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摘 要

摘 要

作为未来量子计算机的主要候选系统之一，在过去的几十年里，离子阱系统

的潜力被极大的挖掘出来。本论文展示了一个完全受控的单个镱离子系统，实现

了具有高保真度的量子态初始化、操控、测量。其中，微波操控离子超精细能级

结构、脉冲激光操控离子振动模式以及利用相机扩展量子态测量对接下来搭建多

离子系统必不可少。

利用单个囚禁离子中四能级系统的量子操控，实现了解决分子电子结构问题

的酉耦合簇（UCC）算法。在经典计算机的辅助下，我们的量子计算机成功模拟
出氦合氢离子的基态能量，并使用UCC方法模拟了激发态能量和键解离能。
通过对单个囚禁离子中两种振动模式的量子操控，实现了具有两个玻色子振

动模的高斯玻色子采样算法，同时模拟了二氧化硫的分子振动能谱。我们掌握了

在单次实验中保持相位相干性的操控，包括多个振动模的位移、压缩以及旋转。

此外，我们设计出了两个振动模整体投影测量的试验方法。

我们现阶段所做的量子化学算法在离子阱系统中的应用，将为大规模分子模

拟问题打下基础。在经典计算机上难以实现的量子模拟，可以在量子系统中高效

的运行，这可能使量子霸权成为现实。

关键词：离子阱系统；量子模拟；量子化学模拟；单离子操控
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Abstract

Abstract

The trapped ion system, as one of the leading candidates for the future quantum
computer, has shown its potential power in the past decades. In this thesis, a fully
controlled single trapped 171Yb+ ion system is exhibited, where we realize the state
initialization, manipulation and detection with high fidelity. We manipulate the hyperfine
energy levels with the microwave and the motional modes with a pulsed laser. I extend
the quantum state detection with a camera, which is essential for the following multi-ion
setup.

With the quantum control of the four-level system in a single trapped ion, I implement
the Unitary Coupled Cluster (UCC) algorithm for the molecular electronic structure
problem. With the assistance of a classical computer, our quantum computer simulates the
ground state energy surface of HeH+, and the excited-state energy and bond-dissociation
is simulated non-perturbatively.

With the quantum control of the two motional modes in a single trapped ion, I
implement the Gaussian boson sampling algorithm with two bosonic modes and emulate
the molecular vibronic spectroscopy of SO2. We realize the phase-coherent manipulation
of displacement, squeezing, and rotation operations with multiple modes in a single
realization. Besides, we demonstrate the collective projection measurements for two-
phonon-mode.

Our experimental demonstration of the quantum chemistry algorithm would pave the
way to large-scale molecular quantum simulations, which are classically intractable but
can be efficiently implemented in a quantum system, and bring the quantum supremacy
to reality.

Key words: Trapped ion system; Quantum simulation; Quantum chemistry simulation;
Single ion control
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第1章 Introduction

第1章 Introduction

1.1 Quantum computing and Quantum chemistry simulation

The simulating of quantum mechanics was proposed as a hard problem in the early
1980s, and Richard Feynman suggested solving this problem by using a quantum com-
puter [1]. Without using an exponentially large amount of physical resources, the quantum
computer can outperform the classical computer for a certain problem of large system size.
Later, it was shown that quantum computer could also act as a universal quantum simulator,
which is constructed by many well-defined qubits that can be initialized, measured, and
perform universal quantum gates [2,3]. Quantum simulator provides a practical application
before the realization of full-fledged quantum computers. There has been increasingly
greater interest in the quantum simulation during the past decades, and a large number
of potential applications in physics, chemistry, and biology were proposed. Above that,
many proof-of-principle experiments have been carried out on different platforms [4–6],
and recent experimental works pushed the number of qubits over 50 [7,8].

People believe in near term, a quantum computer capable of handling more than 100
qubits is expected to be developed, whichmay show the quantum supremacy. Although the
simulation of quantum dynamics of physical systems is in general efficient with a quantum
computer, the quantum computer in the near term may not be sufficient to perform the
full quantum error correction. Therefore, it is an impending question at this stage to find
some meaningful tasks with the current level of quantum computers; quantum chemistry
simulation turned out to be one of the focus areas for the practical application without a
universal quantum computer.

Quantum chemistry aims to develop theoretical methods for calculating molecular
properties and evolutions from quantum mechanics. Over the last century, quantum
chemistry has achieved great success in exploring the electronic configurations of atoms
and molecules [9]. However, the Hilbert space of quantum systems scales exponentially
with the system size, making computational costs unfeasible within current conventional
computer architectures. Therefore the quantum computer becomes an alternative approach
for quantum chemistry simulation [10,11], with many having been proposed algorithms to
implement quantum chemistry problems in quantum computers [12–14]. There are two
possible directions for long-term quantum chemistry simulation: (a) simulations of static

1



第1章 Introduction

molecular energies for larger molecules and (b) simulations of more complicated chemical
reactions. These simulation processes can be summarized in three steps: (a) preparing
the quantum system into an initial state, (b) evolving the initial state with a controlled
Hamiltonian, and (c) measuring the desired properties from the final state.

1.2 Trapped ion Quantum computer

Many quantum systems have been established in the past 30 years, e.g., supercon-
ducting qubits, trapped ions, cold atoms, nuclear magnetic resonance, nitrogen-vacancy
center and quantum optics. To construct a quantum computer, it is necessary to obey the
DiVincenzo’s criteria, which states the following conditions for a quantum system [15]:

• A scalable physical system with well-characterized qubits
• The ability to initialize the state of the qubits
• Long relevant decoherence times
• A “universal” set of quantum gates
• A qubit-specific measurement capability
Since the invention of the first ion trap by Wolfgang Paul in 1950s [16], there has been

a rapid development in the theory and technology of trapped ion system. Until now, the
trapped ion system satisfies all the aforementioned DiVincenzo’s characteristics other than
the scalability, where the long storage time of a large ion crystal is hard to achieve. The
qubits in a trapped ion system are defined by the energy levels of the ion, which guarantees
the identity between qubits. We control the qubits via lasers or microwave, where the
qubits initialization can be achieved with high fidelity. The ions are well isolated from
the external environment due to the ultra-high vacuum, and we can reach a relatively long
coherence time compared to the gate time. The single qubit gate and two-qubit gate have
been demonstrated in the trapped ion system with the fidelity over 99.99%. Through the
camera or multi-channel PMT, we can detect the state of qubits with a reasonable time.

There remain several technical problems in the trapped ion system. One is the non-
uniform spacing of the ions in the vacuum chamber, which raises the difficulty of single
ion addressing. Besides, when the number of ions is large, the frequency separation
between motional modes becomes small, which limits the multi-qubit gates through the
motional bus. Lastly, I want to mention that the gate time in the trapped ion system (now
about µs) may be a limitation for operation with a large number of quantum gates, where
quantum speedup happens, but still with a painful time.

2



第1章 Introduction

1.3 Thesis organization

In chapter 2, I will give the general architecture for our trapped ion system, and
describe the motion of an ion in our trap. Then, I will explain how to capture the ion,
which includes the ionization, cooling and repumping processes.

In chapter 3, I will present the quantum control of the ion, where the introduction of
the Hilbert space for a single ion is our starting point. Then, I will present the mechanism
of initializing, manipulating, and detecting of the qubit, except the theoretical description,
I will also show our experimental performance data.

In chapter 4, I would like to mention several techniques involved in our system, which
are essential for building up a working experimental platform.

Chapter 5 and 6 are the two experimental works that I have accomplished during my
Ph.D. career, where the molecular electronic structure problem and molecular vibronic
spectroscopy problem in quantum chemistry field are simulated with our trapped ion
system.

Chapter 7 is the conclusion and outlook.

3
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第2章 Trapped 171Yb+ ion system

There are several existing types of ion traps used by different groups around the
world. During my Ph.D. research career, I have been using the four-rod trap and the
segmented blade trap, both of which belong to the type called the Paul trap, shown in
Figure 2.1. The Paul trap generates the trapping potential via the combination of static
electric field and oscillating electric field [16]. Although there are many groups considering
the fabricated traps with more electrodes (e.g., Sandia National Laboratories High Optical
Access Trap), for ion-shuttling or uniform spacing of multi-ions. The work introduced in
this thesis, our homemade primary trap, showed excellent performance with a single ion.

2.1 Dynamics in the Paul trap

2.1.1 The overview of our trapped ion system.

The general components of our trapped ion system are illustrated in Figure 2.2 (a),
where the ion trap sits inside an ultra-high vacuum (UHV) chamber. We apply a designed
electric field to the electrodes of the trap to form the potential that confines the ions in
space. With the assistance of the Field-Programmable Gate Array (FPGA), a conventional
computer is used to control the experiment instruments and experiment running sequence.
We use the microwave and lasers to realize state initialization and quantum control of
the qubits. With a fluorescence detection system, we obtain the measurement data of the
qubits and finally send the data back to the conventional computer.

The two essential properties that make trapped ion systems serve as the current
leading quantum computer candidate are: (a) trapped ion system uses the qubits from
nature, which guarantees the identity of qubits throughout the world and (b) the qubits
are well isolated from the environment noise due to the using of the ultra-high vacuum
system [17]. In our experimental setup, we can maintain the vacuum at the level of 10−11

Torr with a Ti-sublimation pump and the ion-pump. In such a vacuum condition, the
background collisions from the background particles are close to negligible.

The traps I am mentioning in my thesis are the four-rod trap and the segmented blade
trap, where we apply a static electric field and oscillating electric field together to generate
the 3-dimension confinement field for the ions; this principle will be discussed in section
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(a) (b)

(c) (d)

X

YZR

Z0

图 2.1 The four-rod trap and the segmented blade trap. (a) and (b) The four-rod trap and five-
segment blade trap used in our laboratory. (c) and (d) The sketch-up diagram of the four-rod trap
and segmented blade trap, the purple balls are illustrated as ions. In the four-rod trap, we apply
a static electric field on the rods labeled with DC and apply a radio frequency field on the rods
labeled with RF. Beyond that, we apply a DC field on the gray electrodes to form the confinement
in the Z direction. This electric fields configuration generates the potential null in space, where
ions can be held stably. For the segmented blade trap, we use the blades to replace the four-rod,
and each blade contains several electrodes. With segmented blade trap, we get more freedoms of
control for generating the trap potential that we are interested in.
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Microwave &
Laser (CW, Pulse)

Detection system
PMT & EMCCD

Experiment sequence

Electric Field & Magnetic Field

Vacuum System

Measurement data(a)

(b)

Vacuum
pump

Detection
system

Helical
Resonator

图 2.2 The overview of our trapped ion system. (a) The general components involved in our
trapped ion setup. With the assist of FPGA, the software in the conventional computer controls
the experiment instruments and experiment sequence in high precision and synchronization. We
use microwave and lasers (continuous-wave lasers and pulsed laser) to realize the quantum control
of qubits. The detection system of fluorescence count provides the quantum measurement result
of the qubits. (b) A photo of our trapped ion experimental setup in the laboratory.
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2.1.2. The static magnetic field is generated by the Helmholtz coil, which is essential to
define the quantization axis and separate the Zeeman states.

The LabView software program is running on our conventional computer to control
the experiment instruments through the connection of USB, network et al. We synchronize
and control instruments with FPGA in high precision; the minimum time resolution of
our FPGA board is 5 ns, which is precise enough for our typical experiment sequence
(the length of one single sequence in our experiment is about a few microseconds to
milliseconds).

The qubit used in our trapped ion system is based on the atomic energy levels. We
use the continuous-wave lasers to realize the generation of ion, initialization of the qubits
and the readout of the qubits. For the Hilbert space manipulation, at the early stage of
developing our system, we used themicrowave (12 GHz) tomanipulate the hyperfine levels
of the ion. Recently, we are using the controlled picosecond pulsed laser to manipulate
the hyperfine levels and motional degree of freedom.

The qubits readout is based on the fluorescence detection scheme. An imaging system
collects the fluorescence photons and delivers them to the photon counting device: Photo-
multiplier detector (PMT) or Electron-Multiplying charge coupled device (EMCCD). The
EMCCD is essential for the state detection of multi-ions, where the spacial information
of the ion chain is needed. The details are in section 3.4.

2.1.2 The motion of a trapped ion

In this section, I would like to describe the motion of an ion in the Paul trap with the
applied electric fields on electrodes. Here, we take the four-rod trap as an example, and
the segmented blade trap can be understood similarly. The details of math derivation can
be found in Ref. [18].

We define R as the distance from the ion chain to the electric rods (colored in blue
and red), and the principal axis is labeled as X, Y and Z shown in Figure 2.1 (c). The RF
electric field on the red rods is V0 cosΩT t +Vof f , where V0 is the amplitude of oscillating
electric field,ΩT is the frequency of oscillating electric field, andVof f is the offset voltage
that typically used for the splitting of two radial motional modes. The DC electrodes are
connected to electrical ground. Then the potential near the center of the trap in (x, y)
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plane can be written as [19]

φ(X,Y ) =
V0 cosΩT t + Vof f

2

(
1 +

X2 − Y 2

R2

)
(2-1)

The potential generated by the static electric field on the needle electrodes (gray color
electrodes in Figure 2.1 (c)),

φ(Z) =
Vneedle

Z2
0

[
Z2 −

1
2
(X2 + Y 2)

]
=

m
2e
ω2

Z

[
Z2 −

1
2
(X2 + Y 2)

]
(2-2)

where Vneedle is voltage on the needle electrodes, m is the mass of ion, e is the charge
of the ion, and Z0 is the half of the distance between two needles. Then, our axial trap
frequency (along Z direction) is ωZ =

√
2eVneedle/(mZ2

0 ).
To obtain the motion of an ion in the (X,Y) plane, we need to combine Eq. (2-1) and

Eq. (2-2), and rewrite them in the form of Mathieu Equations:

d2X
dτ2 + [aX + 2qX cos(2τ)] X = 0 ,

d2Y
dτ2 + [aY + 2qY cos(2τ)]Y = 0 (2-3)

where τ = ΩT t/2, aX = (4e/(mΩ2
T ))(Vneedle/Z2

0 −Vof f /R2), aY = (4e/(mΩ2
T ))(Vof f /R2 +

Vneedle/Z2
0 ), qX = 2eV0/(Ω

2
TmR2) and qY = −qX . The value of qX is a very important

parameter for checking the stability of the trap. Typically, q2
X � 1 is required for the

design of a good trap.
The exact solution for Mathieu Equations can be found in Ref. [19]. Here, in the

approximation |aX | ≈ 0, q2
X � 1, we have the following conclusion:

X(t) ≈ x0

(
cos(ωX t)

[
1 +

qX

2
cos(ΩT t)

]
+

√
aX + q2

X/2
qX

2
sin(ωX t) sin(ΩT t)

)
(2-4)

where ωX =

√
aX + q2

X/2
ΩT

2 , is the trap frequency in X direction. We can derive the

motion in Y direction Similarly and ωY =

√
aY + q2

Y/2
ΩT

2 .
We use our experimental setup parameters to simulate the motion of ion in the trap:

e = 1.6 × 10−19 C, m = 171 × 1.66 × 10−27 kg, V0 = 300 V, Vof f = 5 V, Vneedle = 10 V,
R = 0.46 mm, Z0 = 1.3/2 mm, and ΩT = (2π)12.5 MHz.

In Figure 2.3, we show the numerical simulation result for the motion of the ion in
the X direction (ωX = (2π)1.16 MHz, ωY = (2π)1.42 MHz), as we can notice, the ion not
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图 2.3 The numerical simulation result for the motion of an ion in the four-rod trap. Here, we
only plot the motion of the ion in the x-direction of radial modes. The blue curve is the direct
numerical calculation, and the red curve is the plot of oscillation with the trap frequency ωx . The
difference comes from the oscillating with trap frequency ΩT , known as micro-motion.

only moves with the slow motion as the trap frequency, but also feels the micro-motion at
the frequency ΩT . In the four-rod trap design, we also add the micro-motion competition
electric rods to reduce the effect of micro-motion. In the axial direction Z, the ion moves
in the harmonic oscillator, with frequency ωZ = (2π) 0.83 MHz. The above configuration
of trap frequencies is the typical situation (with small RF power) for the ion-loading stage.

2.1.3 Helical Resonator

To provide a reasonable strength of trapping electric field, we need to apply a large
amplitude of RF field, withV0 typically ranging from 100 V to 1000V. Since the electrodes
in the trap are open in space, this means only a small current flows through electrodes, and
we only need a big amplitude of voltage. However, we cannot directly apply high voltage
from the commercial signal generator to the trap, which is due to the miss of impedance
matching, and will cause a big reflection back to the signal generator.

As proposed about 60 years ago by Macalpine, WW and Schildknecht, RO in Ref.
[20], the use of RF quarter-wave helical coil resonator (we also call it as Helical Resonator)
can entirely solve this problem. The Helical Resonator amplifies the RF signal from our
standard source and delivers the high voltage to trap electrode through vacuum feed-
through connection.
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The Helical Resonator consists of three parts: (a) A helical cylinder tube that is
connected to electrical ground. (b) A small coil inside one end-cap that takes the signal
from the RF generator. We also call this the antenna. (c) A big inner coil (inside the
helical cylinder tube) that is coupled with the antenna and connected to the vacuum feed-
through. The quality factor Q is introduced to characterize the performance of a Helical
Resonator, which can be experimentally measured as Q = ΩT/δΩT , where δΩT is the
frequency bandwidth of the Helical Resonator. This relation gives us an idea: for the
same frequency of RF field ΩT , the higher Q we achieve, the narrower band-pass filter we
have. Therefore, the Helical Resonator not only plays the role of a voltage amplifier but
also act as a proper frequency band-pass filter, which is very important for isolating the
ions from other unwanted electric field noise.

To achieve a higher Q of the resonator, except for the careful design of geometric
dimensions, when we assemble the resonator experimentally, the antenna is an essential
part to adjust, where the number of turns and the length of the coil affect Q a lot. In the
experiment, we need to iterate the adjustment to make an optimal antenna.

The output voltage of the Helical Resonator takes the following form

V0 = A
√

PQ (2-5)

where the constant A depends on the exact geometries of the Helical Resonator. P is the
power that Helical Resonator takes. From experimental experience, we can increase Q by
cleaning the Helical Resonator tube and coil through chemical reagent, and in this way
essentially reduce the power loss. For our four-rod trap, we use the Helical Resonator with
resonant frequency ΩT = 12.5 MHz and achieve Q ≈ 200. Note here, that the resonant
frequency of Helical Resonator with the trap attached is almost half of the case without
any load; this is due to the mechanism of two capacitors parallel connection, where the
trap can be treated as a similar magnitude of capacitor with the Helical Resonator.

2.2 Trapping of 171Yb+ ion

2.2.1 Ionization of the atom

The ion species we are using in the laboratory is Yb+. It is a hydrogen-like ion
with relatively large mass; thus we can understand it more easily than a more complex
molecule. Another benefit of choosing the Yb+ is the electronic structure that provides us
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with a good qubit (it was recently reported the 10 minutes coherence time of the qubit in
Ref. [21]), and the qubit can be optically initialized, manipulated and detected with high
fidelity. Furthermore, the laser requirement for Yb+ ion is in a reasonable wavelength
range, and all of our daily using lasers (370 nm, 399 nm, 935 nm, 638 nm) can be obtained
directly from a commercial company.

1P1

1S0

Continuum

370nm

399nm

Helical
Resonator

Electric rods

399nm

370nm

935nm

638nm

Yb 171
oven

Yb 174
oven

Loading
zone

(a) (b)
Magnetic Field

图 2.4 Loading of the Yb+ ion. (a) The two-photon process to generate the ion. The wavelength
of the 399 nm laser is dependent on the species of atom isotope, and the wavelength of the
second excitation can be 370 nm or any other that is less than 394 nm. (b) Top-down view of
our experimental loading setup. The ionization lasers and repumping lasers are overlapped in the
vacuum chamber, where the loading zone forms. Two isotopes of Yb ovens are installed in the
chamber. We can selectively turn on the oven and load the corresponding ions.

The ionization of Yb atommethod we are using is based on the two-photon transition
process [22]: The 399 nm continuous-wave laser makes the neutral atom transit from the
1S0 state to the 1P1 state, and another laser excites the atom from the 1P1 state to the
continuum with a wavelength less than 394 nm, as shown in Figure 2.4 (a).

We installed 174Yb and 171Yb atom ovens inside the chamber. The reason for using
the 174Yb atom is the zero spin of nuclei that make the ion with less dark state and better
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cooling efficiency. The loading of 174Yb+ is always our first step to be implemented when
we set up the system. Based on the trapped 174Yb+ ion, we can optimize the optical
beam path, compensate the micro-motion, and fix other abnormal situations. Although
the 174Yb atom oven contains both 174Yb and 171Yb, we cannot use a single 174Yb oven for
the loading of 174Yb and 171Yb together, this is due to the Doppler broadening of the 399
nm laser, which causes the loading of many isotopes and generates dark ions, the situation
becomes even severe when we need to load a string of ions. Thus we installed another
171Yb atom oven, which contains around 95% of 171Yb atom.

The experimental configuration for the loading of ions is shown in Figure 2.4 (b).
The loading process starts with the turn-on of the electric current in the oven. Typically
around 2 A to 3 A, and then after a few minutes, the atoms are heated up. Then the
atomic beam is shot to the center of the trap, where the ionization laser beams focus. In
this loading zone, the ions are generated, and by the confinement of the electric field (see
section 2.1.2), the ions are trapped in the space. We lower our trapping electric potential
when we load the ions. Thus atoms with relatively small velocities can be stopped and
ionized. Before the ionization laser beam enters the chamber, we combine 399 nm and
370 nm lasers through a dichroic mirror (see section 4.1.1), so the overlap in the loading
zone can be well guaranteed. We use about 1 mW of the 399 nm and 1 mW of the 370
nm for ion loading, and the beam size focusing on the loading region is about 80 µm in
diameter.

Once we monitor the appearance signal of the ions, e.g., the signal of fluorescence
photons observed by the PMT or camera, we stop the electric current that heats up the
atomic oven. Depending on the number of ions, we will have a different count number of
collected photons. Thus we can realize an automatized software program to control the
process of ion loading, which is vital for the future trapped ion quantum computer.

Here, I want to mention the benefit of using a pulsed-laser for ion loading. Since
the frequency requirement in the second excitation in the two-photon ionization process
is less than 394 nm, our Raman pulsed-laser is working at the wavelength of 375 nm, so
that we can use this Raman laser for ion loading. The advantage of using the Raman laser
beam is that a significant power can accelerate the loading process.
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2.2.2 Doppler cooling of the ion

After the atom is ionized in the loading zone, the ion still contains pretty big kinetic
energy due to the initial high velocity of the atomic beam, so an additional step of cooling
down the ion is needed. Here, I am going to introduce the standard operation in the
laboratory: Doppler cooling.

In the experiment, we apply a laser beam that is red detuned from the main cycling
transition between 2S1/2 and 2P1/2 as shown in Figure 2.5 (a). The Doppler cooling beam
is part of the 370 nm laser beam, and the optical path can be found in section 4.1.1. This
Doppler cooling beam is not perpendicular to any principal axis of the trap. As shown in
Figure 2.4 (b), the 370 nm laser takes angles with two radial axes (X and Y) and the axial
axes (Z). Thus, by this single laser beam, we can cool the three motional modes.

Except the optical transition between 2S1/2 |F = 1〉 and 2P1/2 |F = 0〉, we need an
additional frequency component that is 14.74 GHz added to the original laser beam to
realize the transition between 2S1/2 |F = 0〉 and 2P1/2 |F = 1〉, which is done by using an
Electro-optic Modulator (EOM). In the experiment, we use the EOM that takes the input
modulation frequency of 7.37 GHz (New Focus company, model: 4855), the 14.74 GHz
frequency component is generated by the second-order sideband, and the intensity is
about 1% of the original laser beam. In short, our Doppler cooling beam can cover the
transitions shown in Figure 2.5 (a).

When the ion moves toward the Doppler cooling laser beam, due to the Doppler
effect, the ion feels a blue-detuned laser frequency, which is larger than the laser beam
frequency, resulting in a closer to the resonant transition between 2S1/2 and 2P1/2. So the
ion absorbs more photons, which is equivalent to saying that the ion absorbs more kinetic
energy when moving toward to the laser beam; thus the velocity of the ion would be
reduced. For the other case, when the ion moves in the same direction as the laser beam
propagates, the ion will see red-detuned frequency compared to the original frequency of
the Doppler laser beam, which is more off-resonant to the main transition, the ion absorbs
a small number of photons. On average, the ion can be slowed down in this scheme.

