
囚禁离子中量子互文性保证的量
子随机数生成与验证研究
（申请清华大学理学博士学位论文）

培 养 单 位：交叉信息研究院

学 科：物理学

研 究 生：严 马 可

指 导 教 师：金 奇 奂 副 教 授

二〇一九年六月





Quantum randomness certification

secured by quantum contextuality with

trapped ion system

Thesis Submitted to

Tsinghua University

in partial fulfillment of the requirement

for the professional degree of

Doctor of Philosophy

by

Mark Um

( Physics )

Thesis Supervisor : Professor Kihwan Kim

June, 2019





关于学位论文使用授权的说明

本人完全了解清华大学有关保留、使用学位论文的规定，即：

清华大学拥有在著作权法规定范围内学位论文的使用权，其中包

括：（1）已获学位的研究生必须按学校规定提交学位论文，学校可以

采用影印、缩印或其他复制手段保存研究生上交的学位论文；（2）为

教学和科研目的，学校可以将公开的学位论文作为资料在图书馆、资

料室等场所供校内师生阅读，或在校园网上供校内师生浏览部分内容。

本人保证遵守上述规定。

（保密的论文在解密后应遵守此规定）

作者签名： 导师签名：

日 期： 日 期：





摘 要

摘 要

借助量子力学本质上的不确定性，通过观察到以 Kochen-Specker (KS)定理为

基础的量子互文性不等式的破坏值，我们可以验证量子随机数生成器输出的随机

量。虽然经典隐变量模型可以描述量子力学的概率性特点，但 KS定理可以在一个

三能级系统给的单粒子系统中甚至不需要纠缠就可以显示非互文隐变量模型与量

子力学之间的区别。在互文性测试实验中，仍未有人彻底解决如何在同时测量中

解决相容性的问题。我对 Klyachko-Can-Binicioğlu-Shumovsky 不等式进行了修补，

实验要求比使用贝尔测试的设备简单了很多。我在一个 138Ba+ 离子系统中成功地

破坏了互文性不等式，实现了关闭探测漏洞的自验证量子随机数延展器。

我的第二个课题考虑到单个量子能力操作对于操控一个量子态是非常重要的。

单粒子中的产生与湮灭算符依赖于所处态的粒子个数，因此具有概率性，在迄今

发表的实验中成功率不高。我在玻色子中实现确定性的算术操作，我采用的玻色

子是具有谐振子结构的离子中的振动声子。实验中，将声子耦合到二能级系统，应

用非跃迁的绝热操作。我在相干态与 Fock态叠加态演示算术操作。这个操作对应

于经典的加法与减法，观察到了从一个经典态确定性地生成了一个非经典态，显

示出简单重复该操作可以让量子态操控变得更加容易。除了在量子信息处理与量

子态操控上的应用以外，该加法与减法的叠加可用作一个相位算符。

有了在 171Yb+ 离子振动模式中借助拉曼跃迁的声子操作，我们可以展望通过
138Ba+ 离子与 171Yb+ 离子纠缠实现完美的相容性测量。

关键词：随机性；KCBS不等式；量子互文性；声子；绝热
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Abstract

Abstract

The output randomness from a random number generator can be certified by ob-

serving the violation of quantum contextuality inequalities based on the Kochen-Specker

(KS) theorem, benefiting from the unpredictable nature of quantum mechanics. Although

classical hidden-variable models have intended to describe the probabilistic features of

quantum mechanics, KS theorem shows the conflict between noncontextuality hidden-

variable models and quantum mechanics even with a single three-level quantum system

without entanglement. However, it is not yet resolved how to ensure compatibilities for

sequential measurements that is required in contextuality tests. I employ a modified

Klyachko-Can-Binicioğlu-Shumovsky contextuality inequality, which can simplify the

strict compatibility requirement on measurements compared to devices using Bell test. I

demonstrate a experimental violation of the contextuality inequality on a trapped single
138Ba+ ion system and realize self-testing quantum random number expansion by closing

detection loopholes.

Background of second project lies on the single-quantum level operations which

are important tools to manipulate a quantum state. Annihilation or creation of single

particles are probabilistic due to dependency on the particles originally in the state, and

the success rate has yet been low in their experimental realization. I implement near

deterministic arithmetics of a bosonic particle, in particular a phonon of ionic motion in a

harmonic potential. The operations are realized by coupling phonons to an auxiliary two-

level system and applying transitionless adiabatic passage. I perform these operations

in coherent states and superpositions of Fock states. Furthermore, I observe that the

seemingly simple operations which match to classical concepts of subtraction and addition

bring a classical state into a non-classical state nearly deterministically, as showing that

the easy repetition of the operations makes quantum state engineering handy. Apart from

the implications in quantum information processing and quantum state engineering, the

superposition of such the subtraction and addition operations is a phase operator.

Based on development of phonon operations based on raman transitions dealing with

the motions of 171Yb+ ion, perfect compatibility measurement through entanglement of
138Ba+ and 171Yb+ ions looks promising and not far from experimental realization.
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第 1章 Introduction

第 1章 Introduction

1.1 Random numbers

Randomness is a critical resource for information processing with applications rang-

ing from computer simulations [1] to cryptography [2]. For cryptographic purposes, in

which the randomness is most widely used, streams of random numbers should have good

statistical behavior and unpredictability against adversaries [3,4]. Genuine random numbers

can never be generated by a classical device because any classical device bears in prin-

ciple a deterministic description. In reality, random numbers produced by an algorithm

or a classical chaotic process allow an adversary with the information of the device to

find a pattern. On the other hand, quantum mechanics provides a foundation for genuine

randomness since the nature of quantum mechanics is fundamentally random. Based

on the unpredictable behavior of quantum mechanics, various quantum random number

generators have been proposed and implemented [5–7]. However, if an adversary partially

manipulates the devices or the devices are exposed to imperfection or malfunction, the

security can be jeopardized. In order to address this realistic issue, the device-independent

protocols have been proposed to guarantee the generated randomness without relying on

detailed knowledge of uncharacterized devices [8–17].

In the device-independent schemes, one can guarantee the randomness of the gen-

erated numbers from devices that were even provided by a malicious manufacturer with

full quantum capability. The essence of device-independent randomness is the fact that

unpredictability of measurement results could be shown by the violation of nonlocal-

ity inequalities [18]. This area is started by the recent security proofs which show that

randomness can be certified under the device-independent scenario by a class of Bell

inequalities [8–14], and the experimental realization of loophole-free violations of Bell’s

inequality have been demonstrated [19–21]. Theses device-independent schemes often rely

on the real-time Bell test during the generation of random strings. Quantum random

number generation schemes which apply violation of such inequalities have also been

demonstrated [22,23]. However, the randomness certification requires high-fidelity entan-

glement sources. Furthermore, in order to rule out the locality loophole, it requires a large

space separation between two detection sites. Strict experimental requirements make the

experimental system uncompact, and also result in low generation rate. In a standard

1



第 1章 Introduction

Bell test where for each trial two bits randomness are consumed, device-independent

randomness is generated at cost of consuming more randomness as input, which is not

randomness expansion where the output randomness is larger than input randomness. A

real efficient randomness expansion protocol can generate net randomness from a small

input randomness and the input randomness cannot be reused for the generation. So far,

loophole-free Bell tests based randomness expansion still has not been demonstrated and

remained as an experimental challenge.

1.2 Quantum contextuality

In order to physically certify that the random numbers are generated due to the in-

trinsic uncertainty of quantum mechanics instead of some uncontrolled classical noise

process in the device, we use quantum contextuality manifested through the violation of

certain Kochen-Specker (KS) inequality, similar to the Bell theorem, to certify the gen-

erated random numbers. Kochen-Specker theorem [24,25] states that quantum mechanics

is contextual and cannot be fully explained by classical models, i.e., noncontextual hid-

den variables models that have definite predetermined values for measurement outcomes.

Quantum contextuality is a basic property of quantum mechanics, where the measurement

outcomes depend on the specific context of the measurements [20,21]. Quantum contex-

tuality would be revealed by violations of some KS inequalities and such violations can

be observed even in a single indivisible system without any entanglement. Instead of

Clauser-Horn-Shimony-Holt (CHSH) inequality, we use the Klyachko-Can-Binicioğlu-

Shumovsky (KCBS) inequality [26], which is a particular type of the KS inequality, to

test the contextuality with a single system. In this way, the experimental requirements

can be significantly reduced comparing to the nonlocality test. Inequalities based on the

Kochen-Specker theorem can provide alternatives for randomness certification, which has

been studied in both theory and experiment [14,27,28]. A contextuality test contains a set

of contexts, which are composed of a certain number of compatible, i.e., commuting

in quantum mechanics, measurements. Note that the measurements in the nonlocality

Bell test can also be regarded as compatible measurements. Although the randomness

certification has been proven for the case with perfectly compatible measurements [14], it

is difficult to establish the perfect compatibility between sequential measurements when

the contextuality test is performed on a single party in reality. Till now, a couple of

experimental demonstration of randomness certification with the KCBS inequality have

2



第 1章 Introduction

been reported [27,28], but the security of the scheme still has not been fully resolved.

1.3 Trapped ion system

Trapped ion system has been in the forefront of quantum optics, quantum informa-

tion, quantum metrology and quantum thermodynamics, especially one of the strongest

candidates for large-scale practical quantum computation as it performed a series of

ground-breaking experiments demonstrating universal quantum gates and quantum tele-

portation over the last decades. It has been shown to be a paramount example for precision

and control. It guarantees the identity of qubits as it uses the qubits based on atomic energy

levels. There have been several types of ion traps developed, including four-rod trap, blade

trap, various shape of surface traps, monolithic three dimensional trap. Each of them are

connected to an ultra-high vacuum (UHV) chamber which helps the whole system to be

well isolated from the environment noise. Figure 1.2 shows an example of our Tsinghua

four-rod ion trap setup. In our experimental setup, we use a Ti-sublimation pump and

the ion-pump to suppress the vacuum at the level of 10−11 Torr, which is small enough

to neglect the background collisions from the background particles. Furthermore, the

advantage of long coherence time [29] of trapped ion systems and the easy access to long

range tunable interactions make it a dominant example for precision and control. Technol-

ogy of trapping ions has also achieved great advances in gathering the knowledge about

the interaction of light with atomic particles as well as implementation of multiple gate

operations involving a quantum controlled-NOT gate proposed by Cirac and Zoller [30].

This technique is applicable to a large number of qubits in scalable trap structures.

3



第 1章 Introduction

图 1.1 Tsinghua ion trap. RF signal is amplified and connected to the trap through a helical
resonator. An ion pump and a Ti sublimation pump is connected to the trap to make ultra-high
vacuum environment lower than 10−11 Torr.

We perform the test of the experiment with a single trapped ion in a four-rod radio-

frequency (RF) trap (shown in Figure 1.2(a)(b)) based on the confining action of static

and time-dependent electric fields [31,32]. The RF ion trap, so called Paul trap, provides a

combination of static electric field and oscillating electric field and form the potential that

confines the ions in space. This RF ion trap system has been widely applied in various

fields, such as quantum information processing, precision measurement, quantum cryp-

tography, atomic clocks and frequency spectroscopy. Refer to randomness certifacation,

we have to notice the qubits readout procedure which is based on the fluorescence detec-

tion scheme. After constructing an imaging system, the fluorescence photons are collected

the delivered to a Photomultiplier detector (PMT) as a photon counting device with close

to perfect fidelity. The tests of the KCBS inequality with the photonic system [33,34] require

the fair-sampling assumption due to the low photon detection efficiency and thus subject

to the detection efficiency loophole. By using a single trapped ion, we fully close the

detection efficiency loophole. In my thesis, the randomness expansion experiment is done

with a trapped Barium 138Ba+ ion, while the phonon arithmetics experiment is done with

4



第 1章 Introduction

an Ytterbium 171Yb+ ion.

(a)

(b) (d)

(c)

(e)

RF

RFGND

GND

图 1.2 Four-rod trap and pictures of 171Yb+ ion. (a) Connection of the trap and oven of 171Yb+ ion
in an octagon. The lasers pass shine into the trap through viewports. (b) Assembly of the four-rod
trap with two micromotion compensation electrodes on the top. (c) Schematic of the four-rod
trap. Among the four rods, two connect to RF while the other two are ground (GND) electrodes.
The two ground electrodes are given 10.6 V DC voltage to differentiate the two transverse modes
clearly (380 KHz apart). (d)(e) Pictures of one/two trapped 171Yb+ ion on the CCD camera.

My thesis is organized as follows: I will first describe 171Yb+ ion system and
138Ba+ ion system in chapter 2 and chapter 3, then demonstrate the two experimental

projects – phonon arithmetics in chapter 4 and randomness expansion secured by quan-

tum contextuality in chapter 5. Chapter 6 will conclude my work and discuss further

outlook and extention for future work.

5



第 2章 Trapped 171Yb+ ion system

第 2章 Trapped 171Yb+ ion system

2.1 Ionization, doppler cooling, optical pumping, detection

We use a hydrogen-like 171Yb+ ion as our qubit and qutrit system because it has a

strong dipole transition between 2S1/2 and 2P1/2 and has hyperfine structures. Recently,

it has reported a new record of 10 minutes coherence time of the qubit [29]. The lasers

required for all the operations, including 370 nm, 399 nm, 638 nm, 935 nm, are in quite a

reasonable wavelength. Above all, 171Yb+ ion allows simple and efficient preparation and

detection with fast speed and close to perfect fidelity.

Figure 2.1 is the schematic of 171Yb+ energy levels. Figure 2.1(a) shows the usages

of 369 nm, 638 nm and 935 nm lasers. Figure 2.1(b) is the qubit and qutrit setting of a
171Yb+ ion. Detection covers 2S1/2 |F = 1,mF = 0⟩ ↔2 P1/2 |F = 0,mF = 0⟩ without any

modulation because 2P1/2 |F = 0,mF = 0⟩ decays to the 2S1/2 |F = 1,mF = 0, 1,−1⟩ states

as the blue arrows. Doppler cooling covers both 12.6428 GHz and 2.105 GHz, optical

pumping covers 2.105 GHz. ω1 and ω2 are resonant to the transitions between |1⟩ and

|3⟩, and between |2⟩ and |3⟩.

6
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w1 w2

369.5 nm

1 2

3|↓⟩

|↑⟩

2.105 
GHz

12.6428 
GHz

1, 0FF m 
1, 1FF m  

1, 1FF m 

0, 0FF m 

1, 1FF m 1, 0FF m 

0, 0FF m 

1, 1FF m  

2P1/2

2S1/2

(a)
(b)

100 
THz

2P3/2

2P1/2

2S1/2

2D3/2

3D[3/2]1/2

2D5/2

2F7/2

1D[5/2]5/2

369.5
nm

935.2
nm 638.6

nm

图 2.1 Energy levels of 171Yb+ . (a) The usages of 369 nm, 638 nm and 935 nm lasers. (b)
Qubit(blue) and qutrit(black) setting of a 171Yb+ ion.

For ionization process, we first turn on the electric current to heat up the oven inside

the trap which emits neutral atom. We use focused 398.9108 nm laser and strong (around 2

mW) 369.5263 nm laser to shine the atom beam, s.t. the Ytterbium atoms are photoionized

by resonantly assisted dichroic two-photon transition. Then the ions are trapped by the

confinement of the electric field.

We need Doppler cooling process since the ion contains quite big kinetic energy after

it is ionized. A red detuned diode laser from the resonance of the transition 2S1/2 and 2P1/2

by about 20 MHz is used, helps the ion absorb a photon and acquire a recoil momentum.

As seen in Figure 2.2, our Doppler cooling beam has to cover the transitions between
2S1/2 and 2P1/2. We take an Electro-optic Modulator (EOM) with the input modulation

frequency of 7.37 GHz and use its second-order sideband, which is 14.74 GHz, to cover all

the relevant energy levels. For motion related experiments, including phonon arithmetics

project which I will talk in Chapter 4, additional sideband cooling is required right after

Doppler cooling to cool the ion to the motional ground state, it will be described in section

2.4.
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171Yb+

2P1/2

F=0

F=1

2S1/2

F=0

F=1

2.105 
GHz

12.6428
GHz

图 2.2 Schematic of Doppler cooling of 171Yb+ . Doppler cooling laser has to cover all the
energy levels in the 2S1/2 and 2P1/2. We achieve it by generating the second sidebands of the 7.37
GHz EOM.

As shown in figure 2.1(a), there is a 0.5% probability of decaying out from the

cycling transition to 2D3/2 state, also, sometimes the collisions make the ion transit to
2F7/2 state. So a 935.1882 nm laser and a laser of which wavelength is scanning between

638.6101 nm and 638.6151 nm are applied as repumping lasers that bring the ion back to

the Doppler cooling cycle.

The next procedure is optical pumping that initializes the ion to the hyperfine ground

state |↓⟩. We only need a 2.105 GHz EOM to cover transitions between 2S1/2 |F = 1⟩ ↔2

P1/2 |F = 1⟩ and 2P1/2 |F = 0⟩, as shown in blue arrows of figure 2.3. However, our optical

pumping beam is far detuned from 2S1/2 |F = 0⟩, thus not affecting |↓⟩ state. Eventually

all the others states will be driven and initialized to |↓⟩ state by spontaneously emission

(red arrows of figure 2.3). We achive around 99.5% fidelity.
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171Yb+

2P1/2

F=0

F=1

2S1/2

F=0

F=1

2.105 
GHz

12.6428
GHz

|↓⟩

|↑⟩

图 2.3 Schematic of optical pumping of 171Yb+ . Optical pumping laser only needs the first
sideband of the 2.105 GHz EOM. Note that it has no influence on the |↓⟩ state since it is far
detuned from the |↓⟩ state

The fluorescence detection scheme serves as the qubits readout. We only need to

cover transitions between 2S1/2 |F = 1⟩ ↔2 P1/2 |F = 1⟩ (he blue arrows of figure 2.1(b)),

so a 369.5263 nm laser beam without sideband is enough. We use two devices: PMT or

Electron-Multiplying charge coupled device (EMCCD) to check the collected fluorescence

photons. In my experiments, I use the PMT to count the photon and detect the state. We set

a threshold of the emission rate, if smaller than that, the state is 2S1/2 |F = 0⟩, otherwise,

we consider the state as 2S1/2 |F = 1⟩.

