, 0〉, while the ground state of the
QRM in the DSC regime is a nontrivial state where spin and field are entangled, and
which to the best of our knowledge has never been implemented in a physical quantum
platform.

In our experiment, we generate the ground state of the QRM in the DSC regime
by starting in the ground state of the Jaynes-Cummings regime, the state |↓, 0〉, and
adiabatically increasing the coupling ratio g/ωm towards the DSC regime. To achieve
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this, one could choose to either increase g = ηΩ/2, which can be done by rising the laser
intensity, or decrease ωm = (δb − δr)/2. Because it is experimentally more feasible to
manipulate the detuning of the Raman lasers than their power, we choose the latter in our
experiment. For that, we fix coupling strength g to be (2π)12.5 kHz and δr = 0, leaving δb

as the only tunable parameter, which we manipulate with an exponential time dependence
of the form δb(t) = (δMax − δTar)e−

t
τ + δTar. Here, we set δMax = (2π)0.2 MHz, while

δTar is determined by the ratio g/ωm we want to reach, and τ = tTar
10 , tTar = 300 µs being

the total duration of the adiabatic process. The adiabaticity of our scheme is guaranteed
by the numerical computation of the fidelity between the instantaneous ground state of
the Hamiltonian and the adiabatically evolved state, which is shown in Fig. 5.3a. Here,
the fidelity is defined as Tr

√√
ρid(t)ρ(t)

√
ρid(t) [89], where ρid is the ideal instantaneous

ground state obtained from direct diagonalization, and ρ is the state resulting from the
numerical calculation of the time evolution. We note that the fidelity of the |↓, 0〉 state to
the ideal ground state in the case of g/ωm = 0.125 is of 99.8%. With sideband cooling,
we are able to prepare the |↓, 0〉 state with a fidelity of around 99.7%. Therefore, the total
infidelity of our prepared ground state with respect to the ideal one is of around 0.5% ,
which is much smaller than the detection capability in our system.

In panel (b) of Fig. 5.3, we show the spin evolution during the adiabatic process for
the time interval (0-tTar). The plot corresponds to the case g/ωm = 1.2, with the cases
for other ratios showing similar behavior. At time tTar, the system is expected to be in
the ground state of the QRM for the selected coupling regime. In panels (d) to (f), we
plot the outcome of the phonon distributions correlated with the spin at tTar for coupling
ratios g/ωm = 1.2, 1.5 and 2.0, respectively (see Methods C). To measure the phonon-
number distribution correlated with state |↓〉 of the spin, we first perform a spin-dependent
fluorescence detection and select the case of no fluorescence, which corresponds to the
spin being projected to |↓〉 state. Then we drive the blue-sideband transition, monitor
the population of |↑〉 state and fit the signal to the function in Eq. (5-8) as described in
Methods C. This provides the conditional phonon-number distribution normalized to the
probability of being in the spin state |↓〉. To measure the phonon-number distribution
correlated with the spin state |↑〉, we first flip the spin and then follow the same procedure
as that for the case of state |↓〉.

From panels (d) to (f) in Fig. 5.3, we clearly observe that larger phonon-number states
are populated in the prepared ground states as the ratio g/ωm increases. We also observe
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that the populations are distributed mostly along the same parity chain, which is expected
from the Z2 symmetry of the QRM [79]. We quantify the parity conservation by measuring
the expectation value of the parity operator Π̂ = σze−iπ â

† â, which has eigenvalues ±1. The
measured parities for the states of Figs. 5.3 (d-f) are 0.74(0.08), 0.70(0.08) and 0.52(0.13),
respectively, showing that the prepared ground states in the DSC regime mostly dwell in
the same parity chain. As the coupling ratio increases, the measured parity deviates from
the ideal parity value +1 due to imperfections in the adiabatic process and the motional
heating arising from the occupation of large Fock states. Note here the motional heating
rate is proportional to the phonon number, as more phonons involved, it introduce severe
decoherence. We experimental study this heating carefully in one of our paper [53].

To verify the quantum coherence maintained within the preparation of the ground
state, we reverse the adiabatic process in an attempt to recover the initial ground state
|↓, 0〉. In panel (b), we can observe how the spin returns to state |↓〉. As a complementary
proof, we plot the purity of the spin state. To this aim, we trace out the phononic degrees
of freedom and measure the density matrix ρ̂spin associated with the spin degree of
freedom [89], from which we calculate the purity, defined as Tr(ρ̂2

spin), during the whole
process. The degradation of the purity during the preparation of the ground state of the
QRM in the DSC regime confirms that the adiabatically prepared ground state is indeed
an entangled state, and the subsequent revival of the purity when the adiabatic process is
inverted proves that we are able to recover the initial state and therefore that the whole
process preserves quantum coherence.