We note here, the confinement of the ion in space is guaranteed by the electric field,
and the Doppler cooling beam can only cool down the motional modes. This is different
from the trapping of atoms in a magneto-optical trap.

The Doppler cooled ion scatters out photons in a random direction, and these photons
can in opposite heat up the ion. The minimum temperature of the ion with the Doppler
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图 2.5 The Doppler cooling of an ion. (a) The Doppler cooling laser beam transition is between
2S1/2 and 2P1/2 with frequency red detuned. Here, the details of Zeeman levels are not shown.
(b) The measured spectroscopy of Doppler cooling fluorescence counts with different frequency.
The blue line points at 13267 MHz is the resonance frequency of the optical transition, and the
red line at 13276 MHz corresponds to the value we are setting in a normal experiment.

cooling laser beam is achieved by setting the amount of the red detuning as γ/2 [23], where
γ is the line width of the excited state 2P1/2 and γ = (2π)19.7 MHz for 171Yb+.

Figure 2.5 (b) shows the spectroscopy of Doppler cooling count while we scan the
740 nm laser frequency. The 740 nm laser is the source of generating the 370 nm laser
through second-harmonic-generator (SHG) crystal. We can notice the just resonance
point is at frequency 13267 MHz, with collected count 41. Typically, we set the half
count point, 20.5, which corresponds to 13276 MHz, as our Doppler cooling transition
frequency. To make the meaning of numbers mentioned here clear, the frequency we are
scanning is the EOM frequency for the iodine lock. For details, please refer to the section
4.2.1. Our detuning is (2π) 2 × 9 MHz, which is more red-detuned from the best cooling
case γ/2 = (2π) 9.85 MHz.

2.2.3 Repumping of the ion

Our main optical cycling transition is between 2S1/2 and 2P1/2. However, as we can
see in Figure 2.6, there is a 0.5% probability of decaying out from the cycling transition to
2D3/2. In this case, we shine a laser beam at wavelength 935.1882 nm, about 15 mW with
focal diameter 150 µm at ion position, exciting the dark state 2D3/2 to 3D[3/2]1/2. This
laser should carry a sideband of 3.1 GHz to cover all the transitions. The state 3D[3/2]1/2
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is a metastable state and will take a chance of 98.2% back to the cycling transition.
For the 935 nm laser, we need to add a sideband with 3.1 GHz on the original beam to

cover all the energy levels in the transition from 2D3/2 to 3D[3/2]1/2. Besides, for the laser
polarization direction, we need to cover π, σ+ and σ− polarizations. In the experiment,
we use half-wave-plate and quarter-wave-plate to optimize the polarization of the laser
beam; the actual polarization can be measured by the polarization meter (from Thorlabs
company, model: PAN5710IR).

2P1/2

2S1/2

370 nm

638 nm

935 nm

2D3/2

3D[3/2]1/2

2D5/2

2F7/2

1D[5/2]5/2

2P1/2  𝜏 = 8.12 𝑛𝑠

3D[3/2]1/2             𝜏 = 37.7 𝑛𝑠

2D3/2                         𝜏 = 52.7 𝑛𝑠

2D5/2                         𝜏 = 7.2 𝑚𝑠

2F7/2                          𝜏 = 5.4 𝑦𝑟𝑠

图 2.6 Energy level diagram with transitions and decays for 171Yb+. There is a probability for
our ion to decay out from the main optical cycling transition (2S1/2 to 2P1/2); we need additional
repumping lasers (935 nm and 638 nm) to bring the ion back to main transition.

There is another long-lived dark state, 2F7/2, and this state could be generated by the
background collision from other particles in the vacuum. We can shine a laser beam at
wavelength 638.6 nm to bring it back to the main transition. In the experiment, we seldom
observe the event of using a 638.6 nm laser to bring a dark ion back to the main transition,
and this could be explained as the low-event-rate of the ion becoming state 2F7/2. But
we do observe with the Raman laser, picosecond pulsed laser at wavelength 375 nm can
bring the dark ion back with pretty high efficiency. This is probably the reason that the
ion becomes YbH+, and the pulsed-laser deforms this molecule.

The sidebands we are using in the Doppler cooling and the 935 nm laser beam
are generated by the Electro-optic Modulator (EOM). The EOM takes the input radio
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frequency β sin(ωEOMt) to modulate the laser beam Aeiωlasert . Here, β is the modulation
amplitude of the RF signal, A is the amplitude of the laser, ωEOM is the frequency of
the modulation signal, and ωlaser is the frequency of the original laser beam. The phase
modulation effect can be written in the Jacobi-Anger expansion

Aeiωlasert+iβ sin(ωEOMt) = Aeiωlasert

(
J0(β) +

∞∑
k=1

Jk(β)eikωlasert +

∞∑
k=1

(−1)k Jk(β)e−ikωlasert

)
(2-6)

where Jα is the first kind of Bessel function.
From Eq. (2-6), we can see that the strength of the sidebands is controlled via the

modulation amplitude β, proportional to |Jα(β)|2. As shown in Figure 2.7 (a), tomaximize
the strength of the second-order sideband, we need to set the modulation amplitude to
β ≈ 3.054, and this is considered as the best situation for Doppler cooling beam with high
cooling efficiency. However, huge power of the modulation signal may damage the crystal
in EOM. Thus we cannot set arbitrary large β in a real experiment. In Figure 2.7, we show
the oscilloscope capture of the modulated 935 nm laser signal in an optical cavity, and
the laser carries a 3.1 GHz sidebands after passing through a fiber-EOM (from EO Space
company). The laser is sent to an optical cavity (Thorlabs company, model SA200-8B);
the Free Spectral Range of the cavity is 1.5 GHz, and the Finesse is about 250. Then we
scan the length of the optical cavity to observe the resonance peak. From the signal, we
read that the strength ratio between the first order and zero order is about 70%.
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图 2.7 The generation of laser frequency sidebands via Electro-optic Modulator. (a) The numer-
ical plot of Bessel function J0(β), J1(β) and J2(β) as the various of modulation amplitude β. (b)
The 935 nm laser carries a 3.1 GHz sideband and we send this laser beam into an optical cavity,
the signal shown on the oscilloscope is obtained via scanning the length of the optical cavity.
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第3章 Quantum control of 171Yb+ ion

3.1 The Hilbert space of single 171Yb+ ion

3.1.1 The four-level system

The 171Yb+ ion has a spin-1/2 nucleus (I = 1/2), resulting in a hyperfine structure in
the electronic ground state 2S1/2, as shown in Figure 3.1 (a). The total angular momentum
of the ion is ~

√
F(F + 1), and the total angular momentum quantum number F = J + I =

L + s + I, where ~ = h/2π, h is the Planck’s constant, L is the anular momentum of the
electron, s is the spin of the electron, and mF is the projection along the quantization axis.
For the manifold 2S1/2, F = J + I = J + 1/2 = L + s + 1/2 = 0 + 1/2 + 1/2 = 1, thus we
have the hyperfine splitting of F=0 and F=1. In the F=1 level, due to the Zeeman effect
introduced by the magnetic field, three sub-levels are generated |F = 1,mF = 0〉 = |↑〉,
|F = 1,mF = −1〉 = |−〉 and |F = 1,mF = 1〉 = |+〉.

The two hyperfine states 2S1/2 |F = 0,mF = 0〉 and 2S1/2 |F = 1,mF = 0〉 form a spin-
1/2 system, noted as |↓〉 and |↑〉, respectively. We also call it the “clock qubit”, which is
magnetic field insensitive, and this qubit contains a long enough coherence time.
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图 3.1 The four-level system in our trapped ion and the Zeeman splitting. (a) The four energy
levels stored in the 2S1/2 manifold construct our four-level system, where the states in F = 1 is
generated by the Zeeman splitting. (b) The Zeeman splitting gaps vary as the magnitude of the
static magnetic field, and our magnetic field is generated by the Helmholtz coil. The black curve
with dots is the state |↑〉, and the blue and red curves imply the state |+〉 and |−〉. The state |↑〉
takes a tiny second-order Zeeman shift as the strength of magnetic field increase, the state |+〉 and
|−〉 mainly take a first-order shift, which is a linear change.
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The four-level system refers to the four energy levels labeled |↓〉, |↑〉, |+〉 and |−〉
in 2S1/2 manifold, shown in Figure 3.1 (a). A static magnetic field is essential for our
trapped ion quantum computer, and the Zeeman splitting of the energy levels in the state
F = 1 is introduced by the magnetic field B. In Figure 3.1 (b), we show the experimentally
measured result of Zeeman splitting as the change of magnetic field strength. We use the
Helmholtz coil to generate the static magnetic field, where the direction of the magnetic
field is perpendicular to our optical-table in the lab. In the experiment, we observed that
the ion scatters almost no photons when we do not apply any magnetic field (only the
magnetic field provided by the earth exits). As we increase the electric current in the
Helmholtz coil, the Zeeman splitting increases. For our typical experiment, we set a
Zeeman splitting around 10 MHz.

The Zeeman splitting we are considering contains two parts: the first-order splitting
(1.4 MHz×B) and the second-order splitting (310 Hz×B2). As we can see in Figure 3.1
(a), the state |↑〉 only contains the second-order splitting, which is described as magnetic
field insensitive and forms an excellent qubit with |↓〉 state. The state |+〉 and |−〉 contain
the first-order and second-order splitting, which is very sensitive to the fluctuation of the
magnetic field. We experimentally measured that the coherence time of |+〉 and |−〉 state
is around 400 µs without the magnetic field shielding technique in our system.

3.1.2 The motional modes of a trapped ion

Our ions are trapped via the combination of static electric field and oscillating electric
field, as discussed in section 2.1.2, and we assume themotion of the ion along the principal
axis follows the harmonic oscillator. In the experiment, for our typical operation with
a linear chain of ions, the trap frequency in axial modes ωZ is much smaller than the
radial modes ωX and ωY . The balance between the Coulomb repulsion (between the ions)
and the confinement from the Z direction (ωZ) provides the ions an equilibrium distance
between them. We do not want to make ωZ too large, as that leads the ions to move out
of the potential null in the (X, Y) plane, which results in the large micro-motion region.

For an N-ion system, there are N modes along each of the three directions, and
typically ωX ≈ ωY � ωZ . Since we are dealing with only one ion across my thesis,
there are three vibrational modes (or we call motional modes) in the trap, noted with trap
frequency ωZ , ωX and ωY . If we do not apply any offset voltage in Eq. (2-1), then the
mode frequency of ωX and ωY are the same. Therefore, in the experiment, we apply a DC
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offset voltage to separate ωX and ωY .
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图 3.2 The frequency separation of two radial motional modes. We experimentally change the
offset voltage Vof f in the oscillating electric field of two RF electric rods and measure the red
sideband excitation via scanning the frequency of Raman laser. (a), (b) and (c) correspond to the
amplitude of Vof f as 0 V, 3 V and 5 V, respectively.

In the experiment that involves the motional degree of freedom, we need to add a
suitable voltage to separate X and Y motional modes, to achieve a successful sideband
cooling and operations on both modes. Here, we apply two counter-propagating Raman
laser beams to excite the red sidebands of radial motional modes X and Y. The Raman
laser beams are perpendicular to the axis of ion chain (Z direction), thus the axial mode
will not be excited. In the Raman laser configuration (see section 3.3.3), we scan the
frequency of AOM1 to excite different motional modes, which is a resonant frequency
measurement of the motional modes without cooling down the motional modes to the
ground state.

In Figure 3.2, we show our measured experimental result with the change of offset
voltage on the RF electrodes, which breaks the symmetry of the electric potential inside
the trap. As we can notice, when there is no external offset voltage applied on the RF
rods, we can observe a small separation between two motional modes, which is possibly
due to the non-perfect geometric symmetry of the rods during the trap assembly stage or
the laser propagation direction misaligns with the principal axis. As we keep increasing
the voltage Vof f , we can better distinguish between X and Y modes, and we usually set
the frequency separation to about 0.4 MHz in the experiment.

3.2 Quantum state initialization

3.2.1 Optical pumping to the Ground state of hyperfine levels

The optical pumping laser beam initializes the state of the 171Yb+ ion to the hyperfine
ground state 2S1/2 |F = 0,mF = 0〉. The electronic transition of optical pumping is shown
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in Figure 3.3. The optical pumping beam is part of the 370 nm laser beam, and the optical
path of generating optical pumping beam can be found in section 4.1.1. An additional
frequency sideband (2.105 GHz) is needed to cover the transition from 2S1/2 |F = 1〉 to
2P1/2 |F = 1〉. We use the EOM from New Focus company (model: 4431 Visible Phase
Modulator) to generate the sideband. As described in section 2.2.3, the ion could decay
out the main transition to the 2D3/2 state. In the experiment, we always shine the 935.18
nm laser to bring the ion back to the main cycling transition from the dark state.

In the experiment, after applying the Doppler cooling beam for 1 ms, we apply 5 µs

of the optical pumping beam, then detect the ion’s fluorescence photons with the detection
beam. Typically, we achieve an initialization fidelity to the |↓〉 state with 99.5 %, which
we believe the main limitation comes from the state detecting fidelity of the qubit.

3.2.2 Sideband cooling to the Ground state of motional modes

After the optical pumping process, the state of the ion becomes hyperfine ground
state |↓〉 = 2S1/2 |F = 0,mF = 0〉, and the ion reaches the temperature limit T by Doppler
cooling, staying as a thermal state in the motional modes. We assume the average phonon
number for the thermal state is n̄, and the phonon distribution of themotional states follows
the Maxwell-Boltzmann distribution:

Pn =
1

1 + n̄

(
n̄

1 + n̄

)n
e−n~ω/KBT (3-1)

where KB is the Boltzmann constant, and ω is the frequency of the harmonic oscillator.
To obtain the average phonon number n̄, one traditional way is comparing the oscillation
heights of the red sideband and blue sideband transitions, which has a relation n̄/(n̄+1) [19].
However, this method requires the laser beam power to be equal in the blue sideband and
red sideband, which is not guaranteed in our system. The reason comes from the different
frequency applied on the AOM, which results in the different shifting angle of the laser
beam from the AOM; thus, the laser focus point at the ion’s position is not exactly same.
For details on the Raman laser-induced transition, please refer to section 3.3.3.

Here, we use the Carrier Rabi-oscillation signal to fit the average phonon number
distribution in the motional modes. The advantage is the longer coherence time of the
carrier transition via Raman laser compared to the blue (red) sideband. We experimentally
measure the so-called Debye-Waller factors, which states that the carrier Rabi frequency is
dependent on the phonon number n with the factor L0

n(η
2), where Lαn (x) is the generalized
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图 3.3 The optical pumping transition and the hyperfine ground state initialization. (a) For the
optical pumping electronic transition, the laser is phase modulated with a 2.105 GHz RF signal to
generate the frequency sideband, which couples the transitions from 2S1/2 |F = 1〉 to 2P1/2 |F = 1〉.
The solid lines are the laser-induced optical transitions, and the dashed lines are the spontaneous
decay. (b) The brightness of the ion as the change of optical pumping duration, where the ion is
Doppler cooled 1 ms and then followed by the optical pumping laser beam with different duration.
Finally, we detect the photons scattered from 2S1/2 |F = 1〉 state with a detection beam. Typically,
we use the duration of 5 µs for the optical pumping process in the experiment, which corresponds
to an initialization fidelity 99.5% of the |↓〉 state.
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Laguerre polynomial, and η is the Lamb-Dicke parameter.
Whenwe experimentally apply aCarrier Raman laser to the ion after optical pumping,

the collected photon flourresence is

P(t) =
∞∑
n=0

1
1 + n̄

(
n̄

1 + n̄

)n
sin2(πe−η

2/2L0
n(η

2)Ωcar t) (3-2)

where ωcar is the Rabi frequency of the carrier transition when the ion is at the motional
ground state.
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图 3.4 Experimentalmeasurement of the average phonon number of an ion afterDoppler cooling.
We use the Rabi oscillation signal of the carrier transition to fit the average phonon number. The
ion is Doppler cooled and optically pumped to the hyperfine Ground state, and is followed by a
Raman carrier laser to resolve the average phonon number. In the figure, dots are experimental
data, and the solid curve is the fitting result. We assume the ion is in a thermal state with average
phonon number n̄, and we fit the experimental data with Eq. (3-2). The fitting result shows the
average phonon number is 19.

In Figure 3.4, we show our experimentally measured the Rabi oscillation of the
carrier transition after Doppler cooling, where we vary the duration of the applied Raman
laser to obtain the oscillation. The fitting parameter η used here is 0.11, and we truncate
the maximum phonon number at 200, which is big enough for the thermal state fitting.

In the experiment, we need additional sideband cooling, to cool down the ion to the
ground state of the motional modes. Figure 3.5 illustrates the sideband cooling process
for the motional modes, which cools down the ion from the thermal state to the ground
state in the harmonic motion. We use the red sideband to reduce the phonon number, and
the optical pumping laser beam can bring the state to |↓〉. After repeating this procedure
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several times, we can cool down the ion to the motional ground state. Here, we only take
one mode as an example; for more motional modes, we can cool each mode alternatively.

2S1/2

| ↑, n − 1⟩

| ↓, 𝑛⟩

| ↑, n⟩

| ↓, 𝑛 − 1⟩

| ↑, 1⟩

| ↓, 1⟩

| ↑, 0⟩

| ↓, 0⟩

…
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图 3.5 Schematic diagram for the sideband cooling of motional modes. The ion is first optically
pumped to the hyperfine ground state |↓, n̄〉 after Doppler cooling, with a thermal distribution in
the motional harmonic oscillator. We apply a red sideband laser to bring the state from |↓, n〉 to
|↑, n − 1〉, then follow it with an optical pumping transition, and the state becomes |↓, n − 1〉. In
the experiment, we repeat this sequence for both X and Y modes in the radial direction for 100
times, and the ion is finally cooled to the motional ground state |↓, 0〉. In the figure, ωHF is the
hyperfine splitting, and ωM is the trap frequency of the motional mode.

For the implementation of sideband cooling procedure, we first guess a Rabi fre-
quency of the red sideband transition, and then we implement the sideband cooling. After
that, we scan the Rabi oscillation of the red sideband transition and get the Rabi frequency
of the red sideband by fitting the experimental data. Typically, we need to iterate these
steps 2 to 3 times to find the best parameter set for the experiment. Our sideband cooling
cools the ion to an average phonon number n̄ = 0.012, with 98.8% phonon occupied on
the ground state |↓, n = 0〉.

The electrical noise and other radiation noise on the electrodes can heat up the ion,
which is not good for quantum computing. In the experiment, we use filters for the applied
DC voltage and RF voltage, and we also use the copper plate to shield the cable exposed in
space (reducing the noise coupled by the cable). We observed the reduction of the heating
rate by these improvements. The heating rate of our four-rod trap is 4 phonon/second, and
50 phonon/second for our segmented blade trap with ωM = (2π)2MHz.
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3.3 Quantum state manipulation

3.3.1 Light-ion interaction

Till now, one single 171Yb+ ion provides us a good qubit with long coherence time |↑〉
and |↓〉, and a multi-level quantum system |↑〉, |↓〉, |+〉 and |+〉. Besides, the ion provides
us a three dimensional harmonic oscillator with frequencies ωX, ωY and ωZ.

Here, we will mainly introduce the external field (microwave and laser) to interact
with the internal state and motional state of the ion. The magnetic field (microwave)
can realize the hyperfine ststes transition, and the electric field (laser) can realize the
transition between 2S1/2 and 2P1/2. Our clock qubit, |↑〉 and |↓〉, is a two level system, and
the Hamiltonian of this two level system can be written as

H(e) ≡ ~
ωHF

2
σz (3-3)

where σZ is the Pauli spin matrix.
In the quantum mechanical treatment for the motion of the harmonic oscillator, the

Hamiltonian of motional modes can be written as

H(m) ≡ ~ωX(a†a +
1
2
) (3-4)

where we take themotional modeX as an example, other motional modes can be described
similarly. a† and a are the creation and annihilation operators for the phonons in the
harmonic oscillator.

When the external magnetic field or electric field is applied, the interaction Hamil-
tonian can be written as

H(i) =
~
2
Ω(|↓〉 〈↑| + |↑〉 〈↓|) ×

[
ei(kx−ωt+φ) + e−i(kx−ωt+φ)

]
(3-5)

where ω is the frequency of the applied external field, k is the wave vector, φ is the phase
of the external field, the Rabi frequencyΩ is−µmBX/2~ for the microwave and−µdEX/2~
for the laser, |↑〉 〈↓| 7→ σ+ = 1/2(σx + iσy) and |↓〉 〈↑| 7→ σ− = 1/2(σx − iσy).

The total Hamiltonian of our system is Ĥ = H(m) + H(e) + H(i). The unperturbed
Hamiltonian H0 = H(e) + H(m), and the evolution Hamiltonian is U0 = exp{−(i/~)H0t}.
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Then the interaction picture Hamiltonian is

HI = U†0 H(i)U0

= e(i/~)H0t
~
2
Ω(|↓〉 〈↑| + |↑〉 〈↓|) × [ei(kx−ωt+φ) + e−i(kx−ωt+φ)] e−(i/~)H0t

=
~
2
Ω e(i/~)H

(e)t (σ+ + σ−) e−(i/~)H
(e)t × e(i/~)H

(m)t [ei(kx−ωt+φ) + e−i(kx−ωt+φ)] e−(i/~)H
(m)t

=
~
2
Ω eiωHFσz t/2 (σ+ + σ−) e−iωHFσz t/2 × eiωX a†at [ei(kx−ωt+φ) + e−i(kx−ωt+φ)] e−iωX a†at

=
~
2
Ω (σ+eiωHFt + σ−e−iωHFt) × eiωX a†at [ei(kx−ωt+φ) + e−i(kx−ωt+φ)] e−iωX a†at

=
~
2
Ω (σ+eiωHFt + σ−e−iωHFt) × (ei[η(a

†eiωX t+ae−iωX t )−ωt+φ] + e−i[η(a
†eiωX t+ae−iωX t )−ωt+φ])

=
~Ω
2
(σ+ei[(ωHF−ω)t+φ]eiη(a

†eiωX t+ae−iωX t ) + σ−e−i[(ωHF−ω)t+φ]e−iη(a
†eiωX t+ae−iωX t ))

(3-6)

where η = k x0 is the Lamb-Dicke parameter.
When we only consider the transition between |↓, n1〉 and |↑, n2〉, the Rabi frequency

has a relation with the Debye-Waller factor [24]

Ωn1,n2 = Ω| 〈n1 | eiη(a+a
†) |n2〉 | = Ωe−η

2/2

√
n<!
n>!

η |n1−n2 |L |n1−n2 |
n< (η2) = Dn1,n2Ω (3-7)

where Lαn (x) is the generalized Laguerre polynomial, n< (n>) is the smaller (bigger) one
of n1 and n2.

In the Lamb-Dicke region, where the position spread of the ion is much smaller than
the wavelength of the external field, i.e., ηn2 � 1, we have Ωn,n = Ω, Ωn,n−1 =

√
nηΩ and

Ωn,n+1 =
√

n + 1ηΩ. However, if η is too small, close to zero, the transition strength of
Ωn,n+1 and Ωn,n−1 are negligible.

3.3.2 Microwave operations

For the situation of microwave induced transitions, the Lamb-Dicke parameter η =
k x0 =

2π
λ

√
~

2mYbωM
, and we assume the motional trap frequency is ωM = (2π)2 MHz, λ =

3×108/(12.64×109)m, ~ = 1.054×10−34 m2kg/s and mYb = 171×1.998×10−26/12 kg.
The calculated η = 1.02 × 10−6, which is a number close to zero. Therefore, for the
transitions that change the phonon number from n1 to n2 (n1 , n2), the Rabi frequency is
almost zero, which means the microwave can not excite any phonon.
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In our microwave system setup, shown in Figure 3.6 (a), the signal comes from
the mix of the standard RF source (we set the frequency at 12.462812118 GHz) and an
Arbitrary-Waveform-Generator (AWG, can generate the waveform ranging from 150 to
250 MHz), where both signal sources are Rb atomic clock referenced. The AWG can
provide the waveform as we designed, and thus we can change the amplitude, duration,
and phase of the applied microwave field. After the mixer, the signal passes through a
microwave amplifier, which is a customized amplifier (from bonn-elektronik) with high
gain and narrow band-pass. The microwave power to the horn is around 10 W, and the
horn antenna generates the wave propagating to the ion.