2.2 Motional structure of an 171Yb+ Ion

In our system, a single atomic 171Yb+ ion is confined in a harmonic potential gen-

erated by radio frequency in the radial axis and dc-voltage in the axial direction. This

harmonic oscillator potential is used as a quantum databus for transferring and processing

information between multiple ions. By using an external coherent laser light, the inter-

nal electronic levels can be coupled to each other and the external motional degrees of
9
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freedom of the ions. Light is able to influence motion of the ion during an emission or

absorption because of the momentum transfer between the ion and a photon. Controlling

the ion motion becomes available by controling the atom-photon coupling since the light

field can act as a source of energy. In our case, the internal state of the ion, which is

simply represented by a two-level subsystem, stores the quantum information. When we

tune the laser mode close to the transition of this two-level ion with ground state |↓⟩ and

excited state |↑⟩, this accurate interaction between light and the electronic structure of the

ion can be transferred to the state of motion, thus the motion of two or more ions in the

same potential realizes the“databus”to exchange information.

The motion of the ion can be approximated by a harmonic oscillator:

Ĥ(m) =
P̂2

2M
+

1
2

Mω2
X X̂2 (2-1)

where M is the mass of the ion, ωX is the trap frequency along the radial direction X-

axis which comes from confinement of the transverse mode. The transverse COM modes

oscillate the ion at two different motional modes ωX = (2π)2.8 MHz and ωX = (2π)3.18

MHz. The frequency difference of these two modes is 380 KHz, which is enough for

getting rid of mutual effect. We achieved this amount by adding 10.6V DC voltage to

the two ground electrodes of the four rods in Figure 1.2(c). In our experiment, we only

care X̂ and P̂, which are position and momentum operators respectively. The framework

of this quantum system is defined by its eigenstates |n⟩M , n = 0, 1, ..., with eigenenergies

En = hωX(n+ 1/2). The energy quantum of this system is called a phonon for vibrational

quanta. The motion of the ion in the harmonic potential is quantized using the creation

and annihilation operators

â† =

√
MωX

2h
X̂ +

i
√

2MhωX

P̂, (2-2)

â =

√
MωX

2h
X̂ − i

√
2MhωX

P̂, (2-3)

for all n ≥ 0, we have the usual ladder algebra

â† |n⟩M =
√

n + 1 |n + 1⟩M , â |n⟩M =
√

n |n − 1⟩M , (2-4)
10
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but â |0⟩M = |0⟩M . The Hamiltonian is then given by

Ĥ(m) = hωX(â†â +
1
2
). (2-5)

2.3 Stimulated Raman Transition

The total Hamiltonian of the system can be written now as [35,36]

Ĥ = Ĥ(e) + Ĥ(m) + Ĥ(i). (2-6)

Ĥ(e) characterizes the internal electronic state of the ion, Ĥ(i) describes the interaction of

ion to the applied light fields. With the denotation σ̂+ := |↑⟩ ⟨↓| and σ̂− := |↓⟩ ⟨↑|, the

coupling Hamiltonian has the form [37]

Ĥ(i) =
1
2

hΩ(σ̂+ + σ̂−)(ei(kX̂−ωL t) + e−i(kX̂−ωL t)), (2-7)

with rabi frequency Ω measures the strength of the coupling and ωL is the effective

frequency of the light field. k = 2π/λ is the wave number with λ being the wavelength of

the light field. Introducing the Lamb-Dicke parameter η = k
√

h/2MωX , it describes the

interaction strength between the light and the motional modes of the ion in the ground state,

thus yielding k X̂ = η(â+ â†). Induced by the light field, this Hamiltonian is moved into the

interaction with the free Hamiltonian Ĥ0 = Ĥ(e) + Ĥ(m) = hωHF σ̂z/2+ hωX(â† + â+1/2)
(Figure 2.4). When the transformation with the unitary transformation U0 = e−(i/h)Ĥ0t is

applied, the two terms which oscillating rapidly with frequencyωHF +ωL are neglected in

the rotating-wave approximation(RWA), while the other two terms oscillate with frequency

∆ = ωL − ωHF = ωHF , resulting the Hamiltonian in the interaction picture

Ĥint = U†
0 Ĥ(i)U0 =

1
2

hΩ(σ̂+ei∆texp(iη(â†eiωL t + âe−iωL t)) + h.c.). (2-8)

If the ion is confined to the Lamb-Dicke regime (defined by the condition η
√

2n + 1 = 1

for all the phonon number n), which implies the ion’s position spread is small compared

to the wavelength [38], we can simplify the model to

Ĥint =
1
2

hΩσ̂+[1 + iη(â†eiωL t + âe−iωL t)]ei∆t + h.c.. (2-9)

11
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Excitation with the external field coherently couples the vibrational motion of the ion

to the internal electronic state. As the ion oscillates in the trap and the detuning of the

laser field is set precisely to meet the trap frequency, the laser can couple the state |↓, n⟩.
The sidebands of the transition occur in the absorption or emission processes, leads to

the transfer or the energy difference h∆ in kinetic energy of the ion changing the phonon

number n.
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图 2.4 Interaction between internal and external degree of freedom. Ion with two levels of
internal electronic states couples to the harmonic oscillator of vibrational motion states with hωX

energy difference.

From Eq. (2-9), it is clear to identify three most commonly used transitions defined

as follows considering respective levels

Carrier : |↓, n⟩ ↔ |↑, n⟩ , (2-10)

Blue Sideband : |↓, n⟩ ↔ |↑, n + 1⟩ , (2-11)

Red Sideband : |↓, n⟩ ↔ |↑, n − 1⟩ . (2-12)

Schematics of all three transitions are depicted in Figure 2.5. Neglect the terms propor-

12
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tional to η, the first resonance, carrier transition, is excited when the frequency is tuned

to ∆ = 0. The Hamiltonian reads

Ĥcar =
1
2

hΩσ̂+ei∆t =
1
2

hΩn,n |↑, n⟩ ⟨↓, n| e−i∆t, (2-13)

with coupling strength Ωn,n = Ω0(1 − η2n) for all n ≥ 0 while Ω0 = ωHF . It is actually

pure qubit transitions without motional modes of the ion, thus bring no changes to the

phonon number distribution.

. . .wb  wHF wm

wr  wHF wm

† . .rsbH i a h c     

† . .bsbH i a h c     

|, 0 
wm

|, 1 


|, 2 

|, 0 
|, 1 

|, 2 

|0

|1

|2 . .
 . 

.

|0

|1

|2 . .
 . 

.

|

|

   me HH 

wm

Red Sideband

Blue Sideband

. .carH i h c    Carrier

wc  wHF

图 2.5 Schematic of three typical transitions (carrier, blue sideband and red sideband). They are
shown in the view of (a) harmonic oscillation potential, (b) motional state with two levels.

When the resonance of the laser is detuned by one unit of the trap frequency to have

Ω = ωX , the blue sideband (bsb) transition is excited with the form [38,39]

Ĥblue =
1
2

hΩσ̂+iη(â†eiωL t)ei∆t = 1
2

hΩn,n+1 |↑, n + 1⟩ ⟨↓, n| e−i∆t, (2-14)

corresponding rabi frequency changes to Ωn,n+1 = η
√

n + 1Ω0. It is description of ab-

sorption of a photon reducing the phonon number by one, and successfully entangles the
13
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motion state with the internal state of the ion. Figure 2.7 shows rabi oscillation of carrier

and blue sideband transition in real experiment.

图 2.6 Rabi oscillation of carrier and blue sideband transition. (a) Rabi oscillation on the carrier
transition in the spin qubit between |↓, 0⟩ and |↑, 0⟩. (b) Rabi oscillation on the blue transition
between |↓, 0⟩ and |↑, 1⟩. The vertical axis shows the probability of detecting the ion in the state,
and the horizontal axis shows the interaction time between light field and the ion. Here we get the
value η = Ω1,0/Ω0=0.098.

14



第 2章 Trapped 171Yb+ ion system

In the same way, the red sideband (rsb) transition is excited when the laser is red

detuned by the trap frequency s.t.∆ = −ωX . It is defined as

Ĥred =
1
2

hΩσ̂+iη(âeiωL t)e−i∆t = 1
2

hΩn,n−1ket↑, n − 1 ⟨↓, n| e−i∆t,

with Ωn,n−1 = η
√

nΩ0,

(2-15)

for n ≥ 1, but not for the ground state as previously mentioned. This stimulated emission

of a phonon leads to increasing of the phonon number.

Stimulated Raman transition is a two photon process involving two qubit levels in

the ground state as well as an excited electronic state |e⟩ [40], it consists of combined

stimulate absorption and emission of a photon. This virtual level must be far off the

resonances of all real levels, especially the lifetimes of the |↓⟩ ↔ |e⟩ needs to be much

shorter than the transitions |↓⟩ ↔ |↑⟩. Thus the frequency difference of the two light

fields make ωL. Raman detuning ∆e of this virtual level from the P1/2-level is determined

by the wavelength of the counter-propagating laser beams. Figure 2.7 shows the Raman

transition configuration for 171Yb+ ion.
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图 2.7 Raman transition configuration. (a) Raman beams applied to the trapped ion. (b) Raman
transition via an excited state. Light fields couple the qubit levels between |↓⟩ and |↑⟩ at frequency
∆ = ωL − ωHF . Blue sideband and red sideband can be realized by blue and red detuning of ωX

amount at laser frequency ωL .

2.4 Sideband cooling

Although the ion is Doppler cooled in the trap, due to the average energy ⟨E⟩ =
kBT = nhωX that originates from the temperature T of the system, the ion is in a mixture

of the vibrational motion states. Sideband cooling is necessary procedure to cool the ion

to the ground state [37,39]. The idea of the process that substract the vibrational quantum

number one by one until the ion is cooled to phonon number 0 is implemented by iteration

of red sideband transition and optical pumping. A π-pulse of red sideband, for which the

frequency of the laser is tuned to ωHF − ωX , excites the ion from |↓, n⟩ ↔ |↑, n − 1⟩ and

then leads to the reduction of phonon number by one when the optical pumping process is

followed. In this way, a cooling cycle is established without changing the initial internal

state. We repeat this Raman cooling cycle for N=100 iterations until the ion is brought to

|↓, 0⟩. As the result, the ground state is a dark state that not affected by the laser light, as

the ion cannot make a red sideband transition from n = 0 to n = −1 since the latter does

16
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not exist. Figure 2.8(a) shows the scheme of sideband cooling.

According to the definition of red sideband transition, its π-pulse time Tn,n−1 =

π/Ωn,n−1 = π/η
√

nΩ0 depends on their initial vibrational state. It means that another in-

dependent process is needed to calibrate the resonance frequency as well as rabi frequency.

By taking a Raman spectrum separately, we first apply frequency scan, then use the fitted

resonance frequency to do time scan to obtain T1,0 = π/ηΩ0 between |↓, 1⟩ ↔ |↑, 0⟩ in

experiment, and then calculate exact Raman cooling time for each step. After Doppler

cooling and optical pumping procedure which pumps the ion to dark state, we start the first

sideband cooling cycle by turning on the Raman beams to excite transition from |↓, 100⟩
to |↑, 99⟩ then again applying optical pumping beam to make ion from |↑, 99⟩ to |↓, 99⟩ .

We repeat the procedures in the same way only changing the red sideband transition time

by Tn,n−1 = Tn,n+1
√

n/
√

n − 1, and ends up with a π-pulse from |↓, 1⟩ to |↑, 0⟩ and optical

pumping. The schematic of all the sequences is depicted in Figure 2.8(b). Effect of

sideband cooling is clearly shown in Figure 2.9, complete suppression of the red sideband

transition implies the ion is cooled to the ground state.

17
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Optical
Pumping

Optical
Pumping

Optical
Pumping

Optical
Pumping

|, 0 
|, 1 

|, n-2 

. . .

|, n-1 
|, n 

|, n 
|, n-1 

|, n-2 

|, 1 
|, 0 

Doppler
Cooling

RSB
(��,�/ �)

RSB
(��,�/ � − �)

RSB
(��,�)

(b)

(a)

. . .

图 2.8 Schematic and procedure of Raman sideband cooling. (a) Raman sideband cooling
process starts from Doppler cooling and optical pumping, then the ion is supposed to be in |↓, n⟩
state. A π-pulse of red sideband transition reduces the vibrational motion state by one as the spin
is flipped to |↑⟩ state. When followed by optical pumping, the ion is transferred to |↑, n − 1⟩ state.
This cycle is processed until the ion is in the |↓, 0⟩ where no more red sideband can be excited.
(b) Time schematic for sideband cooling. Duration of the pulsed Raman transition at first cycle is
T1,0/

√
n, then π-time of red sideband increases by factor of

√
n + 1/

√
n. Finally, the ion is cooled

to the ground state after n cycles.
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图 2.9 Effect of sideband cooling shown by spectrum. (a) Spectrum before sideband cooling.
(b) Spectrum after sideband cooling. Red sideband transition is completely suppressed.
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第 3章 Trapped 138Ba+ ion system

3.1 Ionization, doppler cooling, optical pumping, detection

Figure 3.1(a) shows usage of lasers and energy levels of a 138Ba+ ion, which has

no nuclear spin. The main advantage of using 138Ba+ ion is the shelving states in 5D5/2.

When we select two of the zeeman states in 5D5/2 as |1⟩ and |2⟩ of the qutrit system, the

measurement at |3⟩ does not affect them at all.

Similar to 171Yb+ , we apply photoionization to load 138Ba+ ions. To start the loading

procedure, we turn on the current to around 3.5 A to heat up the Barium oven which is

located in the same trap, then we shine 413 nm, 493 nm, and 650 nm lasers to the atomic

beam. 413 nm laser first excites the atoms from 1S0 to 3D1, then 493 nm laser ionizes
138Ba+ ions at the trapping zone.

For Doppler cooling procedure, we apply a slightly red-detuned 493 nm laser to cover

all the possible cyclic transitions between between 6P1/2 and 6S1/2. However, due to the

138Ba+
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m=+5/2

m=+3/2

m=+1/2

m=-1/2

m=-3/2

m=-5/2
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6S1/2

6P1/2

6P3/2
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614 nm
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6S1/2

6P1/2

(a)

(b)

m=+1/2
m=-1/2

���

Δ=120MHz

m=+1/2
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图 3.1 (a) Energy levels of 138Ba+ . (b) Structure of EIT cooling.
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图 3.2 Transitions when we select σ− polarization (blue) and σ+ polarization (red) respectively.

25% probability of decay from 6P1/2 to 5D3/2, a 650 nm laser beam has to turn on all the

time to repump from 5D3/2 state. Frequency configurations of 493 nm and 650 nm lasers

is described in [41]. We need an additional 614 nm laser, which is frequency-doubled from

a 1228 nm diode laser with a periodically polarized lithium niobate (PPLN) crystal in real

experiment, also has to be applied to repump the from 5D5/2 state. The 614 nm laser is

locked to the wavelength meter.

Optical pumping is also served as state initialization. Different from 171Yb+ , we

need to carefully control the polarization of the 493 nm laser beam in order to choose one

of the two zeeman sublevels |mS = +1/2⟩ and |mS = −1/2⟩ in 6S1/2. Figure 3.2 shows

the clear difference. Blue line is all the transitions when we select σ− polarization and

initialized to |mS = −1/2⟩ state, while the red line is the transitions when we select σ+
polarization and initialized to |mS = +1/2⟩. When we either of the two polarization, we

can clearly suppress the other one. In my experiment, I select σ+ polarization to initialize

the population to |3⟩ state in our qutrit setup.

Besides the typical Doppler cooling, we need another electromagnetically induced

transparency (EIT) cooling [42] procedure. EIT cooling is based on a Γ-type three level

system (Figure 3.1(b)), it is a coherent population trapping in these three levels. We need

to apply a strong pump beam and a weak probe beam at the same time with a common
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图 3.3 Rabi oscillation of |S1/2,m = 1
2⟩ → |D5/2,m = 1

2⟩ carrier transition with (red) and without
(blue) EIT cooling. Black line is the theoretical line.
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图 3.4 Rabi oscillation of |S1/2,m = 1
2⟩ → |D5/2,m = 1

2⟩ carrier transition with (red) and without
(blue) EIT cooling.
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图 3.5 Ramsey measurement of |S1/2,m = 1
2⟩ → |D5/2,m = 1

2⟩ 1st order RSB transition with
(red) and without (blue) EIT cooling.

detuning to the upper level. We use optical pumping beam as the strong pump beam, and

carefully adjust the power and the frequency of the probe and pump beam by optimizing

|S1/2,m = 1
2⟩ → |D5/2,m = 1

2⟩ carrier and RSB transition shown in figure 3.2. After EIT

cooling, the cooling limit is much lower than the Doppler cooling. Effect of EIT cooling

can be clearly seen in the following figures. Figures 3.4 and 3.3 are rabi oscillation of

|S1/2,m = 1
2⟩ → |D5/2,m = 1

2⟩ carrier transition. The advantage of EIT cooling is not

obvious in short term (figures 3.3), but clear enough after 300 µs (figures 3.4). We

observe the EIT cooling effect by ramsey measurement of the 1st order RSB transition of

|S1/2,m = 1
2⟩ → |D5/2,m = 1

2⟩ (figures 3.5).