By measuring the probability of recovering the initial state |↓, 0〉 after the ground
state preparation and reverse process at time tRev, we estimate a lower bound of the purity
of the prepared ground state. The revival probabilities are 0.89(0.024), 0.87(0.027) and
0.79(0.03) for the three ratios g/ωm = 1.2, 1.5 and 2.0, which give the lower bounds
0.79(0.042), 0.75(0.047) and 0.62(0.047), respectively. As shown in Fig. 5.3c, the
reduced-spin purities, taking values 0.545(0.006), 0.514(0.003) and 0.505(0.002), are
significantly smaller than the lower bounds of the total system, which prove the existence
of entanglement within the prepared ground state at tTar (See Methods D).

5.4 Energy Spectrum

The ground-state preparation can be extended to study the low-lying energy spectrum
of the QRM by coherent spectroscopy [103]. In particular, we have measured the energy
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spectrum in the region g/ωm ∈ [0, 1]. A Z2 parity exists in the QRMmodel, which divides
the Hilbert space in two, namely a subspace of parity +1 and other of parity −1 [79]. Here,
we focus on the energy splittings between the ground state and the first three excited
states of opposite parity to the ground state [79]. For that, we have used a relatively weak
modulated field as a probe on top of the simulation of the QRM, with the system initially
in the ground state of the corresponding regime. We sweep the frequency of the probe
pulse until we detect a transition, and we associate the frequency of the probe to the energy
difference of the transition. To generate transitions between states of opposite parity, we
use the probe pulse of the form

Ĥmod = ĤQRM + gp sin(2πνpt)(σ̂+ + σ̂−), (5-6)

where gp(� g) is the strength of the modulation field, and νp is swept to find the resonant
frequencies. In the region g/ωm = 0.1 to 0.3, gp/g is 0.02, while the pulse duration is
350 µs. For the ratios g/ωm = 0.4 to 1.0, the ratio gp/g is 0.01, with a pulse duration of
450 µs. Population transfer is clearly seen when νp is resonant with the energy splittings
as shown in Fig. 5.4.

5.5 Methods

Methods A: Calibration of the detuning of the blue and red sideband transitions

For the simulation of the case g/ωm = 0.04, we set δr = 0, while δb takes a much
larger value than its corresponding coupling strength. To achieve that configuration,
we obtain the resonance frequency of the red-sideband transition with the detuning of
the blue-sideband transition fixed at δb = (2π)625 kHz. For the USC/DSC regime, the
coupling strength is comparable to the effective mode frequency, such that we need to
carefully deal with the ac-Stark shift introduced by an off-resonant excitation of the carrier
transition. Wemeasure the ac-Stark shift with a Ramsey experiment and calibrate the shift
in the bichromatic pulse within 1 kHz of accuracy. We further improve the frequency
precision within a 0.15 kHz range by setting the same detuning δ = (2π)10 kHz with
different signs for each beam, similarly to the scheme in Refs. [98,104].
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Methods B: Numerical Simulations

For the numerical simulations, we compute the time evolution of the system according
to a Lindblad master equation that accounts for experimental imperfections resulting in
heating and dephasing of the motional modes [53],

Û̂ρ(t) = − i
[
Ĥ, ρ̂(t)

]
− Γ

(
ρ̂(t)â†ââ†â − 2â†â ρ̂(t)â†â + â†ââ†â ρ̂(t)

)
−
γ

2
nth

(
ââ† ρ̂(t) − 2â† ρ̂(t)â + ρ̂(t)ââ†

)
−
γ

2
(nth + 1)

(
â†â ρ̂(t) − 2â ρ̂(t)â† + ρ̂(t)â†â

)
. (5-7)

Here, Γ is the dephasing parameter, which we set to be Γ = 1
τ
, with τ = 2.5 ms, γ is the

coupling strength between the ion motion and the thermal reservoir, and nth is the average
phonon number when the system is in equilibrium with the environment. In our model,
the effective temperature of the thermal reservoir is infinite, which makes nth extremely
large and γnth ≈ γ(nth + 1). It is natural to define the heating rate as γnth, which is
measured as 70 quanta s−1 in our system. The Hamiltonian employed in our simulations
includes experimental parameters specific to our setup and takes the form of Eq. (5-5).

Methods C: Phonon number state population distribution

In Fig. 5.2 and Fig. 5.3, we obtain the phonon number distribution. This is per-
formed by driving a resonant blue-sideband transition |↓, n〉 ↔ |↑, n + 1〉 followed by a
spin projective measurement and fitting the obtained spin-excitation evolution with the
formula [53,58,93]

P|↑〉(t) =
1
2

∑
n

p(n)[1 − e−γt cos(
√

n + 1ηΩt)], (5-8)

where p(n) is the phonon number state population, γ is an empirical decay constant, and
t is the pulse duration of the blue sideband. From the phonon distribution, we can then
directly calculate the average phonon number that we plotted in Fig. 5.1(d-g). Notice that
the more populated the motional Hilbert space the more data points are needed to fit Eq.
(5-8), as more p(n) take part in the equation. As a consequence of this, the error bars
for the expectation value of the phonon number in Fig. 5.1(d-g), are greater for larger
coupling regimes, where higher phonon numbers are involved in the dynamics.
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Methods D: Verification of entanglement for the ground-state of the quantum Rabi
model