In the experiment, the microwave horn is mounted on a three-dimensional transition
stage to change the position of the microwave horn, and another rotating stage is installed
to change the angle between the antenna and themagnetic field generated by the Helmholtz
coil. We carefully adjust the horn to achieve the maximum interacting strength between
the ion and microwave. In Figure 3.6 (b) and (c), we show the experimental data on
the transition between |↓〉 and |↑〉, with the fitting of the experimental data, our driving
frequency of the clock qubit setting in the AWG is 180.01 MHz, and the π-time of the
Rabi flipping between |↓〉 and |↑〉 is 11.39 µs.

Here, I want to mention the weak points of usingmicrowave to implement operations:
First, the strength of the magnetic dipole transition (between |↓〉 and |↑〉) is much weaker
than the electric dipole transition (between 2S1/2 and 2P1/2), which limits the microwave
for generating a fast gate. Second, the output of the microwave from the horn is a global
operation to all the ions. Thus it is difficult to implement the individual addressing to the
ions with the microwave.

3.3.3 Raman laser operations

For the situation of the counter-propagating Raman laser beams, with the induced
transition between 2S1/2 and 2P1/2, and the laser wavelength 375 nm, the calculated η is
0.13 for a (2π)2 MHz trap frequency, which is much larger than the microwave.

In Figure 3.7, we experimentally measured the η of X mode. We prepare the ion
in different number states: from |↓, n = 0〉 to |↓, n = 10〉, and then apply a resonant blue
sideband laser to measure the Rabi frequency of the oscillation. Since the measured Rabi
frequency for the different number state Ωn has a relationship with the ground state Ω0:
Ωn = Ω0L1

n(η
2)/
√

n + 1, we fit our experimental data and obtained that the η is 0.14,

26



第3章 Quantum control of 171Yb+ ion

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

The applied microwave duration for the carrier transition s
P

o
p

u
la

tio
n

o
f

B
ri

g
h

ts
ta

te
179.95 180.00 180.05 180.10

0.0

0.2

0.4

0.6

0.8

1.0

The frequency of the applied microwave MHz

P
o

p
u

la
tio

n
o

f
B

ri
g

h
ts

ta
te

Standard
RF Source

AWG

Frequency Mixer

Amplifier
Horn

(a)

(b) (c)

图 3.6 Microwave system and the transition between |↓〉 and |↑〉 induced by microwave. (a) A
schematic diagram of the microwave system setup. A standard RF source is mixed with the AWG
to generate the signal that controls the qubit. To realize a reasonable gate time via microwave,
we need to use an amplifier to generate about 10 Watt microwave and send it to the horn. (b)
and (c) The state of the ion is initialized at |↓〉, and then we apply the microwave and detect
the fluorescence count of the ion. (b) We scan the frequency of the microwave (controlled by
the AWG) with a certain duration and find the resonant frequency for this transition via fitting
the experimental data. (c) We apply the microwave with the resonant frequency and change the
duration. We obtain the Rabi frequency of the transition via fitting the experimental data. In the
figure, the dots are experimental data, and the solid curves are the fitting results.

where we use the trap frequency (2π)1.8 MHz. The experimentally fitting result has a
difference with the theoretical calculated value 0.136, and the difference mainly comes
from the non-perfect preparation of the number state.

With the Lamb-Dicke approximation, and following the Eq. (3-6), we do the Taylor
series expansion with the first order truncation, we have

HI =
~Ω
2
(σ+ei[(ωHF−ω)t+φ]eiη(a

†eiωX t+ae−iωX t ) + σ−e−i[(ωHF−ω)t+φ]e−iη(a
†eiωX t+ae−iωX t ))

'
~Ω
2
[σ+ei[(ωHF−ω)t+φ] + σ−e−i[(ωHF−ω)t+φ]]

+
~Ωiη

2
[σ+a†ei[(ωHF−ω+ωX )t+φ] − σ−ae−i[(ωHF−ω+ωX )t+φ]]

+
~Ωiη

2
[σ+aei[(ωHF−ω−ωX )t+φ] − σ−a†e−i[(ωHF−ω−ωX )t+φ]] (3-8)
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图 3.7 Experimental measurement of the Lamb-Dicke parameter. We experimentally prepare
the number state on X mode after sideband cooling. The trap frequency for this measurement is
ωX = (2π)1.8 MHz. After preparing the number state, we apply the resonant blue sideband laser,
and from the Rabi oscillation signal, we obtain the corresponding Rabi frequency. By fitting the
experimental data points of Rabi frequencies with the Laguerre polynomial, we obtain η as 0.14.
In the figure, the dots are experimental data, and the solid curve is the fitting result.

When the frequency of the external Raman laser field is set as ω = ωHF, ω = ωHF + ωX

and ω = ωHF − ωX , we can realize carrier transition, blue sideband transition and red
sideband transition, respectively.

Figure 3.8 shows our typical experiment configuration of the Raman laser. We use
the counter-propagating 375 nm pulsed laser beam to hit the ion, where both laser beams
are σ+ polarized. The magnetic field generated by the Helmholtz coil is aligned along the
laser propagating direction. Based on the setting of the Raman 1 and Raman 2 (frequency,
duration, and phase), we can realize the internal state qubit operation, and manipulate the
phonon degree of freedom. The idea of using the Raman laser is called stimulated Raman
transitions, which is a two-photon process. As shown in Figure 3.8, Raman 1 transits the
state from |↓〉 to a virtual energy level that is detuned from 2P1/2 of about 10.8 THz. Then,
Raman 2 brings the state from the virtual energy level back to |↑〉. In this process, an
effective transition from |↓〉 to |↑〉 is realized.

We assume the electric field of two Raman lasers are E1(x) = E1 cos(k1X −ω1t−φ1)
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图 3.8 Energy level diagram of 171Yb+ with two motional modes and basic Raman transitions.
The electronic levels (|↑〉 , |↓〉) with the difference ωhf , and the phonon levels of modes X and
Y with the frequencies of ωX and ωY are involved in the Raman process. By controlling the
frequency difference of Raman1 and Raman2, we can implement single mode and two modes
quantum operations. The inset shows the laser propagating direction in the experiment.

and E2(x) = E2 cos(k2X −ω2t− φ2), ∆ is the detuning from the virtual energy level to |e〉,
and ω1 − ω2 = ωHF + δω. The interaction Hamiltonian of these two counter-propagating
laser beams with the ion is

HI =
~g1

2
(ei(k1X+φ1)e−i(ωHF+δω) |e〉 〈↓| + h.c.) +

~g2

2
(ei(k2X+φ2) |e〉 〈↑| + h.c.) +

~∆
2
|e〉 〈e|

(3-9)
where g1 and g2 are govered by the electric dipole coupling strength.

Under the situation of ∆ � γ, which states the spontaneous emission induced by the
laser is negligible [25], and by applying the rotating wave approximation (RWA), we have
the carrier transition, blue sideband transition and red sideband transition, when δω = 0,
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δω = ωX and δω = −ωX , respectively:

Hcar =
~Ω
2

(
σ+ei∆φ + σ−e−i∆φ

)
Hbsb =

~Ωη
2

(
σ+a†ei∆φ + σ−ae−i∆φ

)
Hrsb =

~Ωη
2

(
σ+aei∆φ + σ−a†e−i∆φ

)
(3-10)

where η = ∆kX , ∆k = k1 − k2 is the difference of the wave vector, and ∆φ = φ1 − φ2 is
the phase difference of the laser felt by the ion.

The Raman laser we are using is the mode-locked laser from the Coherent company
(model: Mira-HP). The picosecond pulsed laser can generate a broadband optical fre-
quency comb, which is essential for our control of state transitions. Our pulsed laser is
generated by sending a high power pump laser (continuous-wave 532 nm laser, about 14
Watt) to an optical cavity, where the Ti:Sapphire crystal inside the cavity generates a red
beam (we typically set the center wavelength of this red beam at 750 nm, the red laser
is frequency doubled to 375 nm for the experimental usage). The length of the cavity
decides the repetition frequency of the laser (around (2π)76 MHz). The electric field of
a mode-locked laser can be described as

E(t) = En

(N−1)/2∑
−(N−1)/2

exp{(ω0 + nωrep)t + iφn(t)} (3-11)

where En is the intensity of the n-th mode, ω0 is the center frequency of the laser, ωrep is
the repetition frequency of the laser, and φn is the phase of the n-th mode.

We use two AOMs to switch the laser beam of Raman1 and Raman2, so that the
output laser frequency from the AOMs are n1ωrep +ωAOM1 and n2ωrep +ωAOM2, where n1

and n2 are the order index of the optical frequency comb, as shown in Figure 3.9 (a). The
order index of the optical frequency comb vary from 0 to infinity. In the experiment, we
stabilize the repetition frequency of the picosecond pulsed laser to (2π)76.047061 MHz
(see section 4.3.2 for the technique details). For the carrier transition, we set the frequency
of AOM1 as ωAOM1 = (2π)250 MHz, and AOM2 as ωAOM2 = (2π)231 MHz, and with a
166 orders frequency combs difference, the generated frequency difference inRaman 1 and
Raman 2 is (n1−n2)ωrep+ωAOM1−ωAOM2 = (2π)(166×76.047061+(250−231))MHz =
(2π)12.642812118 GHz = ωHF. For blue sideband transition and red sidebnad transition,
we change the input frequency of AOM1 asωAOM1 = (2π)(250+ωM )MHz andωAOM1 =
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图 3.9 Schematic diagram of the Raman laser-induced transition based on the optical frequency
comb. (a) We use the driving frequency of AOM1 and AOM2 to shift the optical frequency
comb, and the frequency difference between Raman 1 and Raman 2 can generate the carrier, blue
sideband and red sideband transition, respectively. In the experiment, We stabilize the repetition
frequency of the Raman laser and realize these operations via changing the frequency difference
∆ω(AOM) between the drive frequency of AOM1 and AOM2. (b) The carrier flips the spin in the
hyperfine energy levels between |↓〉 and |↑〉. The blue sideband transits the state between |↓, n〉
and |↑, n − 1〉. The red sideband transits the state between |↓, n〉 and |↑, n + 1〉.In the figure, ωM is
the trap frequency of the motional modes, and ωHF = 12.642812118466 GHz.

(2π)(250 − ωM )MHz, where ωM is the trap frequency of the motional mode.
Figure 3.10 shows our experimentally measured data of the drive frequency and the

Rabi frequency of the carrier, blue sideband and red sideband transitions. The applied
transitions are controlled by the AWG, which can generate a frequency, duration and
phase controlled signal. The generated signal is sent to AOM1, and the Raman 1 laser
is modulated as the input signal of AOM1. When we scan the drive frequency of the
transition, we fix the duration of the applied laser and vary the frequency in AWG. When
we scan the Rabi frequency of the transition, we fix the applied laser frequency with the
resonant one and vary the applied duration. For the carrier and blue sideband transitions,
we initialize the state of the ion to |↓, 0〉, and then apply the corresponding operation laser
to the ion. For the red sideband transition, we initialize the ion to state |↑, 0〉 and then
applied the red sideband transition laser to the ion.

By calculating the drive frequency difference of carrier and blue sideband, we obtain
the trap frequencyωM = 2.23 MHz. This is slightly different from the result of calculating
the difference between the carrier and red sideband (2.22 MHz). I think the main reason
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图 3.10 The experimentallymeasured data of carrier, blue sideband and red sideband transitions.
(a) and (b) The experimental data for the frequency scan and duration scan of the carrier transition.
By fitting the experimental data, the drive frequency is 250.013 MHz, and the Rabi frequency is
(2π) 0.27 MHz. (c) and (d) The experimental data for the frequency scan and duration scan of the
blue sideband transition. By fitting the experimental data, the drive frequency is 252.243 MHz,
and the Rabi frequency is (2π) 0.019 MHz. (e) and (f) The experimental data for the frequency
scan and duration scan of the blue sideband transition. By fitting the experimental data, the drive
frequency is 247.793 MHz, and the Rabi frequency is (2π) 0.021 MHz.

for this difference is the accuracy of the data fitting and the intensity difference of blue
sideband and red sideband that makes different A.C. stark shift. We also notice a slight
Rabi frequency difference of the blue sideband and red sideband transition, and the reason
is the different response behaviors of different frequencies in AWG and AOM, which
results in the power difference felt by the ion. The big Rabi frequency difference between
red (blue) sideband and carrier transition is the effect of Lamb-Dicke parameter.
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I want to mention that the above operations (carrier, blue sideband and red sideband)
are the essential parts of our trapped ion system when dealing with phonon degree of
freedom. However, within the Raman laser beam, we can implement additional quantum
operations, which offers us a complete toolbox to explore the quantum phenomenon
with phonons. See section 6.3 for the spin-dependent operations and spin-independent
operations.

3.4 Quantum state detection

In a quantum system, the results of any quantum computation need to be efficiently
and faithfully measured. In this section, I will introduce qubit measurement in our trapped
ion system with a single ion and multi-ions.

State detection in a trapped ion system is done by the standard fluorescence tech-
niques, which shines a laser beam that is resonant with a cycling transition to the ion.
Typically, this transition is resonant for one of the qubit states, but off-resonant for the
other. In this sense, we can distinguish a “Bright” state and a “Dark” state [26–28]. When
the cycling transition happens, the ion scatters out several photons out to space with a
particular duration, and we use an objective lens to collect a fraction of photons and
transfer these photons to either the photo-multiplier tube (PMT) or Electron-Multiplying
charge-coupled device (EMCCD) to count the number of photons. The PMT holds a better
signal to noise ratio, which results in a higher fidelity for the state detection. However,
when the PMT receives a photon, the PMT cannot tell which ion scattered the photon
due to the loss of spatial information. One may propose to use a strictly focused tiny
detection laser beam to hit one ion each time and collect the corresponding signal, but
the drawback of this scheme is the enormous amount of detection time as the number of
ions increase. Instead, the Camera (EMCCD) can make up for this problem and becomes
a good candidate for multi-ions detection.

In this section, I will discuss the theoretical detection model for the 171Yb+ ion and
show how to distinguish between the “Bright” state and “Dark” state. Then, I will describe
the imaging system used in our setup. After that, I will present the experimental results
for the PMT and Camera. Finally, I will implement the state-detection-error correction
scheme to our experimental raw data.
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3.4.1 Theory of detection process

The detection of the 171Yb+ ion is done by shining a laser that is used to distinguish
the state of |F = 1〉 (Bright state) and |F = 0〉 (Dark state) in 2S1/2 manifold, which are
separated by 12.643 GHz. This detection laser beam is resonant between 2S1/2 |F = 1〉
and 2P1/2 |F = 0〉, as shown in Fig. 3.11. The applied laser beam contains π, σ+ and
σ− polarizations, and thus, the state of 2S1/2 |F = 1,MF = 0〉, 2S1/2 |F = 1,MF = −1〉 and
2S1/2 |F = 1,MF = 1〉 can all be excited. Although the Zeeman splitting in 2S1/2 |F = 1〉
is (1.4 MHz/G) × B (where B is the strength of magnetic field at the ion’s location, and
the Zeeman spiltting is typically around 10 MHz in our setup), the natural linewidth of
2P1/2 |F = 0〉 is γ/2π = 19.7 MHz, which gives the chance of 2S1/2 |F = 1,MF = −1〉 and
2S1/2 |F = 1,MF = 1〉 resonant with state 2P1/2 |F = 0〉 under the detection laser beam. In
short, when the ion is in the Bright state, it will scatter out large number of photons under
the cycling transition; when the ion is in the Dark state, since it is far off-resonant with
the allowed transition, there will be no photons scattered out.

2P1/2

2S1/2

F=0

F=1

F=0

F=1

12.643 GHz

2.105 GHz

图 3.11 The detection transition. The detection laser beam is resonant between 2S1/2 |F = 1〉
and 2P1/2 |F = 0〉. Typically the laser beam contains equal π, σ+ and σ− polarization components.
The solid blue lines are laser drive transitions, and the dashed lines are spontaneous emission
decay transitions.

Another important point to mention is the asymmetric detection efficiency of the
Bright state and Dark state. Due to the selection rule, the transition between 2S1/2 |F = 0〉
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and 2P1/2 |F = 0〉 is forbidden, thus the Dark state can only be resonant with the state
2P1/2 |F = 1〉. As shown in Figure 3.11, for the Bright state to Dark state transition, it is
2.105 GHz off-resonant to the detection beam. For the Dark state to Bright state transition,
it is 14.748 (=2.105+12.643) GHz off-resonant. Therefore, the Dark state holds a better
detection efficiency than the Bright state for 171Yb+.

In an ideal atomic system, the distribution of collected photons from the ion’s fluores-
cence obey the Poisson statistics. Typically, we run our experiment with certain repeats,
with a given detection time and laser power, so that we can collect a mean number of pho-
tons, λ. The probability distribution of collected photons under the Poisson distribution
is

P(n) =
e−λλn

n!
(3-12)

where n is the number of photons.
The numerical simulation of the Poisson distribution is shown in Figure 3.12 (a),

where we assume one ion scatters photons with a mean number λ = 10, and three ions
scatter a mean number of 30 photons. As we can see in the figure, when the number of
ions increases, the distribution becomes more extensive and becomes harder to distinguish
the distribution between n ions and n+1 ions. This indicates that we cannot use PMT to
detect a large number of ions with high fidelity.

In a real atomic system, the off-resonant coupling between the Bright state and Dark
state happens with a non-negligible probability. The rate equations which describe this
coupling has an exponential probability distribution. Therefore, the distribution of the
photons scattered from the ion is a convolution of a Poisson and exponential [29,30]. With
some theory investigation, followed by ref. [30], we define τD as the detection time and
λ0 as the mean collected photons number when the ion is in the Bright state. The Dark
state distribution PDark(n) and Bright state distribution PBright(n) are:

PDark(n) = e−α1λ0/η

[
δn +

α1/η

(1 − α1/η)n+1Γ(n + 1, (1 − α1/η)λ0)

]
(3-13)

PBright(n) =
e−(1+α2/η)λ0

n!
+

α2/η

(1 + α2/η)n+1Γ(n + 1, (1 + α2/η)λ0) (3-14)
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where Γ(n, x) ≡ 1
(n−1)!

∫ x

0 e−t tn−1dt. η = ηD dΩ
4π T is the total photon collection efficiency

with the factors of detector efficiency (ηD), imaging system solid angle ( dΩ4π ) and optical
transmission (T). α1 ≡

τDη

τL1λ0
is the Dark state to Bright state leak probability per emitted

photon with the average leak time τL1, and α2 ≡
τDη

τL2λ0
is the Bright state to Dark state leak

probability per emitted photon with the average leak time τL2.
Typically, we have the detector (PMT or Camera) with a quantum efficiency

around ηD = 30% at our photon wavelength 369.5 nm. The solid angle dΩ/4π =∫ θ

0 2π(R sin φ)Rdφ/(4πR2) = (1 − cos θ)/2, where sin θ is the numeric aperture (N.A.)
size of the objective lens. We estimate the optical transmission from the ion to detector as
T = 80% (consider the photon loss cost by window, optical fiters and other optics). The
leak probability for our 171Yb+ ion are α1 = 2.04 × 10−7 and α2 = 1.00 × 10−5.
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图 3.12 Numerical simulation for the distribution of the collected photons in trapped ion system.
(a) In an ideal situation, the distribution of collected photons obeys the Poisson distribution. (b)
The off-resonant coupling is considered for the detection transition, which results in the state
leakage between Bright state and Dark state. Here, we numerically show the detection result for a
well prepared Dark state and Bright state, and we assume the mean photon number λ0 = 8 when
the ion is bright. The blue and orange curves represent the photon distribution of the Dark state
and Bright state, respectively.

Based on Eq. (3-13) and Eq. (3-14), we plot the collected photon distribution of the
Dark state and Bright state in Figure 3.12 (b). In the numerical simulation, we used the
parameters of our objective lens in the lab, a CVI Laser Optics (Model: UVO-20.0-10.0-
355-532) with N.A.=0.2. We set the threshold to n = 1 to identify photon number n ≤ 1 as
Dark state, and n > 1 as Bright state in our experiment. The numerical calculation result
shows that the Dark state calculate fidelity is 99.95%, and the Bright state is 98.89%.
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3.4.2 Detection imaging system
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图 3.13 Schematic diagram of the ion’s fluorescence detection system.

The detection imaging system for the detection of an ion’s fluorescence is shown
in Figure 3.13. The whole detection imaging system consists of two stages: (a) The
objective lens is used to collect the photons that the ion scatters out, and the ion is imaged
at the Iris position, where the Iris is used to block noisy photons. (b) The second stage
consists of the magnifying lens that magnifies the image of the ion to a more prominent
size, and we use a flip mirror to select the collecting photon device, PMT or EMCCD. In
the optical path of photons transferring to photon counting device, we install an optical
filter to increase the signal to noise ratio (SNR) via filtering out the unwanted photons.

The camera (EMCCD) installed in the setup is essential for the quantummeasurement
of multi-ions. Furthermore, the camera plays a vital role when we first align our imaging
system, and it is useful in the ion loading stage.

3.4.3 Detection with a PMT

Since the PMT can not resolve the spatial information of the ion chain, therefore we
only use the PMT (Hamamatsu company, model: H10682-210) to collect the fluorescence
counts from a single 171Yb+ ion, and distinguish the Bright state and Dark state. We use
the FPGA board to count the number of TTLs generated by the PMT, where the number
of TTLs is same as the number of the incident photons to the PMT. The first step of
optimizing our detection imaging system is making sure that the ion can show a clear
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image on the camera, and that the PMT can collect all the photons transferred by the
optics. After that, we carefully optimize the size of the Iris (in front of the PMT) to block
noisy photons.

The remaining part of the experiment in our PMT detection is setting the detection
duration. In Figure 3.14 (a), we vary the duration of the applied detection laser beam, and
record the collected photon counts for the Bright state |↑〉 and Dark state |↓〉. In a short
duration region (less than 1000 µs), the collected photon count increases linearly for the
Bright state and increases slowly for the Dark state. The counts in the Dark state come
from the off-resonant coupling. In the experiment, we repeat the measurement 1000 times
for each duration setting, and the counts in Figure 3.14 (a) are the average photon counts
for the 1000 times.

To distinguish the Bright state and Dark state, we set the photon count threshold at
1, and we identity the collected photon number n ≤ 1 as the Dark state (n > 1 as the
Bright state). For example, in the 1000 trials, if we have 800 times of the collected photon
number being larger than 1, then we say that the Bright state population is 0.8 (or 80 %).
With the threshold method, we can get our detection fidelity of the state |↑〉 as F↑ = η↑→↑
and |↓〉 as F↓ = η↓→↓, where F↑ = Nn>1/Ntotal and F↑ = Nn≤1/Ntotal, Ntotal is the total
number of experiment trials, and Nn>1 (Nn≤1) is the events count for the photon number
larger (not larger) than 1. We plot the average fidelity (F↓ + F↑)/2 in Figure 3.14 (b). The
insets is the collected photon number distribution with a PMT at 300 µs for the Bright
state |↑〉 and Dark state |↓〉, where the F↑ = 0.97 and F↓ = 0.99.

3.4.4 Detection with a camera

The benefit of using the EMCCD (or we call it the camera) in our trapped ion system
is the capability of reading out several ions simultaneously in a single trapping zone; this
is an essential step towards scaling up the trapped ion system. The EMCCD is a high gain,
low noise camera compared to the normal ICCD, and the architecture of the frame-transfer
detecting mode is shown in Figure 3.15 (a).

The image of the ions is captured on the image area with a specified exposure time,
where the image area contains 512 × 512 active pixels of our camera (Andor company,
model: iXonEM + DU − 897), with each pixel size being 16µm × 16µm with no gap
between the pixels. The incident photons from the ion’s fluorescence are converted into
photoelectrons (charges). After the exposure process, these accumulated charges are
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图 3.14 Experimental detection result with a PMT. (a) We experimentally prepare the initial
state as |↓〉 and |↑〉, then apply a detection beam and collect the fluorescence counts, where we
vary the duration of applied detection laser and observe the average photon counts. (b) The
average measurement fidelity of |↓〉 and |↑〉 with different durations of detection, where we set the
threshold as n=1. The insets is the collected photon distribution for the |↓〉 and |↑〉 states with 300
µs detection time.
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rapidly shifted to the storage area, which prevents any further photons from ruining the
data while the charges are reading out from the pixels. The readout of the charges from the
storage area is a relatively slow process. It starts by shifting the lowest column vertically
down to the readout register, and then horizontally shifts the charges through the gain
register. Finally, pixel-by-pixel into the pre-gain register. The charges are converted to a
count signal with the ADC (analogue-to-digital converter). When one row in the storage
finishes the reading out process, another row is moved vertically down to the readout
register. Therefore, the charges are vertically loaded into the readout register row-by-row
and is amplified pixel-by-pixel in the gain register.