The detection of the ion is implemented in the same way, we excite the cyclic

transitions between 6P1/2 and 6S1/2 with 493 nm laser to collect the scattered fluorescence

photons.

We use a scheme described in Ref. [43,44], which is called modulation transfer spec-

troscopy (MTS), to stabilize 493 nm and 650 nm laser. The whole stabilization system

for 493 nm laser can be seperated to two steps: first narrowing the linewidth of the diode

laser by a Fabri-Perot cavity, then stabilizing the cavity by a tellurium (Te2) vapor cell

as the absolute reference with Doppler-free spectroscopy. The method of 650 nm laser
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图 3.6 This is figure 1 of ref. [45]. Frequency stabilization system of the 650 nm laser to Te2

reference through an optical cavity. The thick red lines show the optical path and the thin black
lines with arrows indicate electrical connections.

stabilization is the same except using an iodine (I2) cell. The reason of using a vapor

cell is the length drift of the optical cavity due to the temperature fluctuation. Ref. [45]

describes the locking system of 650 nm laser, figure 3.6 (figure 1 of ref. [45]) shows the

whole stabilization scheme. The output of the 650 nm laser is split into several beams by

combination of several beam splitters (BS) and half wave plates (HWP) and polarizing

beam splitters (PBS). They go to a wavemeter from HighFinesse, the ion trap for experi-

ment, the optical cavity and finally couple to a specific small optical table for the I2 setup

through a fiber-coupled EOM.

On the I2 table, the laser beam is again split into two beams using a HWP and a PBS.

The transmitted beam passes through an AOM, the 1st order forms a pump beam. The

reflected beam is again split into a reference beam which goes to one port of a balanced

photodiode (PD) and a probe beam. This stronger modulated pump beam and the weaker

probe beam are counter propagating, and pass through a vapor cell heated to around 56◦C.

The other input of the balanced PD is split from the pump beam, and its output is sent to

a lock-in amplifier.

The basic idea of Doppler-free spectroscopy production is that, a single laser beam

produces a doppler broadened absorption spectrum when it is tuned to the right resonant

frequency of the atoms. With two laser beams tuned to the same resonant frequency,

the doppler free dips could be observed in the doppler broadened absorption spectrum
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图 3.7 Frequency stabilization system of the 493 nm laser to Te2 reference. The cyan lines show
the optical path and the black line indicates electrical connections from the balanced PD to lock-in
amplifier.

corresponding to the frequency of the transitions. In order to implement Doppler free

Spectroscopy, we use a voltage-controlled oscillator (VCO) which scans from 190–210

MHz at a scanning frequency of 10 kHz to modulate the AOM for the pump beam. This

10 kHz is also used as the reference for the lock-in amplifier. VCO signal is processed by a

servo PID board to stabilize the cavity length by the piezo voltage control. The linewidth

of the laser frequency is obtained by recording the Pound–Drever–Hall (PDH) signal

after locking and converting its standard deviation to frequency. We choose a proper peak

from all the zero-crossing dispersive error signals as the absolute reference according to

the 138Ba+ ion spectroscopy.

Locking system of 493 nm laser is same to that of 650 nm laser except using a Te2

vapor cell which perform Doppler-free spectroscopy at around 600◦C. The 1st part beam

paths including going into the wavelength meter and the optical cavity and the trap can be

referred to Figure 3.2 of [41]. The 2nd part beam paths of Te2 spectroscopy on the specific

optical table are shown in Figure 3.7, which is almost identical to 650 nm I2 table.
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图 3.8 Rabi oscillation of |1⟩ ↔ |3⟩ by 1762 nm quadrupole transition.

3.2 Quantum manipulation with 1762 nm laser

The operations between |1⟩ ↔ |3⟩ (∆m = 0) and |2⟩ ↔ |3⟩ (∆m = 1) of the qutrit

system are realized by electric quadrupole transition. This electric quadrupole transition

couples transitions with ∆m ≤ 2 among 2 Zeeman sublevels in 6S1/2 and 6 Zeeman

sublevels in 5D5/2 as figure 3.1(a) shows.

The laser for quadrupole transition is a narrow linewidth 1762 nm fiber laser. It is

locked to an ultra-low expansion (ULE) cavity system at around 1 Hz. Before going into

the trap, we use a boosted optical amplifier (BOA) to amplify the stabilized laser. Figure

3.8 shows rabi oscillation of |1⟩ ↔ |3⟩ transition.

3.3 Coherence time

In the randomness expansion experiment, we have two detections, the first one is 600

µs and the second 300 µs. Considering other operations, the coherence time of the qutrit

system has to exceed at least 1000 µs. To ensure long enough coherence time, we add spin

echo pulses during detection procedure, which is a π-pulse of |2⟩ ↔ |3⟩ transition, then

a π-pulse of |1⟩ ↔ |3⟩ transition, followed by a π-pulse of |2⟩ ↔ |3⟩ transition (Figure

3.9). Figure 3.10 shows the ramsey measurement between |1⟩ ↔ |3⟩, Figure 3.11 shows

the ramsey measurement between |2⟩ ↔ |3⟩. The coherence time could be even longer
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图 3.9 Schematic of spin echo pulses during the detection.
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图 3.10 Ramsey measurement of |1⟩ ↔ |2⟩ transition with (red) and without (blue) EIT cooling.

when we apply a line trigger [46] to the pulse sequencer. But line trigger makes the whole

experiment speed much slower, and coherence time without line trigger is already long

enough for the randomness expansion experiment.
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图 3.11 Ramsey measurement of |1⟩ ↔ |3⟩ transition with (red) and without (blue) EIT cooling.
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第 4章 Phonon arithmetics with a trapped 171Yb+ ion

4.1 Definition of conventional arithmetics

In quantum-mechanics, creation â† and annihilation â operators in Eq. (2-4) can be

rewritten as the following form, which bear the operator relations (2-4) can be rewritten

as

â† =
∑
n=0

√
n + 1 |n + 1⟩ ⟨n| , â =

∑
n=0

√
n |n − 1⟩ ⟨n| . (4-1)

To implement creation, a π-pulse of blue sideband transition followed by a π-pulse of

carrier transition will map the ion from |↓, 0⟩ → |↑, 1⟩ → |↓, 1⟩, thus increases the phonon

number by one. This scheme can be applied for any vibrational number state |↓, n⟩, but

the π-pulse period of blue sideband transition changes on the dependency of n, which

makes it difficult to simultaneously apply exact π-pulse of blue sideband for every phonon

number state if the ion is in a mixture of vibrational motion states. Condition is same for

the annihilation operator â which consists of first π-pulse of carrier transition followed

then a π-pulse of blue sideband transition. Furthermore, the creation and annihilation

operators â† and â do not simply add and subtract phonons, but also bring modification to

the state amplitudes with
√

n factors. The proportionality factors
√

n + 1 and
√

n appear

due to the symmetric indistinguishable nature of bosons [47]. Therefore, pure arithmetics

independent of phonon number n, actually bare addition and subtraction of phonons, are

required besides the creation â† and annihilation â.

The conventional addition and subtraction of a particle can be written as

Ŝ+ =
∑
n=0

|n + 1⟩ ⟨n| , Ŝ− =
∑
n=1

|n − 1⟩ ⟨n| , (4-2)

where |n⟩ stands for a Fock state of n bosons. Ŝ+ takes the n-particle state to the (n + 1)
state representing an addition, while the subtraction operation, Ŝ−, brings the n state to

the (n − 1) state without
√

n dependency. These operations correspond to conventional

arithmetic which is commonly used in everyday life but they do not come out naturally in

quantum mechanics.
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As seen from the operations in Eq. (4-2), Ŝ+ is a deterministic process while Ŝ− may

not be, as it is not possible to subtract a particle from vacuum |0⟩. When the vacuum

component of the initial state is small, the subtraction can be done near-deterministically.

In recent times, there have been theoretical proposals of the operations (4-2) for the gener-

ation of an arbitrary quantum state [48], the measurement of vacuum [49], the transformation

to a non-classical state [50] and the amplification of a quantum state [51]. In particular, such

arithmetic operations form an important component of a qubit gate operation for ions in

a harmonic potential [52]. The operations (4-2) were also suggested as the elements of a

phase operator [53]. Beyond the quantum-state engineering, the subtraction can be used for

the sub-Doppler cooling in the trapped ion system [54].

While the quantum operators (4-1) have been experimentally demonstrated [55–61],

the realization of the conventional operations (4-2) is still to be attested in the quantum

regime. Indeed, the Ŝ+ and Ŝ− operators were suggested as the elements of a phase

operator by Susskind and Glogower [53]. Thus realization of such operations would serve

as an important stepping stone to study the properties of the Susskind-Glogower phase

operator experimentally. In this paper, we demonstrate the operations in a near deter-

ministic manner, also showing that the technique is a resource to create non-Gaussian

states efficiently [49,50]. We show that classical states are turned into nonclassical ones

manifesting highly sub-Poissonian photon statistics and negativity in the Wigner func-

tion. The versatility of the operations for quantum state engineering is demonstrated by

various sequences of the single-phonon operations. This is contrasted to the bosonic

operations realized so far [55–61]. Their success probability is intrinsically low, since the

higher the fidelity of the operations, the lower the success rate; hence a repetition of such

the operations is practically limited.

In my research, we experimentally demonstrate deterministic addition and near-

deterministic subtraction of a bosonic particle, in particular, a phonon of a 171Yb+ ion

trapped in a harmonic potential. We realize the operations by coupling phonons to

an auxiliary two-level system, so called, the hybrid scheme of discrete and continuous

variable [62] and applying a transitionless quantum driving scheme. We perform the

operations on superpositions of Fock states and coherent states and we demonstrate

that our single-phonon operations are (near) deterministic and preserve coherence. By

applying a sequence of operations deterministically, we show that classical states are

turned into nonclassical ones manifesting highly sub-Poissonian statistics and negativity
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in the Wigner function.

4.2 Rapid Adiabatic Transition Process

We implement the Ŝ+ and Ŝ− operations of (4-2) on a vibrational mode of frequency

ωX for a single trapped 171Yb+ ion in a three-dimensional harmonic potential [63] through

its interaction with the two-level system of atomic energy levels. The harmonic potential is

generated by an oscillating electric field in the radial axis with trap frequencyωX = (2π)2.8
MHz. The two-level system is represented by two hyperfine states |F = 1,mF = 0⟩ ≡ |↑⟩
and |F = 0,mF = 0⟩ ≡ |↓⟩ of the S1/2 manifold with the transition frequency ωHF =

(2π)12.6428 GHz. As shown in Figure 4.1(a), the anti-Jaynes-Cummings (aJC) interaction

or blue-sideband transition, HaJC =
ηΩ

2 â†σ̂+ei∆t +h.c., is realized by the stimulated Raman

laser beams with beat-note frequency (ωR1 −ωR2) = (ωHF +ωX) + ∆. Here, Ω is the Rabi

frequency of the two-level system, η = ∆k
√
ℏ/2MωX the Lamb-Dicke parameter, ∆k

the net wave-vector of the Raman laser beams and M the mass of 171Yb+ ion. The

aJC coupling produces the transition between |↓, n⟩ and |↑, n + 1⟩ with the oscillation

frequency of
√

n + 1ηΩ, where the
√

n + 1 factor comes from the fundamental property of

â† and â operators in (4-1). Therefore, the application of the simple aJC interaction does

not transfer |↓, n⟩ to |↑, n + 1⟩ in an n-independent manner at a fixed duration of time.

The full population transfer independent of the initial motion state, the uniform

blue-sideband transition,
∑

n=0 |↑, n + 1⟩ ⟨↓, n| + h.c., can be obtained by the application

of the stimulated Raman adiabatic passage [65–67]. The adiabatic scheme provides a robust

transfer against the variations in the transition rate either from the intensity change of the

control Raman beams or from the property of the transitions [66]. Therefore, a properly

designed adiabatic passage would allow a decent state transfer for a wide range of phonon

number states through the aJC interaction, despite the
√

n + 1ηΩ dependence, as shown in

Figure 4.2(a)(c). In the adiabatic passage, typically ηΩ slowly increases at the beginning

and decreases at the end, i.e,Ω(t) = Ω0 sin(πt/T), while the detuning∆ changes according

to ∆(t) = ∆0 cos(πt/T), where T is the total transfer time, across the resonance. For the

applicability of the scheme to a wide range range of initial phonon numbers with high

fidelity, however, we should set ∆0 as high as
√

nM + 1ηΩ0/2, where nM is the largest

phonon number for the transfer and should fulfill the adiabatic condition, T ≫ 1/ηΩ0. In

our experimental conditions, the reasonable duration T for such the adiabatic transfer is

around 21 times of π-pulse duration for the blue-sideband transition of the ground state,
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图 4.1 Experimental scheme and parameter control. (a) 171Yb+ system in a harmonic potential.
The qubit level in S1/2 manifold, |F = 0,mF = 0⟩ ≡ |↓⟩ and |F = 1,mF = 0⟩ ≡ |↑⟩ are coupled
by the Raman laser beams, where the beat-note frequency is near resonant to the qubit levels,
ωHF. When the beat-note frequency is tuned to ∼ ωHF+ωX, the scheme produces the anti-Jaynes-
Cummings interaction or blue-sideband transition. We denote Ω as the Rabi-frequency on the
qubit transition and the ∆ is the frequency difference between the beat-note frequency of Raman
beams and ωHF + ωX. The Raman beams are realized by pico-second pulse train similar to the
scheme in Ref. [64]. (b) For the adiabatic blue-sideband transition whose frequency is independent
of motional quantum number n,Ω and ∆ are controlled as the red and blue curves. The phase iβ in
Ω is the counter-diabatic term to suppress the transition during the evolution. HereΩ0 = (2π)38.5
kHz, β = 0.075, and ∆0 = 1.6Ω0.

π/ηΩ0, when we include up to the maximum phonon number nM = 6.

Recently, the transitionless quantum driving scheme [68–71] has been developed to

speed up the adiabatic control. When the transfer is non-adiabatic, it introduces an

additional term in the Hamiltonian of the instantaneous basis, which is −iβ ηΩ(t)
2 â†σ̂+ei∆t +

h.c., where β is in the order of π/ηΩ0/2T , the ratio between the π-pulse duration and the

total operation time. By adding a counter-diabatic term in the control, we can suppress the

non-adiabatic excitation with a reasonable speed up over the adiabatic passage. For the aJC

interaction, the optimal values of ∆0 and β are dependent on the phonon number n for the

given Ω0. In our experiment, we optimize ∆0 and β for the case of the geometric average

of the minimum and maximum phonon number, nO =
√

1 × (nM + 1). By doing this, we

are able to reduce the total duration of the operation from 21 to 7 times π/ηΩ0 without

sacrificing the fidelity of the rapid adiabatic passage for the same range of phonons nM = 6.

Figures 4.2(b)(d) show the experimental results and difference of the aJC interaction and

the rapid adiabatic passage. Figure 4.3 shows the traces of the rapid adiabatic passage for

different phonon number n on a bloch sphere.
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图 4.2 Experimental scheme and dynamic and adiabatic transition by anti-Jaynes-Cummings
(blue-sideband) interaction. (a) The diagram for the standard blue-sideband transition. The
Hilbert space is composed of the qubit states, |↑⟩and |↓⟩, and phonon states of n excitations, |n⟩.
The transition rate of the blue-sideband interaction between | ↑, n⟩ and | ↓, n−1⟩ depends on n; the
higher the n value, the more frequent the transition is. The transitions between |↓, n⟩ and |↑, n + 1⟩
would experience evolutions

√
n + 1 times faster than the transition between |↓, 0⟩ to |↑, 1⟩. (b)

Probability of finding the ion in | ↑, n⟩ state as a function of time. We see that the transition
frequency clearly manifests

√
n + 1-dependence. The arrow at the first peak of each oscillation

indicates the duration of a π-pulse for the corresponding transition. The π-pulse duration, Tπ ,
of the fundamental blue-sideband transition (red) is 13 µs. The dots represent experimental data
and solid lines are from the fitting to sin2

(√
n+1π
2Tπ t

)
. (c) The conceptual diagram for the adiabatic

blue-sideband transition without the
√

n + 1-dependence. (d) The experimental demonstration of
the adiabatic blue-sideband transitions realized by the transitionless quantum driving. The total
time to execute the transitions is 91µs for any |n⟩, which is about 7 times Tπ .
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图 4.3 The rapid adiabatic passage traces for phonon number n = 0 to 5 respectively on a bloch
sphere.
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In order to rigorously achieve the uniform blue-sideband operation
∑ |↑, n + 1⟩ ⟨↓, n|+

h.c., it is important not only to increase the phonon number but also to preserve the relative

phases between component states of the quantum state. For our previous realization [63],

the different extra phases were accumulated depending on the phonon number of the initial

state which prevented from keeping the initial phase coherences. In our work, we have

developed a sequence of operations compensating the phonon-number dependent phases

based on the spin-echo principle. As shown in Figure 4.1(b), we invert the sign of Ω and

reverse the control of ∆ in the middle of the sequence of the operation, which symmetrizes

the whole operation and produces the accumulated phases of opposite signs before and

after the inversion and reverse. Therefore, the total phases are canceled out at the end of

the operation.