In the main text, we use Tr
[
ρ̂2

spin

]
− P2

Rev < 0 to verify the existence of entanglement
between the spin and the phonon degrees of freedom. This can be understood as follows.
First, we introduce the purity-based entanglement witness [105,106] W for the target state
ρ̂Tar at time tTar, which is defined as

W[ρ̂Tar] ≡ Tr
[
ρ̂2

spin
]
− Tr

[
ρ̂2

Tar
]
. (5-9)

It can be proven thatW[ρ̂] ≥ 0 for any separable state. Thus,W[ρ̂] < 0 serves as a
sufficient condition for the inseparability of ρ̂. However, the purity of the whole system
Tr

[
ρ̂2

Tar
]
requires the reconstruction of the total density matrix ρ̂Tar at time tTar, which is

quite demanding in our current experimental setup. Instead, after adiabatically preparing
the ground state of the system, we reverse the adiabatic process, which disentangles the
prepared ground state, and then measure the component PRev ≡ Tr[| ↓, 0〉〈↓, 0| ρ̂Rev] of the
spectral decomposition of the obtained final state at time tRev, which corresponds to the
probability of recovering the initial state. It’s straightforward to see that P2

Rev ≤ Tr
[
ρ̂2

Rev
]
.

In general, unitary evolutions conserve the purity of a system, while the non-unitary
contributions to the evolution that may arise during the process, mainly from random
fluctuations in frequencies and intensities of lasers or the dephasing and heating of the
motional modes, can only decrease the purity of the system, an effect that cannot be
canceled by the reversed adiabatic process. Therefore, it is reasonable to assume that after
the whole process in this experiment the purity of the system is not increased. Under such
an assumption the following inequality can be stablished

Tr
[
ρ̂2

Tar
]
≥ Tr

[
ρ̂2

Rev
]
≥ P2

Rev. (5-10)

In other words, P2
Rev serves as a lower bound for Tr

[
ρ̂2

Tar
]
. Putting Eqs. (5-9) and (5-10)

together, we have

W[ρ̂Tar] ≤ Tr
[
ρ̂2

spin
]
− P2

Rev. (5-11)
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Methods E: Calibration of laser intensities

In the experiments, we calibrate the imbalance between Ωb and Ωr within at most
ε = 3%, which is described by Ωb = (1 ± ε)Ωr . This imbalance could modify the target
QRM Hamiltonian as ĤQRM,im

ĤQRM,im =
ω0
2 σ̂z + ωmâ†â + g(1 + ε

2 )(σ̂+ + σ̂−)(â + â†)

+ ε2 (σ̂+ − σ̂−)(â − â†). (5-12)

We observe that the effect of such an imperfection is reflected in the coupling strength g

that changes to gε = g(1 + ε
2 ) and in the extra term ε

2 (σ̂+ − σ̂−)(â − â†). In Fig. 5.5, we
perform numerical calculations to evaluate the effect of these terms and conclude that the
main deviations from the ideal case arise from the change in coupling strength.The plotted
numerical results correspond to the cases discussed in Fig. 5.1 with an imperfection of
ε = ±3%. No significant deviation is observed from the perfectly calibrated case. Here
by no significant we mean that the deviations are not larger than the already considered
experimental error bars.

5.6 Conclusion

We have implemented the quantum simulation of all relevant coupling regimes of
the QRM in a single trapped ion, obtaining direct evidence of the breakdown of the
RWA. In the DSC regime, we observe the phonon number wave-packets bounce back and
forth as well as collapses and revivals of the initial state, confirming previous theoretical
predictions. The adiabatic preparation of the ground state of the QRM in the DSC regime
was produced for the first time in a quantum platform, and its reconstruction has enabled
us to demonstrate the entanglement present in its ground state. As a direct application of
this adiabatic method, we have been able to measure the energy splittings between states
of different parity and recreate the energy spectrum of the QRM in the USC regime. In
conclusion, our work presents a detailed experimental exploration of the QRM in a wide
range of physical regimes. From a theoretical point of view, our work justifies further
research in light-matter coupling regimes that are, a priori, not found in nature, as we
are providing a platform where all these regimes can be physically implemented. Our
experimental methods can be directly extended to the study of the phase transition in the
QRM [107–109] or to the simulation of the Dicke model [110–112] by considering the presence
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of more ions.
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图 5.3 Adiabatic ground state preparation of the QRM in the DSC regime. In panel (a), we
show the adiabatic scheme for the preparation of the ground state of the QRM at the DSC ratios
g/ωm = 1.2, 1.5, and 2.0, as starting from the initial JC ratio g/ωm = 0.125. The fidelities
between the instantaneous ground state and the numerically evolved state quantify the adiabaticity
of our process. In panel (b), we show the evolution of the excitation probability and the purity
of spin state during the adiabatic ground state preparation (0 ≤ t ≤ tTar) and during the reverse
process (tTar ≤ t ≤ tRev). The plot corresponds to the preparation of the ground state at the ratio
g/ωm = 1.2. The red dashed line and the green solid line are obtained by direct diagonalization of
the QRM Hamiltonian and numerical simulation of the adiabatic process, respectively, including
heating and dephasing of the motional mode, which are expected experimental imperfections.
The blue circles with error bars correspond to the experimental results. The purple line represents
the numerically computed purity of the spin, defined as Tr(ρ̂2

