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摘 要

摘 要

诸多快速发展的量子技术正在引领我们步入所谓的“第二次量子革命”。量

子计算机的提出为解决经典计算机无法胜任的问题开辟了全新的可能性，这一设

想也有望在不久的未来成为现实。为此，大量研究人员正在所有可能的物理平台

进行广泛而深入的研究，并在过去的五年中，发布了多台小型量子计算机模型。

作为最早被提出用于实现量子计算机的候选平台，离子阱目前仍是最有希望

实现大规模量子计算的物理平台之一。在量子比特的相干时间、量子操作的保真

度和已实现纠缠的规模等方面，离子阱的性能均优于其他大多数平台。但目前研

究人员仍在探索用于构建大规模离子阱量子计算机所需的技术。本文中，我们重

点研究了几种具有可扩展性的技术方法，并基于离子阱平台实现了一个小型但全

可控的量子计算系统。在该系统中，我们利用射频电场囚禁数个镱离子，并将它

们编码为量子比特；同时，通过开发激光独立寻址系统，我们实现了对每个量子

比特的完全独立控制。因此，我们可以在任意单量子比特或者量子比特对上执行

通用门集中的量子操作，而这意味着该系统具有执行任何通用量子计算任务的能

力。

作为量子模拟原理的演示，我们提出了一个验证退相干环境下的量子非平衡

功关系的方案。对于一个编码在单离子中的二能级系统，我们实验上实现了对其

的可控退相干作用。基于此，我们探究了当系统以不同的速度驱动时，退相干作

用对系统做功分布的影响。实验结果成功地验证了该开放系统中的量子非平衡功

关系，而这也是该理论在孤立量子系统外的首次验证。

此外，我们通过理论计算验证了多量子比特的全局纠缠门的可扩展方案，并

在实验上进行了可行性演示。作为对传统通用门集的扩充，该纠缠门可用于简化

量子电路并加速其运行。实验中，利用该纠缠门，我们仅用一次全局操作便产生

了多达四个量子比特的最大纠缠态。我们还演示了三自旋铁磁伊辛模型的数字化

绝热演化算法，进一步展示了全局纠缠门在实践中的优势。

尽管我们仅构建了一个小规模的演示系统，但该系统展现了良好的可扩展性。

本文中介绍的技术也可作为未来大规模量子计算机的可扩展模块，并推动相关研

究方向的进一步发展。

关键词：离子阱；量子计算与模拟；多体纠缠
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Abstract

Abstract

Fast developing quantum technologies are leading us to step into the so-called second
quantum revolution. Among these techniques, quantum computers open up the possibility
of solving classically intractable problems and are expected to become a reality in the
near future. Therefore, intense researches in a wide range are being carried out on various
physical platforms, and during the past five years, several small-scale quantum computers
are announced.

As the first candidate proposed to work as quantum computers, trapped-ion platforms
are still the leading platforms to achieve large-scale quantum computation, and outperform
most of the other platforms from the perspective of coherence time, operation fidelity, and
entangled size. However, the arts to construct a large-scale trapped-ion quantum computer
are still under exploring. In this thesis, we focus on developing several scalable methods
and achieving a small-scale, but fully controllable quantum computing system based on
the trapped-ion platform. In such a system, we confine several ytterbium ions, served as
qubits, by radio-frequency electric fields. Meanwhile, by developing an individual laser
addressing system, we realize fully independent control on each ion qubit. Overall, we
can execute quantum operations belonging to a universal gate set on any single qubit or
qubit pair, indicating the ability to perform any universal computation task.

As proof-of-principle on quantum simulation, we propose to verify the quantum
nonequilibrium work relation in a decohering environment. We experimentally engineer
a controllable decohering effect on a two-level system encoded in a single ion. The
non-trivial influences of decoherence on work distributions are studied when we drive
the system at different speeds to do work. Our results reveal the quantum nonequilibrium
work relation established in this open system, representing the first demonstration beyond
isolated quantum systems.

Moreover, beyond a conventional universal gate set, we theoretically investigate and
experimentally implement a scalable scheme for realizing multi-qubit global entangling
gates, which can be utilized to simplify quantum circuits and speed up their execution.
With such gates, a maximally entangled state with up to four qubits is generated in a
single global operation. Furthermore, we demonstrate a digitized adiabatic evolution
algorithm for the three-spin ferromagnetic Ising model, showing the advantages of the

II



Abstract

global entangling gates in practice.
Although we only built a small-scale demonstration system, it reveals favorable

scalability. The techniques introduced in the thesis could serve as the scalable blocks for
large-scale quantum computers, motivating further researches in the relevant directions.