The AC Stark shift in the adiabatic operations mainly come from the off-resonant

coupling to the carrier transition, the transition between S1/2 ↔ P1/2 states of 171Yb+ ion,

and the other radial motional mode (ωY ≈ ωX + (2π)0.4 MHz). The dominant AC

stark shift comes from the carrier transition of frequency Ω2
0

2ωXη2 ∼ (2π)33 kHz with

Ω0 = (2π)38.5 kHz and the Lamb-Dicke parameter η = 0.089. The amount of the shift

brought by the Y mode is given by Ω2
0Y

2(ωY−ωX) that is about 20 times smaller than that from

the carrier coupling. The AC stark shift between qubit states from the Raman laser beams

due to S1/2 ↔ P1/2 transition is g2
R1+g

2
R2

2∆R
ωHF
∆R

∼ (2π)1 kHz, where gR1 and gR2 are the

coupling strengths of Raman 1 and Raman 2 beams, respectively and the ∆R = (2π) 18

THz is the detuning from the level of 2P1/2.

We consider total AC stark shift as the form of |Ω(t) |2
2∆total

, where ∆total is the detuning

effectively including all the possible origin of AC stark shifts discussed above. We

obtain ωorg
bsb and ∆total by fitting the several points of {ωact

bsb, Ωbsb} with the equation ωact
bsb =

ω
org
bsb +

Ω2
bsb

2∆total
. The actual frequency of blue-sideband ωact

bsb is measured by observing the

resonant excitation. Including the AC stark shift, the actual waveform of Ω(t) that we

apply on our arbitrary waveform generator is as follows.

Ω(t) = Ω0 [sin(πt/T) cos (ϕ(t)) − β sin (ϕ(t))] ,

ϕ(t) =
ˆ t

0

{
ωact

bsb(t ′) + ∆(t ′)
}

dt ′. (4-3)

Here ∆(t ′) = ∆0 cos(πt/T) and we note that the imaginary part in original form of

Ω(t) = Ω0 [sin(πt/T) + iβ] is changed to sin-wave which has the π
2 phase difference.
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Here, ϕ(t) is calculated as follows,

ϕ(t) =
ˆ t

0

{
ωact

bsb + ∆(t ′)
}

dt ′ =
ˆ t

0

{
ω

org
bsb +

|Ω(t)|2

2∆total
+ ∆0 cos(πt/T)

}
dt ′ (4-4)

= ω
org
bsbt +

Ω2
0

2∆total

ˆ t

0

{
sin2(πt/T) + β2} dt ′ + ∆0

T
π

sin(πt/T) (4-5)

= ω
org
bsbt +

Ω2
0

4∆total

[
(1 + 2β2)t + T

2π
sin(2πt/T)

]
+ ∆0

T
π

sin(πt/T). (4-6)

4.3 Experimental setup

The laser source of the Raman transition is a Coherent Mira 900 mode-locked

Titanium:Sapphire (Ti:S) laser (Figure 4.4) which provides switching between continuous

wave (CW), femtosecond and picosecond operations. It is pumped by a Verdi 532 nm

green laser and has quite a wide frequency range. This Titanium:Sapphire laser provides

2.2 W at 756 nm, we lock the frequency-doubled laser at 378 nm with 200 mW to start

optical path to the trap. As the laser’s repetition rate is 76.2 MHz, a band pass filter

chooses the frequency between 166th and 167th which is closest to ωHF .

The 756 nm red laser is used for frequency stabilization. Its frequency that acquired

from Photo Diode is mixed with frequency of ωHF/2, then the frequency is doubled

after first passing through a low-pass filter to filter out high frequency component from

the output of the mixer. The doubled frequency is mixed with the frequency of Raman1

(213 MHz) then feedback again to RF source which provide frequency modulation(FM).

Finally, the stabilized frequency is applied to the Acousto-Optic Modulator (AOM1 in

Figure 4.5) where the laser source divides into two beams. The frequency generated by

either another RF source or an Arbitrary Waveform Generator(AWG) board of Raman2 is

applied by AOM2 and its first order needs to pass the same distance as Raman1 beam to

excite Raman transition. This procedure is accurately controlled by an one-dimensional

translation stage covered with two mirrors on the path of Raman1. The signals of RF

source and AWG are combined together then output to AOM2 which provide the choice

of using either RF source or AWG. For most cases, RF source is first used to process

sideband cooling to cool the ion to the ground state, then we use AWG for subsequent

operations. The zeroth order of AOM2 is used for stabilizing the intensity which feedback

to AOM0.
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图 4.4 Coherent Mira 900 laser and beam path.
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图 4.5 Setup of the Raman beams. The schematics of the Raman set up optics with Coherent
Mira 900. Raman1 and Raman2 are separated by AOM1, they are the first order of AOM1
and AOM2, respectively. Intensity stabilization is applied using the zeroth order of AOM2 then
feedback to AOM0. The output of frequency stabilization system feedback to AOM1. The 756 nm
laser shown in red is used to monitor the repetition rate and stabilize the frequency. The spherical
lenses are shown in blue and the vertical cylindrical lens is in white.

The laser is first focused at AOM1 position with a 400mm lens (L1), L2 and L3 with

the same focal length collimate Raman1 and Raman2 respectively. A vertical cylindrical

lens V1 converges the height. L4(f=75 mm) and L5(f=300 mm) makes the beam size of

Raman2 bigger. By adding these two lenses, the distance of the image of AOM2 to the

image of AOM1 in the trap is lowered to 0.2 mm which is close enough to keep both the

strength of the transition and convergency of the laser alignment with various frequencies.

4.4 Reconstruction of density matrix and wigner function measurement

We use an iterative algorithm proposed in Ref. [72] for the reconstruction of an un-

known state. It consists of a maximum-likelihood estimation solved by expectation-

maximization algorithm followed by a unitary transformation of the eigenbasis of the

density matrix ρ. The density matrix is reconstructed by using the iterative maximum-

likelihood algorithm [72] on the phonon number distributions for eight different angles as

shown in Figure 4.6. The relation of displacement amount and duration in our experiment
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is depicted in Figure 4.7, the direction of displacement is achieved by controling the

phase. We refer to this comparison for deciding displacement duration both for recon-

structing density matrix and preparing initial coherent states for addition, subtraction and

commutation relation tests.

图 4.6 Eight measurements for density matrix reconstruction of coherent states |α = 0.8⟩.
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图 4.7 Relation on coherent |α⟩ amount and displacement duration.

Based on the measured phonon distribution fn of N measurements by different

displacement, we aim to get real probabilities pn = ⟨n| ρ |n⟩ that are as close to the

observed frequencies fn as possible, which can be subject to the maximum-likelihood

functional

ln L (ρ) = ln
∏
n

⟨n| ρ |n⟩ fn = −
∑
n

fn ln pn, (4-7)

from which we reconstruct ρ. This likelihood functional can be interpreted as a linear and

positive (LP) problem in the classical signal processing:

pn =
∑
i

rihin, (4-8)

where ri are eigenvalues of ρ and hin is a positive kernel. We can solve this LP problem

with the expectation-maximization algorithm [73,74]:

r (k)i = r (k−1)
i

∑
n

hin fn
pn

(
r(k−1)) , (4-9)

which is initially set to a positive vector r (ri > 0 ∀i).
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The second part aims at getting the eigenbasis diagonalizing the density matrix. This

part consists of two steps: reconstruction of the eigenvectors of ρ in a fixed basis, and

rotation of the basis using a unitary transformation

|ϕ′

n⟩ ⟨ϕ
′

n | = U |ϕn⟩ ⟨ϕn |U† (4-10)

with the infinitesimal form U ≡ eiϵG ≈ 1 + iϵG and ϵ is a small positive real number.

G = i [ρ, R] is chosen as a Hermitian generator of the unitary transformation, where R is

a semipositive definite Hermitian operator R =
∑

n
fn
pn

|n⟩ ⟨n|.
Starting from some positive initial density matrix ρ, we continue repetition of first

finding new eigenvalues ri using the expectation-maximization iterative algorithm (4-9)

and then finding new eigenvectors ϕi by unitarily transforming the old ones. The likelihood

of the estimate pn is increased and we finally reach to determine the density matrix

ρ =
∑
n

rn |ϕn⟩ ⟨ϕn | . (4-11)

4.5 Conventional phase-coherent addition operation

We implement the addition operation Ŝ+ in (4-2) by first applying the uniform

blue-sideband transfer
∑

n=0 |↑, n + 1⟩ ⟨↓, n| + h.c. and then π-pulse of carrier transition∑
n=0 |↓, n⟩ ⟨↑, n| +h.c. as shown in Figure 4.8(a). Our addition scheme deterministically

adds one phonon independent of the initial phonon number state. We observe that

quantum coherence is preserved in the addition operations. We prepare an initial state
1√
2
(|n = 0⟩ + |n = 1⟩), apply the additions up to three times and measure the density matrix

of the resulting phonon states. As shown in Figure 4.8(b), the coherences represented

by the off-diagonal terms of the density matrix clearly remain after the multiple addition

processes up to three times. The reconstructed density matrices, only the real part of

them, indicate the fidelity 0.99 (< 0.01) of the initially prepared state and those of the

final states 0.96(0.01), 0.92(0.01) and 0.87(0.01) after one, two and three times addition,

respectively. The purities of the output states are 0.92(0.01), 0.81(0.03), and 0.71(0.06),

respectively. The numbers in the parentheses represent the sizes of error estimated by the

maximal-likelihood methods.

As a second example, we prepare an initial coherent state |α = 0.81⟩ by displacing

the vacuum, and apply the addition operations. Results are shown in Figures 4.8(c)
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and (d), the density matrix is reconstructed by using the iterative maximum-likelihood

algorithm as described in section 4.4. The phonon number distributions are obtained

by observing the time evolutions of the standard blue-sideband transitions, similar to

the direct reconstruction scheme of the phonon density matrix [75]. Figure 4.9 shows

the experimental obtained phonon distribution of initial coherent state |α = 0.81⟩. One

immediate consequence of the addition operations on the coherent state is the production

of sub-Poissonian phonon statistics because the addition increases the average phonon

number but not the shape of the distribution and variance. We observe that our addition

operations shift up the populations on phonon numbers while keeping the variance the

same, making the variance over average phonon number ⟨n⟩ /σ2, which is initially set to 1,

reduce to 0.43, 0.39, 0.26 as the average phonon number is increased by one, two, and three

(Figure 4.8(c)). Applying the first addition operation, we detect negativity in the Wigner

function as shown in the second column of Figure 4.8(d). It is important to note that

the addition operation, which converts a coherent state to a highly non-Gaussian state, is

nearly deterministic unlike the case of â† operation [57–59]. There is a limit in the number of

additions we can apply, due to the validity of the adiabatic approximation and the heating

process of phonons [76]. Under this limitation, we could perform the operations three times

without the significant loss of fidelity. As shown in Figure 4.8(d), the experimental results

and the theoretical predictions for the Wigner functions are in excellent agreement. The

upper figures are theoretical and the lower figures are experimental. Observed negative

values in the Wigner function proves the production of non-Gaussian state. The fidelities

are reduced from 0.97(0.01) for the initial state to 0.87(0.01) (one single-phonon addition),

0.84(0.01)(two additions), 0.85(0.02) (three additions) and purities are changed from 0.99

to 0.93(0.02), 0.93(0.02), 0.80(0.03). This is significant in comparison to the photonic

realization of bosonic operations of single photon creation and annihilation [59]. Here we

obtain the Wigner function of the state from the reconstructed density matrix.
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图 4.8 Schematic diagram and experimental results for the phonon addition. (a) Implementation
of addition Ŝ+ is composed of a π-pulse of uniform blue-sideband transition

∑ |↑, n + 1⟩ ⟨↓, n|+h.c.,
followed by a π-pulse of carrier transition

∑ |↓, n⟩ ⟨↑, n| + h.c.. (b) Additions on a superposition
state |ψi⟩ = (|n = 0⟩+ |n = 1⟩)/

√
2 clearly shows the capability of keeping coherence. (c) Phonon

distributions after the addition on a coherent state |ψi⟩ = |α = 0.81⟩. (d) Wigner functions of the
coherent state |ψi⟩ = |α = 0.81⟩ after performing the addition operation n-times (n = 0 to 3).
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图 4.9 Phonon distribution of initial coherent state |α = 0.81⟩.

4.6 Conventional subtraction operation

The subtraction operation Ŝ− in (4-2) is realized by reversing the sequence of the ad-

dition operation, that is, the application of the π-pulse of carrier transition and the uniform

blue-sideband transfer
∑

n=1 |↓, n − 1⟩ ⟨↑, n|+h.c., followed by the fluorescent detection as

shown in Figure 4.10(a). This takes the phonon state from |↓, n + 1⟩ to |↓, n⟩ except |n = 0⟩
where |↓, 0⟩ transfers to |↑, 0⟩. The |↑, 0⟩ state is eliminated after the subtraction, which is

implemented by the conditional measurement in our experimental scheme. After the de-

tection sequence, we only collect the data with no fluorescence, which has the success rate

given by the probability of the non-zero phonon states. We examine the performance of

the subtraction operation with an initial phonon superposition state 1√
2
(|n = 2⟩ + |n = 3⟩).

As shown in Figure 4.10(b), the subtraction operation reduces the phonon excitation by

one quanta. The initial fidelity and purity of the state are 0.83(0.02) and 0.73(0.03). The

fidelities are changed to 0.77(0.02) and 0.83(0.01) after one and two times subtraction,

respectively. The purities become 0.65(0.02) and 0.75(0.02). In the preparation and

displacement operations for the superposition states with fluorescent detection, the zero

components are increased due to unexpected experimental imperfections, which acciden-

tally increase the fidelity and purity for the state 1√
2
(|0⟩+ |1⟩). After the second application

of the subtraction, the off-diagonal terms of the density matrix are significantly reduced,
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which shows the current limit in experiments due to the heating of the system. We also

prepare a coherence state |α = 1.2⟩ and apply the subtraction twice. Figure 4.11 shows

the experimental obtained phonon distribution of initial coherent state |α = 1.2⟩. Figure

4.10(c) shows that qualitatively the subtraction works for any initial quantum state. The

initial fidelity of the state is 0.96(0.01) and the fidelities are reduced to 0.92(0.01) and

0.66(0.01) after one and two times subtraction, respectively. The subtraction operation

can squeeze a coherent state which is different from annihilation that has the coherence

state as its eigenstate. However, our experimental precision is not high enough to observe

the squeezing effect.
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图 4.10 Schematic diagram and experimental results of phonon subtraction. (a) Sequence of
subtraction operations: the sequence of the operations for addition is reversed, i.e., a π-pulse of
carrier transition followed by a π-pulse of adiabatic blue-sideband transition. (b) Subtraction on
a superposition state |ψi⟩ = (|n = 2⟩ + |n = 3⟩)/

√
2. The population is reduced and the coherence

is conserved. (c) Subtraction from an initial coherent state |α = 1.2⟩.
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图 4.11 Phonon distribution of initial coherent state |α = 1.2⟩.

4.7 Commutation relation of addition and subtraction operations

We study experimentally how the quantum states are changed depending on the order

of the addition and subtraction for an initial coherent state |ψi⟩ = |α = 1.2⟩. If we add

then subtract Ŝ−Ŝ+ |ψi⟩, the state after the sequence is the same as the original one, since

there is no amplitude modification. For the case of subtraction-then-addition Ŝ+Ŝ− |ψi⟩,
the final state does not have vacuum component because the vacuum state is removed at

the first subtraction. Figure 4.12(b) shows the experimental result of Ŝ−Ŝ+ |ψi⟩, which is

basically identical to the initial state of Figure 4.12(a). Figure 4.12(c) shows the result

after the operation of Ŝ+Ŝ− |ψi⟩, where there is no significant vacuum component in the

density matrix. The vacuum component is not perfectly removed because of the detection

error during the projective measurement based on the atomic fluorescence and heating of

the system. The fluorescent detection duration is comparable to the motional coherence

time of our system, which makes the off-diagonal part of the final state suppressed

significantly. Our experimental result is well in line with the non commuting relation of

the Susskind-Glogower’s phase operators, i.e., [Ŝ−, Ŝ+] = |0⟩ ⟨0| [53].
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图 4.12 Experimental results after addition-then-subtraction and subtraction-then-addition, re-
spectively. Only the real part of experimentally measured density matrices is shown (a) for an
initial coherent state |ψi⟩ = |α = 1.2⟩, (b) single-phonon added-then-subtracted Ŝ−Ŝ+ |ψi⟩ state
and (c) single-phonon subtracted-then-added Ŝ+Ŝ− |ψi⟩ state. (b) The state after addition-then-
subtraction is basically identical to the original state. The fidelity of the Ŝ−Ŝ+ |ψi⟩ state to the
original state |ψi⟩ is 0.97(0.01) and the purity is 0.96(0.01). (c) The state after subtraction-then-
addition is not same as the original state, because the vacuum component is thrown away during
the projective measurement. The small population in zero component mainly comes from the
imperfection of the fluorescence detection and heating of the system, which is in good agreement
with numerical simulation.