spin), where ρ̂spin is the reduced
density matrix of the spin after tracing out the motional degree of freedom. The orange squares
are the corresponding experimental results, computed from the spin-tomography [89,90]. Panels
(d) to (f) show the phonon-number distributions correlated with |↓〉 (lower panel) and |↑〉 (upper
panel), which are obtained by fitting the standard blue-sideband signals after the spin-projective
measurement for g/ωm = 1.2, 1.5, and 2.0, respectively. The red solid line and the green solid line
are obtained by direct diagonalization of the QRM Hamiltonian and numerical simulation of the
adiabatic process, respectively, including heating and dephasing of the motional mode, which are
expected experimental imperfections. Finally, panel (c) shows the purity of the spin and estimated
lower bounds for the purity of the whole system, for each tested coupling ratio. The purity of the
spin is obtained from the measured reduced density matrix, which was done by spin-tomography.
The lower bounds of the purities of the whole system are estimated by measuring the probability
of being in |↓, 0〉 after the reverse process at tRev. Note that we get the numerical simulation results
in (b-f) by solving the Lindblad master equation (see Methods B).
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图 5.4 Spectrum of the QRM. Panels (a) and (b) show, respectively for the regimes g/ωm = 0.3
and 0.6, the population of the excited state of the spin as a function of the modulation frequency
of the probe driving. The red curve corresponds to numerical simulation results, while the blue
curve shows the experimental data. Panel (c) shows the energy spectrum with the modulation
frequency of the probe drive in the vertical axis rescaled byωm. Note that the energy of the ground
state (not plotted) is taken to be zero for all cases. The three continuous curves on top of the plot
show the numerically computed energy spectrum of the states with parity opposite to the ground
state.
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图 5.5 Spin and phonon dynamics under the QRM for different coupling regimes with the
imbalance between Ωb and Ωr. The black and the purple curves correspond to the results of
numerical simulations with Ωb = (1 − ε)Ωr and Ωb = (1 + ε)Ωr, respectively, setting ε = 3%, for
the cases shown Fig. 5.1.
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第6章 Summary and outlook

During the Ph.D. carrier, I have studied the quantum optics, which is the foundation to
understand the ion-laser interaction. While for the experimental part, I divide the time into
two parts. The previous two years, I mainly focus on the four rods trap, in which I conduct
the experiments of studying the JCM model in phase space with Q function. In this work,
I develop the efficient vacuum measurement method, which is the key ingredients for the
construction of Q function. Meanwhile, I have realized the direct reconstruction from the
Q function to its density matrix with the least square method.

Later, after we move the Lab from CQI to MMW building, I mainly spend the time
together with Dr. An, who has been a postdoc now at Oxford University. He designs the
blade trap, while we assemble and test together. We meet many expected and unexpected
problems during the process of testing blade trap until we finally reach a status that can
run our experiment. Meanwhile, I am the first one in our group to study the DDS. I design
the circuit to provide the DC voltage for the DDS source and write the Verilog code to
control the DDS through FPGA. In the future, the DDS could be embedded in the FPGA
board to implement fast control and easy configuration.

Afterwe finish the testing of the blade trap, I conduct the first experiments: simulation
of the quantum Rabi model. In this work, we prepare the ground state of QRM in deep-
strong coupling regime for the first time and observe the property of entanglement and
conservation of parity value. Due to the limit motional coherence time, with the hint of
my supervisor, I come up with the idea of changing the detuning of the laser exponentially.
This method reduces the adiabatic preparation time quite a lot.

In our setup, there could be the following two experiments to run in the near future.
The first project is to simulate the beam splitting(BS) operator [113]. In the experiment,

this operation has been used to study Hong-Ou-Mandel interference [114]. Here, we may
employ the BS operation to check the fidelity measurements between the two motional
modes. The two modes of the ion could serve as the two input port of the BS. When
two modes have the same input state, ideally, the fidelity should be 1. In this experiment,
we could prepare different input states in two modes, or we fix one of the input states in
one mode, while changes the other mode’s state. We check the fidelity by measuring the
parity of one of the mode.
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The second project could extend our study to the super-radiant quantum phase tran-
sition of QRM. In this work, we may realize the Rabi model in the limit of a large ratio
of the effective atomic transition frequency to the oscillator frequency. We shall show
that there exists equilibrium and non-equilibrium universal functions of the Rabi model
by finding a proper rescaling of the system parameters and observables [107,108].