The high gain of the EMCCD happens in the gain register region. There are certain
altering “clock” voltages applied on the horizontal gain register, which guide themovement
of the charge between pixels. When the charge is moving to the next pixel, there is a
small probability p of the original electron to generate a secondary electron via impact
ionization [31,32]. Although p is small in each transfer (0.01-0.02), with a 512 times
amplification, we can have a number (1+ p)512, and our EMCCD can achieve a maximum
gain as G = 1000.

The EMCCD detector is connected to a PCI interface card installed in a Windows
computer. We can control the camera via the software provided by the factory, SOLIS, or
we do the control through Labview, which is embedded in our central control system. The
Labview code is in Appendix A. The benefit is that we can synchronize the process of the
experiment operations generated FPGA with the camera, where the TTL signal from the
FPGA is sent to the camera and alerts the camera to start the data acquiring process. The
new version of this iXonEM − 897 is a USB connection, which gives us a more convenient
connection and more robust control.

Figure 3.15 (b) shows the procedure of the camera startup and experimental data
acquiring. The EMCCD detector head is Peltier-cooled with a fanned heatsink and stays
in the stable setting temperature (−80 ◦C) for our experimental usage, which makes the
readout noise less than 1e− with EM gain mode. I noticed that when the temperature of the
head is above −40 ◦C, the efficiency of converting photons into charges is pretty low. The
temperature cooling operation should always be active when our experiment is running.
After the temperature is stabilized, we start the data acquiring, and the first step is setting
the parameters. The EM gain in our setup is 1000, the pre-gain is × 5, the readout speed
is 10 MHz, and the other setting parameters are in Table 3.1. Then, we can take the data
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图 3.15 Detection process with EMCCD.

once the camera receives the TTL signal from the FPGA, the PCI card counts the number
of the photons and sends the final collected data to the computer. We then use Labview
to read out the number of counts from memory.

The camera can run in the internal and external trigger mode, and we can select
from the two modes in Labview. We use the internal trigger mode as a monitor when we
are loading ions, where the software generates the trigger with the specified period, and
the period is settled by the setting parameters. The external trigger mode is essential for
acquiring data. Here, we use the FPGA to synchronize the camera and other equipment,
and the camera is in the external start trigger mode. Once it receives an external TTL
rising edge, the camera starts the data acquiring after finish the keep clean cycle. The
keep clean cycle is continuously happening while we do not take data, which ensures
no charges are accumulated in the image area. Our quantum measurement is typically
repeated N (100 to 1000) times. Therefore, we use the kinetic mode to collect all the N
times data and send them to the computer after we finish acquiring the N times data.
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表 3.1 Parameters setting for the EMCCD readout experiments

Parameter Settable value Values used in our experiment

Temperature of detector head (◦C) -120 to 20 -80
Readout modes Image, Multi-track, FVB Image

Vertical shift Speed (µs) 0.3, 0.5, 0.9, 1.7, 3.3 0.9
Vertical Clock Amplitude Voltage (V) 0, 1, 2, 3, 4 0

Horizontal shift speed (MHz) 10, 5, 1 10
EM gain 0 to 1000 1000

Pre Amp gain 1, 2.4, 5 5
Binning 1×1, 2×2, 4×4, 8×8 2×2

Region of interest user define
Exposure time user define

Number of kinetics user define
Frame transfer mode ON, OFF OFF
Keep clean cycle Enable, Disable Enable

One remaining feature is acquiring the data with efficient time. The exposure time
is determined by the laser shining time; we use the Region Of Interest (ROI) scheme to
reduce the time of acquiring data in our experiment, where we set a small region that is
less than the full image for the data taking. The ROI is indicated with dashed blue lines in
Figure 3.15 (a). The working principle illustrates that the horizontal dimension of the ROI
does not vary the readout time by much, but the vertical dimension of the ROI will affect
the readout time a lot. Since the ion in the Paul trap is a linear chain, we experimentally
put the ion chain along the horizontal direction of the image area. Therefore, the readout
time for one ion and a long chain of ions is same.

When we are obtaining the photon counts of the ROI, we use the Binning in the
vertical direction to accelerate the data readout process, and typically the data in the
vertical direction is compressed into one column. From here, we have two ways to move
on: one is the average method, which averages the counts of all the pixels; and the other
method is fitting the photon distribution with the compressed one column of data and
getting the brightness of each ion. I tested these two methods in our system and found
that the data fitting method can provide a more stable result regarding the number of noisy
photons fluctuations. The fitting function is the Gaussian function:

f(x) = A × exp
(
−
(x − µ)2

2σ2

)
+ f0 (3-15)
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where the offset f0, position µ and distribution width σ are experimentally calibrated
with an initializing of all the ions to Bright state |↑〉, and we use the value obtained from
calibration to do the experimental data fitting. In the fitting of experimental data, we only
read the brightness of the ion, which corresponds to the value of A.

In the data processing step, we divide the ROI into several sub-images, and each
image maps to one ion. Then we fit each sub-image and get the brightness A. Similar
to the detection scheme with the PMT, we repeat the experiment N times and obtain the
state population of each ion. Besides, we can also obtain the correlation between the ions
in the camera detection. Here, I want to mention that the reason I do not use the

∑
f (x)

to fit all the ion’s count at once is mainly due to the fact that fitting with a complicated
function is easy to fail in Labview. Therefore, I divide the ROI into sub-images.
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图 3.16 Single ion detection result with the EMCCD.

In the experimental setup of EMCCD detection, we improved our imaging system
and used an N.A.= 0.6 objective lens to reduce the detection time (from Photon gear Inc,
a customized lens [33]). The camera detection data for a single ion is in Figure 3.16, where
we use the exposure time 800µs for the EMCCD, and optimize the detection laser beam
intensity to make sure the mean photon number is about 50 for the Bright state. We use
a 10 pixel × 10 pixel ROI to capture the image of the ion, and binning is 2 × 2. Then we
experimentally prepare the Dark state |↓〉 via the optical pumping process and prepare the
Bright state |↑〉 via a microwave π-pulse carrier transition. We repeat the process 2000
times for the detection of Bright state and Dark state, and collect the fluorescence photons
during the 2000 times. With the threshold setting at 5 photons, we obtain the single ion
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detection fidelity with the camera as F↓ = 0.969 and F↓ = 0.971.
We also experimentally checked the detection performance of two ions with the

EMCCD, where we used the microwave to prepare the two ions in the |↑〉1 |↑〉2 state, and
used optical pumping to prepare the two ions in |↓〉1 |↓〉2. The photon distribution of the
two ions’ Bright state and Dark state is in Figure 3.17. With the threshold setting at 5 for
the first ion, and threshold setting at 2 for the second ion, we have the state fidelity for each
ion as F↓,1 = 0.968, F↓,2 = 0.976, F↑,1 = 0.97 and F↑,2 = 0.961. The tiny detection fidelity
difference with the single ion result comes from the crosstalk of the detection system.
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图 3.17 Two ions detection result with the EMCCD.

3.4.5 State-detection-error correction

Our quantum state detection with either the PMT or EMCCD is always not perfect,
where the imperfection comes from the detector, off-resonant coupling, and scattering
photons. Here, we use the theoretical proposal in Ref. [34] to correct our experimental
data, which mainly corrects the errors caused by the detectors. This method gives us
the opportunity of using imperfect detectors to simulate perfect detectors as long as their
imperfection has been calibrated.
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For a single qubit, the most general error model is characterized by a 2 × 2 matrix

D1 =

[
η↓→↓ 1 − η↑→↑

1 − η↓→↓ η↑→↑

]
(3-16)

where η↓→↓ (η↑→↑) is the probability of the Dark state being detected as a Dark state
(Bright state being detected as a Bright state). The single qubit state correction is in Eq.
6-20.

For n qubits, we have the a possible outcome of 2n states, and for each state, we have
an experimentally measured probability PM (i), and a real state probability PR(i), where i
is ranging from 1 to 2n. Then the relation between the measured state and real state set is

PM (1, 2, ..., 2n) = ⊗n
k=1Dk · PR(1, 2, ..., 2n) (3-17)

where Dk is the correction matrix for the k-th ion.
Figure 3.18 shows the state evolution of two ions under a microwave with state-

detection-error correction. The initial state of the two ions is |↓〉1 |↓〉2, and we use
the measured fidelity in section 3.4.4 to correct our experimental measured data. The
microwave is a global operation to the two ions, and due to the close distance between the
two ions (about 5 µm), we observe the same speed of flipping the spin.
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图 3.18 State-detection-error corrected data for the evolution of states of two ions.
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第4章 Techniques involved in the trapped ion system

4.1 Schematic diagrams of optical beam path

In this section, I will introduce the optical path of the lasers we use daily, including
the continuous-wave lasers (399 nm, 638 nm, 935 nm and 370 nm) and the picosecond
pulsed laser (Mira-HP). These schematic diagrams can be a reference for new students
who work in the laboratory.

4.1.1 Continuous-wave lasers

Four continuous-wave lasers are serving in our lab for the trapped Yb+ ion system:
399 nm, 638 nm, 935 nm and 370 nm (from Toptica company). The 370 nm laser is our
main laser, and the optical path is a little bit complicated. The rest of the three lasers are
used for ionization or repumping, which have a relatively simple optical path.
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图 4.1 The optical path of 399 nm, 638 nm and 935 nm lasers in our trapped Yb+ ion system.

We present the optical path of the 399 nm, 638 nm, 935 nm lasers in Figure 4.1; these
three lasers are tunable single-mode Diode Lasers. We use a mica plate to split the power
of the laser, and most of the laser beam power is transmitted through the mica plate. We
couple this beam to a single-mode fiber and send it to the trap. The mica plate reflects
two laser beams from the front surface and the back surface, and we use the reflected
laser beam from the front surface to monitor the wavelength (WM in the figure) and the
reflected laser beam from the back surface to track the modulated frequency sidebands
(F-P Cavity in the figure). The F-P Cavity we are using in the experiment is from the
Thorlabs company, which carries a Free Spectral Range (FSR) 1.5 GHz.

For the 399 nm and 638 nm laser beam optical path, the lasers are directly outputted
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to free space from the laser body. The 935 nm is coupled to a fiber EOM through a
FiberDock, which is used to generate a 3.1 GHz frequency sideband. Due to the fiber
coupling efficiency, we lose about 20 mW beam power through this fiber EOM, and the
final output power from the fiber EOM is 26 mW for our experimental usage.

Our 370 nm laser is from Toptica, which a high power semiconductor (TA) and
frequency doubling stage (SHG pro) integrated tunable Diode laser. We split the amplified
740 nm laser beam into two paths inside the laser body: one is a direct output for the
frequency stabilization, and the other beam is sent into the second-harmonic-generation
cavity to generate the 370 nm laser beam. The 740 nm laser is frequency stabilized via a
home-made optical cavity and the absorption signal of the iodine. See section 4.2.1 for
the details of frequency stabilization.

Our quantum control of the 171Yb+ ion requires four laser beam components from
the 370 nm laser:

• Strong beam (used for ion loading): about 1 mW, wavelength at 370 nm.
• Doppler cooling beam: about 10 µW, red detuned from the transition between

2S1/2 |F = 1〉 and 2P1/2 |F = 0〉, and carries a 14.7 GHz sideband.
• Optical pumping beam: about 5 µW, resonant with the transition between

2S1/2 |F = 1〉 and 2P1/2 |F = 0〉, and carries a 2.105 GHz sideband.
• Detection beam: about 5 µW, resonant with the transition between 2S1/2 |F = 1〉
and 2P1/2 |F = 0〉.
There are two basic ideas to implement the optical path of the 370 nm laser. One is

splitting the laser beam from the very beginning into four paths, and propagating all the
paths in a parallel structure. Another way is to align all the beam power to the trap, and
during the laser propagating, we use AOMs to generate Doppler cooling, optical pumping,
and detection, which is a series structure, shown in our design in Figure 4.2.

The Half-wave plate and Quarter-wave plate are used to adjust the polarization of the
laser beam in our setup. The polarization of the laser beam is essential for the diffraction
efficiency of the AOM and operations applied via the laser. The AOMs here are used as
the fast optical beam switches (several nanoseconds) and play the role of a frequency shift
(about several hundred MHz). In our experimental setup, the AOMs are on the laser beam
waist position to achieve a high diffraction efficiency. The EOMs used here are driving
by RF sources to generate the designed frequency sidebands of the laser. We use optics
called the dichroic mirror to combine two laser beams that have a different wavelength,
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with one beam passing through and the other beam reflecting from the Dichroic mirror
(both efficiency higher than 90%). For laser beam of the same wavelength, i.e., the four
components of the 370 nm laser beam, we use a PBS to combine them.

4.1.2 Picosecond pulsed laser

Our picosecond pulsed laser can generate an output of 375 nm laser of about 500
mWatt, where the laser is generated by the pumping of a high power 532 nm laser (Coherent
company, Verdi G18, maximum output 18 W). The beam path of the picosecond pulsed
laser is shown in Figure 4.3. We use the frequency comb of the pulsed laser to implement
our quantum operations, an idea that is based on the stimulated Raman transition, which
is a two-photon process. In the experiment, we use the first order output of AOM1 and
AOM2 to generate two laser beams, and we compensate the arm length difference of two
laser beams by a delay stage. In the experiment, we use a standard RF source to drive the
AOM2 and keep the frequency fixed, and then we vary the input RF signal of AOM1 to
realize different quantum operations.

The repetition frequency signal is observed via an ultra-fast photodiode, and we
compare this signal with a standard RF source, which offers a reference for the stabilization
of the repetition frequency. The AOM0 is used as a noise eater of the laser intensity, and
this is an essential tool to compress the fluctuation of the laser beam intensity.

4.2 Frequency Stabilization of continuous-wave lasers

4.2.1 Stabilization of the 740 nm laser through an optical cavity and the iodine
absorption signal

To realize an efficient quantum operation, the frequency stabilization of the 370 nm
is essential in our system. Our 370 nm laser is frequency doubled from the 740 nm laser.
From the output of the 740 nm laser, we can get big power (about 30 mW) for the usage
of frequency stabilization. Thus we experimentally stabilize the frequency of the 740 nm
laser by using a home-made optical cavity with the Pound-Drever-Hall (PDH) scheme [35],
and the absorption signal of the iodine is used to provide an absolute frequency reference
to stabilize the length of the optical cavity. The schematic diagram is shown in Figure 4.4.

In the experimental setup, the PDH module inside the controller box of the 740 nm
laser offers a voltage modulation with frequency ωm, and this modulation is applied to the
diffraction grating piezo of the external cavity of the laser diode. Then the electric field
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图 4.2 The laser optical path of 370 nm in our trapped ion system.
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图 4.3 The laser optical path of Picosecond pulsed laser in our trapped ion system.
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of output laser beam is E0ei(ωlasert+β sin(ωmt)), which is similar to the working principle of
EOM. Our home-made optical cavity is 15 cm in length and has a finesse 200. We send
the reflected laser beam from the optical cavity to a photodiode and transfer the signal
generated from the photodiode to the PDH module in the control box of the laser. The
PDHmodule contains a phase shifter and a mixer, which obtains the derivative of the error
signal. We send this PDH signal to a home-made PID (proportional–integral–derivative
controller) electronic board and generate the feedback to the diode current of the laser.

Due to the temperature fluctuation, the length of the optical cavity can vary in the
time domain. Therefore, we need to stabilize the length of the optical cavity and provide
a more precise stabilization signal to the laser. One method is isolating the optical cavity
from the environment, e.g., putting the optical cavity inside a vacuum chamber. Here, we
use the absorption signal of iodine to provide an absolute reference. In the experiment,
we use a fiber EOM (which shift the laser frequency by 13 GHz) to deliver 3 mW of the
740 nm laser beam to the optical path of the iodine part. We split the 3 mW laser beam
into the pump beam and the probe beam, and these two beams counter-propagate through
the iodine vapor and generate an error signal. The iodine vapor is heated to 350 ◦C, which
makes the solid iodine becomes gas. The pump beam is phase modulated by a 15 KHz RF
signal and together with the probe beam, we generate the saturated Doppler-free signal.
Finally, we send the Doppler-free signal to a Lock-In amplifier to extract the error-signal,
and the error-signal is passed to a home-made PID, where the PID generates a feedback
signal to stabilize the length of the optical cavity.

4.2.2 Stabilization of the 935 nm laser through the wavelength meter

The free-running linewidth of the 935 nm laser is less than 10 MHz in a short time-
scale, which is already enough for our experimental usage. However, in the experiment,
the wavelength of the laser is always drifting in a long time-scale. We stabilize the 935
nm laser via the software of HighFinesse wavelength meter, where the software takes
the measured value of the 740 nm laser as a reference. The software PID controls the
feedback voltage to the laser diode. In our setup, as the intensity of the 935 nm laser beam
focused at the ion position is much larger than the saturation intensity. Therefore, we did
not notice a significant jump in the fluorescence counts while the wavelength has a small
perturbation.
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图 4.4 Stabilization of the 740nm laser through an optical cavity and the iodine absorption
signal. The frequency of the laser is stabilized via a home-made optical cavity, and the length of
the optical cavity is referenced to the absorption signal of iodine. The solid red lines in the figure
illustrate as 740 nm laser.

4.3 Stabilization of the pulsed laser

4.3.1 Stabilization of intensity

To perform a good quantum operation via the Raman laser, we need to stabilize the
intensity of the picosecond pulsed laser. Figure 4.5 shows the schematic diagram of the
intensity stabilization. We use the Acousto-optic modulator (AOM) to realize an intensity
noise eater of the laser beam. The AOM is based on the principle that sound waves
traveling in a transparent medium locally changes its refractive index. If a frequency Ω
of RF drive signal is applied to the AOM, the diffraction angle θ of the AOM is

sin θ =
mλ
2Λ
= m

2πc
n0ω
/

2πv
Ω

(4-1)

where n0 is the refractive index of the medium, c is the speed of light in vacuum,
ω is the frequency of the incident laser, v is the speed of sound in the medium, and
m = ... − 2,−1, 0, 1, 2, ... is the order index of diffraction beams. For the AOM we are
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图 4.5 Stabilization of laser beam intensity of the picosecond pulsed laser.

using here, the sound speed is 4200 m/s. We typically use the 1st order (or the minus 1st
order) diffraction beam, which has an output frequency shift of ω +Ω (or ω −Ω).

The power ratio between the 1st (or minus 1st) order diffraction laser beam and the
incident beam power is proportional to sin(

√
Is)2, where Is is the intensity of the sound

wave. In the small range of Is, it is linearly controlled via the modulated RF power that is
generated by the RF source.

Figure 4.5 shows our intensity stabilization of the Raman laser optical path. A large
power of 375 nm laser beam (about 500 mW) is generated from the pulsed laser and sent
to the optical path of the Raman laser. The AOM0 locates at the very beginning part
of the optical path, and we input a small amount of the driving RF power to generate a
weak first-order sideband. Then, in the remaining zero-order path, we use a glass plate to
reflect a small beam power, and the reflected beam shoots into a high-speed photodiode.
The photodiode is used to detect the intensity of the laser (Thorlabs company, model:
DET 110). The photodiode feels the same fluctuation in the laser intensity as the main
beam fluctuates. The detected electric signal is transferred to a PID to generate a feedback
voltage to the RF source, where the RF source is amplitude modulated. In such a loop,
we achieve the stabilization of laser intensity.

The experimentally measured data shows that the intensity fluctuation of the laser
beam power can be suppressed down from 1% to 0.1% with our stabilization system.

Figure 4.6 shows the experimentally measured result of the beam waist of the Raman
laser. We change the repetition frequency of the Raman laser, to satisfy (2π)(166 ×
76.161519) MHz = (2π)12.64281196 GHz = ωHF, which gives the chance of a single
Raman laser beam to excite the carrier transition. In the experiment, we mount the
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focusing lens on a 3-dimensional transition stage and change the horizontal and vertical
position of the stage. Then, we record the Rabi frequency of the corresponding carrier
transition. Since the Rabi frequency is proportional to the intensity of the laser felt by
the ion, we can obtain the beam waist of the laser via fitting the experimental data with
different positions. With fitting, the beam waist of the laser is 50 to 60 µm. In the real
experiment setup, we cover the whole pulsed laser body and the Raman optical beam path
to reduce the perturbation from the airflow.
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图 4.6 The measured result for the beam waist of the Raman laser. By fitting the experimental
data, we obtain the beam waist in the horizontal direction (a) is 56.4 µm, and vertical direction (b)
is 64.2 µm. The beam waist mentioned here is the full width at half maximum of the fitted peak.

4.3.2 Stabilization of repetition frequency

The inner optical cavity of the Mira-HP laser has a slow drift in length as the
environment changes. Our quantum operations implemented via the Raman laser are
based on the frequency comb. Hence the stability of the repetition frequency of the pulsed
laser is essential for us. In our previous setup, we dynamically varied the input frequency
of the AOM to ensure that the ωAOM + nωrep is an absolute value, i.e., equal to ωHF. In
our current scheme, we add an electric piezo to the Tweeter Mirror of the optical cavity
inside the Mira-HP laser. This piezo provides direct access to stabilizing the length of the
optical cavity, where we can stabilize the repetition frequency by stabilizing the length of
the laser’s inner optical cavity that generates the pulsed laser.

Inside the pulsed laser body, the inner optical cavity has two components to adjust
the length of the cavity. One is the Stepper Motor, which can change the cavity by ± 1 cm,
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which corresponds to the change in repetition frequency domain as ± 0.4 MHz. The other
component is the piezo in the back of the Tweeter Mirror, and it can change the cavity
length by 8 ± 1 µ m, which corresponds to the change in repetition frequency domain as
± 250 Hz. In the experiment, we use the stepper motor to realize a coarse adjustment, and
the piezo is used for precise stabilization.
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Ultra-fast
Photodiode

Low pass filter

Frequency 
Mixer

Band-pass 
filter

AmplifierMira-HP

Piezo
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6.330906056 GHz
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图 4.7 Stabilization of the repetition frequency of the picosecond pulsed laser.

The stabilization of the repetition frequency of the picosecond pulsed laser is shown
in Figure 4.7. We use an ultra-fast photodiode to capture the repetition frequency signal
of the pulsed laser, and the photodiode has a bandwidth larger than 12.5 GHz (From
EOT company, model: ET-4000). The electric signal read from this photodiode not
only contains the base frequency ωrep, but also contains all the higher orders n × ωrep

terms, which gives us the ability to stabilize the repetition frequency with much higher
accuracy. We pick up the 83th order signal via a narrow band-pass filter (from a local
company), which locates at 6.31191GHz. Then this signal is amplifiedwith two amplifiers
(Minicircuit company, model: ZVA-183-S+ and ZVE-3W-183+) to get a significant
amplitude, and we mix the amplified signal with a standard RF source, whose mixer
model is ZMX-7GR. After that, we filter out the high-frequency noise with a low pass
filter, and the filtered signal is sent to the PID to generate an error signal. Before feeding
back the voltage signal to the piezo, we need to add a static offset to the voltage, since
the drive voltage of the piezo is 70 ± 60 V. Therefore, we use a home-made HV board to
provide the 70 V offset.

The choosing frequency of the repetition frequency should be very careful because
we do not want to excite any states via a single Raman beam. We make a (2π) 19 MHz
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difference between the carrier transition and n × ωrep

n × ωrep − (2π)19 MHz = ωHF (4-2)

where we set n = 166 and ωrep = 76.047061 MHz.
The frequency of the standard RF source used in our setup is n

2 × ωrep = 83 × ωrep =

6.311906056 GHz. We measure the stabilized repetition frequency with an RF counter,
which shows the fluctuation of our repetition frequency to be less than 0.1 Hz.

4.4 Improvement for the coherence time of internal state and motional state

4.4.1 Reduction of the laser beam scattering

We have a magnetic field insensitive qubit |↓〉 and |↑〉, which has a long t1 and t2

time. However, the laser beam scattering (or beam leakage) from Doppler cooling, optical
pumping and detection affect the coherence of the qubit a lot.