4.8 Extention on compatibility measurement for randomness certifacation

As further improvement of the randomness expansion experiment which I will talk

in next chapter, though we have already practically closed compatilibity loophole by mod-

ifying KCBS inequality, we look forward to achieve perfect compatibility measurement

by entangling 171Yb+ ion and 138Ba+ ion. In order to implement the most well known

Mølmer-Sørenson gate, we will need to apply the Raman laser beams for 171Yb+ ion and

for 138Ba+ ion to create entanglement with motional modes. Phonon arithmetics experi-

ment of this chapter has already paved the way. By further setup of Raman laser system

for 138Ba+ ion, this extention could be straightforward for experimental implementation.
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第 5章 Randomness expansion secured by quantum
contextuality with a trapped 138Ba+ ion

In my work, first, we experimentally demonstrate the violation of a modified KCBS

inequality [77,78], which reveals quantum correlations without the requirement of the perfect

compatibility on sequential measurements. Then we employ it for a spot-checking pro-

tocol of randomness expansion with exponential gain [14], which is the first experimental

demonstration of the strict randomness expansion. Our scheme is not a fully device-

independent protocol, since it requires a few assumptions on the device, in particular, the

assumption of approximate compatibilities on the measurement settings [6,79]. However,

we do not need the perfect compatibility, since the imperfections in control and the distur-

bances from classical and quantum noisy-environment are characterized and compensated

in the modified KCBS inequality. In this scenario, we can expand the randomness from

the generated strings merely based on the experimental observed data that violate the

modified KCBS inequality , which is in a self-testing manner [6,79]. We implement the

protocol with a single trapped 138Ba+ ion instead of a 171Yb+ ion which was used for the

previous demonstration [28] in order to fully address the experimental requirements in a

modified KCBS inequality [77,78]. The 138Ba+ ion has long-lived states that can be used

for the coherent shelving of a quantum state during the sequential measurements. We

develop a narrow-line laser system that is stabilized to a high-finesse cavity to precisely

manipulate the long-lived states and observe sufficient amount of violation for the ran-

domness expansion with large enough number of trials. We perform 1.29 × 108 trials of

experiments and extract the randomness of 5.28 × 105 bits with the speed of 270 bits s−1.

5.1 Modified KCBS inequality

In order to test contextuality, various inequalities have been proposed [26,80] and

demonstrated in diverse physical systems, including trapped ion system [31,81,82], photonic

system [33,34], and superconducting system [83]. Among the contextuality inequalities, the

KCBS inequality, which uses five observables Ai taken ±1, shows that there is no hidden

variables models in the smallest dimension d = 3 [26],

⟨A1 A2⟩ + ⟨A3 A2⟩ + ⟨A3 A4⟩ + ⟨A5 A4⟩ + ⟨A5 A1⟩ ≥ −3. (5-1)
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图 5.1 KCBS pentagram and experimental procedure. (a) Initial state and five axes which form
a pentagram in d=3 space. The five observables A1, A2, . . . , A5 are the projectors on the axes
respectively. The connected axes |vi⟩ and |vi+1⟩ are orthogonal, representing compatibility of
the corresponding observables Ai and Ai+1. (b) Initially, we prepare |3⟩ state, then perform two
sequential measurements of Ai and Aj . Each sequential measurement contains a unitary rotation
Ui, projective measurement, and an inverse unitary rotation U†

i . Each unitary rotation Ui is
comprised of first R2 (θ2i, ϕ2i) then R1 (θ1i, ϕ1i). In projective measurement, we assign ai = 1(−1)
if flourescence is (not) detected.
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If all the five observables are predetermined, the inequality of (5-1) always holds. In

quantum mechanics, on the other hand, the inequality can be violated for a specific state

with properly arranged observables Ai. In the case of d = 3, denote the basis states by |1⟩,
|2⟩ and |3⟩. Design the observable Ai = 1 − 2 |vi⟩ ⟨vi | to be the projector along the axis

of |vi⟩. The maximal violation of the inequality (5-1) is achieved when five state vectors,

{|vi⟩}, form a regular pentagram, and the initial state vector passes through the center of

the pentagram, as shown in Figure 5.1. In this case, the sum of all the terms in (5-1)

achieves 5 − 4
√

5 ≈ −3.944. The assumption behind the above contextuality inequality

is that the observables Ai and Ai+1 (let A6 ≡ A1) are compatible. However, in an actual

experiment using sequential measurements, the compatibility is difficult to verify, which

leads to open the compatibility loophole. The issues of the compatibility in sequential

measurements have been addressed by modifying the KCBS inequality [77,78].

In practice, the observables
⟨
AiAj

⟩
have to be implemented in a sequential measure-

ment. We denote the observalble Ai with superscript m, Am
i as the measurement of Ai at

the position m in the sequence. For example, A1
i A2

j denotes the sequence of measuring Ai

first, then Aj .

Noncontexual HV model requires that the outcomes of any observable Ai does not

depend on other compatible jointly measured observables with Ai. To be more specific,

we take A1 as an example. It is compatible with A2 and A5. We denote the obtained value

as v, then have v(A1
1) = v(A2

1 |A1
2 A2

1) and v(A1
1) = v(A2

1 |A1
5 A2

1).
The assumption behind the above contextuality inequality is that the observables Ai

and Ai+1 (let A6 ≡ A1) are compatible. However, in an actual experiment using sequential

measurements, the compatibility is not perfect which leads to the compatibility loophole.

In [77], this imperfection can be quantified by

p f lip[A1 A2] = p[(A1
2(+)|A1

2) and (A2
2(−)|A1

1 A2
2)] + p[(A1

2(−)|A1
2) and (A2

2(+)|A1
1 A2

2)].
(5-2)

Here +,− denote the obtained value and this probability can be understood as the A1 flips

the predetermined value of A2. Then using the fact ⟨A1 A2⟩ ≤
⟨
A1

1 A2
2

⟩
+ 2p f lip[A1 A2], the

inequality can be modified as

⟨
A1

1 A2
2
⟩
+

⟨
A1

3 A2
2
⟩
+

⟨
A1

3 A2
4
⟩
+

⟨
A1

5 A2
4
⟩
+

⟨
A1

5 A2
1
⟩
≥

− 3 − 2(p f lip[A1 A2] + p f lip[A3 A2] + p f lip[A3 A4] + p f lip[A5 A4] + p f lip[A5 A1]).
(5-3)
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Note that this inequality holds for any HV models. In the experiment, p f lip is not

achieveable and different approaches are proposed to estimated with different assumptions.

Here we use ϵi j to quantify the difference between a same pair of obervables Ai and Aj in

different time order, AiAj and Aj Ai, which can be regarded as the bound of incompatibility

of these sequential measurements,

��⟨Aj |Aj Ai

⟩
−

⟨
Aj |AiAj

⟩�� ≤ ϵi j . (5-4)

For experimentally accessible distributions,

|p(Ai = a|AiAi+1) − p(Ai = a|Ai+1 Ai)| ≤ ϵi j/2, (5-5)

where a ∈ {+,−}. We assume that the underlaying probability distributions have the same

properties as all accessible distributions. Then p f lip[A1 A2] can be bounded by ϵ12/2 which

is obtained in the experiments, p f lip[A1 A2] ≤ ϵ12/2. However, the probability distributions

of a general HV model may not belong to the set of experimentally accessible probability

distributions. We assume that this difference is negligible and that the properties verified

in accessible experiments hold also for some of HV models.

We combine the two modifications of the KCBS inequality to relax the condition of

the perfect compatibility, which introduce additional terms of ϵ’s [77] and ⟨A1 A1⟩ [78],

⟨χKCBS⟩ = ⟨A1 A2⟩ + ⟨A3 A2⟩ + ⟨A3 A4⟩ + ⟨A5 A4⟩ + ⟨A5 A1⟩ − ⟨A1 A1⟩

≥ −4 − (ϵ12 + ϵ32 + ϵ34 + ϵ54 + ϵ51 + ϵ11).
(5-6)

Here, ⟨AiAj⟩ denotes the expectation value of the measurement results in the time

order of AiAj for the sequential measurements. For simplicity, we omit the time order

superscript and ⟨AiAj⟩ denotes the expectation value of the measurement results in the

time order of AiAj for the sequential measurements. The term of ⟨A1 A1⟩ is later introduced

to address different types of incompatibility, which cannot be excluded with the terms

of ϵi j [78]. In our work, we include both of the modifications that address all types of

incompatibility discussed in the Refs [77,78].

The above modifications of the inequality can be understood from the point of view

of the game, which is played by two players Alice and Bob who receive random inputs for

measurement settings without knowing the other’s, similar to the Bell-inequality nonlocal
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game [8,10,11]. The score of each trial is calculated according to the inputs and outputs. Each

nonlocal game can be transformed into a contextuality game because no-communication

local measurements is a stronger assumption and satisfy the compatible assumption. But

on the contrary, not every contextuality game can be transformed into a nonlocal game.

The inequality with only terms of ϵi j is not a Bell inequality because it can also be violated

by a simple classical strategy, two players output always opposite results. Thus it is critical

to have the term of − ⟨A1 A1⟩. In the following, it can be proved that the modified KCBS

inequality even without ϵi j terms is a Bell inequality which cannot be violated by all

classical local hidden means. Inspired by a modified KCBS inequality, we propose a

new Bell inequality, we assume that the measurements in different time order can not

communicate with each other. With local hidden variable, the l.h.s of the inequality is no

less than -4.

⟨A1 A2⟩ + ⟨A3 A2⟩ + ⟨A3 A4⟩ + ⟨A5 A4⟩ + ⟨A5 A1⟩ − ⟨A1 A1⟩ ≥ −4. (5-7)

证明

⟨A1 A2⟩ + ⟨A3 A2⟩ + ⟨A3 A4⟩ + ⟨A5 A4⟩ + ⟨A5 A1⟩ − ⟨A1 A1⟩

= ⟨A1 A2⟩ + ⟨A3 A2⟩ + ⟨A3 A4⟩ − ⟨A1 A4⟩ + ⟨A5 A4⟩ + ⟨A1 A4⟩ + ⟨A5 A1⟩ − ⟨A1 A1⟩

≥ ⟨A1(A2 − A4)⟩ + ⟨A3(A2 + A4)⟩ − 2

(5-8)

The inequality holds because with local hidden variable, ⟨A5 A4⟩ + ⟨A1 A4⟩ + ⟨A5 A1⟩ −
⟨A1 A1⟩ ≥ −2, which is a CHSH inequality. Ai ∈ {±1}, either A2 + A4 = 0 or A2 − A4 = 0

will hold, thus ⟨A1(A2 − A4)⟩+ ⟨A3(A2 + A4)⟩ ≥ −2. The l.h.s is no less than -4 with local

hidden variable. □

From the view of nonlocal game, it is critical to have the term − ⟨A1 A1⟩ in Eq. (5-6).

5.2 Randomness expansion protocol and security proof in practical case

The violation of the KCBS inequality implies the existence of quantum randomness

which cannot be imitated by classical variables, which is not only fundamentally interest-

ing but also posses the values for practical applications. The noncontextuality inequalities

provide an alternative way of generating secure randomness. Similar to Bell inequality,

in each trial, certain bits of randomness are consumed. Thus in order to efficiently expand
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the randomness from small input randomness, the idea of spot checking is necessary in

our scheme. Recently, a robust (error-tolerant) randomness expansion scheme has been

proposed [14], which is a spot-checking protocol that achieves exponential expansion. The

protocol is shown in as follows with our experimental settings.

Denotation
• G : KCBS game with 11 random inputs {{1, 2}, {2, 1}, {2, 3}, {3, 2}, {3, 4},
{4, 3}, {4, 5}, {5, 4}, {5, 1}, {1, 5}, {1, 1}} for the game rounds, and the input

{1, 2} is also for the generation rounds

• D: a quantum device compatible with G

• Output length N: Nexp = 1.29 × 108 in experiment

• Test probability q ∈ (0, 1): qexp = 10−4 in experiment

• Score threshold χg ∈ (0, 1): χg = 2/3 in this KCBS game

Protocol Rgen

1. Choose a bit t ∈ {0, 1} according to the Binomial distribution (1 − q, q).

2. If t = 1 (“game round"), the game G is played with D and the output is

recorded. Outputs of game rounds are additionally collected for checking.

3. If t = 0 (“generation round"), {1, 2} is given to D and the output is recorded.

4. Steps 1-3 are repeated N times.

5. Calculate the score gKCBS from all game round outputs. If gKCBS < χg, then

abort. Otherwise, move to to randomness extraction.

图 5.2 The main spot-checking protocol and related denotation.

According to the definition of Ref. [14], the score of the KCBS game is given by

g ∈ {0, 1}. Thus, Eq. (5-6) can be rewritten in the form KCBS game G,

gKCBS = −1
6
(⟨A1 A2⟩ + ⟨A3 A2⟩ + ⟨A3 A4⟩ + ⟨A5 A4⟩ + ⟨A5 A1⟩ − ⟨A1 A1⟩

+ϵ12 + ϵ32 + ϵ34 + ϵ54 + ϵ51 + ϵ11).
(5-9)

The classical winning probability is χg = 2/3 (see Prop. 5.1 for details) and the achievable

maximal quantum winning probability is χ′
g = (4

√
5 − 4)/6 ≈ 0.824. The gap between

χg and χ′
g enables randomness expansion.

In our scheme, the amount of randomness quantified by the min-entropy is related
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to the violation of the KCBS inequality. For a given game, if the device obtains a super-

classical average score, then it must exhibit certain quantumness, which implies random

behavior. This quantum randomness produced by the devices could be extracted. The

violation is only based on the observation of experimental data, and can be independent of

the sources of prepared states and other device specifications. Therefore, our protocol is

self-testing provided that the following assumptions. In our scheme, there are three under-

lying main assumptions: (1) the input is chosen from an independent random distribution

uncorrelated with the system; (2) the measurement outcomes cannot be leaked directly

to adversaries; (3) The first and the second measurements in a context are approximately

compatible and can be characterized by ϵi j and ⟨A1 A1⟩ in (5-6). The assumptions (1)

and (2) are widely used in other self-testing tasks, such as device-independent quantum

random number generators [11,14,16]. The assumption (3) is related to the validity of the

quantum contextuality test, which would be similar to all the other experimental tests

with sequential measurements. We note that we do not require the perfect compatibility.

Instead, we assume approximate compatibility, which can be quantified by the terms of

ϵi j and ⟨A1 A1⟩ in (5-6). Due to those terms, the violation of the inequality of (5-6) is

getting difficult if two sequential measurements are deviated from the perfect compatibil-

ity. However, in our scheme, two measurements in a context are performed on a single

system, which makes it impossible to exclude the possibility that a malicious manufacturer

sabotage the compatibility assumption by registering the setting and results of the first

measurements and using them for the second measurements. Therefore, our protocol can

not be viewed as a fully-device independent scenario. We need the trust of the device

that the measurement settings are close enough to be compatible, but it is fine to have

imperfections in the realization and disturbance from classical or quantum noisy environ-

ments since the amount of introduced incompatibilities are quantified. Our protocol is

well fitted to a scenario of trusted but error-susceptible devices. Given these assumptions,

the generated randomness is certified by only experimental statistics.

Now, we mainly focus on the work [14] and overview their security proof.

The min entropy is used for evaluating the randomness. Given the output X ,

conditioned on input A and adversary’ system E , the smooth min entropy Hδ
min(X |AE) is

defined as

Hδ
min(X |AE) = max

∥Γ′−ΓAEX ∥≤δ
Hmin(X |AE)Γ′ (5-10)
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图 5.3 Experimental setup of the 138Ba+ ion system. (a) The energy level diagram of a
138Ba+ ion for a qutrit system, which is represented by two Zeeman sublevels |mD = +1/2⟩ ≡ |1⟩,
|mD = +3/2⟩ ≡ |2⟩ in the 5D5/2 manifold, and |mS = +1/2⟩ ≡ |3⟩ sublevel in the 6S1/2 manifold.
The quadrupole transitions between 6S1/2 and 5D5/2 are coherently manipulated using narrow-line
1762 nm laser which is stabilized to a high-finesse cavity. The 493 nm and 650 nm lasers are
used for Doppler cooling, EIT cooling, optical pumping and detection. The 614 nm laser is used
for depopulation of 5D5/2 level to 6S1/2 level. (b) The experimental setup of a trapped 138Ba+ ion
for testing KCBS inequality and for the spot checking random number expansion. One of 11
measurement configurations

{
Ai, Aj

}
is randomly selected. When Alice and Bob receive i and

j, they could not know the setting of the other since each observable is included in at least two
different contexts. For example, when Alice receives i = 3, Bob could be either j = 2 or j = 4.
Their pulse sequences are independently generated by their own Direct Digital Synthesizer (DDS)
and amplifiers, sent to the acousto-optic modulator (AOM) through independent paths, and finally
applied to the ion on different time order. Fluorescence is observed by PMT on different time
order and the values of the observables are assigned accordingly.
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The direct estimation of min entropy is generally hard, thus their security proof

applied Renyi entropy to give the lower bound of min entropy. For a quantum state ρ, its

smooth min-entropies satisfy

Hδ
min(ρ) = H1+ε(ρ) −

log(1/δ)
ε

(5-11)

where H1+ε(ρ) = − 1
ε

log Tr[ρ1+ε]. The randomness in its output is quantified by this

(1 + ε)-randomness. The main tool proposed in this proof is a (1 + ε)-uncertain relation.

After a projective measurement, the amount of randomness ((1+ε)-randomness) obtained

from a measurement is related to the degree of disturbance caused by the measurement,

shown in Proposition 4.4. For a given fixed input, the device has a classically predicable

output and can achievable maximal score is w. Then if device obtains a score higher than

this threshold w, then there must be unpredictable randomness in the output of this device.

The rate curve is achieved in Corollary 6.11. This security proof is general for not only

nonlocal game but also for contextuality. The uncertain relation is only relevant to the

size of output alphabet and the measurement in contextuality can fit this proposition. For

different schemes, the major differences is the classically predicable bound w. Note that

this bound w is the maximal score for devices which has classically predictable outputs on

an input. It is different with the classical strategy bound by hidden variable CG in general.