In the long run, the most important thing is to scale up the number of ions that we can
manipulate and buy a new pulse laser with large enough output power. The blade trap is a
promising platform to do the scalable quantum computation and quantum simulation. The
micromotion along the axial direction should take into consideration seriously in order
to confine a ion chain stably along the axis. The control system of single ion addressing
should also develop and the multi-channel PMT system may involve in the future.
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附录 B PCB board schematic of the high voltage, fast speed amplifier PA85

附录 B PCB board schematic of the high voltage, fast speed
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附录 D Verilog code for the DDS control

I have built theVerilog code for theDDS control. We can set the frequency, amplitude
throught the message send from LabView. The 8 profiles in the AD9910 make it quite
atrractive for the sideband cooling in our multi ion experiments. The evaluation board
offers the interface with external control of the DDS through proper set of the jump in
the PCB board. When the frequency change speed is not main concern, we can actually
directly use it to replace other RF source, which might much expensive. Here I list the
core code for in the serial communication mode. Actually, what I did is to simulate the
TTL sequence needed to communicate with the evaluation board.

1 /∗ t h i s a s i n g l e t one t e s t , i t i s qu i ck no need t o communicate
2 wi th compute r and keep send d a t a a l l t h e t ime ∗ /
3 /∗Keep i n mind t h a t EXT_pow_dwn need t o connec t t o Ground a lways ∗ /
4 /∗ S i n g l e i n t e r n a l f r e qu en cy g e n e r a t i o n ∗ /
5 module AD9910v1 ( c lk , CS , SCLK, SDIO , IO_RST , IO_Update , Master_RST ) ;
6 i n p u t c l k ;
7 ou t p u t CS , SCLK, SDIO , IO_RST , IO_Update , Master_RST ;
8 / / F1 , F0 , TxEnable ; / / Master_RST−> Mas t e rRe s e t
9 / / o u t p u t P r o f i l e 0 , P r o f i l e 1 , P r o f i l e 2 ;
10 r eg CS=1 ,SDIO=0; / / ,SCLK= 0 ; / / SDIO i n p u t on ly , no t t h e SDIOO??
11 r eg IO_RST , IO_Update , Master_RST ;
12 / / r eg P r o f i l e 0 =0 , P r o f i l e 1 =0 , P r o f i l e 2 = 0 ; / / i n t e n d f o r p r o f i l e 0
13 / / r eg F1=0 , F0=0 , TxEnable =1;
14 / / f o r t e s t
15 / / o u t p u t [ 5 : 0 ] S t a t e ;
16 r eg [ 5 : 0 ] S t a t e =0;
17 r eg [ 7 : 0 ] SP I _S t a t e =0;
18 / / o u t p u t [ 7 : 0 ] SP I _S t a t e _Coun t e r 0 ;
19 / / o u t p u t [ 7 : 0 ] SP I _S t a t e _Coun t e r 1 ;
20 r eg [ 7 : 0 ] SP I _S t a t e _Coun t e r 0 =0 , SP I _S t a t e _Coun t e r 1 =0; / / r e s p e c t i v e f o r 32 and 64 b i t d a t a
21 r eg [ 7 : 0 ] Bu f f e r _Add r e s s ;
22 r eg [ 3 1 : 0 ] Bu f f e r _Da t a0 ; / / r e u s e i t a g a i n i n t h e d e s i g n
23 r eg [ 6 3 : 0 ] Bu f f e r _Da t a2 ; / / b a s i c a l l y t h i s d a t a can be come from t h e t o t a l 96 b i t d a t a
24 r eg [ 3 9 : 0 ] CFR1=40 ’ h0 ;
25 r eg [ 3 9 : 0 ] CFR2=40 ’ h0 ;
26 r eg [ 7 1 : 0 ] SingTone =72 ’ h0 ;
27 pa r ame t e r I n i t i a l =4 ’d0 , S t a r t =4 ’d1 , Conf ig =4 ’d2 , IO_Update2 =4 ’d3 , Conf ig_Comple te =4 ’ d4 ;
28 pa r ame t e r SP I _S t a t e 0 =4 ’d0 , SP I _S t a t e 1 =4 ’d1 , SP I _S t a t e 2 =4 ’d2 , SP I _S t a t e 3 =4 ’d3 , SP I _S t a t e 4 =4 ’d4 , SP I _S t a t e 5 =4 ’d5 , SP I _S t a t e 6 =4 ’ d6 ;
29 pa r ame t e r Address0 =8 ’ h00 , Address1 =8 ’ h02 , Address2 =8 ’ h0e ;
30 /∗we i n t e n t i a l l y s e t t h e SDIOO−> SDIO on ly i npu t , we do no t r e ad i t