Key Words: Trapped-ion; Quantum computation and simulation; Multipartite entangle-
ment
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Chapter 1 Introduction

1.1 Quantum computation

"It from bit" [1] or "qubit" [2]?
The fast development of modern physics, especially the establishment of quantum

physics, impacts people’s understanding of reality. Numerous experimental results since
the 20th century reveal quantum features of our world. Although well-developed classical
computers provide us powerful tools to numerically study a system following the laws
of classical physics, tremendous obstacles occur when we want to precisely simulate
an extensive quantum one. Due to the feature of quantum superposition, the classical
resources required to simulate a quantum system would exponentially expose as the size
of the quantum system increases. Therefore, a quantum computer, which "do exactly the

same as nature" [3], are required.
Quantum computers are believed to be capable of solving classically intractable

problems, ranging from factorization of large numbers [4] to simulation of quantum many-
body systems [3,5]. The abstract concepts of quantum simulation and quantum computation
were initiated by Paul Benioff during the 1970s [6], and they have been well-known since
Richard Feynman gave that famous lecture in 1981 [3]. As an analog of a bit in classical
computers, the minimal unit in quantum computers is known as a quantum bit (qubit),
denoted as

|0〉 and |1〉.

Different from classical bits, the different states of qubits can exist simultaneously, for
example,

|ψ〉 = α0 |0..0〉 + ... + α2N−1 |1...1〉,

which is known as the principle of quantum superposition. This feature indicates one of the
powerful characteristics of quantum computers, known as quantum parallelism. We can
execute operations in parallel on all possible input states, U |ψ〉, resulting in exponential
speed-up compared with classical computers. Although for each measurement, only a
single outcome can be returned due to irreversible state collapse, we can employ the
schemes like adiabatic quantum computation [7] or quantum Fourier transformation [8] to
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pick up the correct results of a quantum algorithm in a few samples with very high
probability.

1.2 Trapped-ion quantum computer

To select the proper physical platforms for practical quantum computation, David
DiVincenzo summarized the following criteria in 2000 [9],

1. A well-defined two-level-system to encode a qubit,
2. Long enough coherence time to perform quantum operations,
3. Near perfect initialization of qubits to a deterministic pure state,
4. Realization of a universal gate set,
5. Near perfect readout on states of qubits.

After filtering out, the remained physical platforms include such as trapped-ion systems,
superconducting systems, linear optical systems, and quantum dots. Up to date, the
laser-cooled trapped-ion system, which was proposed as the first candidate for quantum
computation in 1995, is still one of the most promising platforms for the realization of
large-scale quantum computers. Quantum information stored in a single ion qubit can
keep alive over several seconds [10], and can even exceed 10 minutes with the help of the
dynamic decoupling techniques [11], thus keeping the longest coherence time record among
all physical platforms. A maximally entangled state was generated among 14 qubits in
2011 [12], and the entanglement size has been updated to 16 qubits recently. Meanwhile, the
storage time of a four-qubit multipartite entangled state reaches 1.1 second [13]. The error
rates of single- and two-qubit operations can be below 10−5 [14] and 10−3 [15]. Moreover,
small programmable and controllable trapped-ion systems with tens of ion qubits have
been realized in laboratories [16-17].

However, quantum computers in the current stage are not able to perform their
expected capabilities. The correct outputs of long depth quantum circuits would be
overwhelmed by serious noises due to the limited lifetime of qubit coherence and the
non-negligible error rates in quantum operations. The concept of fault-tolerant quan-
tum computation [18-19] was proposed, claiming that we can achieve large-scale quantum
computation by encoding a certain number of physical qubits into error-correctable logic
qubits (quantum error correction, QEC) and suppress the error rates of quantum operations
below certain thresholds (threshold theorem) [20]. For a full-fledged quantum computer,
we might require thousands of well-controlled logical qubits, and the equivalent number
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of physical qubits could reach tens of times, which is quite challenging to implement based
on current techniques. Therefore, lots of researches have been conducted to develop useful
near-term applications. One representative application is hybrid quantum computation by
combing powerful classical computers with quantum processors to perform several op-
timization algorithms like variational quantum eigensolver [21] and quantum approximate
optimization [22]. Another proposal, known as error mitigation, might help noisy quantum
computers more practical on shallow quantum circuits by estimating the noise-free out-
puts through extrapolation [23] or compensating for operational errors by random circuits
with quasi-probability sampling [23-24]. Now, we are stepping into the so-called "noisy

intermediate-scale quantum (NISQ) era." [25]

1.3 Thesis structure

In this thesis, we would introduce how to achieve a small-scale but fully controllable
quantum computing system based on the trapped-ion platform. The details are organized
as follows,

• In chapter 2, the mechanism of the ion trap would be introduced in the way of
classical mechanics. The dynamics of a single charged particle confined in a radio-
frequency potential would be revealed by intuitively obtaining pseudo-potentials or
solving motional equations. The collective behaviors of multiple ions would be
discussed, which play a crucial role in quantum computing based on trapped ions.
At the end of this chapter, we would briefly introduce our experimental vacuum
system.