Though different in the definition, the value can be the same for some specific cases,

for example, nonlocal game with binary input in each party and contextuality shown in

Appendix D of [14]. However, in the practical case, the measurements in contextuality is

not compatible. Though the uncertain relation in Proposition 4.4 still holds, the remained

problem is to calculate w and check whether it equals to the classical bound achieved by

approximately contextuail hidden variable. We express this KCBS game as

G(A1, A2, A3, A4, A5) = −1
6
(A1

1 A2
2 + A1

3 A2
2 + A1

3 A2
4 + A1

5 A2
4 + A1

5 A2
1 − A1

1 A2
1

+ϵ12 + ϵ32 + ϵ34 + ϵ54 + ϵ51 + ϵ11).
(5-12)

命题 5.1： Let G be the game given above, w = 2/3

证明 With the approximately noncontextual hidden variable, the maximal score is CG =

2/3. This strategy is classically predictable, thus the maximal score w with an input

classically predictable should not be less than CG, i.e. w ≥ CG. We suppose that there
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is a device D (can be quantum) applied in KCBS game which outputs a score above 2/3,

and which gives a deterministic output on input 1,

−4 ≥ ⟨χKCBS⟩ , (5-13)

where ⟨χKCBS⟩ =
⟨
A1

1 A2
2

⟩
+

⟨
A1

3 A2
2

⟩
+

⟨
A1

3 A2
4

⟩
+

⟨
A1

5 A2
4

⟩
+

⟨
A1

5 A2
1

⟩
−

⟨
A1

1 A2
1

⟩
+ ϵ12 + ϵ32 +

ϵ34 + ϵ54 + ϵ51 + ϵ11 is the practical mean value with sequential measurements. Due to⟨
AiAj

⟩
≥ −1 + | ⟨Ai⟩ +

⟨
Aj

⟩
|,

⟨
AiAj

⟩
≤

⟨
A1
i A2

j

⟩
+ 2p f lip[AiAj] and p f lip[AiAj] ≤ ϵi j ,

we have

⟨χKCBS⟩ ≥ −6 + | ⟨A1⟩ + ⟨A2⟩ | + | ⟨A3⟩ + ⟨A2⟩ | + | ⟨A3⟩ + ⟨A4⟩ |

+ | ⟨A5⟩ + ⟨A4⟩ | + | ⟨A5⟩ + ⟨A1⟩ |

≥ −6 + | ⟨A1⟩ + ⟨A2⟩ | + | ⟨−A2⟩ − ⟨A3⟩ |

+ | ⟨A3⟩ − ⟨−A4⟩ | + | ⟨−A4⟩ − ⟨A5⟩ | + | ⟨A5⟩ − ⟨−A1⟩ |.

(5-14)

Therefore, with the triangle inequality,

−4 ≥ −6 + | ⟨A1⟩ − ⟨−A1⟩ |. (5-15)

The fixed input 1 is deterministic, thus ⟨A1⟩ = ±1, this is a contradiction. Thus w ≤ CG =

2/3 and w = 2/3. □

With this proposition, any score above w can be used to generate randomness though the

observables are approximately compatible.

5.3 Randomness generation rate

Here, we consider the case that the average probability of measurement setting choice

is unbiased, p(a) = 1/11, a ∈ {(i, i + 1), (i + 1, i), (1, 1)}(i = 1, 2, . . . , 5). The violation

of the inequality in Eq. (5-6), indicates the presence of genuine quantum randomness in

the measurement outcomes. The amount of secure randomness can be quantified by the

smooth min-entropy Hδ
min(X |AE), which is bounded by

Hδ
min(X |AE) ≥ NRgen(gKCBS, q, ϵ, N, δ), (5-16)
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where X and A denote the output and input sequences, respectively; E denotes the

system of an quantum adversary; δ is the smoothing parameter representing the security

failure probability; gKCBS is the KCBS game score; N is the total number of experiment

trials; q is the probability of choosing game round; ϵ is the parameter of Schatten

norm, in the security analysis, (1 + ϵ)-Schatten norm is applied; Rgen is the lower bound

of randomness generation on average for each trial. In order to achieve the maximal

randomness expansion, we also need to consider the input randomness for each trial,

RIn = q log 11 + H(q), (5-17)

and the randomness expansion rate can be expressed as Rexp = Rgen − RIn. The output

randomness rate Rgen is given by

Rgen = π(χ) − ∆, (5-18)

where

χ = gKCBS − χg,

π(χ) = 2
log(e)χ2

r − 1
,

∆ =
ϵ

q
8 log(e)χ2

(r − 1)2 +
log(2/δ2)

Nϵ
+ 2rq +O

((
ϵ

q

)2
)
.

(5-19)

Here, all the log is base 2 throughout the paper, r is the output alphabet size, which is

r = 4 in our KCBS game. Now we show the explicit form of O
((

ϵ
q

)2
)

and derivation

of Eq. (5-19) which are based on the work [14] we give an exact result for the randomness

expansion rate.

The min entropy is used for evaluating the randomness. Combining Theorem 4.1

and Proposition 6.8 in [14] yields

Hδ
min(X |AE) ≥ N[π(χ) − O(q + ϵ/q +

log(2/δ2)
Nϵ

)] (5-20)

where O( log(2/δ2)
Nϵ

) and O(q+ϵ/q) come from Theorem 3.2 and Proposition 6.8, respectively.

From Theorem 3.2, we can let O( log(2/δ2)
Nϵ

) = log(2/δ2)
Nϵ

. O(q + ϵ/q) comes from Proposition
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6.5, the combination of Proposition 6.3 and 6.4. In the proof of Proposition 6.4, from

Eq.(6.25) to Eq.(6.26) is equivalent to∑
x ⟨ρxā⟩1+ϵ

⟨ρ⟩1+ϵ
≥ 1 − O(ϵ) (5-21)

where x is the output with output alphabet size r , and ā is the input. According to the

Proposition B.2 and Proposition B.3 in Carl’s paper, we apply the induction,
∑

x ⟨ρxā⟩1+ϵ ≥
(1− ϵ)r ⟨∑x ρ

x
ā⟩1+ϵ and ⟨∑x ρ

x
ā⟩1+ϵ ≥ (1− ϵ)r ⟨ρ⟩1+ϵ . Thus

∑
x ⟨ρx

ā ⟩1+ϵ
⟨ρ⟩1+ϵ ≥ (1− ϵ)2r ≥ 1− 2rϵ

and O(ϵ) = 2rϵ . Consequently, the term in Proposition 6.4 O(q) = 2rq.

The estimation in Proposition 6.3 comes from the second order terms in Taylor

expansion in Eq.(6.20) and Eq.(6.21). For a function F(x), its Taylor expansion at a is as

follows,

F(b) = F(a) + F
′(a)(b − a) + F

′′(a)
2

(b − a)2 + F
′′′[a + θ(b − a)]

6
(b − a)3, θ ∈ (0, 1)

(5-22)

where the fourth term is third order Taylor Lagrange remainder. Here F(b) = 2ϵsH(a,x)/q

and a = 0.

2ϵsH(a,x)/q − 1 = ϵs (ln 2) H(a, x)/q +
1
2

(
ϵs (ln 2) H(a, x)

q

)2

+ R3

R3 =
1
6

(
ϵs (ln 2) H(a, x)

q

)3

2θϵsH(a,x)/q, θ ∈ (0, 1)
(5-23)

where the term R3 is the third order Taylor Lagrange remainder. Substitute this expression

in Eq.(6.20), we have

∑
a,x

p(a)
[
1
2

(
ϵs (ln 2) H(a, x)

q

)2

+ R3

]
⟨ρxa⟩1+ϵ

≤
[
1
2

(
ϵs (ln 2)

q

)2

+
1
6

(
ϵs (ln 2)

q

)3

2ϵs/q

] ∑
a,x

p(a)H(a, x)⟨ρxa⟩1+ϵ

≤ 1
2

(
ϵs (ln 2)

q

)2

+
1
6

(
ϵs (ln 2)

q

)3

2ϵs/q

(5-24)

After applying the function − 1
ϵ

log(), we have a more precise result similar to Proposition

6.3. The difference is we replace the O(ϵ/q) by ϵ
q

(ln 2)s2

2 + ( ϵ
q
)2 (ln 2)2s3

6 2ϵs/q. In the Theorem
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6.7, we let the parameter s be π′(χ) . In the Theorem 5.8, we know that

π(χ) = 2
log(e)(χ − w)2

r − 1

π
′(χ) = 4

log(e)(χ − w)
r − 1

(5-25)

Thus

O(ϵ/q) = ϵ

q
8 log(e)(χ − w)2

(r − 1)2 +

(
ϵ

q

)2 32 log(e)(χ − w)3
3(r − 1)3 2ϵ4 log(e)(χ−w)

(r−1)q (5-26)

Result 1

Hδ
min(X |AE) ≥ N[π(χ) − ∆]

π(χ) = 2
log(e)(χ − w)2

r − 1

∆ =
ϵ

q
8 log(e)(χ − w)2

(r − 1)2 +

(
ϵ

q

)2 32 log(e)(χ − w)3
3(r − 1)3 2

ϵ
q

4 log(e)(χ−w)
r−1 +

log(2/δ2)
Nϵ

+ 2rq

(5-27)

where χ ∈ [0, 1] is the score obtained in experiments, w is the classical bound for a certain

game, r is the number of total outputs, q is the probability for test round, N is the total

round number, δ is the failure probability, ϵ ∈ (0, 1] is the . The randomness expansion,

generation, and input rate per round are

Rexp = Rgen − RIn,

Rgen = π(χ) − ∆,

RIn = q log 11 + H(q).

(5-28)

If we focus on the randomness expansion instead of the generation randomness,

we should consider the random seed H(q) + q log 11 used for random inputs. Different

target function have different optimal result, the figures in main text shows the effect of

optimization parameter. Note that from the Result 1, the generated randomness is O (N),
and we take the probability q ∼ (log3 N)/N , then the initial random seed required is

q log 11+H (q). And due to log N < N , q log 11+H (q) ∼ O (q)+ q log
( (

log3 N
)
/N

)
<

O
(
log4 N

)
. Thus compared with the generated randomness O (N), exponential random-

ness expansion is achieved.
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Denote the above bound as Miller-Shi (MS) bound [14] and afterwards a tighter bound

is obtained, referred as Huang-Shi (HS) bound without the dependence of r [84]. For the

experiment, we perform the parameter optimization of q and ϵ to achieve the maximal

randomness expansion rate Rexp with MS bound and also show the final randomness rate

for two different bounds.

The important uncertain relation is related to the output alphabet size r . A larger r

will lead to a bad performance. This disadvantage is removed by an improved uncertain

relation. HS bound, which is a tighter bound of Proposition 4.4 proposed by Ref. [84], is

as follows.

引理 5.1： For any finite dimensional Hilbert space V , any positive semidefinite operator

τ : V → V , and any projective measurement {P0, P1, · · · , Pn} on V , the following holds.

Let τ′
=

∑
i PiτPi. Then

∥τ′∥2
1+ϵ ≤ ∥τ∥2

1+ϵ − ϵ ∥τ − τ
′∥2

1+ϵ (5-29)

for all ϵ ∈ (0, 1). Consequently,

∥τ′∥1+ϵ ≤ ∥τ∥2
1+ϵ − ϵ/2∥τ − τ

′∥2
1+ϵ . (5-30)

This result can be applied in Theorem 5.8 and obtain a new rate curve,

π(χ) = 2 log(e)(χ − w)2 i f χ ≥ w. (5-31)

Consequently, we have π′(χ) = 4log(e)(χ−w), and let the parameter s be π′(χ) in O(ϵ/q)
by ϵ

q

(ln 2)s2

2 + ( ϵ
q
)2 (ln 2)2s3

6 2ϵs/q. Then

O(ϵ/q) = ϵ

q
8 log(e)(χ − w)2 +

(
ϵ

q

)2 32 log(e)(χ − w)3
3

2
ϵ
q 4 log(e)(χ−w). (5-32)
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Result 2

Hδ
min(X |AE) ≥ N[π(χ) − ∆]

π(χ) = 2log(e)(χ − w)2

∆ =
ϵ

q
8log(e)(χ − w)2 +

(
ϵ

q

)2 32log(e)(χ − w)3
3

2ϵ4 log(e)(χ−w)
q +

log(2/δ2)
Nϵ

+ 2rq

(5-33)

5.4 Experimental schematic and procedure

There have been demonstrated the randomness expansion based on the experimental

violations of the KCBS inequality using a single trapped 171Yb+ ion [28]. In the demon-

stration, however, it is not possible to test the modified KCBS inequality, Eq. (5-6), due

to lack of capability in obtaining all correlations. For example, when we observe fluo-

rescence in the first measurement, the second measurement does not provide any useful

information [28]. Instead, we develop a single 138Ba+ ion system [85,86] with which we

can obtain full-correlation results from the sequential measurements by using long-lived

shelving states in 5D5/2 manifold similar to 40Ca+ ion [87]. We choose two Zeeman sub-

levels (|mj = +1/2⟩ ≡ |1⟩, |mj = +3/2⟩ ≡ |2⟩) in the 5D5/2 manifold, and one Zeeman

sub-level (|mj = +1/2⟩ ≡ |3⟩) in the 6S1/2 manifold to represent the qutrit system as shown

Figure 5.3(a). In the projective measurement, we observe fluorescence when the state is

projected to |3⟩ and no fluorescence for all the other projections on the subspace that

consists of |1⟩ and |2⟩ basis while conserving coherence. Different from the 171Yb+ ion

realization, since the coherence is not destroyed even when we observe fluorescence in

the first measurement, we can get meaningful outcomes in the second measurement. The

transitions between 6S1/2 and 5D5/2 are coherently manipulated by a narrow-line laser

with the wavelength of 1762 nm, which is stabilized to a high-finesse optical cavity. The

coherent rotations R1 (θ1, ϕ1) (5-34) between |1⟩ to |3⟩ and R2 (θ2, ϕ2) (5-35) between |2⟩
to |3⟩ are realized by applying the 1762 nm laser beam, where θ and ϕ are controlled by

the duration and the phase of the laser beam, respectively, using an AOM.

The procedure of the experimental test of the KCBS inequality consists of Doppler

and electromagnetically induced transparency (EIT) cooling [42,88,89], initialization, the

first projective measurement of observable Ai and the second projective measurement of

Aj . The initialization to the state |3⟩ is performed by applying the optical pumping beam

of 493 nm with σ+ polarization shown in Figure 5.3(b). The first measurement of the
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observable Ai is realized by the rotation Ui, the projective measurement, and the reverse

of the rotation U†
i . The Ui shown in Tab. 5.1 maps the axis |vi⟩ to the axis |3⟩ and the

projective measurement can be described as the projector M |3⟩ = 2 |3⟩ ⟨3| − 1. Thus Ai is

assigned to value ai = 1 when fluorescence is observed and ai = −1 when no fluorescence

is observed. The projective measurement consists of the state-dependent fluorescence

detection and the optical pumping sequence. The second measurement of the observable

Aj is realized by the same scheme to that of the first measurement. Unitary rotations

of Ai(Alice) and Aj(Bob) are realized by different signal generators and amplifiers, their

results are also collected independently.

Each round comprises Doppler cooling, EIT cooling, optical pumping, rotation

(Ui), the first projective measurement, inverse rotation (U†
i ), rotation (Uj), the second

projective measurement, inverse rotation (U†
j ). The 138Ba+ ion is first cooled down with

500 µs Doppler cooling and 1000 µs EIT cooling. Optical pumping procedure initializes

the internal state of the ion to |mS = +1/2⟩ by carefully adjusting the polarization of 493

nm laser beam. We manipulate the states between |1⟩ and |3⟩, and between |2⟩ and |3⟩ by

applying 1762 nm laser with different frequencies and amplitudes controlled by AOM. The

1762 nm fiber laser is stabilized with a high-finesse cavity to achieve a linewidth below 1 Hz

using Pound-Drever-Hall technique. The cavity is made of ultra-low-expansion material

and is mounted in a vacuum cavity with active temperature stabilization to maximize the

stability of its length. Frequency and amplitude of RF signal for AOM inputs are generated

by two independent pairs of DDS (AD9910) for Ai and Aj measurements, which represent

Alice and Bob, ensuring they are compatible without communication. The 2π time for

both Rabi oscillations are adjusted to 37 µs, that is Ω = (2π) 27 kHz. Every rotation Ui is

performed with same duration of no longer than 16 µs.

EIT cooling implements the asymmetry profile of the absorption spectrum to cancel

the heating effect caused by carrier transition meanwhile strength the red-sideband transi-

tion to hold the cooling function [42,88,89]. EIT cooling only need three level, however there

are four Zeeman states of 138Ba+ ion. Though with only doppler cooling and EIT cooling

the ion is not perfectly cooled to the ground state without sideband cooling (average

phonon number ⟨n̄ = 0.1⟩), the carrier transition operated by stabilized 1762 nm laser has

enough fidelity due to the small Lamb-Dicke parameter η = 0.07.

Our projective measurement includes state discrimination and state re-preparation.

We differentiate one state versus the other two states of a qutrit using the standard
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fluorescent-detection method. For the |3⟩ state, average of 32 photons at 493 nm can

be detected during 600 µs and no photons for the |1⟩ or the |2⟩ state. In experiment,

perfect state detection fidelity is achieved for |3⟩, while the error of |1⟩ and |2⟩ is 1.3%.

Duration of the first projective measurement is set to 600 µs with discrimination nph = 3

while the second projective measurement is 300 µs and nph = 1. Fluorescence detection

duration is longer than the coherence time between |1⟩ and |2⟩, which is around 200 µs.