o r r e ad t h e v a l u e by SDO∗ /
31 pa r ame t e r Data0 =32 ’ h0000_0000 , Data1 =32 ’ h1F_3F_C0_00 , Data2 =64 ’ h08b5_8000_3333_3333 ;
32 / / j u s t g e n e r a t e t h e s i n g l e f r equency , no need t o communica t ion
33 / / p a r ame t e r Data0 =32 ’hA0A0_3333 , Data1 =32 ’ h1700_c400 , Data2 =64 ’ h08b5_0000_3333_3333 ;
34 / / j u s t g e n e r a t e 200MHz
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35 pa r ame t e r Address_Width =8 , Data_Width1 =32 , Data_Width2 =64;
36 r eg SCLK;
37 r eg [ 1 : 0 ] d e l a y =2 ’ b00 ; / / f o r s s h o r t d e l a y ;
38 / / w i r e SCLK;
39 / / a s s i g n SCLK= c l k ;
40 / / o u t p u t [ 1 : 0 ] s c l k _ s t a t e ;
41 r eg [ 1 : 0 ] s c l k _ s t a t e =2 ’ b11 ; / / t o g e n e r a t e t h e s c l k s i g n a l
42 r eg [ 1 1 : 0 ] c o n v e r t _ d e l a y =12 ’ h00 ;
43 r eg [ 2 : 0 ] i o _up_de l a y =3 ’ b000 ;
44 r eg [ 7 : 0 ] ma s t e r _ d e l a y =8 ’ h00 ;
45 a lways @( posedge c l k )
46 beg in
47 c a s e ( S t a t e )
48 I n i t i a l :
49 beg in
50 CS <= 1 ; IO_RST <= 0 ;
51 IO_Update <= 0 ; Master_RST <= 1 ;
52 S t a t e <= S t a t e +6 ’ d1 ;
53 SP I _S t a t e <= 0 ;
54 SP I_S t a t e _Coun t e r 0 <= 0 ;
55 SP I_S t a t e _Coun t e r 1 <= 0 ;
56 / / F1 <= 0 ; F0 <= 0 ; TxEnable <= 1 ;
57 Buf f e r_Da t a0 <= Data0 ;
58 Buf f e r_Da t a2 <= Data2 ;
59 Buf f e r _Add r e s s <= Address0 ; / / SP I _S t a t e <= 0 ; send t h e f i r s t 0x00 a d d r e s s
60 CFR1 <={Address0 , Data0 } ;
61 CFR2 <={Address1 , Data1 } ;
62 SingTone <={Address2 , Data2 } ;
63 end
64 S t a r t :
65 beg in
66 mas t e r _ d e l a y <= ma s t e r _ d e l a y +1;
67 i f ( ma s t e r _ d e l a y ==10)
68 beg in
69 CS <= 0 ; / / maybe he r e s e t i t 0 much b e t t e r
70 / / i n c r e a s e t h e m a s t e r _ r e s e t t ime
71 Master_RST <= 0 ;
72 / / keep i n mind t h a t t h i s p a r t we may de l a y some t ime i f p o s s i b l e
73 S t a t e <= S t a t e +6 ’ d1 ;
74 mas t e r _ d e l a y <=0;
75 end
76 e l s e
77 beg in
78 S t a t e <= S t a r t ;
79 end
80 end
81 Conf ig :
82 beg in
83 / / CS <= 0 ;
84 c a s e ( SP I _S t a t e )
85 SP I_S t a t e 0 :
86 beg in
87 / / CS <= 0 ;
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88 i f ( s c l k _ s t a t e ==0 | s c l k _ s t a t e == 1)
89 / / g e n e r a t e t h e s c l k
90 beg in
91 SCLK <= 1 ’ b1 ;
92 end
93 e l s e
94 beg in
95 SCLK <= 1 ’ b0 ;
96 end
97 i f ( s c l k _ s t a t e == 3) / / l o ad d a t a
98 beg in
99 SP I_S t a t e _Coun t e r 1 <= 0 ;
100 i f ( SP I _S t a t e _Coun t e r 0 < ( Address_Width+Data_Width1 ) )
101 / / c o n f i g 0x00 r e g i s t e r
102 beg in
103 SDIO <= CFR1 [ Address_Width+Data_Width1 −1 ] ;
104 CFR1 <= CFR1<<1;
105 SP I_S t a t e _Coun t e r 0 <= SP I_S t a t e _Coun t e r 0 +8 ’ d1 ;
106 end
107 e l s e
108 beg in
109 / / SDIO <= CFR1 [ Address_Width+Data_Width1 −1 ] ;
110 SP I _S t a t e <= SP I _S t a t e +4 ’ d1 ;
111 CS <= 1 ’ b1 ; / / I n s e r t a d e l a y
112

113 end
114 end
115 s c l k _ s t a t e <= s c l k _ s t a t e +1;
116 end
117 SP I_S t a t e 1 :
118 beg in
119 i f ( d e l a y < 3)
120 beg in
121 de l a y <= de l a y +1;
122 end
123 e l s e
124 beg in
125 de l a y <=2’b00 ;
126 CS <= 1 ’ b0 ;
127 s c l k _ s t a t e <= 2 ’ b11 ; / / r e s e t t h e s c l k _ s t a t e l o ad
128 SP I _S t a t e <= SP I _S t a t e +4 ’ d1 ;
129 SP I_S t a t e _Coun t e r 0 <= 0 ;
130 end
131 end
132