• In chapter 3, we describe several features of ytterbium ions encoded as qubits.
The methods of achieving high fidelity qubit state initialization and detection are
introduced. Meanwhile, we give the derivation of single-qubit coherent manipula-
tions by microwaves or Raman lasers. The experimental timing control is briefly
introduced at the end.

• In chapter 4, we demonstrate the first quantum simulation to verify the quantum
nonequilibrium work relation in the presence of decoherence. We employ a two-
level system encoded in a single ion and engineer a controllable decohering effect.
The influences of decoherence are studied when the system is driven at different
speeds to do work. The experimental results first reveal the validity of the quantum
nonequilibrium relation beyond the closed quantum system.
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• In chapter 5, we first complement the schemes for implementing two-qubit entan-
gling gates on the trapped-ion platform. To experimentally realize a fully control-
lable quantum computing system, we build an individual laser addressing system for
fully independent control on each qubit. Meanwhile, the methods of initialization
and detection are extended to the situation of multiple qubits. Finally, we introduce
several schemes for achieving noise-insensitive gates.

• In chapter 6, beyond the universal gate set, we focus on the experimental realiza-
tion of multi-qubit global entangling gates, which can provide speed-up in various
quantum algorithms. By utilizing phase-modulated laser driving forces to precisely
control the motional trajectories of multiple qubits in the phase space, we success-
fully implement the global entangling gates and create the maximally entangling
state with up to four qubits in a single global operation. Moreover, the digitized
adiabatic evolution algorithm of the ferromagnetic Ising model is demonstrated.

• In chapter 7, we give an outlook of the potential directions for future researches.
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The ion trap, specifically the Paul trap named after Wolfgang Paul (who shared
the 1989 Nobel Prize in Physics with Norman Ramsey and Hans Dehmelt [26-28]), was
developed initially as a mass spectrometer and a mass filter for charged particles [26].
In such a system, charged particles are injected axially, and only those particles with
the proper charge-to-mass ratio could pass through the trap and be collected, while the
others would hit electrodes and be lost. Meanwhile, researchers explored the possibility
of dynamically stabilizing charged particles inside the trap, and called such a device as
"Ionenkäfig" at the beginning, which is the prototype of the current ion trap. Compared
with being a mass filter, charged particles are three-dimensionally confined in this device
by adding an electrostatic potential in the axial direction. Clouds of Ba+ and Mg+ were
observed in a Paul trap and a Penning trap in 1978 [29-30], respectively, with the help of
the Doppler cooling techniques [31-32]. Two years later, a single Ba+ was captured [33], and
then in 1981, a single Mg+ was also caught [34]. More exciting progress happened in 1986
was that quantum jumps was observed for the first time by utilizing the trapped ions [35-37].
Soon after, in 1987, a phase transition between the crystalline phase and the gaseous phase
was realized with multiple Mg+ ions [38]. The next stage was surely the manipulation in
the quantum level that began nearly 30 years ago and is still growing and developing [39].

In this chapter, we will first describe the classical motion of a single ion trapped in
a radio-frequency (RF) potential, giving an understanding of secular motion and micro-
motion. Then the collective behaviors will be discussed when more than one ion is
captured. Finally, we will make connections between above theories and experimental
realizations by introducing our setup.

2.1 Classical dynamics of a single trapped ion

2.1.1 Pseudo-potential

An intuitive way to restrict a single ion in a certain space is applying a binding force
as follows, ®F ∝ −®r , where ®r = {x, y, z} is the displacement from the equilibrium position
of the ion. In principle, such force can be induced from a static quadratic electric potential
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Φ, which can be expressed in Cartesian coordinates as,

Φ(®r) =
V

2R2

(
αxx2 + αyy

2 + αzz2) = ∑
m∈{x,y,z}

Φm, (2-1)

where all the quadratic coefficients αm should be positive. Unfortunately, the realization
of the above quadratic potential is forbidden in reality due to the restriction of Maxwell’s
equations in free space, ∇ · E = −∇2Φ = 0, which leads to a constraint of∑

m∈{x,y,z}

αm = 0. (2-2)

This constraint conflicts with the previous requirement of αm > 0, indicating that the
ion must escape in a certain direction. Therefore, the ion cannot be three-dimensionally
trapped by the static electric fields, known as Earnshaw’s theorem [40].

Although the simplest method of using the static potential gives us a dead end,
another option comes out that we can utilize a RF potential, Φ cos (Ωrft), to dynamically
stabilize the ion. Intuitively speaking, the ion will be drawn back before escaping due to
the alternating potential.