We experimentally measure the phase coherence of the qubit as the scheme described
in Figure 4.8 (a), where we apply a π/2 carrier pulse with 0 phase after optical pumping,
and generate the state 1

√
2
(|↑〉 + |↓〉). Then we switch off the laser beam with a Ramsey gap

time, and after that, another π/2 carrier pulse with π phase is applied. Finally, we measure
the Bright state population. Here, the applied drive frequency of the carrier transition is
different from the nature atomic resonant frequency (also called Ramsey frequency); the
difference between the applied drive frequency and Ramsey frequency is the oscillation
frequency in Figure 4.8 (b) and (c). We fit the experimental data and get the coherence for
(b) is 2.5 ms, and (c) is 10.6 ms, where (b) is the case that contains some scattering from
the 370 nm laser beam, and (c) is the result after we carefully optimized the optical beam
path to reduce the scattering. We can also notice that the oscillation decay with some
laser beam scattering will not converge to 0.5, but larger than 0.5, as shown in Figure 4.8
(b). This is due to the difference of states number between Bright state (three states: |↑〉,
|+〉 and |−〉) and Dark state (one state: |↓〉).

From the above experiment, we realized it is important to block the laser beam while
we do not shine any 370 nm laser beam to the ion. This method can minimize the laser
beam scattering and improve the coherence time of the clock state qubit. We found that
the Electric-optic modulator is helpful for the laser beam switching (from the Comoptics
INC company, model: 350-105), which contains a crystal inside the body and varies the
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图 4.8 Measurement of the phase coherence time of the clock state qubit. (a) The experimental
measurement scheme for the gauge of coherence time of the qubit state, where we vary the Ramsey
gap time to obtain the oscillations. (b) and (c) The measured coherence time with a large laser
beam scattering and a reduced laser beam scattering. The difference between the applied drive
frequency and Ramsey frequency is the oscillation frequency. The black dots are experimentally
measured values and curves are the fitting results.
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polarization of the laser beam based on the applied high DC voltage. There is also a
PBS inside the EO modulator, and together with the crystal that changes the direction of
polarization, we can switch the laser beam without changing the propagating direction
of the laser beam. The Model 25D drive electronics is a high voltage push-pull power
amplifier, which is capable of output voltage swings in the order of 175V P-P and provides
the output repetition rates from the DC-30MHz (with a regular rise and fall times of 8 ns).

Input laser beam

Laser beam 
power detector

EO 
Modulator

Model 25D

H
W

P

Polarizing 
Beamsplitter

Half-wave plate

图 4.9 Experimental test of the EO modulator.

In the optical setup for testing the EO modulator, as shown in Figure 4.9, we use a
PBS to purify the polarization of the input laser beam, change the applied voltage on the
EOmodulator, and thenmeasure the output laser beam power. In the experiment, we reach
a ratio between the maximum output power and minimum output power to be 180, which
is a significant improvement for our laser beam switching off. In the later experimental
work of realizing long coherence time for qubits [21], we use this EO modulator to block
the laser beam and minimize the scattering.

4.4.2 Stabilization of the RF power in Helical Resonator

The stabilization of theRF power in the trap is essential for us, due to themanipulating
of the motional modes in the trap strictly relying on the stability of the trap frequency. As
we can see in Eq. (2-4) and (2-5), the trap frequency in the radial axis is proportional to
the amplified voltage V0 after the Helical Resonator, and is inversely proportional to the
drive frequency ΩT of the Helical Resonator. If we want to achieve high stability of the
trap frequency, we need to stabilize both V0 and ΩT . Here, I am going introduce the first
stage achievement by only stabilizing the V0 in our setup.

Figure 4.10 shows the experimental measurement of the phase coherence time of
the motional modes. We initialize the state of the ion to the motional ground state and
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图 4.10 Measurement of the phase coherence time of the motional state. (a) The experimental
measurement scheme for the gauge of coherence time of the motional state, where we vary the
Ramsey gap time to obtain the oscillations. (b) and (c) The measured coherence time without and
with the stabilization of the trap RF power to the trap. The difference between the applied drive
frequency and Ramsey frequency of blue sideband transition is the oscillation frequency. The
black dots are experimentally measured values and curves are the fitting results.
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then apply the standard Ramsey measurement scheme. Here, we use a π/2 blue sideband
pulse with 0 phase to generate the 1

√
2
(|↑, 1〉 + |↓, 0〉). Then a Ramsey gap time with the

laser switched off, after which another π/2 blue sideband pulse with π phase is applied.
Finally, we resolve the bright state population and get the oscillation in Figure 4.10 (b)
and (c). We fit the experimental data and get the coherence time of the motional state
without stabilizing the RF power as 0.3 ms, and 1.3 ms with stabilizing of the RF power.

RF Source PID
Amplitude
modulated
RF signal

300 pF

3 pF

RF power to DC

To trap

Amplifier

Helical Resonator

图 4.11 Schematic diagram for the stabilization of the RF power that supplies to the trap.

We actively stabilize the trap RF power via picking up a fraction of the RF signal that
supplies the trap potential and feeds it back to the RF signal generator, as shown in Figure
4.11. Inside the Helical Resonator, we use capacitors to divide the amplified voltage and
pick up about 1% for the usage of stabilization circuit. An RF power to DC converter is
used to generate the corresponding DC voltage while the RF power is fluctuating, and with
a PID, the feedback signal is transferred to the RF source, which outputs an amplitude
modulated signal.

To note, recently, our group developed this stabilizing schemewith a frequencymixer
instead of feeding it back to the RF source. The new scheme can improve the response
speed of the feedback system.
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第5章 Quantum simulation of molecular electronic structure

The central problem in quantum chemistry and molecular physics is to determine the
electronic structure and the ground-state energy of atoms and molecules by solving the
quantummany-body equations, which is usually intractable due to the exponential scaling
to the size of the system. Quantum simulation [10,12,36–39] can provide the solution for such
“exponential catastrophe” problem.

In classical computational chemistry, the coupled-cluster ansatz is one of the most
commonly used ab initio methods, which is critically limited by its non-unitary nature.
The unitary modification as an ideal solution to the problem is, however, extremely
inefficient in classical conventional computation. In this chapter, I will provide the
first experimental evidence that indeed the unitary version of the coupled cluster ansatz
can be reliably performed in the physical quantum system, a trapped ion system. We
perform a simulation on the electronic structure of a molecular ion (HeH+), where the
ground-state energy surface curve is probed, energies of excited-states are studied, and the
bond-dissociation is simulated non-perturbatively. Our simulation takes advantages from
quantum computation to overcome the intrinsic limitations in classical computation, and
our experimental results indicate that the method is promising for preparing molecular
ground-states for quantum simulation.

Due to the exponential computing resource requirement in the classical calculation
of ground state energy problem, several quantum platforms had reported the quantum
simulation results of the ground state energy for small molecules [6,40–45]. Here, we follow
the theory proposal in Ref. [39], and we are using the Unitary Coupled Cluster (UCC)
ansatz, which provides a generic and scalable scheme for generating a parameterized
state for the variational method, more importantly, it can be implemented efficiently with
quantum devices including trapped ions [46].

5.1 Ground state energy problem

For the ground-state problem, the developments of conventional quantum chemistry
can be adopted to quantum computation. In computational chemistry, it has been the
center focus to circumvent the problem by approximating the many-body Schrödinger
equation and a series of theoretical and numerical methods have been developed.
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The key ingredient of quantum molecular simulation consists of (i) ground (excited)
-state preparation and (ii) energy estimation of the corresponding state [10,37]. Recently,
the assessed costs for the energy estimation for a well-prepared ground-state in quantum
computation have been immensely reduced [13,14,47–49], indicating that chemistry simu-
lation can be one of the main applications of a quantum computer in the near future.
However, it is remaining major obstacle to efficiently and reliably find the molecular
ground state, which belongs to the class of extremely hard problems called QuantumMer-
lin Arthur, the quantum analog of NP-hard problem [50,51]. Recently various theoretical
schemes for the ground-state problem have been proposed and proof-of-principle experi-
mental demonstrations have been performed including the adiabatic [5,52,53] and algorithmic
preparations [54–57].

The Phase Estimation Algorithm, as one of the well-knownmethod for the solution of
ground state problem, has been demonstrated in a photonic system [40], a nuclear magnetic
resonance system [41], and a nitrogen-vacancy center system [43]. However, this method
highly relies on the initially prepared eigenstate, and also need entirely coherent of the
system to obtain high precision result [58].

As an alternative solution [9], the variational method, starts with the idea:

〈ψ(λ)| H |ψ(λ)〉
〈ψ(λ)|ψ(λ)〉

≥ E0 (5-1)

Here, H is the Hamiltonian that characterizes the system, ψ(λ) is the trial state (ansatz)
wave-function with the parameter and E0 is the smallest eigenvalue of H. As we varies the
parameter set of λ, we can reach the minimum value of 〈ψ(λ)| H |ψ(λ)〉, thus the ground
state wave-function |ψ(λ0)〉 and ground state energy E0 are obtained.

As a summarize for the experimental implementation of the variational method for
the ground state energy problem, this idea has been done with a photonic system [42], a
superconducting system [44], and our trapped ion system [46]. The most recent experiment
was performed by the superconducting system with up to six qubits [6].

5.2 Coupled cluster method

Due to challenges in the experimental system, for many experiment demonstrations,
the variational ansatz employed in the experimental was “device ansatz”, which is device
specific method. Here we are using a unitary coupled ansatz, which can be easily extended
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to other systems.
The coupled-cluster method is one of the most prominent ab initio methods for

finding a molecular ground state and it is considered to be the current gold standard [59–62].
In the second quantized representation, the coupled-cluster ansatz is given by the following
form: eT̂ |G〉, where |G〉 is some reference state, such as the Hartree-Fock ground state.
The cluster operator T̂ = T̂1+T̂2+T̂3+ ... is constructed by a sum of particle-hole operators
T̂n, where

T̂n ≡
1
(n!)2

∑
i jk...,abc...

tabc...i jk...

{
â†î b̂† ĵ ĉ† k̂ ...

}
, (5-2)

with î, ĵ, k̂, ... denotes the fermionic annihilation operators for the occupied orbitals of
the reference state |G〉, â, b̂, ĉ, ... for the unoccupied orbitals, and tabc...

i jk... denote the cluster
amplitudes representing the transition amplitudes from i, j, k ... orbitals to a, b, c... orbitals.
In general, eT is not unitary and hence the vector norm of the ansatz eT̂ |G〉 is not
necessarily conserved. The unitary extension of the coupled-cluster method takes the
following form as an ansatz, eT̂−T̂

†

|G〉, which preserves the vector norm. The energy
E = 〈G | eT̂−T̂

†

HeT̂−T̂
†

|G〉, which is obtained by the unitary coupled-cluster ansatz, is
minimized when ∂E/∂ti = 0 for all t’s.

However, the coupled-cluster ansatz is built with the non-unitary operation, which
leads to drawbacks such as lacking a variational bound on the ground-state energy [60–64].
The unitary version of the coupled-cluster methods would perfectly resolve the problem,
whereas it is classically inefficient without proper truncation of the infinite series ex-
pansion. In the classical calculation, the unitary coupled-cluster ansatz can be manually
expanded through the Baker-Campbell-Hausdorff expansion, which should be truncated at
certain orders for further calculation, since the computational cost to include higher order
increases exponentially. The problem of truncating the series expansion is that the trun-
cated operator is no longer unitary, thus loses the advantages of the unitary coupled-cluster
method, which provide the variational bound for the ground-state energy.

It has been a long-standing challenge to build an efficient computational scheme for
the unitary coupled-cluster (UCC) ansatz. The authors of Refs [39,42] pointed that the
UCC ansatz can be efficiently implemented in a quantum computer. In other words, the
quantum implementation of the UCC method can outperform the classical computation
for the problem of finding molecular ground-state.
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The UCC scheme based on the form of the following ansatz

|ψUCC〉 = eT−T
†

|G〉 (5-3)

which apparently provides a solution of the non-Hermitianity problem in the coupled-
cluster theory. However, classical implementation of the UCC have intrinsic limitation,
e.g., infinite series of the expansion [64]. As a result, all classical applications of UCC
involve some type of truncations with potentially uncontrollable errors. On the other
hand, the unitary operator, U ≡ eT−T

† , can be considered as a time-evolution operator,
i.e., U ≡ e−iHeff , driven by an effective Hamiltonian Heff ≡ i(T − T†) with a dimensionless
time interval set to be 1. Since the time-evolution is efficiently simulated in a quantum
system [2], the quantum implementation of the UCC ansatz can reduce the computational
cost much less than the classical requirement.

5.3 Classical calculation of HeH+

5.3.1 Born-Oppenheimer approximation

A pictorial description of the molecular HeH+ is shown in Figure 5.1 (a), the molec-
ular HeH+ consists of two nuclei and two electrons. All the following calculations start
from the 1s orbit wave-function of Helium atom φ1(r) and 1s orbital wave-function of
hydrogen atom φ2(r), as shown in Figure 5.1 (b).

𝜙1 𝑟 𝜙2(𝑟)

(a) (b)

图 5.1 The molecule HeH+. (a) The pictorial description of molecule HeH+, here R is the
distance between the two nuclei. (b) The classical calculation basis consists of the 1s orbit
wave-function of helium atom and hydrogen atom.

The two-electron Hamiltonian of the molecular ion HeH+ in atomic units, under the
Born-Oppenheimer approximation, which assumes that the wave-function of nuclei and
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electron can be separated and nuclei kinetic energy can be neglected, has the following
form,

Ĥ(RHe,RH) =

2∑
i=1

(
−

1
2
∇2
i −

2
|ri − RHe |

−
1

|ri − RH |

)
+

1
|r1 − r2 |

. (5-4)

5.3.2 Hartree-Fock process

In quantum chemistry calculation for molecules, expect some simplest molecules
like the hydrogen atom, it is essential to introduce the approximation idea to the solution
of many-body Schrödinger equation. The Hartree-Fock approximation is typically used
as the starting point for more accurate results. The idea of approximation in the Hartree-
Fock calculation is to replace the complicated many-electron problem by a one-electron
problem in which electron-electron repulsion is treated in an average way, The procedure
for solving the Hartree-Fock equation is called the self-consistent-field (SCF) method [65].
The Mathematica code for the calculation is in Appendix C.

During the calculation of Hartree-Fock process, we use the minimal STO-3G basis,
which approximates the 1s orbits wave-functions (Slater-type orbitals) with three Gaussian
functions, as follows√

ξ3

π
e−ξr � c1(

2e1

π
)3/4e−e1r

2
+ c2(

2e2

π
)3/4e−e2r

2
+ c3(

2e3

π
)3/4e−e3r

2 (5-5)

Under the calculation basis φ1(r), φ2(r), we can calculate the physical operator (ki-
netic energy, potential energy) according to the self-consistent-field theory. we calculate
one electron in the mean field generated by other 3 particles, we define the core Hamilto-
nian (not include the electron-electron interaction part) as Hcore

Hcore =

(
−

1
2
∇2

i −
2

|ri − RHe |
−

1
|ri − RH |

)
(5-6)

Another prepare work is finding a transfer matrix that makes an orthogonal-normalized
basis. Here, we followed the canonical process, the first step is calculating the direct inner-

product matrix S =

(
〈φ1(r) | φ1(r)〉 〈φ1(r) | φ2(r)〉

〈φ2(r) | φ1(r)〉 〈φ2(r) | φ2(r)〉

)
, then the basis transfer matrix can

be written as X0 =

(
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)
·

( √
1 + S12 0

0
√

1 − S12

)
. To note the electron-
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electron interaction, we introduced a simplified notation as

〈µν |λσ〉 � 〈φµ(r)φν(r)|φλ(r)φσ(r)〉

Now comes to the iteration process, shown in Figure 5.2. We start with the core
Hamiltonian Hcore, then we calculate the new operator under the basis transfer matrix
X0, Fi,s = X†0 .Fi .X0. From the process of diagonalizing the matrix Fi,s, we can get
another transfer matrix Ci (which is consist of the eigenvector of Fi,s). After that, we
obtain the total transfer matrix TCi = X0.Ci (it is also known as an orthogonal normalize
matrix). The electron charge density distribution matrix is Pi(µ, ν) = 2ΣN/2a TCiµ,aTCi

∗
ν,a,

Gi(µ, ν) = Σλ,σPi(λ, σ)(〈µν |σλ〉 −
1
2 〈µλ |σν〉). Then we have the final updated Fock

operator as F ′i+1 = Fi +Gi. The termination check of the iteration is F ′i+1? = Fi, if it is not
converged yet ,we will update the Fi, otherwise terminate with the output result

Etot =
2
R
+ ΣµΣνP(µ, ν)(Hcore(µ, ν) + F(µ, ν)) (5-7)

Start: 𝐹0 = 𝐻𝑐𝑜𝑟𝑒

Basis Transfer 
Matrix 𝑋0

𝐹𝑖,𝑠 = 𝑋0
+. 𝐹𝑖 . 𝑋0

+

𝑇𝐶𝑖

𝑃𝑖𝐺𝑖𝐹′𝑖+1

𝐹𝑖

𝐹′𝑖+1?= 𝐹𝑖

Output 𝐸𝑡𝑜𝑡

𝐹𝑖 = 𝐹′𝑖+1

No

Yes

𝐶𝑖

图 5.2 Self-Consistent-Field process

After the above Self-Consistent-Field process, we get the final orthogonal normalized
transfer matrix TCf inal, within this we achieved the Hartree-Fock space orbit wave-
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function for the molecule HeH+:

(
φ′1(r)

φ′2(r)

)
= TCf inal .

(
φ1(r)

φ2(r)

)
. This is called as the

Hartree-Fock independent particle orbit wavefcuntion. which is shown in Figure 5.3

𝜙2
′ 𝑟 = 𝑐1 𝜙1 𝑟 + 𝑐2 𝜙2(𝑟)

𝜙1
′ 𝑟 = 𝑑1 𝜙1 𝑟 + 𝑑2 𝜙2(𝑟)

𝜒1 = 𝜙1
′ 𝑟 𝑆(↑) 𝜒2 = 𝜙1

′ 𝑟 𝑆(↓)

𝜒4 = 𝜙2
′ 𝑟 𝑆(↓)𝜒3 = 𝜙2

′ 𝑟 𝑆(↑)

图 5.3 The orthogonal basis obtained by the Hartree-Fock process.

5.3.3 Second quantization process

After Hartree-Fock process, the Hartree-Fock ground state and two independent
spatial orbitals φ′1(r), φ

′
2(r) are achieved. The electron is an elementary fermion with

spin 1/2 which obeys the Pauli exclusion principle.Consider the spin together with the
space orbit wave-function, and we have the following configuration. Considering the
electron’s spin together with the two space orbit wave-function (φ′(r) ⊗ spin), we note as
χp(q,r,s)(r), where p, q, r, s can be 1, 2, 3, 4 represent for {1 ↑}, {1 ↓}, {2 ↑}, {2 ↓}, The
second quantized Hamiltonian can be write down as

H(R) =
∑
pq

hpq(R)â†p âq +
1
2

∑
pqrs

hpqrs(R)â†p â†q âr âs (5-8)

where

hpq =

∫
dr χp(®r)∗(−

1
2
O2

e −
∑
a

Za

|®ra − ®r |
)χq(®r)

hpqrs =

∫
d®r1d®r2

χp(®r1)
∗χq(®r2)

∗χr (®r1)χs(®r2)

|®r1 − ®r2 |

As shown Eq. (5-8), hpq(R) and hpqrs(R) are related to one electron and two electron
transitions, respectively and the index p, q, r, s stands for the four possible states in our
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Hilbert space. The terms of hpq(R) and hpqrs(R) are computed numerically with the
scaling of O(M4), where M is the number of molecular orbits. The creation and annihila-
tion operators in the Hamiltonian (5-8) are mapped to spin Pauli operators by performing
the Jordan-Wigner transformation and pairs of Pauli operators are mapped to four-level
systems. After the mapping, the Hartree-Fock basis for HeH+ consists of the following
set of four states, {|G〉 , |E11〉 , |E12〉 , |E2〉} as shown in Figure 5.5(a).

5.4 Trapped ion implementation of the unitary coupled cluster

5.4.1 Experimental implementation procedure

Preparing trial 

quantum state by 

UCC ansatz: 

𝑒  𝑇−  𝑇†
|𝐺⟩

Measuring energy 

of the state

𝐸 = 𝐻 =

⟨𝐺|𝑒  𝑇†−  𝑇𝐻𝑒  𝑇−  𝑇†
|𝐺⟩

Adjusting 

parameters 

in  𝑇,  𝑇†
minimum?

Ground state 

of  the target 

Hamiltonian
𝜓G

Hamiltonian of 

the target 

molecule: 𝐻

No

Yes

Mapping to 

quantum system

图 5.4 The implementation procedure of the UCC algorithm in a quantum system.

The whole procedure of finding the ground state of a target molecule is shown in
Figure 5.4, which is also discussed in Refs [39,42]. After efficiently preparing a trial
state with UCC ansatz in a quantum system that maps the classical basis set of the target
molecule, we measure the average energy of the state. The preparation of the UCC ansatz
and the energy measurement are performed in the quantum system. Based on a classical
feedback algorithm, we adjust the parameters, i.e., the cluster amplitudes of the UCC
ansatz. We repeat the quantum process of preparation and measurement until we find the
variational minimum of the target Hamiltonian.

5.4.2 Mapping of HeH+ on 171Yb+ ion

The electron excitation operators, which excite the electrons out of the Hartree-Fock
ground state, up to two electron excitations are given by,

T1 = t11a†2↓a1↓ + t12a†2↑a1↑ , T2 = t2a†2↓a
†

2↑a1↑a1↓ (5-9)
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图 5.5 Implementation of the Unitary coupled Cluster in the trapped ion system. (a) The
Hartree-Fock basis states of the target molecule, HeH+. (b) The mapping of the basis states on the
energy levels of 171Yb+ including cluster amplitudes t11, t12, and t2, which are controlled by the
duration of microwave pulses. (c) The classical minimum search algorithm supports the finding
of ground state energy. (d) The microwave pulse sequence for the preparation of the UCC ansatz.
The effective time evolution operator eT−T

† is expanded by the Suzuki-Trotter scheme.
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Note that all the terms are spin preserving, and the t11, t12, t2 are in general complex
numbers to be determined by an optimization process. After the same mapping process
of the Hamiltonian (5-8), the effective Hamiltonian Heff ≡ i(T − T†) can be decomposed
into three parts: Ĥeff = Ĥ1 + Ĥ2 + Ĥ3, where

Ĥ1(t11) = it11 (|E11〉 〈G | + |E2〉 〈E12 |) + h.c.

Ĥ2(t12) = it12 (|E12〉 〈G | + |E2〉 〈E11 |) + h.c.

Ĥ3(t2) = it2 |E2〉 〈G | + h.c. (5-10)

We realize the effective Hamiltonian Heff in a quantum system of multiple en-
ergy levels in trapped 171Yb+ ion. As shown in Figure 5.5(b), four energy levels in
the ground-state manifold of 2S1/2 of the 171Yb+ are employed [66,67] to map the ba-
sis state as |F = 0,mF = 0〉 ≡ |G〉 and |F = 1,mF = −1, 1, 0〉 ≡ {|E11〉 , |E12〉 , |E2〉},
which are separated by ωHF − ωz , ωHF + ωz and ωHF, where the hyper-fine splitting of
ωHF = (2π) 12.642821GHz, Zeeman splitting of ωz = (2π) 13.586MHz with the static
magnetic field of B = 9.694G.

5.4.3 Microwave implementation for the time evolution operator

The unitary operator U ≡ e−iHeff is implemented as a time evolution of the sys-
tem with the effective Hamiltonian Heff as shown in Figure 5.5(d). The initialization
of the state to |G〉 is performed by the standard optical pumping technique. The tran-
sitions {|G〉 ↔ |E11〉 , |G〉 ↔ |E12〉 , |G〉 ↔ |E2〉} are implemented by applying resonant
microwaves. The other transitions {|E11〉 ↔ |E2〉 , |E12〉 ↔ |E2〉} are achieved by ap-
plying composite pulse sequences shown in the insets of Figure 5.5(d). Consequently,
the experimental implementation of the unitary operator U is achieved by the sequence
depicted in Figure 5.5(d), which results from the second-order Suzuki-Trotter expansion.

The corresponding unitary transformation is labeled as Ui (α) = e−iHi (α)τ for τ = 1,
which forms the elements in the Suzuki-Trotter expansion for eT−T

† , i.e.,

eT̂−T̂
†

=
[
Û1

( t11

2N

)
Û2

( t12

2N

)
Û3

( t2

N

)
Û1

( t11

2N

)
Û2

( t12

2N

)]N
+ Ô

(
1/N3) .