133 SP I_S t a t e 2 :
134 beg in
135 / / CS <= 0 ;
136 i f ( s c l k _ s t a t e ==0 | s c l k _ s t a t e == 1)
137 / / g e n e r a t e t h e s c l k
138 beg in
139 SCLK <= 1 ’ b1 ;
140 end
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141 e l s e
142 beg in
143 SCLK <= 1 ’ b0 ;
144 end
145 i f ( s c l k _ s t a t e == 3) / / l o ad d a t a
146 beg in
147

148 i f ( SP I _S t a t e _Coun t e r 1 < ( Address_Width+Data_Width1 ) )
149 / / c o n f i g 0x00 r e g i s t e r
150 beg in
151 SDIO <= CFR2 [ Address_Width+Data_Width1 −1 ] ;
152 CFR2 <= CFR2<<1;
153 SP I_S t a t e _Coun t e r 1 <= SP I_S t a t e _Coun t e r 1 +8 ’ d1 ;
154 end
155 e l s e
156 beg in
157 / / SDIO <= CFR1 [ Address_Width+Data_Width1 −1 ] ;
158 SP I _S t a t e <= SP I _S t a t e +4 ’ d1 ;
159 CS <= 1 ’ b1 ; / / I n s e r t a d e l a y
160 / / IO_Update <= 1 ;
161 end
162 end
163 s c l k _ s t a t e <= s c l k _ s t a t e +1;
164 end
165 SP I_S t a t e 3 : / / some de l a y
166 beg in
167 i f ( d e l a y < 3)
168 beg in
169 de l a y <= de l a y +1;
170 end
171 e l s e
172 beg in
173 de l a y <=2’b00 ;
174 CS <= 1 ’ b0 ;
175 s c l k _ s t a t e <= 2 ’ b11 ; / / r e s e t t h e s c l k _ s t a t e l o ad
176 SP I _S t a t e <= SP I _S t a t e +4 ’ d1 ;
177 SP I_S t a t e _Coun t e r 1 <= 0 ;
178 / / IO_Update <= 0 ;
179 end
180 end
181 SP I_S t a t e 4 :
182 beg in
183 / / CS <= 0 ;
184 i f ( s c l k _ s t a t e ==0 | s c l k _ s t a t e == 1) / / g e n e r a t e t h e s c l k
185 beg in
186 SCLK <= 1 ’ b1 ;
187 end
188 e l s e
189 beg in
190 SCLK <= 1 ’ b0 ;
191 end
192 i f ( s c l k _ s t a t e == 3) / / l o ad d a t a
193 beg in
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194 / / SP I _S t a t e _Coun t e r 1 <= 0 ;
195 i f ( SP I _S t a t e _Coun t e r 0 < ( Address_Width+Data_Width2 ) )
196 / / c o n f i g 0x00 r e g i s t e r
197 beg in
198 SDIO <= SingTone [ Address_Width+Data_Width2 −1 ] ;
199 SingTone <= SingTone < <1;
200 SP I_S t a t e _Coun t e r 0 <= SP I_S t a t e _Coun t e r 0 +8 ’ d1 ;
201 end
202 e l s e
203 beg in
204 / / SDIO <= CFR1 [ Address_Width+Data_Width1 −1 ] ;
205 SP I _S t a t e <= SP I _S t a t e +4 ’ d1 ;
206 CS <= 1 ’ b1 ; / / I n s e r t a d e l a y
207 end
208 end
209 s c l k _ s t a t e <= s c l k _ s t a t e +1;
210 end
211 d e f a u l t :
212 beg in
213 S t a t e <= S t a t e +6 ’ d1 ;
214 end
215 endca se
216 end
217 IO_Update2 :
218 beg in
219 i f ( SP I_S t a t e_Coun t e r1 <1) / / on ly IO_Update f o r one c l k
220 beg in
221 CS <= 1 ;
222 IO_Update <= 1 ;
223 SP I_S t a t e _Coun t e r 1 <= SP I_S t a t e _Coun t e r 1 +1;
224 end
225 e l s e / / r e s e t them
226 beg in
227 S t a t e <= S t a t e +6 ’ d1 ;
228 SP I_S t a t e _Coun t e r 1 <= 0 ;
229 SP I_S t a t e _Coun t e r 0 <= 0 ;
230 end
231 end
232 Conf ig_Comple te :
233 beg in
234 CS <= 1 ;
235 / / IO_Update <= 0 ;
236 c o n v e r t _ d e l a y <= c o n v e r t _ d e l a y +1;
237 / / S t a t e <= 4 ’ d4 ; / / Th i s p a r t s hou l d be a I n i t i a l
238 i f ( c o n v e r t _ d e l a y ==4)
239 beg in
240 IO_Update <= 0 ;
241 end
242 /∗ i f ( c o n v e r t _ d e l a y == 500)
243 beg in
244 c o n v e r t _ d e l a y <=12 ’ h000 ;
245 S t a t e <= 4 ’ d0 ; / / o r t h i s two ma t t e r s ?
246 s c l k _ s t a t e <= 2 ’ b11 ; / /
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247 end ∗ / / / l e t t h e program s t o p s he r e
248 /∗ e l s e
249 beg in
250 / / c o n v e r t _ d e l a y <=12 ’ h000 ;
251 / / S t a t e <= 4 ’ d0 ; / / o r t h i s two ma t t e r s ?
252 / / s c l k _ s t a t e <= 2 ’ b11 ; / /
253 S t a t e <=Conf ig_Comple te ;
254 end ∗ /
255 end
256 d e f a u l t :
257 beg in
258 IO_Update <= 0 ;
259 CS <= 1 ;
260 / / S t a t e <= 4 ’ d4 ; / / Th i s p a r t s hou l d be a I n i t i a l , o t h e rw i s e i t i s a dead
261 S t a t e <= 4 ’ d0 ;
262 s c l k _ s t a t e <= 2 ’ b11 ; / /
263 end
264 endca se
265 end
266 endmodule
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附录 E Mathematica source code of reconstruction the density
matrix from the Q function measurement