In detail, the ion with a mass of M and a charge of e suffers from a time-dependent
force as follows,

®F = M Ü®r = e ®E(®r) cos (Ωrft) , (2-3)

where ®E(®r) = −∇Φ. Due to the position dependence of the electric field ®E , it is almost
impossible to solve Eq. (2-3) analytically. Instead, we treat the position-dependent part as
a small perturbation ®Eε, which can be ignored for now by approximating ®E(®r) = ®E(®r0)+ ®Eε

as ®E(®r0). Then we can obtain the trajectory of the ion by integrating Eq. (2-3) with the
initial conditions of ®r(0) = ®r0 and Û®r(0) = 0,

®r − ®r0 =
e ®E(®r0)

MΩ2
rf
(1 − cos (Ωrft)) . (2-4)

With Eq. (2-4), the first-order perturbation of the electric field can be estimated as,

®E (1)ε ≈ ((®r − ®r0) · ∇) ®E

=
e

MΩ2
rf
(1 − cos (Ωrft))

(
®E · ∇

)
®E

=
e

2MΩ2
rf
(1 − cos (Ωrft)) ∇| ®E |2. (2-5)
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The last line is obtained due to the relations of(
®E · ∇

)
®E =

1
2
∇| ®E |2 − ∇ ×

(
∇ × ®E

)
, (2-6)

∇ × ®E = 0. (2-7)

By including the perturbation of the electric field into Eq. (2-3), the net effect of the total
electric field can be extracted by averaging the time-dependent force,〈

®F
〉
≈ −e

〈(
®E(®r0) + ®E (1)ε

)
cos (Ωrft)

〉
. (2-8)

All the fast oscillating terms are zeroed after time averaging, and the only remained effect
can be expressed as, 〈

®F
〉
≈ −

e2

4MΩ2
rf
∇| ®E |2 = −e∇Φp, (2-9)

which can be treated as an effective force induced from a pseudo-potential of

Φp =
e

4MΩ2
rf
∇| ®E |2. (2-10)
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Figure 2.1 Density plot of a two-dimensional static quadrupole potential and the pseudo-potential
obtained from the corresponding oscillating potential.

Assuming that the time-independent part of the electric potential, Φ, has the form of
the Eq. (2-1), we can obtain the pseudo-potential in the following form,

Φp =
eV2

4MR4Ω2
rf

∑
m

α2
mr2

m. (2-11)
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The result has positive quadratic coefficients for all the directions, as shown in Fig. 2.1
(b), and reveals the capability of capturing the charged ion. Meanwhile, we can obtain the
effective trap frequencies of νm = eVαm/

√
2MR2Ωrf for each direction.

2.1.2 Approximate solution of Mathieu equation

After getting an intuitive explanation of dynamically trapping a single ion with the
oscillating field, we have to carefully revisit the high-frequency motion of the ion that is
smoothed due to time averaging. For this purpose, we have to mathematically find the
solution of the differential equation of Eq. (2-3). To simplify the problem, we only focus
on the equation of the motion in one direction, for example, the x-direction here,

Üx +
eVαx

MR2 x cos (Ωrft) = 0. (2-12)

Note that, the above equation is equivalent to Mathieu equation [41],

d2x
dτ2 + (ax + 2qx cos (2τ)) x = 0, (2-13)

with τ = Ωrft/2, ax = 0 and qx = 2qVαx/(MR2Ω2
rf). Instead of obtaining the exact

solution of Eq. (2-13), let us approximate it to be

x(τ) ≈ x(0)(τ) + x(1)(τ)

= A0 cos (βxτ) + A1 cos ((βx + 2) τ) + A−1 cos ((βx − 2) τ) . (2-14)

Here, the 0th order, x(0)(τ), should correspond to the oscillation at the frequency of the
pseudo-potential νx, and x(1)(τ) includes the first-order high-frequency oscillations. All
the other high-order terms are ignored due to qx � 1 in practice. βx and A0,1,−1 are the
undetermined coefficients. By inserting Eq. (2-14) into Eq. (2-13), the equation can be
organized to be the form of (

A1qx + A−1qx − A0β
2
x
)

cos (βxτ)+(
A0qx − A1(βx + 2)2

)
cos ((βx + 2)τ)+(

A0qx − A−1(βx − 2)2
)

cos ((βx − 2)τ) =0, (2-15)

where the terms of cos ((βx ± 4)τ) are ignored. Because Eq. (2-15) should be established
for arbitrary τ, the coefficients of all the cos term should be zero, yielding an equation of
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βx,

q2
x

2β2
x + 8(

β2
x − 4

)2 = β
2
x . (2-16)