Û1

( t11

2N

)
= e−i(

t11
2N ( |E11 〉 〈G |+ |E2 〉 〈E12 |)+h.c.)

Û2

( t12

2N

)
= e−i(

t12
2N ( |E12 〉 〈G |+ |E2 〉 〈E11 |)+h.c.)
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Û3

( t2

N

)
= e−i(

t2
N |E2 〉 〈G |+h.c.) (5-11)

where We set N = 2 in most of our experimental simulations.
The transformations of Û1, Û2 and Û3, the terms of e−i(

t11
2N |E11 〉 〈G |+h.c.),

e−i(
t12
2N |E12 〉 〈G |+h.c.), and e−i(

t2
2N |E2 〉 〈G |+h.c.) are implemented by the direct microwave

transitions with the frequencies of ωHF − ωZ, ωHF, and ωHF + ωZ. The trans-
formations of e−i

(
t12(t11)

2N |E2 〉 〈E11(E12) |+h.c.
)
are decomposed by the three direct pulses of

e−i
π
2 σ̂
{E2,G }
x e−i

(
t12(t11)

2N |E11(E12)〉 〈G |+h.c.
)
ei

π
2 σ
{E2,G }
x for the implementations, where σ̂ {E2,G }

x =

|E2〉 〈G | + h.c..
Then the UCC amplitudes are represented by the multiplication of relevant Rabi

frequency and time. Since the UCC amplitudes t11, t12 and t2 are much smaller than 1,
which corresponds to much less than the π pulse of microwaves, the errors from small
Trotter expansion, N=2 in our demonstration, are negligible.

5.4.4 Construction of the ansatz state energy

We can obtain the energy 〈H〉 =
∑

pq

〈
Hpq

〉
+

∑
pqrs

〈
Hpqrs

〉
, where Hpq = hpq â†p âq

and Hpqrs = hpqrs â†p â†q âr âs, by term-by-term measurements and addition of all of them
in the target Hamiltonian (5-8).

In the experiments, we consider the situation that includes two electrons of different
spins at the ground 1s orbit of Helium or Hydrogen, which can be described by the 4 × 4
Hamiltonian. Labeling the many-body energy levels as 1, 2, 3, 4, the explicit matrix form
of the Hamiltonian is given by

Ĥ =


h11 + h22 + h1212 h42 + h4121 h31 + h3212 h4321

h24 + h2141 h11 + h44 + h1414 h2341 h31 + h3414

h13 + h1232 h1432 h22 + h33 + h2323 h42 + h4323

h1234 h13 + h4143 h24 + h2343 h33 + h44 + h3434


(5-12)

For the experimental measurement, this matrix is expanded by the Pauli basis, i.e.,〈
Ĥ

〉
=

∑
i, j ki j

〈
X̂i X̂j

〉
, where X̂i ∈

{
Î, σ̂x, σ̂y, σ̂z

}
. This procedure works for small

systems, as the number of measurements will scale exponentially. In general, for large
systems, one can keep a polynomial number of measurements by performing the Jordan-
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Wigner transformation,

âj → Î ⊗ j−1 ⊗ σ̂+ ⊗ σ̂
⊗N−j
z , â†j → Î ⊗ j−1 ⊗ σ̂− ⊗ σ̂

⊗N−j
z , (5-13)

to the second-quantized Hamiltonian in (5-12).
The energy 〈H〉 of the UCC ansatz state can be obtained by the addition of the results

of term-by-term measurements,
∑

pq

〈
Hpq

〉
+

∑
pqrs

〈
Hpqrs

〉
. Here, we take 〈H11〉 as an

example:

〈H11〉 =
〈
h11â†1â1

〉
= Tr

©«
ρ

exp
UCC


h11 0 0 0
0 h11 0 0
0 0 0 0
0 0 0 0


ª®®®®®®¬
= h11 (ρ11 + ρ22)

The total number of term-by-term measurements is the same as the total number of
non-zero terms of hpq, hpqrs, which is 24 for our simulation. In fact, since there is no zero
component in the Hamiltonian (5-12), we need the information of all the components of
the density matrix of the UCC ansatz, which requires 15 times of measurements with the
normalization condition. In our small-scale simulation, therefore, the full quantum state
tomography is more efficient than the term-by-term measurements due to the redundancy.
In our experiment, we obtain the energy by the quantum state tomography of the density
matrix. It is equivalent to the term-by-term measurement in our scale measurements since
we can use the information of all components of the density matrix for the term-by-term
method.

Note that as the system size increases, we do not need the full knowledge of the
density matrix of the state for the energy measurement, since the number of terms in the
Hamiltonian (5-8) scales polynomially [39,42]. Since we need the full knowledge of the
density matrix for our small-scale simulation, we reconstruct the full density matrix ρexp

UCC

by the standard quantum state tomography, which requires 15 times of measurement, and
obtain the energy by Tr

(
ρ

exp
UCCH

)
. For the relevant components of the density matrix,

we repeat the standard measurements up to 1000 times, which give 3.2% projection
uncertainty of standard deviation. We also note that since the number of independent
terms in the Hamiltonian increases polynomially as O(M4), where M is the number of
orbitals, for the large size of a molecule, the term-by-term construction of energy is
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much more efficient than the quantum state tomography of the density matrix. Up to
M = 4, however, there is no essential difference in energy measurement between by the
full quantum state tomography and by term-by-term methods.

5.4.5 Unitary coupled cluster parameters searching process

The energy functional derived from the UCC ansatz in the minimum basis set of the
HeH+ involves three complex parameters, i.e. t11, t12, and t2, which are equivalent to six
real parameters. It can be shown that in the weak excitation regime, the energy functional
is minimized when t11 = t12 ≡ t ∈ R. First of all, the electron excitation operator in Eq.
(5-9) should be optimized with t11 = t12 to maintain the spin-flip symmetry, since the
model Hamiltonian (5-8) is spin independent.

The matrix form of the second quantized Hamiltonian Ĥ (R) in the Hatree-Fock basis
(5-12) is a real symmetric matrix, and the off-diagonal terms are small compared to the
diagonal terms as long as the Hartree-Fock approximation is valid. The contributions
from the real and imaginary part of the parameters in the energy function can be separated
up to the second order, thus the energy functional can be formally written as follows,

E (t11, t12, t2) = EHF
g + ∆Er (< [t11] ,<[t12] ,<[t2]) + ∆Ei (= [t11] ,= [t12] ,= [t2]) ,(5-14)

where <[·] and = [·] represent the real and imaginary parts of a complex parameter.
Note that ∆Er (·) and ∆Ei (·), depending on independent variational parameters, can be
minimized separately. We focusing on the contribution of the imaginary parts of the
variational parameters, i.e. ∆Ei (·), which up to the second order can be proofed to
non-negative as follows,

∆Ei = = [t11]
2
∆11 + = [t12]

2
∆12 + = [t2]

2
∆2

+2= [t11] = [t12]H11,12 + 2= [t11] = [t2]H11,2 + 2= [t12] = [t2]H12,2

≥ |= [t11] = [t12]|
(
∆0 −

��H11,12
��)

+ |= [t11] = [t2]|
(
∆0 −

��H11,2
��) + |Im [t12] = [t2]|

(
∆0 −

��H12,2
��)

≥ 0 (5-15)

where ∆s ≡ EHF
s − EHF

g is the Hatree-Fock excitation energies, ∆0 = Min (∆11,∆12,∆2) is
the minimum Hatree-Fock excitation energy, and Hs,s′ ≡

〈
Es

��Ĥ (R)�� Es′
〉
the off-diagonal
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terms in the matrix form (5-12), with the subscripts s and s′ running over the Hatree-Fock
excited states. In deriving the last inequality, we utilize the fact that ∆0 �

��Hs,s′

��. The
inequality ∆Ei � 0 holds when at least two out of the three variational parameters are
zero, so (= [t11] ,= [t12] ,= [t2]) = (0, 0, 0) actually minimize the energy functional.

The preparation and the measurement of the UCC ansatz are performed in the
quantum system and the minimization process is supported by the classical algorithm.
The measured value of 〈H〉 for the prepared UCC ansatz is taken as an input for a classical
optimization algorithm, which compares it to the previous values and suggests a new set of
{t11, t12, t2} so that the same procedure is repeated until the resulting 〈H〉 converges to some
value. As a result, we obtain an optimized state with minimal energy for approximating
the ground state of HeH+ in the form of the UCC ansatz in Eq. (5-3). In our realization,
we use a popular Nelder-Mead minimum search algorithm [68].

Figure 5.6 shows an instance of the energy optimization process, when the nuclei
separation of HeH+ is fixed to be R = 1.7 a.u.. Note that throughout the paper, the atomic
unit (a.u.) is used. The algorithm is capable of finding the minimum energy and state
in around hundred iterations with the full six-parameter simulations as shown in Figure
5.6(a). About twice fewer iterations shown in Figure 5.6(b) can be achieved with an
ansatz simplified to contain two parameters. Since both cases provide equivalent results,
we focus on the two-parameter ansatz in the following discussion. Figures 5.6(c)(d) show
the typical search of minimum energy by the classical Nelder-Mead algorithm with two
parameters.

5.5 Experimental results

In this section, we report the first experimental realization of the UCC ansatz with
a minimal basis, based on quantum simulation in a multi-level of a trapped 171Yb+ ion.
We simulate the electronic structure of a molecular ion (HeH+) [42,43] and reliably find
the molecular ground-state as well as the corresponding energy by the UCC ansatz and
the variational method, which can be considered as an alternative method for the energy
estimation [40]. Moreover, we apply the quantum UCC method to compute excited states
and chemical-bond softening non-perturbatively.
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图 5.6 The search process of the minimum energy at R = 1.7a.u. assisted by the classical
Nelder-Mead algorithm with UCC ansatz. The measured energy 〈H〉 (dots) and the fidelity of
the prepared state (bars) to the ideal ground state depending on the number of iterations (a) with
full six parameters and (b) with two parameters. For both cases, the algorithm converges to the
ground-state energy obtained by the exact diagonalization with the decent fidelity of the state. Red
dots show the successful steps that contribute to the convergence. (c) The side view and (d) the
bottom view of the searching process with two parameters for the successful steps. The atomic
unit (a.u.) is used for the energy through all the figures.

5.5.1 Ground state energy of HeH+

Figure 5.7 shows the energy curve of the ground state of HeH+ depending on the
nuclear distance R, where each point is obtained by the procedure of Figure 5.6. The
experimental data are in agreement with the energy (orange line) calculated by the exact
diagonalization of the full matrix of Hamiltonian (5-8) within the error bars. From the
energy curve, the equilibrium distance between the nuclei is located at R = 1.73a.u. with
the corresponding energy of E = −2.86 ± 0.05 a.u..
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图 5.7 The ground state energy of HeH+ depending on the inter-nuclei distance R. The error-bars
of the experimental data mainly come from the quantum projection noise of 1000 repetitions for
each term of the Hamiltonian (5-8).

5.5.2 The Electric field effect on HeH+

Furthermore, the same procedure can be used to study the non-perturbative behaviors
of the HeH+ molecular ion under strong electric field with the new target Hamiltonian
including the effect of the electric field as E · (r1 + r2) − E · (2RHe + RH). Figure 5.8(a)
shows the phenomenon of chemical-bond softening of HeH+ (at R = 1.7 a.u.) as the
strength of the electric field increases, which eventually leads to a dissociation of the
molecular ions [69]. We compare our non-perturbative results with those obtained through
the first-order and second-order perturbation theories shown in Figure 5.8(b).

To evaluate themolecule property under the static electric field, we need to recalculate
the new orthogonal normalized basis φ′1(r), φ

′
2(r) through the Hartree-Fock process and

get the matrix representation of the second quantization Hamiltonian. The system’s
Hamiltonian under static electric field takes following form

Ĥelec =

2∑
i=1

(
−

1
2
∇2
i −

2
|ri − RHe |

−
1

|ri − RH |

)
+

1
|r1 − r2 |

+E · (r1 + r2) −E · (2RHe +RH)

(5-16)
Then, we take second quantization Hamiltonian as a new “Target Hamiltonian”. By
combining quantum computer with classical computer (UCC process), the ground state
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of Ĥelec is resolved. For the perturbation theory with Ĥelec = Ĥ0 + λV , we use Ĥ0 =

Ĥ(RHe,RH) and λ = |E|, V = ε · (r1 + r2) − ε · (2RHe + RH), where ε = E/|E|.
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图 5.8 Applications of the UCC simulation. (a) The ground state energy of HeH+ subject to a
static electric field along the nuclei axis for different strengths. (b) The comparison between the
UCC quantum simulation and the perturbation theory at given inter-nucleus distance R = 1.7a.u..
(c) The search process of the energies of excited states of H by finding the ground-state energy
of the Hamiltonian (H − λ)2 by scanning the values of λ. When λ is the energy of an excited
state, the experimental minimum value of

〈
(H − λ)2

〉
tends to be zero. We also can calculate the

excited-state energy from other non-zero values of
〈
(H − λ)2

〉
. If λ is on the left (right) side of the

excited energy, the positive (negative) solution of Emeas = 〈(H − λ)2〉 provides the excited energy.

5.5.3 Excited states energy of HeH+

We also study the excited states of H by changing the target Hamiltonian to (H −λ)2,
where λ is a parameter close to the energy of an excited state, which turns the excited state
of H into the ground state of (H − λ)2. In the experiment, we uniformly scan the values of
λ and apply the same UCC procedure to find the minimum energy in a given λ. As shown
in Figure 5.8(c), we observe that the required precision for the computation of excited
states should be much higher than the separation of the energies. In the current limited
system, we obtain the energy of the highest excitation that has relatively large energy gap
to other states but the rest of them are not well resolved.
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To obtain the excited states energy, the reconstructed Hamiltonian (H−λ)2 is needed.
We can see the eigenstate of H is also the eigenstate of (H − λ)2, for eigenstate H |Ei〉 =

Ei |Ei〉

〈Ei | H |Ei〉 = Ei

〈Ei | (H − λ)2 |Ei〉 = (Ei − λ)
2 (5-17)

When we scan the parameter λ, the searched state energy of (H −λ)2 is quadratic function
of the variable λ, as is shown in Figure 5.8(c). When the minimal state energy of (H − λ)2

is searched, λ is the eigenstate energy of H. In the algorithm, we manually scan all the
possible value of λ. When searched state energy is near to 0, it indicates λ is close to the
eigenstate energy of H, which could be a ground state or excited state.

5.6 Discussion and conclusions

Our current realization is capable of simulating any molecule up to four electronic
levels with a single ion. In general, a molecule of N electrons system in M molecular
orbitals (M ≥ N) can be implemented with M qubits system or M/2 qudits, four-level
systems shown in our realization, through the Jordan-Wigner transformation and four-level
mapping. For the UCC implementation with M qubit system, it requires the simulation of
time-evolution of M-body interaction, which is equivalent to the nonlocal product of M

Pauli operators. The simulation of such M-body interaction, which is themost challenging
operation in the UCC protocol, can be performed by applying 2M times of CNOT-gate
or 2 times of the multi-particle Mølmer-Sørensen gates [39,70,71]. The measurement of M-
qubit Hamiltonian with the O(M4) terms has been already well established in the trapped
ion system. For the M/2-qudit Hamiltonian, we can simply use the same measurement
scheme used in our experimental demonstration. The UCC scheme for the trapped ions
can be applied to other physical platforms [3,38,72].

We emphasize the computational complexity of the quantum implementation of
the UCC method scales polynomially with the number of orbitals M . Including the
maximum excitation up to k, each cluster operator contains k creation operators and k

annihilation operators. For a total of M orbital modes, therefore, we have a total of
O(M (2k)) terms. After the Jordan-Wigner transformation, the fermionic operators are
mapped into spin operators, which requires O(M) operations. The total number of scaling
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as the number of molecular orbits M is O(M (2k+1)). Moreover, the time evolutions and the
measurements in our UCC implementation allow parallel computation [39,42], which boosts
the performance. Our experimental realization of UCC method opens a new dimension
of quantum simulation and offers a solution for the classical coupled-cluster methods. We
note that some of other current developments and understandings in the coupled-cluster
schemes could be adapted in quantum UCC scheme. Moreover, our UCC scheme could
be applied to other large eigenvalue problems in network search algorithm and condensed
matter physics.
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第6章 Quantum emulation of molecular vibronic spectroscopy

Molecules are one of the most demanding quantum systems to be simulated by quan-
tum computers because of their complexity and the emergent role of quantum nature.
Recently, it has been suggested that Gaussian boson sampling [73,74] can simulate molec-
ular spectroscopy: this particular problem is also expected to reveal the excellence of
the quantum computing [75,76]. In this chapter, I will present the first quantum device that
generates the molecular spectroscopic signal of SO2 as an example, with phonons in a
trapped ion system [77]. To perform a reliable Gaussian sampling, we develop the essential
experimental technology with phonons, which includes the phase-coherent manipulation
of displacement, squeezing, and rotation operations with multiple modes in a single real-
ization. The required quantum optical operations are implemented through Raman laser
beams. We discuss the difference between spin-independent and spin-dependent imple-
mentation of quantum optical operations. Finally, we show the molecular spectroscopic
signal reconstruction scheme: collective projection measurements for two-phonon-mode.
Our experimental demonstration would pave the way to large-scale molecular quantum
simulations, which are classically intractable but would be easily verifiable by real molec-
ular spectroscopy.

6.1 Boson sampling and vibronic spectroscopy

As starting from the original proposal by Aaronson and Arkhipov in 2011, boson
sampling computer is believed to demonstrate the quantum supremacy with less demand-
ing resources than the universal quantum computer [78]. In another word, this would be the
first problem that classical computer intractable while the quantum computer can solve
with a reasonable resource. Serious experimental endeavors have been reported to realize
the small-scale version only in photonic systems [79–84].

The boson sampling problem is described as follows: a linear interferometer contains
N modes with input and output ports, M indistinguishable bosons are injected from the
input ports, The output ports probability distribution of bosons is the task to solve, the
detailed description can be found on ref [85]. |ψout〉 = R̂ |ψin〉, where |ψin〉 and |ψout〉 are
the input state and output state, R̂ stands for the transformation of the liner network (also
called beamsplitter operator, or rotation operator). For classical computation, the output
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distribution is hard to achieve due to the requirement of the matrix permanent of R̂, which
belongs to the complexity class #P problem.

Vibronic spectroscopy involves simultaneous changes in the vibrational and elec-
tronic) energy states of a molecule. The intensity of allowed vibronic transitions is
governed by the Franck–Condon principle. Vibronic spectroscopy may provide infor-
mation, such as bond-length, on electronic excited states of stable molecules [86]. The
calculation of Franck-Condon factors takes the form

[∫
Ψ?f · Ψidτ

]2
, where Ψi and Ψf

denote the initial and final vibronic state with respect to the transition.
Figure 6.1 depicts a scheme for reconstructing the spectroscopy at zero Kelvin from

the output measurements of the trapped-ion simulator, the transition intensities from the
ground state to the excited states are aligned according to the transition frequencies.

图 6.1 Generic diagram for molecular transition process at T = 0 K. The lower bar indicates the
initial state and the upper bar shows the final states after the process. The vibronic spectroscopy
is constructed by measuring the transition probabilities from |nX = 0, ny = 0, ...〉 to |nX′, nY′, ...〉.

For the molecular vibronic spectroscopy, it carries the vibrational transitions between
nuclear manifolds belonging to two electronic states of a molecule [75,87], we take the
molecular SO2 as our example, shown in Figure 6.2. Upon the electronic transition, a
molecule undergoes structural deformation, vibrational frequency changes and rotation
of normal modes; within a harmonic approximation to the electronic potential energy
surfaces, these are equivalent to the displacement (D̂), squeezing (Ŝ) and rotation (R̂)
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图 6.2 Pictorial description of the photoelectron spectroscopy of SO2. The photoelectron
process of SO2→ SO+2 . The molecule is initially at the vibrational ground state of the symmetrical
stretching and scissoring modes. After absorbing a photon, an electron is removed from the
molecule, and the molecule finds a new equilibrium structure for SO+2 , where the new potential
energy surface is displaced, squeezed, and rotated from the original one. The transition of SO−2
→ SO2 can be described similarly.

operations in quantum optics, respectively. The (mass-weighted) normal coordinates of
initial (Q) and final (Q′) states are related linearly as Q′ = UQ + d, where U is called
the Duschinsky rotation matrix and d is a displacement vector of the multidimensional
harmonic oscillators in the mass-weighted coordinate, the corresponding dimensionless
displacement vector α for the quantum optical operation is used in this chapter [87]. As
a result, the molecule performs a multi-mode Bogoliubov transformation [88] between the
(vibrational) boson operators of the initial and final electronic states [75,76]. The probability
distribution regarding a given molecular vibronic transition frequency (ωv) at zero Kelvin,
that is, spectroscopy (Franck-Condon profile), is read as a Fermi’s golden rule for a unitary
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Gaussian operator ÛDok
[75,87,89],

F(ωv) =

∞∑
m=0

|〈m|ÛDok |0〉|2δ(∆ωv) (6-1)

where ∆ωv = ω0−0 + ωv − (
∑M

k=1 mkω
′
k), with the k-th vibrational frequency (ω′k) of a

molecule in the final electronic state (ωk belongs to the initial electronic state). The
constant off-set frequency ω0−0, which includes the electronic transition and the zero-
point vibrational transition, is set to be zero here without losing the generality. |0〉 =
|01, . . . , 0M〉 and |m〉 = |m1, . . . ,mM〉 are the initial and final M-dimensional Fock states,
respectively.

Doktorov et al. [89] decomposed ÛDok in terms of the elementary quantum optical
operators as follows:

ÛDok = D̂N (α)Ŝ
†

N (ζ
′)R̂N (U)ŜN (ζ ) (6-2)

where D̂N, ŜN and R̂N are the N-mode operators of displacement, squeezing and ro-
tation [90] (see also section 6.2.1); α(= ζ ′d/

√
2~) is a (dimensionless) molecular dis-

placement vector, ζ = diag(ln√ω1, . . . , ln
√
ωN ) and ζ ′ = diag(ln

√
ω′1, . . . , ln

√
ω′N ) are

diagnoal matrices of the squeezing parameters, and U is a unitary rotation matrix. The
actions of the quantum optical operators are defined in Ref. [90]. Therefore, the sequen-
tial operations of the quantum optical operators in Eq. (6-2) to the vacuum state and the
measurement in Fock basis, as in Eq. (6-1), can simulate the Franck-Condon profile [75].

6.2 Trapped ion emulation of molecular vibronic spectroscopy

The process of molecular vibronic spectroscopy can be understood as a modified
boson sampling with Gaussian input states such as thermal and squeezed vacuum states.
The Gaussian boson sampling, which is classified as the classically hard problem in the
computational complexity perspective [73,74], requires more quantum optical operations
on top of beam splitting and phase shifting operations for the standard boson sampling.
The boson sampling, however, is challenging in an optical system [79–82] because of the
difficulties in preparing the initial states: single Fock states for the original boson sampling
and squeezed coherent states for the molecular simulation. Non-optical boson sampling
devices, such as trapped-ion [91,92] and superconducting circuit [93], have been suggested
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theoretically for the scalable boson sampling machine to overcome the difficulties of the
optical implementation in preparing the single photon states. Moreover, these non-optical
devices can handle the squeezed states with relative ease. Here, we present the first
quantum simulation of molecular vibronic spectroscopy with a particular example of
photoelectron spectroscopy of sulfur dioxide (SO2) [94,95].

图 6.3 The trapped-ion emulator for molecular vibronic spectroscopy. The trapped-ion emulator
is performing the Gaussian transformation for the molecular vibronic spectroscopy. The two
vibrational modes of SO2 are mapped to two radial modes (X and Y) of a single trapped-ion. The
photoelectron process is simulated by applying series of quantum optical operations, which are
implemented by Raman laser beams (see section 6.3). Generally, the photoelectron process of
more complicated molecules with N vibrational modes can be mapped to the collective motional
modes of N ions with the similar operations by Raman laser beams.

Figure 6.3 schematically illustrates quantum optical operations of Eq. (6-2) in the
trapped-ion device for the molecular vibronic spectroscopy of SO2. Our trapped-ion
simulation is performed using a single 171Yb+ ion confined in the 3-dimensional harmonic
potential generated by the four-rod trap. The two vibrational modes of the molecule are
mapped to the two radial phonon modes (X and Y) of an ion, with the trap frequencies
ωX = (2π)2.6 MHz and ωY = (2π)2.2 MHz.