Therefore we add spin echo pulses during the fluorescence detection to keep the coherence

until the second measurement is done. Re-preparation to |3⟩ state, which is realized by

optical pumping without 614 nm laser, keeps the coherence between |1⟩ and |2⟩ in 5D5/2

manifold. Since the second projective measurement is the end of the experiment without

further operations, we do not apply spin echo pulses and state re-preparation, which results

in shorter duration.

To describe our unitary rotation, We first define R1 (θ1, ϕ1) and R2 (θ2, ϕ2) as

R1 (θ1, ϕ1) =
©«

cos θ1
2 0 −iei(ϕ1+

π
2 )sin θ1

2

0 1 0

−ie−i(ϕ1+
π
2 )sin θ1

2 0 cos θ1
2

ª®®®¬ , (5-34)

R2 (θ2, ϕ2) =
©«

1 0 0

0 cos θ2
2 −ie−i(ϕ2+

π
2 )sin θ2

2

0 −iei(ϕ2+
π
2 )sin θ2

2 cos θ2
2

ª®®®¬ . (5-35)

Then, the Unitary rotations Ui in the measurement configurations shown in Figure 5.1(b)

are realized by corresponding R2 (θ2i, ϕ2i) then R1 (θ1i, ϕ1i), while U†
i are composed of

R1 (θ1i, π − ϕ1i) then R2 (θ2i, π − ϕ2i), where the specific Ui are listed in Tab. 5.1.

表 5.1 Unitary rotations Ui.

U Rotation
U1 R1(0.531π, π) · R2(0.066π, 0)
U2 R1(0.442π, 0) · R2(0.328π, 0)
U3 R1(0.191π, π) · R2(0.506π, π)
U4 R1(0.104π, π) · R2(0.526π, 0)
U5 R1(0.377π, 0) · R2(0.404π, π)
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5.5 Randomness expansion data

To test the modified KCBS inequality (5-6), we need to measure the eleven com-

binations of sequential measurements, which include five terms explicitly shown in the

inequality (5-6) as ⟨A1 A2⟩, ⟨A3 A2⟩, ⟨A3 A4⟩, ⟨A5 A4⟩, and ⟨A5 A1⟩, the other five terms with

reverse order (⟨A2 A1⟩, ⟨A2 A3⟩, ⟨A4 A3⟩, ⟨A4 A5⟩, ⟨A1 A5⟩), and ⟨A1 A1⟩. The reversed-order

terms are necessary to observe ϵ12, ϵ32, ϵ34, ϵ54, and ϵ51 and evaluate incompatibility from

experimental imperfections. The detailed experimental results of the measurements are

summarized in Table 5.2.

表 5.2 Experimental results for different observables and compatibility terms for the KCBS
inequality (5-6). Total game rounds are 1.2 × 104. The standard deviations of the final result
are 0.015 and 0.023 for the single observables and correlations, respectively, 10−3 order for the
compatibility terms, all as shown in the parenthesis. The standard deviation for the violation σ is
0.101 and our experimental data shows the violation of the extended inequality (5-6) with 7 σ.

{i, j}
⟨
AiAj

⟩
⟨Ai⟩

⟨
Aj

⟩
ϵi j

{1,2} -0.768(23) 0.082(15) 0.091(15) 0.005(21)
{2, 1} -0.783(23) 0.096(15) 0.065(15) 0.017(21)
{2, 3} -0.767(22) 0.098(14) 0.088(14) 0.019(21)
{3,2} -0.750(23) 0.107(15) 0.098(15) 0.000(21)
{3,4} -0.773(23) 0.084(15) 0.082(15) 0.040(20)
{4, 3} -0.762(22) 0.122(14) 0.068(14) 0.016(21)
{4, 5} -0.782(23) 0.095(15) 0.075(15) 0.019(21)
{5,4} -0.789(22) 0.056(15) 0.094(15) 0.002(21)
{5,1} -0.773(22) 0.100(14) 0.069(14) 0.041(20)
{1, 5} -0.767(23) 0.109(15) 0.066(15) 0.033(20)
{1,1} 0.977(21) 0.106(15) 0.108(15) 0.001(21)

gKCBS = 4.742(101)/6 = 0.790(17)

For the spot-checking protocol, we choose {A1, A2} as the setting for generation

rounds, i.e., {1, 2} as the distinguished input of our KCBS game G. At each round, a

string of trusted random bits t decides each round is generation round or game round. If

it is generation round, we perform the sequential measurement {A1, A2} and record the

output {a1, a2}. If it is game round, we randomly choose one of the 11 configurations of

Eq. (5-6) and save the result {ai, aj} after performing the sequential measurement {Ai, Aj}.
From the Eq. (5-19), we can see that when the violation is small, the total rounds N is a

critical parameter. A positive generation rate requires a sufficiently large N . Thus we give
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the minimum required rounds for different violations, which is instructive for experiments.

Figure 5.4(a) shows the minimum total rounds Nmin to obtain net randomness depending

on the KCBS game score gKCBS, where Nmin can be obtained with an optimal q. In

order to gain net randomness at our experimentally observed gKCBS = 0.790, we perform

Nexp = 1.29 × 108 rounds, which is sufficiently larger than Nmin = 6.2 × 107. At our

experimental condition of Nexp, Figure 5.4(b) shows the generation rate of net randomness

depending on gKCBS. If gKCBS ≤ 0.77, we can not observe net randomness regardless of

q. When gKCBS > 0.77, there exist optimal q values. If q is bigger than proper range,

input randomness increases thus no net randomness is produced. If q is smaller than

proper range, due to the increase of ∆ in Eq. (5-18), we also cannot gain net randomness.

In our experiment, we choose qexp = 10−4 as shown in red circle of Figure 5.4(b).

Meanwhile, we also apply HS bound to our experimental data as shown in Figure

5.4. The HS bound produces a bigger generation rate than the MS bound, thus we are

able to reduce smoothing parameter δ to 10−4, which is the security failure probability.

We find that the optimal q for the HS bound is different from that of the MS bound, but

our qexp is still good enough to generate net randomness as shown in Figure 5.4(d).

We play Nexp = 1.29 × 108 (129421072) rounds and observe the left hand side of

the inequality Eq. (5-6), ⟨χKCBS⟩ = −4.831, and the right hand side −4 − (ϵ12 + ϵ32 +

ϵ34 + ϵ54 + ϵ51 + ϵ11) = −4.088. The detailed experimental results of are summarized in

Tab. 5.2. The obtained final score of KCBS game is gKCBS = 4.742(101)/6 = 0.790(17),
which violates the inequality (5-6) by 11 standard deviations. Our test probability is

qexp = 10−4 ∼ O((log3Nexp)/Nexp), and the required amount of initial random seed is

O(log4Nexp) bits (see SM.III. and IV. for details). The min-entropy of final randomness

is 5.3 × 10−3 per bit, thus the output random bits is Θ(Nexp), achieving exponential

randomness expansion. In real number, we get 5.73 × 105 bits of min-entropy which

exceeds 2.35×105 bits of input randomness, resulting 3.38×105 net random bits, expansion

rate per round is 2.6 × 10−3.

When we apply the HS bound to the experimental data, we get larger min-entropy

and expansion rate. Note that δ is two order smaller than that of the MS bound. The

min-entropy of final randomness is 4.1 × 10−3 per bit, and the expansion rate per round is

2.3 × 10−3. We get 5.28 × 105 bits of min-entropy which exceeds 2.35 × 105 bits of input

randomness, resulting 2.92 × 105 net random bits. If we use an optimized q based on the

calculation using the MS bound, we can get even larger min-entropy and expansion rate.
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5.6 Extractor and random test

A random number extractor is a hashing function transforming a non-perfect random

number string {0, 1}N to a nearly perfect one {0, 1}m. In our experiment, the length of

the input string is Nexp = 1.29 × 108 and Hmin(X |IE) = 4.1 × 10−3 per bit. According to

leftover hash lemma [90]

m ≤ NHmin(X |IE) − 2 log
1
ϵh
, (5-36)

we set the security parameter ϵh to be a typical value ϵh = 2−100, and the length of the

output string is m = 5.28 × 105. Here we apply a random m × Nexp Toeplitz matrix [91] as

the hashing function. The input random seed {0, 1}s (s = m + Nexp − 1) is from [92].

We apply the random test [93] to the extracted data. The tests include ’Frequency’,

’Block Frequency (BFreq)’, two ’Cumulative Sums (CuSm)’ tests, ’Runs’, ’Longest-Run-

of-Ones in a Block (LROB)’, ’Rank’, ’Fast Fourier Transform (FFT)’, ’Serial’. The

p-values are distributed in the interval (0, 1), which show the probabilities that an ideal

random number generator would produce less random sequence than the tested one. If

p-value is taken 0, it means the tested data is fully non-random, while 1 means completely

random. The threshold we set for accepting the data as random is 0.01. As shown in

Figure 5.5, the outputs strings ai
N and aj

N pass all tests. However, as expected, the

combined outputs (aiaj)N do not pass all tests because since the measurement outputs of

two observables are correlated thus are not independent random variables.
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(a) (b)

(d)(c)

g

g

g

g

图 5.4 (a-b) For MS-bound the relation of the score of KCBS game gKCBS , number of total
rounds N , test probability q, and randomness expansion rate with smoothing parameter δ = 10−2

in (5-16). (a) The minimum number of rounds to have net randomness depending on the score
gKCBS . The minimum N decreases as gKCBS increases. We can get net randomness only within
the shadow area. Our experimental gKCBS = 0.790 and Nexp = 1.29 × 108 are shown as the
green circle. (b) Randomness expansion rate at different gKCBS and q for our Nexp. Only
with the combination of large enough gKCBS and proper q can we obtain net randomness. Our
experimental gKCBS = 0.790 and qexp = 0.0001 are shown as the red circle, resulting expansion
rate 2.6×10−3 per bit. (c-d) For HS-bound the relation of the score of KCBS game gKCBS , number
of total rounds N , test probability q, and randomness expansion rate with smoothing parameter
δ = 10−4 in Eq. (5-16). (c) The minimum number of rounds to have net randomness depending
on the score gKCBS . Our experimental condition is shown as the green circle. (d) Randomness
expansion rate at different gKCBS and q for our Nexp. Our experimental gKCBS = 0.790 and
qexp = 0.0001 are shown as the red circle, resulting expansion rate 2.3 × 10−3 per bit, although
our qexp is not optimal for this case.
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Freq BFreq CuSm1CuSm2 Runs LROB Rank FFT Serial

0.01

0.1

1

Random Tests
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N
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N

(ai,aj)N

图 5.5 The results for random tests [93] of the outputs of the first measurement ai and the second
measurement aj , and both measurement aiaj . Outputs of ai N and aj

N pass the listed tests since
all p-values exceed the threshold 0.01, while the outputs of (aiaj)N failed to pass the first test of
’Cumulative Sums (CuSm)’.
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第 6章 Conclusion and outlook

In this work, we achieve an exponential randomness expansion secured by quantum

contextuality. Regardless of imperfections and experimental noises, the observed violation

of the modified KCBS inequality, Eq. (5-6), verifies the generated randomness. In our

protocol, we can guarantee the randomness without the i.i.d. assumption even when

imperfections or noises may originate from quantum mechanics, which would be our

quantum adversary. Note that there are other types of quantum contextuality inequalities

that do not require sequential measurements, which could also ensure the no-disturbance

condition. Our work can be easily extended to these proposals as well.

6.1 Improvement of random number generation speed

Due to the advantage of using contextuality for randomness certification, our current

generation speed is 270 bits s−1 and 1.7 bits s−1 after applying Toeplitz matrix hashing,

which is faster than that of using Bell’s inequality [9,22]. We believe we can achieve orders

of magnitude higher generation speed by several improvements in duration of cooling,

optical pumping, and detection, coherence time of qutrit, and coherent operation time.

Currently, each round costs 3700 µs, which is consisted of 1500 µs cooling process, two

detections procedures 900 µs in total, 140 µs spin echo pulses for the first detection, two

optical pumping pulses 60 µs in total, rotations 60 µs in total, some short gaps between

sequences to make sure they do not affect each other, and around 1000 µs communication

time. However, there is room for technical improvement as follows. By extending

coherence time between qutrit, spin echo will not be required. Detection time could be

reduce to around 100 µs by replacing a high numerical aperture (NA) lens from 0.2 to

0.6. By amplifying 1762 µm laser power 10 times, Rabi oscillations between |1⟩ and |3⟩,
and between |2⟩ and |3⟩ can be at least 3 times faster, so as the rotation. Each optical

pumping could be reduced to 1 µs by further optimization. Currently we apply 1500 µs

cooling process each round, but it will be possible to apply only one cooling process per

ten rounds after some improvements. With all the development above, we can achieve at

least one order faster generation speed.

From the theoretical aspect, though the generation rate used in our scheme is robust

and noise-tolerable, a large number of trials are still required which costs a lot of efforts.
71



第 6章 Conclusion and outlook

An improved generation rate based on general contextuality inequality is still an open

problem. Recently, entropy accumulation theory has been applied in device-independent

protocols [94,95] and may be a potential tool for achieving a near optimal generation rate

using contextuality inequality.

Fully device-independent random number generation puts a very high requirement

on implementation devices. In practice, it is meaningful to pursue alternative randomness

generation schemes with additional reasonable assumptions, such as Bell test with certain

loopholes [7], uncertainty principles, or contextuality [96]. Our scheme is not fully device-

independent due to the approximate compatibility assumption on measurements. On

the other hand, our scheme does enjoy the self-testing properties on both source and

measurement. Note that the self-testing protocols with proper assumptions on the device

have also been proposed to deal with other quantum information processing tasks [79,97].

The security proof in [14] only considers the perfect case without imperfections of

compatible or no-disturbance. Here we characterize this imperfections and modify the

score of KCBS game. We assume the imperfections in experiments does not affect the

adversary and security proof in [14] and only leads to a modified classical bound. The

rigorous proof of a self-testing random number generator with limited compatibility is an

interesting open problem and we will leave it as a future theoretical work.

6.2 Randomness amplification

Moreover, quantum contextuality can also provide an alternative means for random-

ness amplification. In principle, we can individually manipulate multiple ions and use

them to generate random numbers simultaneously, which could lead to orders of magni-

tude faster generation speed. Such kind of multiple ion system can be applied to realize

randomness amplification protocol [15], which generates true randomness out of weak

randomness input. The protocol can be implemented by the multiple of our developed

randomness expansion systems and the exclusive-OR of their outputs.

6.3 Randomness certification with 2 species ions achieving perfect compat-
ibility measurement

Another improvement is using entangled 2 ions to fully close the compatilibity

loophole. As I have done two experiments using a 171Yb+ ion and a 138Ba+ ion respectively,

we are not far from entanglement of these two ions. We aim on entangling a 171Yb+ ion
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with either a 138Ba+ ion or a 137Ba+ ion. The scheme is shown in figure 6.1, here we take

entanglement of a 171Yb+ ion and a 137Ba+ ion as an example. We can proceed operations

and detections indepently to achieve randomness certifacation with perfect compatibility

measurement. Firstly, we may need three-stage cooling of Doppler cooling, the EIT

cooling and the sideband cooling on 138Ba+ ion to prepare all the motional states to near

the ground state. Then entangle them using Raman laser beams of 355 nm for 171Yb+ ion

and 532 nm for 138Ba+ ion through Mølmer-Sørenson interaction. For detection, we

measure the pairs of the joint observables simultaneously using the standard fluorescence

scheme instead of the sequential measurements with totally different wavelength of laser

beams for each ion.

171Yb+w1 w2 S1/2

P1/2

P3/2

D3/2

D5/2

493 nm

650 nm

614 nm

1762 nm
Shelving

137Ba+

370 nm
S1/2

P1/2

P3/2

图 6.1 Scheme of a 171Yb+ ion and a 137Ba+ ion entanglement for perfect compatibility mea-
surement.
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图 1.1 Tsinghua ion trap. RF signal is amplified and connected to the trap through

a helical resonator. An ion pump and a Ti sublimation pump is connected

to the trap to make ultra-high vacuum environment lower than 10−11 Torr. . . . 4

图 1.2 Four-rod trap and pictures of 171Yb+ ion. (a) Connection of the trap

and oven of 171Yb+ ion in an octagon. The lasers pass shine into the trap

through viewports. (b) Assembly of the four-rod trap with two micromotion

compensation electrodes on the top. (c) Schematic of the four-rod trap.