Apparently under the assumption of qx � 1, Eq. (2-16) has a solution of

βx ≈
qx
√

2
. (2-17)

By inserting the solution of βx back to the Eq. (2-15) and Eq. (2-14), we obtain the
approximated trajectory of the ion in the x-direction,

x(τ) ≈ A0 cos
(

qx
√

2
τ

) (
1 +

qx

2
cos (2τ)

)
, (2-18)

or

x(t) ≈ A0 cos (νxt)
(
1 +

qx

2
cos (Ωrft)

)
. (2-19)

Here A0 can be determined by the initial condition. The oscillation with the frequency of
νx = qVαx/

√
2MR2Ωrf, called as secular motion, is consistent with the result we obtained

from the pseudo-potential. Meanwhile, we have an additional oscillation with a much
higher frequency of Ωrf. This fast modulation superimposed on the secular motion is
directly related to the oscillation of the electric potential, called micro-motion, or intrinsic
micro-motion, as shown in Fig. 2.2. Since the value of qx is quite small, the effect of the
intrinsic micro-motion can be ignored in principle.

However, if an extra direct-current (DC) electric field of EDC exists in space, it would
shift the equilibrium position of the ion, and we should modify the trajectory of Eq. (2-19)
to be

x(t) ≈ (xDC + A0 cos (νxt))
(
1 +

qx

2
cos (Ωrft)

)
, (2-20)

where xDC = qEDC/Mν2
x . This excess micro-motion, which can be estimated as

xDCqx cos(Ωrft)/2, can be huge depending on the amplitude of the DC field, and then
destroy coherent manipulations of the ion. Therefore, in practice, additional DC elec-
trodes are required to compensate for the unwanted DC electric field and minimizing the
excess micro-motion [42]. Note that the equilibrium position without the extra electric field
is called "RF null" because the RF field has a zero amplitude but a finite gradient here.

In the experimental realization, the RF field is typically applied in only two directions,
labeled as x and y. A conventional apparatus to generate such a field is four-cylinder

9



Chapter 2 Trapped-ion system

0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

t (μs)

Sc
al
ed

x

Figure 2.2 Classical motion of a single ion in an RF oscillating potential. Here, we assume the
frequency of the oscillating potential is Ωrf = 2π × 32 MHz, and the frequency of the secular
motion is νx ≈ 2π×2.5 MHz. From the trajectory in the x-direction, we can distinguish the secular
motion and the micro-motion. The black line refers to the approximated solution according to
Eq. (2-19), while the red dots are obtained by numerically solving Eq. (2-12). Because qx ≈ 0.22
here is a quite large value, the numerical results deviate slightly from the approximated solution.

electrodes that are parallel to each other in the z-direction [26], as shown in Fig. 2.3.
By alternatively applying the RF and the DC field to each rod, an oscillating electric
quadrupole field is created in the central region surrounded by the four rods due to the
geometric symmetry. In principle, we can generate a multipole field by increasing the
number of rods, which has additional advantages in some applications and see further
discussion in the App. A. The confinement in the rest z-direction is achieved by adding
extra needles at both ends in the z-direction. By applying proper DC voltages to the
needles, a DC potential can be generated along the z-direction.

RF

RFDC

DC needle

DC

Micromotion compensation

Figure 2.3 Conventional four-rod trap. DC voltages are applied to the rods shown in black, while
RF voltages are applied to the white rods. Above two rods are used to compensate for the extra
electric field in space and then minimize the excess micro-motion.
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2.2 Collective motion of a single ion-chain

Nowwe move to the situation with more than one ion, where an ion-chain is approxi-
mated as being confined in a three-dimensional harmonic potential, with trap frequencies
of νx, νy, and νz in each direction, respectively. When multiple ions are captured, the
confinements from the harmonic potential pull the ions together into the center of the trap,
while the Coulomb force pushes them apart. The competition between the attractive and
the repulsive interactions re-balances the equilibrium positions of all the ions, resulting
in a Coulomb crystal. Typically because the effective frequencies of the pseudo-potential
in the x-y plane are much larger than that of the z-direction (νx, νy � νz), the ions are
distributed along the z-direction and form a one-dimensional ion-chain.