After the mapping of the Hilbert space between the real molecule and simulator is
established, the molecular spectroscopy is simulated through the following procedure: (i)
the ion is first initialized to the motional ground state, (ii) the quantum optical operations
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in Eq. (6-2) are then sequentially applied, and (iii) finally, the vibronic spectroscopy is con-
structed using the collective projection measurements (see section 6.4) on the transformed
state.

Accordingly, for the first step of the molecular spectroscopy simulation, we prepare
the ion in the ground state |nX = 0, nY = 0〉 by the Doppler cooling and the resolved side-
band cooling methods [96,97]. Next, we perform the required displacement, squeezing and
rotation operations by converting the molecular parameters to the corresponding device
parameters. The molecular parameters α, ζ ′,U and ζ can be obtained via conventional
quantum chemical calculations with available program packages (e.g., Ref. [98]). See
section 6.2.2, for the details of the parameter conversion for SO2.

6.2.1 General definition of Quantum optical operators

We define, herein, the quantum optical operators we have used in this chapter. a and
a† are N-dimensional column vectors for the bosonic annihilation and creation operators,
respectively. That is,

a ≡ (a1, a2, ..., aN )
T , a† ≡ (a†1, a

†

2, ..., a
†

N )
T (6-3)

where [ai, a
†

j ] = δi j .
The N-mode displacement operator is defined as below with the displacement vector

α = (α1, α2, ..., αN ),

D̂N (α) = exp{αa† − α∗a} (6-4)

The N-mode squeezing operator is defined as below with the squeezing parameter
matrix ζ = diag(ζ1, ζ2, ..., ζN ).

ŜN (ζ ) = exp{
aTζ †a

2
−
(a†)Tζ a†

2
} (6-5)

The N-mode rotation operator is defined as below with a unitary matrix U ,

R̂N (U) = exp{(a†)T ln(U)a} (6-6)
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6.2.2 Experimental parameters for quantum optical operations

We present in this section, the parameters used in the trapped-ion device for the
quantum optical operations. The displacement operator with two modes is rewritten as
follows,

D̂2(α) = D̂(αX, αY) =

exp{αXa†X − α
∗
XaX}exp{αYa†Y − α

∗
YaY}. (6-7)

As seen in Eq. (6-7), the displacement operations of the X and Y modes can be
implemented independently.

The squeezing operator with the two mode parameter ζ = diag(ln√ω1, ln
√
ω2) =

diag(ζX, ζY) can be rewritten as follows,

Ŝ2(ζ ) = Ŝ(diag(ζX, ζY)) =

exp{
ζX

2
(aXaX − a†Xa†X)}exp{

ζY

2
(aYaY − a†Ya†Y)}. (6-8)

In the trapped-ion experiment, the squeezing operations are limited to the range
of ζX(ζY) ≤ 4 in Eq. (6-8). Since ÛDok involves the squeezing and inverse squeez-
ing operations, we can freely re-scale the squeezing parameters with a single arbi-
trary constant. In our experiment, we rescale the squeezing parameters by a factor of
1/25, diag(ζX, ζY) = diag(ln(√ω1/25), ln(√ω2/25)) for the first squeezing operation and
diag(ζ ′X, ζ ′Y) = diag(ln(

√
ω′1/25), ln(

√
ω′2/25)) for the anti-squeezing in the Eq (6-2). As

discussed in Ref [75], the Doktorov operation ÛDok in Eq (6-2) can be expressed in terms
of the ladder operators as

a′† =
1
2
(J − (J t)−1)a +

1
2
(J + (J t)−1)a† +

1
√

2
α (6-9)

where J = ζ ′Uζ−1. Since J is invariant for the parameter sets (ζ ′, ζ ) and (ζ ′/25, ζ/25)
as an example, the resulting ÛDok is maintained.

The two mode rotation operation can be written simply with a rotation angle θ,

R̂2(U) = R̂(θ) = eθ(â
†

X âY−âX â
†

Y) (6-10)
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where U =

(
cos θ sin θ
− sin θ cos θ

)
becomes the unitary rotation matrix. The rotation angle

θ is controlled by Raman laser beams in the trapped-ion simulation.

表 6.1 Parameters for the trapped-ion simulation of SO2

SO2→SO+2 SO−2→SO2

αX, αY (−0.026, 1.716) (1.360,−0.264)
ω′1, ω

′
2 (1112.7, 415) (1178.4, 518.9)

ζ ′X, ζ
′
Y (0.288,−0.204) (0.317,−0.093)

U

(
0.982 0.188
−0.188 0.982

) (
0.998 0.065
−0.065 0.998

)
θ 0.1892 0.065
ω1, ω2 (1178.4, 518.9) (989.5, 451.4)
ζX, ζY (0.317,−0.093) (0.229,−0.162)

6.3 Quantum optical operations implementation in trapped ion system

We implement the quantum optical operations (D̂, Ŝ and R̂) via controlling Raman
laser beams. Figure 3.8 shows the energy diagram of a trapped 171Yb+. The two levels
in hyperfine structure of 2S1/2 manifold are usually used to realize a qubit, which are
denoted as |↓〉 ≡ |F = 0,mF = 0〉 and |↑〉 ≡ |F = 1,mF = 0〉. The red color (mode X) and
blue color (mode Y) harmonic oscillators stand for the motional degrees of freedom. The
Raman process is implemented via the virtual energy level, which is 10.8 THz detuned
from P1/2 level, |e〉.

Here, From the theory aspect of view, we show two ways of implementing these
Quantum optical operations, spin-dependent implementation and spin-independent im-
plementation. Both schemes rely on the experiment configuration of counter-propagating
Raman laser beam. For each quantum optical operator, the spin-independent operator re-
quires one frequency in Raman 1 + one frequency in Raman 2, while the spin-dependent
operator requires one frequency in Raman 1 + two frequencies in Raman 2. The details
are presented in following sections.
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6.3.1 Spin-dependent operations

In this section, the introduced operations are internal-state dependent, which requires
one frequency in Raman 1, ωR1, and two frequencies and phases in Raman 2, ωR2,1 and
ωR2,2, where Raman 1 and Raman 2 are counter-propagating towards the ion. Here, we
show how the quantum optical operations are implemented with these laser beams. We
start from the light-matter interaction Hamiltonian as shown in the following equation,

H =
~ωhf

2
σZ + ~ωX(a

†

XaX +
1
2
) + ~ωY(a

†

YaY +
1
2
)

+
∑
j=1,2

~g
2
(σ+ + σ−)(ei(

®k ·®r−ωL, j t+φ j ) + e−i(®k ·®r−ωL, j t+φ j )), (6-11)

where g is the Rabi frequency, σ+ = |↑〉 〈↓| and σ− = |↓〉 〈↑|, effective laser frequencies
ωL, j = ωR1 − ωR2, j , phases φ j and ®k · ®r = kXx + kYy.

The interaction Hamiltonian with respect to H0 =
~ωhf

2
σZ + ~ωX(a

†

XaX +
1
2
) +

~ωY(a
†

YaY +
1
2
) with rotating wave approximation and the Lamb-Dicke approximation

η2
X(Y) (2 〈n〉 + 1) � 1, where Lamb-Dicke parameters ηX =

√
2kX

√
~/2MYbωX = 0.080

and ηY =
√

2kY
√
~/2MYbωY = 0.087, can be written as

HI =
∑
j=1,2

~g
2
σ+{1 + iηX(aXe−iωXt + a†XeiωXt)

+ iηY(aYe−iωYt + a†YeiωYt)

− ηXηY(aXe−iωXt + a†XeiωXt)(aYe−iωYt + a†YeiωYt)}

e−iδ j teiφ j + h.c., (6-12)

where δj = ωL, j − ωhf.
When we consider the resonant terms, we have the following effective Hamiltonian.

By setting δ1 = ωX, δ2 = −ωX, as shown in Figure 6.4 (a), the displacement operation D̂

of a single mode (here, mode X as an example) is written as

D̂(αX, 0) = exp
{
−iαX(σ+eiφA − σ−e−iφA)(a†Xe−iφB + aXeiφB )

}
,

where αX = tgD = t
ηX~g

2
, φA = φ1 + φ2 and φB = φ2 − φ1. When φ1 = φ2 = π/2,

D̂(αX, 0) becomes σx−dependent displacement operation. We change it to σz−dependent
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displacement operation with additional π/2 carrier rotation pulses (along σy and σ−y axis)
before and after σx−dependent displacement.

Similarly, by setting δ1 = ωX − δS, δ2 = −ωX − δS, as shown in Figure 6.4 (b), the
squeezing operation Ŝ of a single mode (here, mode X as an example) is written as

Ŝ(ζX, 0) = exp
{
−iζX(a

†

Xa†XeiφB + aXaXe−iφB)σz

}
, (6-13)

where ζX = tgS = t
~η2

Xg
2

8
(

1
δ1
−

2
δ1 − ωX

+
1

δ1 − 2ωX
) and φB = φ2−φ1. In our experiment,

the δS is set as five times of anti-Jaynes-Cummings coupling Rabi frequency (ηXg).
For rotation operation R̂, we set δ1 = −ωX − δR, δ2 = −ωY − δR, which leads the

configuration shown in Figure 6.4 (c). In our experiment, the δR is also set as five times
of anti-Jaynes-Cummings coupling Rabi frequency (ηXg).

R̂(θ) = exp
{
−iθ(a†XaYe−iφB + aXa†YeiφB)σz

}
. (6-14)

where θ = tgR = t
~ηXηYg

2

4
(

1
−δ1
+

1
−δ1 + ωX − ωY

+
1

δ1 − ωX
+

1
δ1 + ωY

) and φB = φ2−φ1.

(a) (b) (c)

ωhf

↑

ωR1

↓

ωR2,1

ωR2,2

ωX

ωX

ωhf

↑

↓

ωX − 𝛿𝑆
ωX + 𝛿𝑆

ωR1

ωR2,1

ωR2,2

ωhf

↑

↓

ωX − ωY

ωY + 𝛿𝑅

ωR1

ωR2,1

ωR2,2

图 6.4 Trapped-ion implementation of the spin-dependent quantum optical operations. The
Hilbert space is composed of two phonon modes of X and Y and the internal electronic state |↑〉
and |↓〉. The quantum operations are implemented via control the frequency and phase of ωR2,1

and ωR2,2. (a) Coherent displacement operation D̂ and (b) squeezing operation Ŝ on X mode as
an example. (c) Rotation operation R̂ between X and Y modes.
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When we only consider the Hilbert space with the state |↓〉, all the above
σz−dependent forces can be simplified to the quantum optical operations shown in section
6.2.2.

6.3.2 Spin-independent operations

With a similar way of deriving process, here, we consider one frequencyω1 in Raman
1 laser andω2 in Raman 2 laser. The displacement operation D̂ of singlemode (here, mode
X as an example) by setting two Raman laser frequenciesω1 = ωe − ∆, ω2 = ωe − ∆ + ωX,
∆ is the energy gap from the virtual energy level to |e〉, which leads the configuration
shown in Figure 6.5 (a),

D̂(δX, 0) = exp
{
−it

~g2ηX

2∆
(a†Xei∆φ + aXe−i∆φ)

}
, (6-15)

where ∆φ = φ2 − φ1 is the relative phase between Raman 1 laser beam and Raman 2
laser beams.

Similarly, we can perform the squeezing operation Ŝ of single motional
mode (here, mode X as an example) by setting two Raman laser frequencies as
ω1 = ωe − ∆, ω2 = ωe − ∆ + 2ωX, which leads the configuration shown in Figure 6.5(b),

Ŝ(ζX, 0) = exp
{
−it

~g2η2
X

2∆
(a†Xa†Xei∆φ + aXaXe−i∆φ)

}
, (6-16)

When the two Raman laser beam frequencies as seted as ω1 = ωe − ∆, ω2 =

ωe − ∆ + (ωX − ωY), which is represented by the configuration shown in Figure 6.5 (c).

R̂(θ) = exp
{
−it

~g2ηXηY

2∆
(a†XaYei∆φ + aXa†Ye−i∆φ)

}
. (6-17)

6.3.3 Experimental performance of spin-dependent operations

In real experimental situation, since the laser carries the phase information while
propagating, the phase relation between Raman 1 laser and Raman 2 laser can be easily
destroyed due to the air disturbance. So the spin-independent implementation is not
suitable for this kind of sequentially applied operations experiment.

We use the spin-dependent operators in real experiment, The optical phase instability
between Raman 1 and Raman 2 caused by the beam fluctuation does not influence the
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(a) (b) (c)

ωhf

↑

ωR1

↓

ωR2

ωX ωhf

↑

↓

2 ωX

ωR1

ωR2

ωhf

↑

↓

ωX − ωY

ωR1

ωR2

图 6.5 Trapped-ion implementation of the spin-independent quantum optical operations. The
quantum operations are implemented via control the frequency and phase of ω1 and ω2. (a)
Coherent displacement operation D̂ and (b) squeezing operation Ŝ on X mode as an example. (c)
Rotation operation R̂ between X and Y modes.

coherence of quantum operations, since all the phases φB of all these quantum operations
are controlled by RF sources on Raman 2. so the phase coherence among them are well
preserved, as discussed in section 6.3.1.

The quantum optical operations (displacement D̂, squeezing Ŝ and rotation R̂), which
preserves phase coherence among them, are implemented by theσ+-polarizedRaman laser
beams from a Picosecond pulsed laser with a wavelength of 375 nm (see section 6.3.1). In
the trapped-ion experiment, the quantum optical operations with the desired parameters
can be performed by controlling the applied laser frequency, duration, intensity and
phase. With different Raman laser configurations, we can realize displacement, squeezing
and rotation operations, respectively [99,100]. Figure 6.6 (a) shows the performance of
the experimental displacement D̂2(α) = D̂(αX, 0) = eαX â

†

X−α
∗
X âX and squeezing Ŝ2(ζ ) =

Ŝ(diag(ζX, 0)) = e
1
2 (ζ
∗
X âX âX−ζX â

†

X â
†

X) operations, where aX and a†X are the annihilation and
creation operators of bosonic mode X, respectively. The amount of the displacement
α and the squeezing parameter ζ are controlled by the duration of the corresponding
Raman beams with the rates of 0.042 µs−1 and 0.004 µs−1, respectively. We examine
the trapped-ion implementation of the rotation operation R̂2(U) = R̂(θ) = eθ(â

†

X âY−âX â
†

Y)

between modes X and Y with two sets of initial states, as indicated in Figure 6.6 (b). The
rotation angle θ is also controlled by the duration of the operation with a rate of 0.005
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rad µs−1. The oscillations in Figure 6.6 (b) of the initial state |nX = 1, nY = 0〉 (orange
and green) are twice slower than those from state |1, 1〉 (blue, black and red), as expected.
We note that at t = 157µs, the near zero probability of 〈1, 1| R̂ |1, 1〉 originates from the
Hong-Ou-Mandel interference [100].

We confirm the phase coherence between D̂ and Ŝ by experimentally reconstructing
the Wigner function of a coherent displacement state and a squeezed vacuum state. The
comparisons with theoretical calculation are shown in Figure 6.7. We reconstruct the
Wigner function by using the iterative maximum-likelihood algorithm on the phonon
number distribution for eight different angles in the phase space [99,101]. The phonon
number distribution is constructed in three steps: (i) prepare the initial coherent state or
squeezed vacuum state, (ii) coherent push the initial state with eight different angles, (iii)
apply the standard Jaynes Cummings coupling and resolve the distribution through the
fitting of the observed oscillations.

6.4 Scheme for the construction of vibronic spectroscopy

Figure 6.8 (b) illustrates the transition between the two-dimensional Fock spaces
resulting from the two-dimensional harmonic oscillators. We perform the collective
quantum-projection measurement of the final state |nX, nY〉 advanced from the measure-
ment scheme of Ref. [101,102]: first, we transfer the population of a target state |nX, nY〉

to the |0, 0〉 state by a sequence of π-pulse transitions. Then, we measure the state popula-
tion by applying three sequential fluorescence-detections combined with the uniform red
sideband technique (see section 6.4.1). Our quantum projection measurement is limited
by the imperfection of the state transfer and the fluorescence-detection efficiency. We
plot the fidelity of the collective projection measurement of |nX, nY〉 state in Figure 6.8
(b). Based on the fidelity analysis, We perform measurement-error corrections for the
experimental raw data (see section 6.4.2 for the detailed information).

6.4.1 Method for collective projection measurements

We explain in this section the pulse sequence for the detection of population in an
arbitrary phonon state |Σ, nX, nY〉, where we indicate the internal qubit state Σ (↓ or ↑) of
the phonon state (|nX, nY〉).

The first step is to transfer the population in the target state |↓, nX, nY〉 to |↓, 0, 0〉: it is
performed by applying a sequence of π-pulse transitions, as shown in Figure 6.9 (a), i.e.,
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图 6.6 Trapped-ion demonstration of quantum optical operations; D̂, Ŝ, and R̂. (a) Displacement
α = (αX, 0) (red) and squeezing ζ = diag(ζX, 0) (blue) of mode X are controlled by the duration
of Raman laser beams. The insets show the measured phonon distribution for αX = 0.5 and for
the squeezing parameter of ζX = 0.5. (b) The evolution of rotation operation between mode X and
Y. The ion is first prepared in state |nX = 1, nY = 0〉 (orange and green) and |1, 1〉 (blue, black and
red), then we apply the rotation operation, finally measure the corresponding Fock state population
via collective projection measurement method. Here all the operations are implemented by Raman
laser beams. The dots represent the experimental data and the lines are obtained by fitting. The
error bars stand for 95% confidence level.
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Squeezed  vacuum stateCoherent  displacement state
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Experiment TheoryExperimentTheory

图 6.7 Coherent displacement and squeezed vacuum state Wigner functions. (a) and (b)
represents for the coherent displacement state with αX = 0.5. (c) and (d) represents for the
squeezed vacuum state with ζX = 0.5.

with the following steps,

a : |↓, nX, nY〉
π−Carrier
−−−−−−→ |↑, nX, nY〉

π−BlueX
−−−−−−→ |↓, nX − 1, nY〉 ... −→ ... |↓, 0, nY〉

π−Carrier
−−−−−−→ |↑, 0, nY〉

π−BlueY
−−−−−−→ |↓, 0, nY − 1〉 ... −→ ...|↓, 0, 0〉 (6-18)

The second step is to obtain the population in |↓, 0, 0〉 by using the sequence as shown
in Figure 6.9 (b-f). The important technique used in this process is called uniform red
sideband transition, which is a full population transfer independent of the initial motion
state [101], it exchanges the state population between |↓, nX + 1, nY〉 and |↑, nX, nY〉 when it
is uniform red sideband on mode X, or |↓, nX, nY + 1〉 and |↑, nX, nY〉 when it is uniform
red sideband on mode Y. In the real experiment setting, the maximum phonon number are
restricted to nX(Y) < 10.

b: Apply the fluorescence detection and record the event M1 of detecting photons or
no photons.

c: Apply a uniform red sideband transition on mode X, which transfers all the states
of |↓, nX > 0, nY〉 to |↑〉 state.

d: Apply the fluorescence detection and record the event M2 of detecting photons or
no photons.

e: Apply a uniform red sideband transition on Y mode, which transfers all the states
of |↓, nX, nY > 0〉 to |↑〉 state.

f: Apply the fluorescence detection and record the event M3 of detecting photons or
no photons.

In the above multiple-detection stages, there are four situations for the recorded data
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(a) (b)

图 6.8 Construction scheme for the vibronic spectroscopy with two modes and measurement
fidelity analysis. (a) The transition process of a molecule in the two-dimensional Fock space.
The process begins with the lower plane and ends at the upper plane. The points in the grid
represent the phonon number states. The transition probability is obtained by the collective
projection measurements of two phonon modes (see section 6.4.1). (b) The fidelity analysis of
the collective projection measurements. The fidelity of measuring the transition probability to
the state |nX′, nY′〉 is experimentally examined from |0, 0〉 to |9, 9〉. The fidelity is measured by
applying the measurement sequence twice, as starting from |0, 0〉 to |nX′, nY′〉, and then bringing
back to |0, 0〉. The square root of the remained population represents the fidelity.

𝜋-pulse 

transitions

Detection

dark

Uniform Red

X mode

Uniform Red

Y modeDetection

dark

Target population

Detection

dark

(a) (b) (c)

(d)(e)(f)

图 6.9 Detection method for the example of state |↓, nX = 2, nY = 2〉. The lower (purple grid)
and the upper (orange grid) layers represent the internal states of |↓〉 and |↑〉. The internal states
have no fluorescence and fluorescence, respectively, during the internal state detection.

95



第6章 Quantum emulation of molecular vibronic spectroscopy

M1M2M3

{B∀∀,DB∀,DDB,DDD} → {P1, P2, P3, P4}. (6-19)

Here, D means detecting no photons, B means detecting photons, ∀ stands for both
situations. Typically, we repeat the experiments for 2000 times to get the probability for
each case noted as P1, P2, P3, P4. The population of the target state is the probability of
case P4.

Within the above collective projection measurements, Figure 6.8 (b) shows the ex-
perimentally measured result for the fidelity of the detection sequence of an arbitrary state
|nX, nY〉, noted as FD.M . The infidelity mainly comes from the imperfection of π-pulse
and uniform red-transition on X and Y mode.

6.4.2 Measurement-error corrections for the experimental raw data

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.3

0

0.3

Theory Value Raw Experimental data

Measurement-error corrected data

图 6.10 Comparison between the raw and the corrected experimental data for the spectroscopy
of SO2→SO+2 . The horizontal axis is the Fock state |nX′, nY′〉 and the vertical axis is the transition
intensity to the state from the |0, 0〉 state.

We mainly consider two error sources to correct the experimental raw data: i) the
inefficiency of fluorescence detection of internal states; ii) the infidelity of the collective
projection measurement discussed in section 6.4.1.

Our fluorescence detection can distinguish the internal states |↑〉 and |↓〉 with the
corresponding detection fidelities are η↑→↑ (97.2%) state and η↓→↓ (99.3%) for state,
respectively. To correct this inefficiency, we use the value of P4, which is obtained by
1-(P1 + P2 + P3). The real population (PR) of detecting photons scattered from the |↑〉
state is not exactly same to the measured population (PM ). The relation between them is
given as PM = PR η↑→↑ + (1 − PR)(1 − η↓→↓), thus

PR ≡ Corr(PM ) =
PM − (1 − η↓→↓)
η↓→↓ + η↑→↑ − 1

(6-20)
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For the correction of the second part, as discussed in the section 6.4.1, we have to
include the fidelity FD,M .

In order to correct the raw experimental data, we consider these two imperfections.
For the experiment raw data, our corrected data is written accordingly as,

P′4 =
1 − Corr(P1 + P2 + P3)

FD.M

(6-21)

Figure. 6.10 compares the raw experimental data and corrected data for the photo-
electron spectroscopy of SO2.

6.5 Experimental results

Finally, we simulate the photoelectron spectroscopies of SO2 and SO−2 , in which a
single electron is removed from the molecule during the photon absorption process, with
our trapped-ion quantum simulator. Owing to the symmetry of the molecules, we use
only two vibrational modes of sulfur dioxide, which show mixing of the vibration modes
with respect to the final vibrational coordinates [95], in our quantum simulation for the
molecular spectroscopy; the remaining vibrational mode does not contribute to the overall
spectral shape because SO2 does not deform along the remaining (non-totally-symmetric)
vibrational mode during the vibronic transition.