Among the four rods, two connect to RF while the other two are ground

(GND) electrodes. The two ground electrodes are given 10.6 V DC voltage

to differentiate the two transverse modes clearly (380 KHz apart). (d)(e)

Pictures of one/two trapped 171Yb+ ion on the CCD camera. . . . . . . . . . . . . . . . . . . 5

图 2.1 Energy levels of 171Yb+ . (a) The usages of 369 nm, 638 nm and 935 nm

lasers. (b) Qubit(blue) and qutrit(black) setting of a 171Yb+ ion. . . . . . . . . . . . . . . 7

图 2.2 Schematic of Doppler cooling of 171Yb+ . Doppler cooling laser has to

cover all the energy levels in the 2S1/2 and 2P1/2. We achieve it by generating

the second sidebands of the 7.37 GHz EOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

图 2.3 Schematic of optical pumping of 171Yb+ . Optical pumping laser only needs

the first sideband of the 2.105 GHz EOM. Note that it has no influence on

the |↓⟩ state since it is far detuned from the |↓⟩ state . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

图 2.4 Interaction between internal and external degree of freedom. Ion with two

levels of internal electronic states couples to the harmonic oscillator of

vibrational motion states with hωX energy difference. . . . . . . . . . . . . . . . . . . . . . . . . 12

图 2.5 Schematic of three typical transitions (carrier, blue sideband and red side-

band). They are shown in the view of (a) harmonic oscillation potential,

(b) motional state with two levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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图 2.6 Rabi oscillation of carrier and blue sideband transition. (a) Rabi oscillation

on the carrier transition in the spin qubit between |↓, 0⟩ and |↑, 0⟩. (b) Rabi

oscillation on the blue transition between |↓, 0⟩ and |↑, 1⟩. The vertical axis

shows the probability of detecting the ion in the state, and the horizontal

axis shows the interaction time between light field and the ion. Here we

get the value η = Ω1,0/Ω0=0.098. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

图 2.7 Raman transition configuration. (a) Raman beams applied to the trapped

ion. (b) Raman transition via an excited state. Light fields couple the qubit

levels between |↓⟩ and |↑⟩ at frequency ∆ = ωL − ωHF . Blue sideband

and red sideband can be realized by blue and red detuning of ωX amount

at laser frequency ωL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

图 2.8 Schematic and procedure of Raman sideband cooling. (a) Raman sideband

cooling process starts from Doppler cooling and optical pumping, then the

ion is supposed to be in |↓, n⟩ state. A π-pulse of red sideband transition

reduces the vibrational motion state by one as the spin is flipped to |↑⟩
state. When followed by optical pumping, the ion is transferred to |↑, n − 1⟩
state. This cycle is processed until the ion is in the |↓, 0⟩ where no more

red sideband can be excited. (b) Time schematic for sideband cooling.

Duration of the pulsed Raman transition at first cycle is T1,0/
√

n, then π-

time of red sideband increases by factor of
√

n + 1/
√

n. Finally, the ion is

cooled to the ground state after n cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

图 2.9 Effect of sideband cooling shown by spectrum. (a) Spectrum before side-

band cooling. (b) Spectrum after sideband cooling. Red sideband transi-

tion is completely suppressed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

图 3.1 (a) Energy levels of 138Ba+ . (b) Structure of EIT cooling. . . . . . . . . . . . . . . . . . . . . 20

图 3.2 Transitions when we selectσ− polarization (blue) andσ+ polarization (red)

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

图 3.3 Rabi oscillation of |S1/2,m = 1
2⟩ → |D5/2,m = 1

2⟩ carrier transition with

(red) and without (blue) EIT cooling. Black line is the theoretical line. . . . . . 22

图 3.4 Rabi oscillation of |S1/2,m = 1
2⟩ → |D5/2,m = 1

2⟩ carrier transition with

(red) and without (blue) EIT cooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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图 3.5 Ramsey measurement of |S1/2,m = 1
2⟩ → |D5/2,m = 1

2⟩ 1st order RSB

transition with (red) and without (blue) EIT cooling. . . . . . . . . . . . . . . . . . . . . . . . . . 23

图 3.6 This is figure 1 of ref. [45]. Frequency stabilization system of the 650 nm

laser to Te2 reference through an optical cavity. The thick red lines show

the optical path and the thin black lines with arrows indicate electrical

connections.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

图 3.7 Frequency stabilization system of the 493 nm laser to Te2 reference. The

cyan lines show the optical path and the black line indicates electrical

connections from the balanced PD to lock-in amplifier. . . . . . . . . . . . . . . . . . . . . . . . 25

图 3.8 Rabi oscillation of |1⟩ ↔ |3⟩ by 1762 nm quadrupole transition. . . . . . . . . . . . . 26

图 3.9 Schematic of spin echo pulses during the detection.. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

图 3.10 Ramsey measurement of |1⟩ ↔ |2⟩ transition with (red) and without (blue)

EIT cooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

图 3.11 Ramsey measurement of |1⟩ ↔ |3⟩ transition with (red) and without (blue)

EIT cooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

图 4.1 Experimental scheme and parameter control. (a) 171Yb+ system in a har-

monic potential. The qubit level in S1/2 manifold, |F = 0,mF = 0⟩ ≡ |↓⟩
and |F = 1,mF = 0⟩ ≡ |↑⟩ are coupled by the Raman laser beams, where

the beat-note frequency is near resonant to the qubit levels, ωHF. When

the beat-note frequency is tuned to ∼ ωHF + ωX, the scheme produces the

anti-Jaynes-Cummings interaction or blue-sideband transition. We denote

Ω as the Rabi-frequency on the qubit transition and the ∆ is the frequency

difference between the beat-note frequency of Raman beams andωHF+ωX.

The Raman beams are realized by pico-second pulse train similar to the

scheme in Ref. [64]. (b) For the adiabatic blue-sideband transition whose

frequency is independent of motional quantum number n,Ω and ∆ are con-

trolled as the red and blue curves. The phase iβ inΩ is the counter-diabatic

term to suppress the transition during the evolution. Here Ω0 = (2π)38.5

kHz, β = 0.075, and ∆0 = 1.6Ω0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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图 4.2 Experimental scheme and dynamic and adiabatic transition by anti-Jaynes-

Cummings (blue-sideband) interaction. (a) The diagram for the standard

blue-sideband transition. The Hilbert space is composed of the qubit states,

|↑⟩and |↓⟩, and phonon states of n excitations, |n⟩. The transition rate of

the blue-sideband interaction between | ↑, n⟩ and | ↓, n − 1⟩ depends on n;

the higher the n value, the more frequent the transition is. The transitions

between |↓, n⟩ and |↑, n + 1⟩ would experience evolutions
√

n + 1 times

faster than the transition between |↓, 0⟩ to |↑, 1⟩. (b) Probability of finding

the ion in | ↑, n⟩ state as a function of time. We see that the transition

frequency clearly manifests
√

n + 1-dependence. The arrow at the first peak

of each oscillation indicates the duration of a π-pulse for the corresponding

transition. The π-pulse duration, Tπ , of the fundamental blue-sideband

transition (red) is 13 µs. The dots represent experimental data and solid

lines are from the fitting to sin2
(√

n+1π
2Tπ

t
)
. (c) The conceptual diagram for

the adiabatic blue-sideband transition without the
√

n + 1-dependence. (d)

The experimental demonstration of the adiabatic blue-sideband transitions

realized by the transitionless quantum driving. The total time to execute

the transitions is 91µs for any |n⟩, which is about 7 times Tπ . . . . . . . . . . . . . . . . . 33

图 4.3 The rapid adiabatic passage traces for phonon number n = 0 to 5 respec-

tively on a bloch sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

图 4.4 Coherent Mira 900 laser and beam path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

图 4.5 Setup of the Raman beams. The schematics of the Raman set up optics with

Coherent Mira 900. Raman1 and Raman2 are separated by AOM1, they

are the first order of AOM1 and AOM2, respectively. Intensity stabilization

is applied using the zeroth order of AOM2 then feedback to AOM0. The

output of frequency stabilization system feedback to AOM1. The 756

nm laser shown in red is used to monitor the repetition rate and stabilize
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[72] R̆eháĕk J, Hradil Z, Jezĕk M. Iterative algorithm for reconstruction of entangled states[J]. Phys.
Rev. A, 2001, 63: 040303(R).

[73] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the em
algorithm[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1977: 1–38.

[74] Vardi Y, Lee D. From image deblurring to optimal investments: Maximum likelihood solutions
for positive linear inverse problems[J]. Journal of the Royal Statistical Society. Series B
(Methodological), 1993: 569–612.

[75] Leibfried D, Meekhof D M, King B E, et al. Experimental determination of the motional
quantum state of a trapped atom[J]. Phys. Rev. Lett., 1996, 76: 4281–4285.

88



参考文献

[76] Myatt C J, King B E, Turchette Q A, et al. Decoherence of quantum superpositions through
coupling to engineered reservoirs[J]. Nature, 2000, 403: 269–273.

[77] Gühne O, Kleinmann M, Cabello A, et al. Compatibility and noncontextuality for sequential
measurements[J]. Phys. Rev. A., 2010, 81: 022121.

[78] Szangolies J, Kleinmann M, Gühne O. Tests against noncontextual models with measurement
disturbances[J]. Phys. Rev. A., 2013, 87: 050101.

[79] Lunghi T, Brask J B, Lim C C W, et al. Self-testing quantum random number generator[J].
Phys. Rev. Lett., 2015, 114(15): 150501.

[80] Cabello A. Experimentally testable state-independent quantum contextuality[J]. Phys. Rev.
Lett., 2008, 101: 210401.

[81] Kirchmair G, Zähringer F, Gerritsma R, et al. State-independent experimental test of quantum
contextuality[J]. Nature, 2009, 460: 494–497.

[82] Malinowski M, Zhang C, Leupold F M, et al. Probing the limits of correlations in an indivisible
quantum system[J/OL]. Phys. Rev. A, 2018, 98: 050102. https://link.aps.org/doi/10.1103/
PhysRevA.98.050102.

[83] Jerger M, Reshitnyk Y, Oppliger M, et al. Contextuality without nonlocality in a superconducting
quantum system[J]. Nat. Commun., 2016, 7: 12930.

[84] Huang C, Shi Y. Private communications[M]. [S.l.: s.n.], 2017.

[85] Dietrich M R, Kurz N, Noel T, et al. Hyperfine and optical barium ion qubits[J/OL]. Phys. Rev.
A, 2010, 81: 052328. https://link.aps.org/doi/10.1103/PhysRevA.81.052328.

[86] Slodička L, Hétet G, Röck N, et al. Interferometric thermometry of a single sub-doppler-cooled
atom[J/OL]. Phys. Rev. A, 2012, 85: 043401. https://link.aps.org/doi/10.1103/PhysRevA.85.
043401.

[87] Leupold F M, Malinowski M, Zhang C, et al. Sustained state-independent quantum contextual
correlations from a single ion[J/OL]. Phys. Rev. Lett., 2018, 120: 180401. https://link.aps.org/
doi/10.1103/PhysRevLett.120.180401.

[88] Morigi G, Eschner J, Keitel C H. Ground state laser cooling using electromagnetically induced
transparency[J]. Phys. Rev. Lett., 2000, 85: 4458.

[89] Lin Y, Gaebler J P, Tan T R, et al. Sympathetic electromagnetically-induced-transparency
laser cooling of motional modes in an ion chain[J/OL]. Phys. Rev. Lett., 2013, 110: 153002.
https://link.aps.org/doi/10.1103/PhysRevLett.110.153002.

[90] Russell I, A L L, Michael L. Pseudo-random generation from one-way functions[C]//
Proceedings of the twenty-first annual ACM symposium on Theory of computing. [S.l.]:
ACM, 1989: 12–24.

[91] N W M, Lawrence C J. New hash functions and their use in authentication and set equality[J].
J. Comput. Syst. Sci., 1981, 22(3): 265–279.

[92] You-Qi N, Leilei H, Yang L, et al. The generation of 68 gbps quantum random number by
measuring laser phase fluctuations[J]. Rev. Sci. Instrum., 2015, 86(6): 063105.

[93] Rukhin A, Soto J, Nechvatal J, et al. A statistical test suite for random and pseudorandom
number generators for cryptographic applications[J]. NIST special publication, 2010, 800-22:
Rev. 1–a.

89

https://link.aps.org/doi/10.1103/PhysRevA.98.050102
https://link.aps.org/doi/10.1103/PhysRevA.98.050102
https://link.aps.org/doi/10.1103/PhysRevA.81.052328
https://link.aps.org/doi/10.1103/PhysRevA.85.043401
https://link.aps.org/doi/10.1103/PhysRevA.85.043401
https://link.aps.org/doi/10.1103/PhysRevLett.120.180401
https://link.aps.org/doi/10.1103/PhysRevLett.120.180401
https://link.aps.org/doi/10.1103/PhysRevLett.110.153002


参考文献

[94] Dupuis F, Fawzi O, Renner R. Entropy accumulation[J]. arXiv preprint arXiv:1607.01796,
2016.

[95] Arnon-Friedman R, Dupuis F, Fawzi O, et al. Practical device-independent quantum cryptog-
raphy via entropy accumulation[J]. Nat. Commun., 2018, 9(1): 459.

[96] Kulikov A, Jerger M, Potočnik A, et al. Realization of a quantum random generator certified
with the kochen-specker theorem[J]. Phys. Rev. Lett., 2017, 119(24): 240501.

[97] Fiorentino M, Santori C, Spillane S, et al. Secure self-calibrating quantum random-bit generator
[J]. Phys. Rev. A, 2007, 75(3): 032334.

90



致 谢

致 谢

衷心感谢导师金奇奂教授及全家对本人的学术与人格全方位的精心指导，如

同第二位父亲一样，他的言传身教将使我终生受益。感谢清华大学量子信息中心

离子量子计算实验室的所有同学们，张翔、张君华、安硕明、吕定顺、汪野、沈杨

超、路尧、王鹏飞、乔木、张宽、张帅宁、栾春阳、陈文涛等每一位都像兄弟一样

提供了很多的帮助。感谢张静宁研究员、在最后一个课题中一起合作的马雄峰教

授和赵琦同学提供了很多理论上的支持，他们为我和我们合作的实验付出了很多。

也感恩与隔壁实验室的赵琦、祖充、刘可、侯攀宇、张文纲等很多同学们一起度过

的 8年时光。

感恩上苍，感谢父母和兄长、妻子与女儿、岳父岳母不遗余力的支持和鼓励，

感谢你们背后默默付出的所有。

感谢在学校和社团中认识并帮助我的所有弟兄姐妹们，你们让我的生活更有

意义。

荣幸成为第一个清华韩国物理博士。感谢覆盖硕士博士 8 年全额奖学金的中

国政府。本课题承蒙国家自然科学基金资助，特此致谢。

12年整一轮，清华求学梦醒来，唯有满满的感恩。

91



声 明

声 明

本人郑重声明：所呈交的学位论文，是本人在导师指导下，独立进行研究工作

所取得的成果。尽我所知，除文中已经注明引用的内容外，本学位论文的研究成

果不包含任何他人享有著作权的内容。对本论文所涉及的研究工作做出贡献的其

他个人和集体，均已在文中以明确方式标明。

签 名： 日 期：

92



个人简历、在学期间发表的学术论文与研究成果

个人简历、在学期间发表的学术论文与研究成果

个人简历

1989年 6月 29日出生于韩国首尔市。

2007年 9月考入清华大学计算机科学与技术系，2011年 7月本科毕业并获得

工学学士学位。

2011年 9月免试进入清华大学交叉信息研究院计算机科学与技术方向，2014

年 7月硕士毕业并获得工学硕士学位。

2014年 9月免试进入清华大学交叉信息研究院物理学方向攻读博士学位至今。

发表的学术论文

[1] Um M, Zhang J, et al. Phonon arithmetic in a trapped ion system. Nature Commu-
nications, 2016, 7:11410.

[2] Zhang J, Um M(共同一作), et al. NOON States of Nine Quantized Vibrations in
Two Radial Modes of a Trapped Ion. Phys. Rev. Lett., 2018, 121:160502.

[3] An S, Zhang J, Um M, et al. Experimental Test of the Quantum Jarzynski Equality
with a Trapped Ion System. Nature Phys., 2014, 11:193-199.

[4] Wang Y, Um M, et al. Single qubit quantum memory exceeding ten-minute coher-
ence time. Nature Photonics. 2017, 11(10):646.

[5] Lv D, An S, Um M, et al. Reconstruction of the Jaynes-Cummings field state of
ionic motion in a harmonic trap. Phys. Rev. A, 2018, 95:043813.

[6] Park J, Zhang J, Um M, et al. Testing Nonclassicality and Non-Gaussianity in Phase
Space. Phys. Rev. Lett. 2015, 114:190402.

[7] Xie T, Jin N, Um M, et al. Frequency stabilization of a 650 nm laser to an I2
spectrum for trapped 138Ba+ ions. JOSA B, 2019, 36:243–247.

研究成果

93


	囚禁离子中量子互文性保证的量子随机数生成与验证研究
	摘 要
	Abstract
	目 录
	主要符号对照表
	第1章 Introduction
	1.1 Random numbers
	1.2 Quantum contextuality
	1.3 Trapped ion system

	第2章 Trapped 171Yb+ ion system
	2.1 Ionization, doppler cooling, optical pumping, detection
	2.2 Motional structure of an 171Yb+ Ion
	2.3 Stimulated Raman Transition
	2.4 Sideband cooling

	第3章 Trapped 138Ba+ ion system
	3.1 Ionization, doppler cooling, optical pumping, detection
	3.2 Quantum manipulation with 1762 nm laser
	3.3 Coherence time

	第4章 Phonon arithmetics with a trapped 171Yb+ ion
	4.1 Definition of conventional arithmetics
	4.2 Rapid Adiabatic Transition Process
	4.3 Experimental setup
	4.4 Reconstruction of density matrix and wigner function measurement
	4.5 Conventional phase-coherent addition operation
	4.6 Conventional subtraction operation
	4.7 Commutation relation of addition and subtraction operations
	4.8 Extention on compatibility measurement for randomness certifacation

	第5章 Randomness expansion secured by quantum contextuality with a trapped 138Ba+ ion
	5.1 Modified KCBS inequality
	5.2 Randomness expansion protocol and security proof in practical case
	5.3 Randomness generation rate
	5.4 Experimental schematic and procedure
	5.5 Randomness expansion data
	5.6 Extractor and random test

	第6章 Conclusion and outlook
	6.1 Improvement of random number generation speed
	6.2 Randomness amplification
	6.3 Randomness certification with 2 species ions achieving perfect compatibility measurement

	插图索引
	表格索引
	公式索引
	参考文献
	致 谢
	声 明
	个人简历、在学期间发表的学术论文与研究成果