In the experiment, we first care about equilibrium positions of all the ions for the
reason of precise laser alignment. For the ion chain consisting of N ions, the total potential
energy can be expressed as,

V({®ri}) =
∑
i,k

1
2

Mν2
kr2

i,k +
e2

4πε0

∑
i< j

[∑
k

(
ri,k − rj ,k

)2

]−1/2

= V1 + V2, (2-21)

where ®ri = {ri,1,ri,2,ri,3} = {xi, yi, zi} are the coordinates of the i-th ion. V1 and V2

originate from the three-dimensional harmonic potential and the Coulomb interaction,
respectively. According to the classical mechanics, the net force on each ion should be
zero when the whole system reaches equilibrium, indicating that,

Fi,k = −
∂V
∂ri,k

= 0, (2-22)

should be established for any {i, k}. From the above 3N equations, we can obtain the
equilibrium positions {req

i,k
} for all the ions. Moreover, based on the assumption of

νx, νy � νz, we would directly have the solutions of req
i,1 = req

i,2 = 0 for all i. From another
aspect, the energy of the ion-chain should reach a minimum when all the ions are in their
equilibrium positions, which indicates that we can also obtain the equilibrium positions
by searching the minimum of the objective function V({®ri}).

Now we investigate the motion of the ions. For a single ion, it would vibrate
harmonically at the frequencies of νm in the m-direction. However, for the multi-ion
case, an individual ion, which vibrates near its equilibrium position, would also excite
the vibrations of the rest ions, due to the Coulomb interaction. Mathematically, we can
approximate the harmonic vibration of each ion by expanding the total potential energy

11
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to the second-order near the equilibrium positions,

V({®ri}) = V(
{
®req
i

}
) +

1
2

∑
i, j ,k ,l

∂2V
∂ri,k∂rj ,l

���
r

eq
i ,k
,r

eq
j ,l

δri,kδrj ,l, (2-23)

where δri,k = ri,k − req
i,k

is the local displacement from the equilibrium position. The
first-order of the expansion vanishes due to the requirement of Eq. (2-22). Note that, due
to ∂2V/∂ri,k∂rj ,l = 0 if k , l, we can fully separate Eq. (2-23) into three independent
parts and focus on one of the directions,

Vk({ri,k}) =
∑
i, j

γ(k)i, j δri,kδrj ,k . (2-24)

Here the constant part of the total energy is ignored and the coefficients {γ(k)i, j } can be
written in the following form,

γ(k)i, j =


Mν2

k +
1
2
∂2V2

∂r2
i,k

���
r

eq
i ,k

= M(νk + ∆νk)2 i = j

1
2

∂2V2

∂ri,k∂rj ,k

���
r

eq
i ,k
,r

eq
j ,k

i , j
. (2-25)

The above coefficients reveal two effects induced by the Coulomb interaction, (a) the
frequencies shift of the local vibrations (γi,i) and (b) the couplings of different local
vibrations (γi, j). Therefore, the local vibration of each ion would be pretty complicated.
However, the quadratic form of Eq. (2-24) indicates that we can find linear combinations,

δri,k → δRi,k =
∑
j

b(k)i, jδrj ,k, (2-26)

to reduce Eq. (2-24) to the diagonal form of,

Vk =
∑
i

λ(k)i δR2
i,k =

1
2

M
∑
i

ν2
i,kδR2

i,k . (2-27)

Here λ(k)i and {b(k)i, j } is the i-th eigenvalue and eigenvector of the matrix {{γ(k)i, j }}, respec-
tively. This result reveals the collective motion of the multiple ions, known as the normal
modes. If we perform a Fourier transform on the motion of the ions, we could observe N

vibration modes for each direction in the frequency domain, with the frequencies of,

νi,k =

√
2λ(k)i /M . (2-28)

for each mode. νi,k is called as the frequency of the i-th normal mode in the k-direction.
Meanwhile, the relative oscillating amplitude and phase of the j-th ion in the i-th mode is

12



Chapter 2 Trapped-ion system

given by the value of bi, j . The matrix consisting of all the eigenvectors, B(k) = {{b(k)i, j }},
is called as the normal mode transformation matrix [43].

Here we use a three-ion chain as an example to illustrate the properties of the
collective motion. In this case, the equilibrium positions can be analytically solved from
the equations of Eq. (2-22), which can be written as,

ion 1

(
0, 0, −

√
3e2

8πε0Mν2
z

)
,

ion 2 (0, 0, 0) , (2-29)

ion 3

(
0, 0,

√
3e2

8πε0Mν2
z

)
.

The transformation matrices in all the three directions are identical and given by,

B =
©«

1/
√

3 1/
√

3 1/
√

3
1/
√

2 0 −1/
√

2
−1/
√

6 2/
√

6 −1/
√

6

ª®®®¬ . (2-30)

For the normal mode determined by the first row, all the ions oscillate uniformly, called
center-of-mass (COM) mode, as shown in Fig. 2.4. Apparently, the frequency of the
COM mode should be consistent with the trap frequency in each direction, νk ,COM = νk .
Moreover, the components of the eigenvector for the COMmode can be generalized to be
1/
√

N for the N-ion case.
The behaviors of the motional spectrum are different between the axial and the

transverse directions, as shown in Fig. 2.4. For the z-direction, or usually called as the
axial direction, the COM mode has the lowest mode frequency. For the other mode in the
z-direction, for example, the second "breathing" mode or the last "zigzag" mode, the ions
move towards each other, leading to a rapid increase of the total energy of the system.
Therefore, compared with the COMmode, the rest of the modes always have higher mode
frequencies. On the contrary, for the x-direction and y-direction (transverse directions),
the COMmode has the highest frequency, because the motion of the ions is perpendicular
to the z-direction; the ions tend to stay away from each other except the COM mode.