Figure 6.11 presents the photoelectron spectra, SO2 → SO+2 and SO−2 → SO2 ob-
tained from our trapped-ion quantum simulation; theses are compared with the theoretical
classical calculations. Figure 6.11 shows good agreement between the theory calculations
and the trapped-ion simulations of the two photoelectron processes of sulfur dioxide, the
required molecular parameters are described in the figure caption. In Figure 6.11 (a), the
photoelectron spectroscopy of SO2 is dominated by ω′2 transitions due to the significant
large displacement along the secondmode: α = (−0.026, 1.716). The photoelectron spec-
troscopy of SO−2 in Figure 6.11 (b) shows tiny combination bands of the first and second
modes regardless of the dominant contribution of the first mode (α = (1.360,−0.264)).
We note that the observation of the tiny band combinations indicates the reliable perfor-
mance of the trapped-ion simulation.
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图 6.11 Trapped-ion simulation of photoelectron spectra of SO2 and SO−2 with measurement-
error correction. The two vibrational frequencies of harmonic potential for SO+2 , SO2 and SO−2
are (1112.7, 415.0), (1178.4, 518.9) and (989.5, 451.4) cm−1, respectively. (a) The displacement
vector α is (-0.026, 1.716); rotation angle θ is 0.189 and (b) The displacement vector α is (1.360,
-0.264); rotation angle θ is 0.065. The theoretical lines are intentionally broadened by convoluting
with a Gaussian function with the width of 50 cm−1 [95] for the comparison. Here N i

0 denotes
the i-phonon excitation on N-th mode from the vibrational ground state |0〉, and accordingly, 00

0
located at the off-set energy ω0−0 = 0.
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6.6 Discussion and conclusions

As the first demonstration of quantum simulation for the molecular vibronic spec-
troscopy, our trapped-ion device shows excellent performance at a small-scale after the
error-correction scheme in section 6.4.2. In the near future, we expect the many modes
implementation for a large-scale molecular simulation, where the multi-modes can be
mapped to the local vibrational modes or collective normal modes of many ions in a sin-
gle trap. The demonstrated quantum optical operations through a single ionwill be directly
applied to the large-scale simulation. This would be useful in concluding the quantum
supremacy of boson sampling with the Gaussian states. The molecular simulations in
trapped-ion devices and the real molecular spectroscopic signals can be compared as a
certification protocol for large-scale Gaussian boson sampling, which cannot be verified
classically because of the #P-hardness [74–76] (cf. Neville et al. [103] and Clifford [104] for the
classical effort to reach the classical limit of the original boson sampling problem). In
closing, we would like to comment on the possible extension of the quantum simulation
of molecular vibronic spectra, which are currently in preparation: (i) One could possibly
go beyond the Condon approximation, i.e., the coordinate dependence of the transition
dipole moment, by introducing additional phase to the input Gaussian states; (ii) The
anharmonic problem, which is more challenging, can be incorporated in the molecular
process for example with Morse-oscillators [105,106]. Moreover, we may adopt the quan-
tum simulation of spin-boson model [107] or many-body bosonic-fermionic systems [108] for
further vibronic simulation beyond the Born-Oppenheimer approximation.
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第7章 Conclusion and outlook

During my Ph.D. career, joined with my team members, we have built a trapped
ion system that can completely control a single ion, where the operation Hilbert space
includes the four-level system and the two motional modes. We can initialize the state
of the ion to hyperfine ground state and motional ground state, and manipulate the ion
through the microwave and pulsed laser. As a preparation work for the multi-ions system,
I developed the detection scheme with an EMCCD and trying to improve the number of
electrodes in the segmented blade trap. Besides that, I contribute to the stabilization of
lasers and enhance the coherence time of internal state and motional state.

For the molecular electronic structure simulation, I implemented the variational al-
gorithm for the molecular ground state energy problem in our trapped ion system and
shown excellent performance. For the molecular vibronic spectroscopy emulation exper-
iment, I explored the implementation of quantum optical operations with spin-dependent
and spin-independent schemes, and realize the collective projection measurement for two
bosonic modes in a single ion.

There are a lot of technical issues that need to be addressed for a more robust trapped
ion system. We need to carefully study and enhance the coherence time of the qubit,
especially the motional modes, which is an information transfer bus for the multi-ion
system. The detection system with EMCCD should be further improved to reach a higher
readout fidelity. The next generation of our blade trap will include more electrodes, which
is a benefit for the uniform spacing of an ion chain.

A long-lived, large number ion crystal, which prevents from ion crystal melting or
ion escaping, is indispensable for the realization of future trapped ion quantum computer.
One promising direction is putting our vacuum chamber in a cryogenic system, which
significantly reduces the background collision. And the short term alternative is using
the ion protection sequence, which requires the monitoring of Doppler cooling count and
feedback to a conditional experimental sequence control system.

Limited by the number of ions in our system for the past years, we are establishing
the multi-ion system at present, and I am looking forward to the demonstration of quantum
chemistry algorithms in the next multi-ions system, which may show the strong power of
a quantum computer.
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Temperature stabilization

Setting parameters

Data acquiring
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Data processing

Fitting experimental data
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Needs[“NETLink̀”]

Declaration

ClearAll[DDSCards,DDSHandle, IsConnected,DDSGetPortValue,DDSSetPortValue,
FormatWData, FormatRData,GetRegLen,GetEvbdInfo,DDSGetRegValue,
DDSSetRegValue,MasterReset,TriggerIOUpdate,TriggerIOReset,
SetCurrentProfile,DDSInit,AlignPhase,DriveLetter];
DriveLetter[] = If[$Input(*FileName*)===“”,
If[DirectoryQ[# <> “\\”]&&DirectoryQ[# <> “\\Mathematica”]&&
DirectoryQ[# <> “\\Data”], #, “E:”]
&@If[$UserName===“lab2”, “F:”, “G:”],
FileNameSplit[$Input(*FileName*)][[1]]
];
DDSHandles = {};
RegLength = {4, 4, 4, 4, 4, 6, 6, 4, 2, 4, 4, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4};
SYSCLK = 1000;
dUpdate = MakeNETObject[{255, 5, 0}, “System.Byte[]”];

Protected

AdiClockLib =
FileNameJoin@{“G:”, “LabVIEW”, “Lib”, “ad9910”, “adiclockeval.dll”};
FindHardware = DefineDLLFunction[“FindHardware”,AdiClockLib, “int”,
{“int*”, “int*”, “int”}];
GetHardwareHandles = DefineDLLFunction[“GetHardwareHandles”,AdiClockLib,
“void”, {“unsigned int[]”}];
IsConnected = DefineDLLFunction[“IsConnected”,AdiClockLib, “int”, {“int”}];
GetPortValue = DefineDLLFunction[“GetPortValue”,AdiClockLib, “int”,
{“int”, “int”, “unsigned int[]”}];
SetPortValue = DefineDLLFunction[“SetPortValue”,AdiClockLib, “int”,
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{“int”, “int”, “char”}];
SpiRead = DefineDLLFunction[“SpiRead”,AdiClockLib, “int”,
{“int”, “System.Byte[]”, “int”, “System.Byte[]”, “int”, “int”}];
SpiWrite = DefineDLLFunction[“SpiWrite”,AdiClockLib, “int”,
{“int”, “System.Byte[]”, “int”}];
GetEvbdInfo = DefineDLLFunction[“GetEvbdInfo”,AdiClockLib, “void”,
{“int”, “System.Byte[]”, “ref System.UInt32”}];

Function

DDSCards[]:=Module[{vid, pid, num, handles},
vid = 1110;
pid = 60965;
num = FindHardware[vid, pid, 1];
DDSHandles = Range[0, num − 1];
handles = MakeNETObject@ConstantArray[0, num];
GetHardwareHandles[handles];
DDSHandles = NETObjectToExpression@handles];
DDSCards[];

DDSHandle[id_Integer]:=DDSHandles[[id]];
DDSGetPortValue[id_Integer, port_Integer]:=Module[{val, ret},
val = MakeNETObject@{0};
GetPortValue[DDSHandle[id], port, val];
(NETObjectToExpression@val)[[1]]];

DDSSetPortValue[id_Integer, port_Integer, val_Integer]:=
SetPortValue[DDSHandle[id], port, val];

FormatWData[dat_Integer]:=
{Mod[#, 256],Quotient[#, 256]}&[
2FromDigits[Riffle[IntegerDigits[dat, 2, 8], 0], 2]];

FormatWData[dat_List]:=Flatten[Reverse[FormatWData/@dat]];
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FormatRData[dat_List]:=
FromDigits[#, 2]&/@
Partition[Flatten[Reverse[Drop[IntegerDigits[#, 2, 8], {2, 8, 2}]&/@dat]],
8];

GetRegLen[reg_Integer]:=RegLength[[reg + 1]];

DDSGetRegValue[id_Integer, reg_Integer]:=Module[{wdat, len, rdat, ret},
wdat = MakeNETObject[FormatWData[128 + reg], “System.Byte[]”];
len = GetRegLen[reg];
rdat = MakeNETObject[ConstantArray[0, 2len], “System.Byte[]”];
SpiRead[DDSHandle[id],wdat, 2, rdat, 2len, 0];
FormatRData[NETObjectToExpression@rdat]];

DDSSetRegValue[id_Integer, reg_Integer, val_List]:=Module[{buf},
buf = MakeNETObject[FormatWData[Prepend[val, reg]], “System.Byte[]”];
SpiWrite[DDSHandle[id], buf, 2Length[val] + 2]; ];

DDSGetEvbdInfo[id_Integer]:=Module[{info, len, rtl, rti},
info = MakeNETObject[ConstantArray[0, 32], “System.Byte[]”];
len = MakeNETObject[32, “System.UInt32”];
GetEvbdInfo[DDSHandle[id], info, len];
rtl = NETObjectToExpression@len;
rti = (NETObjectToExpression@info)[[1;;rtl]];
rti];

Definition - Utilities

MasterReset[id_Integer]:=Module[{val},
val = BitAnd[DDSGetPortValue[id, 0], 2∧∧11110111];
DDSSetPortValue[id, 0, val];
DDSSetPortValue[id, 0, val + 8];
DDSSetPortValue[id, 0, val]; ];
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TriggerIOUpdate[id_Integer]:=Module[{val},
val = BitAnd[DDSGetPortValue[id, 4], 2∧∧11101111];
DDSSetPortValue[id, 4, val];
DDSSetPortValue[id, 4, val + 16];
DDSSetPortValue[id, 4, val]; ];

TriggerIOReset[id_Integer]:=Module[{val},
val = BitAnd[DDSGetPortValue[id, 0], 2∧∧11111011];
DDSSetPortValue[id, 0, val];
DDSSetPortValue[id, 0, val + 4];
DDSSetPortValue[id, 0, val]; ];

SetCurrentProfile[id_Integer, prof_Integer]:=Module[{val},
val = BitAnd[DDSGetPortValue[id, 4], 2∧∧11111000];
DDSSetPortValue[id, 4, val + prof]; ];

DDSInit[id_Integer]:=Module[{},
MasterReset[id];
DDSSetRegValue[id, 0, {16∧∧00, 16∧∧40, 16∧∧00, 16∧∧00}];
DDSSetRegValue[id, 1, {16∧∧01, 16∧∧40, 16∧∧08, 16∧∧A0}];
DDSSetRegValue[id, 2, {16∧∧1F, 16∧∧3F, 16∧∧C0, 16∧∧00}];
DDSSetRegValue[id, 3, {16∧∧00, 16∧∧00, 16∧∧7F, 16∧∧FF}];
DDSSetRegValue[id, 16∧∧0A, {16∧∧7C, 16∧∧00, 16∧∧40, 16∧∧00}];
DDSSetRegValue[id, 16∧∧0E,
{16∧∧3F, 16∧∧FF, 16∧∧00, 16∧∧00, 16∧∧33, 16∧∧33, 16∧∧33, 16∧∧33}];
TriggerIOUpdate[id]; ];

ReadProfile[id_Integer, prof_Integer]:=Module[{tmp, buf, f, p, a},
tmp = DDSGetPortValue[id, 4];
SetCurrentProfile[id, prof];
buf = FromDigits[DDSGetRegValue[id, 16∧∧0E + prof], 256];
DDSSetPortValue[id, 4, tmp];
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f = Mod
[
buf, 232] SYSCLK /

232 ;
p = Mod

[
BitShiftRight[buf, 32], 216] 2π

/
216 ;

a = Mod
[
BitShiftRight[buf, 48], 214] /214;

{f, p, a}];

WriteProfile[id_Integer, prof_Integer, {f_, p_, a_}]:=
Module[{tmp, ftw, pow, asf},
ftw = Round

[
232f/SYSCLK

]
;

pow = BitShiftLeft
[
Round

[
216Mod[p, 2π]/(2π)

]
, 32

]
;

asf = BitShiftLeft
[
Round

[
214Min

[
a, 1 − 2−14] ] , 48

]
;

tmp = DDSGetPortValue[id, 4];
SetCurrentProfile[id, prof];
DDSSetRegValue[id, 16∧∧0E + prof, IntegerDigits[asf + pow + ftw, 256, 8]];
DDSSetPortValue[id, 4, tmp];
TriggerIOUpdate[id]; ];

AlignPhase[]:=Module[{},
DDSInit/@Range[4];
Pause[0.1];
WriteProfile[1, 0, {200, 355◦, 1}];
WriteProfile[#, 1, {200, 0, 1}]&/@Range[4];
DDSSetRegValue[#, 0, {16∧∧00, 16∧∧40, 16∧∧08, 16∧∧00}]&/@Range[4];
Pause[0.1];
TriggerIOUpdate/@Range[4];
DDSSetRegValue[#, 0, {16∧∧00, 16∧∧40, 16∧∧20, 16∧∧00}]&/@Range[4]; ];
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Basic Functions

ζ1 = 2.0925; ζ2 = 1.24; ζ1p = 2.0925/1.24;
c1 = 0.444635; e11 = 0.109818ζ12; e12 = 0.109818ζ22;
e11p = 0.3136497915; e12p = 0.16885540;
c2 = 0.535328; e21 = 0.405771ζ12; e22 = 0.405771ζ22;
e21p = 1.158922999; e22p = 0.623913;
c3 = 0.154329; e31 = 2.22766ζ12; e32 = 2.22766ζ22;
e31p = 6.362421394; e32p = 3.425250914;
SF[ζ_][r_]:=

√
ζ3

π
e−ζ r;

GF[a_][r_]:=
( 2a
π

)3/4 e−ar2;
CGF[c1_][e1_][c2_][e2_][c3_][e3_][r_]:=c1GF[e1][r] + c2GF[e2][r] + c3GF[e3][r];
ccoeff[i_]:={c1, c2, c3}[[i]];
expcoeff[i_][j_]:={{e11p, e21p, e31p}, {e12p, e22p, e32p}}[[i, j]];
IS[i_][j_][RA_][RB_]:=

(
4i∗j
π2

)3/4 (
π

i+j

)3/2
Exp

[
−ij
i+j(RA − RB)

2
]

;

Ir[i_][j_][RA_][RB_]:=
(

4i∗j
π2

)3/4 (
π

i+j

)3/2 iRA+jRB
i+j Exp

[
−ij
i+j(RA − RB)

2
]

;

IK[i_][j_][RA_][RB_]:=
(

4i∗j
π2

)3/4 ij
i+j

(
3 − 2ij

i+j(RA − RB)
2
) (

π
i+j

)3/2
Exp

[
−ij
i+j(RA − RB)

2
]

;

F[x_]:= 1
√

xIntegrate
[
e−y2

,
{
y, 0,
√

x
}]

/;x > 0;
F[x_]:=1/;x<=0;
INE[ZN_][RN_][i_][j_][RA_][RB_]:=

(
4i∗j
π2

)3/4
−2π
i+j ZNExp

[
−ij
i+j(RA − RB)

2
]

F
[
(i + j)

(
iRA+jRB

i+j − RN
)2

]
;

IEE[i_][j_][k_][l_][RA_][RB_][RC_][RD_]:=
(

4i∗j
π2

)3/4 ( 4k∗l
π2

)3/4 2π5/2

(i+j)(k+l)
√

i+j+k+l

Exp
[
−ij
i+j(RA − RB)

2 − kl
k+l(RC − RD)

2
]

F
[
(i+j)(k+l)
i+j+k+l

(
iRA+jRB

i+j − kRC+lRD
k+l

)2
]

;

Integration

R = N@INPUTR;EAmp = Electric;
ClearAll[F0, Fp,HCore,X0,HS,HT,HVHe,HVH,HElectricr,Hr12,EEn,CC, P,G,MC, S]
S[u_][v_]:=Sum[ccoeff[i]ccoeff[j] IS[expcoeff[u][i]][expcoeff[v][j]][
(−1)u R

2

] [
(−1)v R

2

]
, {i, 1, 3}, {j, 1, 3}

]
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HS =

(
S[1][1] S[1][2]
S[2][1] S[2][2]

)
;

ClearAll[T]
T[u_][v_]:=Sum[ccoeff[i]ccoeff[j] IK[expcoeff[u][i]][expcoeff[v][j]][
(−1)u R

2

] [
(−1)v R

2

]
, {i, 1, 3}, {j, 1, 3}

]
HT =

(
T[1][1] T[1][2]
T[2][1] T[2][2]

)
;

ClearAll[VHe]
VHe[u_][v_]:=Sum

[
ccoeff[i]ccoeff[j] INE[2]

[
−R

2

]
[expcoeff[u][i]][expcoeff[v][j]][

(−1)u R
2

] [
(−1)v R

2

]
, {i, 1, 3}, {j, 1, 3}

]
HVHe =

(
VHe[1][1] VHe[1][2]
VHe[2][1] VHe[2][2]

)
;

ClearAll[VH]
VH[u_][v_]:=Sum

[
ccoeff[i]ccoeff[j] INE[1]

[R
2

]
[expcoeff[u][i]][expcoeff[v][j]][

(−1)u R
2

] [
(−1)v R

2

]
, {i, 1, 3}, {j, 1, 3}

]
HVH =

(
VH[1][1] VH[1][2]
VH[2][1] VH[2][2]

)
;

ClearAll[Electricr]
Electricr[u_][v_]:=EAmpSum[ccoeff[i]ccoeff[j] Ir[expcoeff[u][i]][expcoeff[v][j]][
(−1)u R

2

] [
(−1)v R

2

]
, {i, 1, 3}, {j, 1, 3}

]
HElectricr =

(
Electricr[1][1] Electricr[1][2]
Electricr[2][1] Electricr[2][2]

)
;

HCore = HT + HVHe + HVH + HElectricr;
ClearAll[r12]
r12[a_][b_][c_][d_]:=Sum[ccoeff[i]ccoeff[j]ccoeff[k]ccoeff[l]
IEE[expcoeff[a][i]][expcoeff[b][j]][expcoeff[c][k]][expcoeff[d][l]][
(−1)a R

2

] [
(−1)b R

2

] [
(−1)c R

2

] [
(−1)d R

2

]
, {i, 1, 3}, {j, 1, 3}, {k, 1, 3}, {l, 1, 3}

]
Hr12 = Table[r12[a][b][c][d], {a, 2}, {b, 2}, {c, 2}, {d, 2}];

Interations

F0 = HCore;

U =

(
2−1/2 2−1/2

2−1/2 −2−1/2

)
;

X0 = U.

(
(1 + HS[[1, 2]])−1/2 0

0 (1 − HS[[1, 2]])−1/2

)
;
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databuffFF = Table[F0, {i, 100}];
databuffEEn = Table[0, {i, 100}];
function[n_]:=Module[{}, Fp = X0 † .databuffFF[[n]].X0;

CC =

(
Eigensystem[Fp][[2, 1, 1]] Eigensystem[Fp][[2, 2, 1]]
Eigensystem[Fp][[2, 1, 2]] Eigensystem[Fp][[2, 2, 2]]

)
;

MC = X0.CC;

P =

(
2MC[[1, 1]]2 2MC[[1, 1]]MC[[2, 1]]

2MC[[2, 1]]MC[[1, 1]] 2MC[[2, 1]]2

)
;

G = {{Sum[P[[i, j]](Hr12[[1, 1, j, i]] − 0.5Hr12[[1, i, j, 1]]), {i, 1, 2}, {j, 1, 2}],
Sum[P[[i, j]](Hr12[[1, 2, j, i]] − 0.5Hr12[[1, i, j, 2]]), {i, 1, 2}, {j, 1, 2}]},
{Sum[P[[i, j]](Hr12[[2, 1, j, i]] − 0.5Hr12[[2, i, j, 1]]), {i, 1, 2}, {j, 1, 2}],
Sum[P[[i, j]](Hr12[[2, 2, j, i]] − 0.5Hr12[[2, i, j, 2]]), {i, 1, 2}, {j, 1, 2}]}}
FF = HCore + G;
EEn = 1

2Sum[P[[j, i]](HCore[[i, j]] + FF[[i, j]]), {i, 1, 2}, {j, 1, 2}];
databuffFF[[n + 1]] = FF;
databuffEEn[[n]] = EEn]
n = 1;
While[True, If[Abs[function[n] − function[n + 1]] < 0.00001,Break[]];
n++]

Hartree - Fock & CI & UCC Algebra Curve

SignList = {−1,−1,−1, 1, 1, 1};
ORTHONORMEXPC = {e11p, e21p, e31p, e12p, e22p, e32p};
SQHmatrix[dp_]:=Module[{},
M11 = OUTPUT[[dp, 16]] † [[1, 1]];M12 = OUTPUT[[dp, 16]] † [[1, 2]];
M21 = OUTPUT[[dp, 16]] † [[2, 1]];M22 = OUTPUT[[dp, 16]] † [[2, 2]];
ORTHONORMC = {{M11c1,M11c2,M11c3,M12c1,M12c2,M12c3},
{M21c1,M21c2,M21c3,M22c1,M22c2,M22c3}};
R = dp

10 ;
IKList = Table[IK[ORTHONORMEXPC[[i]]][ORTHONORMEXPC[[j]]][
SignList[[i]]R2

] [
SignList[[j]]R2

]
, {i, 6}, {j, 6}

]
;

INEList1 = Table
[
INE[2]

[
−R

2

]
[ORTHONORMEXPC[[i]]][ORTHONORMEXPC[[j]]][

SignList[[i]]R2
] [

SignList[[j]]R2
]
, {i, 6}, {j, 6}

]
;

INEList2 = Table
[
INE[1]

[R
2

]
[ORTHONORMEXPC[[i]]][ORTHONORMEXPC[[j]]]
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SignList[[i]]R2

] [
SignList[[j]]R2

]
, {i, 6}, {j, 6}

]
;

IEEList = Table[IEE[ORTHONORMEXPC[[i]]][ORTHONORMEXPC[[j]]]
[ORTHONORMEXPC[[k]]][ORTHONORMEXPC[[l]]][
SignList[[i]]R2

] [
SignList[[j]]R2

] [
SignList[[k]]R2

] [
SignList[[l]]R2

]
,

{i, 6}, {j, 6}, {k, 6}, {l, 6}];
hpq = Table[Sum[ORTHONORMC[[u, i]]ORTHONORMC[[v, j]](IKList[[i, j]]
+INEList1[[i, j]] + INEList2[[i, j]]), {i, 1, 6}, {j, 1, 6}], {u, 2}, {v, 2}];
hpqrs = Table[Sum[ORTHONORMC[[u, i]]ORTHONORMC[[v, j]]
ORTHONORMC[[m, k]]ORTHONORMC[[n, l]]IEEList[[i, j, k, l]],
{i, 1, 6}, {j, 1, 6}, {k, 1, 6}, {l, 1, 6}], {u, 2}, {v, 2}, {m, 2}, {n, 2}];
SQH = Table[0, {4}, {4}];
SQH[[1, 1]] = 2hpq[[1, 1]] + hpqrs[[1, 1, 1, 1]];
SQH[[1, 2]] = −hpq[[1, 2]] − 1

2(hpqrs[[1, 2, 1, 1]] + hpqrs[[1, 1, 1, 2]]);
SQH[[1, 3]] = hpq[[1, 2]] + 1

2(hpqrs[[1, 2, 1, 1]] + hpqrs[[1, 1, 1, 2]]);
SQH[[1, 4]] = hpqrs[[1, 2, 1, 2]];
SQH[[2, 1]] = SQH[[1, 2]];
SQH[[2, 2]] = hpq[[1, 1]] + hpq[[2, 2]] + 1

2(hpqrs[[1, 1, 2, 2]] + hpqrs[[2, 2, 1, 1]]);
SQH[[2, 3]] = −1

2(hpqrs[[1, 2, 2, 1]] + hpqrs[[2, 1, 1, 2]]);
SQH[[2, 4]] = −hpq[[1, 2]] − 1

2(hpqrs[[1, 2, 2, 2]] + hpqrs[[2, 2, 1, 2]]);
SQH[[3, 1]] = SQH[[1, 3]];
SQH[[3, 2]] = SQH[[2, 3]];
SQH[[3, 3]] = hpq[[1, 1]] + hpq[[2, 2]] + 1

2(hpqrs[[1, 1, 2, 2]] + hpqrs[[2, 2, 1, 1]]);
SQH[[3, 4]] = hpq[[1, 2]] + 1

2(hpqrs[[1, 2, 2, 2]] + hpqrs[[2, 2, 1, 2]]);
SQH[[4, 1]] = SQH[[1, 4]];
SQH[[4, 2]] = SQH[[2, 4]];
SQH[[4, 3]] = SQH[[3, 4]];
SQH[[4, 4]] = 2hpq[[2, 2]] + hpqrs[[2, 2, 2, 2]];
SQH
];
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