1 Q2WFit t ing [ Q l i s t _ : L i s t , d e n s _ i d e a l _ : L i s t , maxn_ : nmax ] := Module [
2 { tem , dens_tem , maxN} ,
3 ReIn i = Re [ d e n s _ i d e a l ] ;
4 ImIn i = Im [ d e n _ i d e a l ] ;
5 dens_temRe = F l a t t e n [ Tab le [ 1 / ( nmax + 1 ) , { i , 0 , nmax , 1} , { j , 0 , nmax , 1 } ] ] ;
6 dens_temIm = F l a t t e n [ Tab le [ 1 / ( nmax + 1 ) , { i , 0 , nmax , 1} , { j , 0 , nmax , 1 } ] ] ;
7 dr = 0 . 2 ; (∗ t h e s t e p f o r amp l i t u d e ∗ )
8 d_The ta = P i / 1 2 ; ∗ t h e s t e p f o r phase ∗ )
9 dens = Tab le [ Re [ a [ [ i , j ] ] ] + i ∗Re [ b [ [ i , j ] ] ] , { i , 0 , nmax , 1} , { j , 0 , nmax , 1 } ] ;

10 d e n s _ r e a l = Tab le [ a [ [ i , j ] ] , { i , 0 , nmax , 1} , { j , 0 , nmax , 1 } ] ;
11 dens_Imag = Tab le [ b [ [ i , j ] ] , { i , 0 , nmax , 1} , { j , 0 , nmax , 1 } ] ;
12 t a n = F la t t en@dens_ ;
13 R e I n i t i a l = F l a t t e n [ Tab le [ { a [ [ i , j ] ] , Re In i [ [ i + 1 , j + 1 ] ] } ,
14 { i , 0 , nmax , 1} , { j , 0 , nmax , 1 } ] , 1 ] ;
15 I m I n i t i a l = F l a t t e n [ Tab le [ { b [ [ i , j ] ] , ImIn i [ [ i + 1 , j + 1 ] ] } ,
16 { i , 0 , nmax , 1} , { j , 0 , nmax , 1 } ] , 1 ] ;
17 A l l I n i = J o i n [ R e I n i t i a l , I m I n i t i a l ] ;
18 tem = Sum[Abs [ Q l i s t [ [ i + 1 , j + 1 ] ] − Re [ Exp [ −( i ∗ dr ) ^ 2 ]∗
19 Sum[ I f [ i == 0 && (m + n == 0 ) , 1∗ dens [ [m + 1 , n + 1 ] ] ,
20 ( i ^ (m + n )∗ ( d r ) ^ (m + n )∗Exp[− I ∗ (m − n )∗ j ∗d \ [ The ta ] ] ) / S q r t [m! n ! ]
21 ∗ dens [ [m + 1 , n + 1 ] ] ] , {m, 0 , nmax , 1} , {n , 0 ,
22 nmax , 1 } ] ] ] ^ 2 , { i , 0 , 15 , 1} , { j , 0 , 23 , 1 } ] ;
23 tem1 = And @@ Table [ dens [ [ i + 1 , i + 1 ] ] >= 0 , { i , 0 , nmax , 1} ] &&
24 Sum[ dens [ [ i + 1 , i + 1 ] ] , { i , 0 , nmax , 1} ] == 1 ;
25 (∗ tem2=And@@Flatten [ Tab le [ dens [ [ i +1 , j +1]]== dens [ [ j +1 ,
26 i + 1 ] ] ^ \ [ Con juga t e ] , { i , 0 , nmax , 1 } , { j , 0 , nmax , 1 } ] ] ; ∗ )
27 tem2 = And @@ F l a t t e n [ Tab le [ b [ [ i , j ] ] + b [ [ j , i ] ] == 0 , { i , 0 , nmax , 1 } ,
28 { j , 0 , nmax , 1 } ] ] ;
29 tem3 = FindMinimum [{ tem , tem1 && tem2 } , A l l I n i , Wo rk i ngP r e c i s i o n −> 4 ] ;
30 dens_tem = tem3 [ [ 2 ] ] ;
31 dens / . dens_tem
32 ] ;
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