Note that, for a harmonic potential in the axial direction, the nearby ion-spacing
would be non-uniform when the number of ions is larger than three. Several efforts have
been pushed to achieve the equal-spacing by applying an anharmonic axial potential. The
details are discussed in Ref. [44-46].
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Transverse direction

COMTiltingZigzag

COM

Tilting

Zigzag

(a)

Axial direction

COM Breathing Zigzag

COM

Breathing

Zigzag

(b)

Figure 2.4 Collective motion of a three-ion chain. In each sub-figure, we present the pattern of
each normal mode and show the order of their frequencies in the frequency domain. (a) and (b)
refer to the transverse and axial directions, respectively.

2.3 Experimental setup

In this section, we would briefly describe our experimental setup in practice. For the
detailed discussion of vacuum system and its assembling, please check previous theses
of our group (Ye Wang [47], Shuoming An [48]). As shown in Fig. 2.5, this is the ion-trap
device in our lab. To stably confine ions in the trapping potential, we should minimize
the effects of background collisions from the particles in the air. Therefore, we seal the
whole ion trap in an ultrahigh vacuum (UHV) system, where the air pressure of less than
10−11 Torr is maintained by a continuously running ion pump. The titanium sublimation
pump here is used to regularly improve the system vacuum further. Under this situation,
the lifetime of a single trapped ion can reach several days.

The trap itself is held inside a vacuum chamber, which has eight optical viewports for
optical access, as shown in Fig. 2.5. In our current setup, instead of using the conventional
four-rod trap shown in Fig. 2.3, we have already updated to a new version of blade trap,
which is initially designed by the ion-trap group in the University of Maryland [49]. In
this design, all the cylinder electrodes are replaced by the much thinner electrodes in a
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Imaging system

Titanium 
sublimation 
pump

Ion 
pump

Vacuum 
chamber

Helical 
resonator

DC filter

Figure 2.5 Experimental setup in practice. The whole vacuum system is separately shown in
several red dashed boxes, while the other main parts are marked in the blue dashed boxes.

blade shape, as illustrated in Fig. 2.6. Here, both DC electrodes are separated into five
segments, which is achieved by the conventional laser cutting, and the applied voltage on
each DC segment can be independently controlled. Although the RF electrodes are also
segmented to guarantee the geometric symmetry of the whole trap structure, the segments
in each RF blade are electrically connected. In Fig. 2.6 (d), we show the estimated size of
our trap used in the experiment.

Compared with the four-rod trap, this segmented blade trap has several advantages.
In Fig. 2.6 (a), it is evident that the DC needles are not required here, and the confinement
in the axial direction is generated by the high voltages applied to the edge DC segments
(for example, DC1 and DC5 in Fig. 2.6 (c)). By varying the voltages from around 40 V to
90 V, the axial trap frequency can be tuned from 2π×0.3 MHz to 2π×0.6 MHz. Moreover,
by carefully adjusting the voltages applied to the center three segments (DC2, DC3, DC4),
an anharmonic potential along the axial direction can be achieved, to make a few ions
equally spaced. For now, we apply the same voltage, which is much lower than that of
the edge segment, to the central three DC segments (UDC1/UDC3 > 10);therefore, the axial
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(a) (b)

DC3DC2 DC4

DC1 DC5

(c)

∼ 400 μm

∼ 300 μm

(d)

Figure 2.6 Structure of blade trap. (a) 3D modeling of the blade trap. Except for the different
shapes of the electrodes, it is similar to the conventional four-rod trap shown in Fig. 2.3. (b) Blade
trap used in the experiment. (c) Top view of the blade trap. The segmented electrodes can be
observed. There are five segments in each DC electrode which can be independently controlled.
The RF electrodes are segmented as well but electrically connected by coating the whole blade
with gold. (d) Side view of the blade trap. We intentionally assemble the four blades into a
rectangular shape, with the ion-electrode distance of ∼ 250 µm.
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potential can be well approximated as a harmonic potential. All the DC voltages pass the
DC filters with a cut-frequency of around 1.5 kHz (shown in Fig. 2.5) before connected
to the blades, to filter out most of electric noises.

The RF signal is delivered to the RF blades through a helical resonator (HR) with
a quality factor of Q ∼ 200, which works as the voltage amplifier and narrow bandpass
filter [50]. The frequency of the RF field is chosen to be ∼ 2π × 20 MHz, and increased to
∼ 2π×32 MHz later, to reduce the value of qx which discussed in Sec. 2.1. The amplitude
of the RF field is partially picked up from a capacitor-circuit inside the HR and then
utilized to achieve the stabilization of the radial trap frequencies [51], see in App. B. Note
that we should employ a bifilar-type HR, which has two coils to connect to two RF blades,
respectively, as shown in Fig. 2.7. We can apply different DC offsets to each RF field to
achieve the micro-motion compensation. The two coils inside the HR are connected by a
capacitor to balance the phases of the two RF fields.

To RF blade 1

To RF blade 2
0.2 pF

20 pF

Pick-up

Figure 2.7 Helical resonator with bifilar structure. The inside capacitors are used to pick up a
part of the RF signal (around 1%) for the feedback.

17



Chapter 3 Qubit encoded with Ytterbium ion and single-qubit operations

Chapter 3 Qubit encoded with Ytterbium ion and single-qubit
operations

At the current stage, all potential atomic ions for quantum computation can be
categorized as hydrogen-like ions, for example, Be+ (NIST [52-53]), Mg+ (NIST [54-55]),
Ca+ (University of Innsbruck [56-57], University of Oxford [58-59]), Ba+ (Washington Univer-
sity [60-61], UCLA [62]), Yb+ (University ofMaryland [16,63], University of Sussex [64-65]). The
hydrogen-like ions have the simplest energy structure and a closed-cycle optical transition
between the states 2S1/2 and 2P1/2, while the latter facilitates high-efficiency laser cool-
ing, high-fidelity initialization and readout of quantum states of the ion qubits [14,63,66-67].
Other parameters such as the mass of the ion, the wavelength of the cycle transition, the
value of the nuclear spin, and the lifetime of the metastable 2D level would be taken into
consideration when choosing the species of ion [68].

A qubit, or specifically a two-level system, is encoded in energy levels of a single ion.
One of the encoding options is utilizing hyperfine levels belong to the ground manifold
2S1/2 for the isotopes with a non-zero nuclear spin [63]. The relaxation time (T1) of the
hyperfine qubit can be longer than the age of universe. Meanwhile, the "clock state" in
the ground manifold with mF = mF′ = 0 is insensitive to magnetic field fluctuations due
to the vanishing of the first order Zeeman shift at zero magnetic field, resulting in the
longest coherence time (T2) compared with other platforms [11]. The energy gap of the
hyperfine qubit is typically around several GHz. Another popular encoding scheme is
utilizing optical levels belong to the ground manifold 2S1/2 and the metastable manifold
2D separately, and the energy gap of such a qubit falls into the optical region (∼ 102 THz).
Such kind of optical qubit has the advantage of ultra-high quality readout with near unit
fidelity, but suffers from the limited T1 time and the narrow linewidth (∼ 1 Hz) laser for
qubit manipulation. state [69-70].

In our system, we choose ytterbium (Yb), specifically 171Yb+, to encode our ion qubit.
In this chapter, we first detail the energy structure of 171Yb+. Then we will show how to
achieve laser cooling, qubit initialization, and state readout through the cyclic transition.
Finally, for quantum computing, we discuss coherent manipulations on a single ion qubit.
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3.1 Single 171Yb+ qubit and its initialization & detection

The nuclear spin of 171Yb+ is 1/2, leading to an energy structure shown in Fig.
3.1 [63]. The physical qubit is encoded in the hyperfine levels belong to 2S1/2, de-
noted as |1〉 = |F = 1,mF = 0〉 and |0〉 = |F = 0,mF = 0〉, with a bare energy gap of
12.642812118466 GHz at B = 0 [71]. An external static magnetic field of 6 Gauss induces
a second-order Zeeman shift of ∼ 11 kHz in the qubit splitting. The wavelength of the
cycle transition is near 369.526 nm, which can be generated from commercial laser sys-
tems and is still friendly to fiber transitions. Note that this cycle transition is not fully
closed because of the decay channel from 2P1/2 to 2D3/2 with a branching ratio of 0.5% [63].
Therefore, an additional 935 nm laser with a 3.07 GHz sideband is applied all the time to
bring the leaking state back to the cycle. Meanwhile, background collisions may transfer
the state of ion to the 2F7/2 manifold and make the ion "dark", which can be recovered by
a laser of 638 nm. Moreover, to repump the leakage in the 2F7/2 manifold, except 638 nm
we mentioned, and 760 nm [72] and 355 nm [73] lasers used in some groups, we found that
a laser of 375 nm can work as well. The most probable transition is from the 2F7/2 level
to the 3F [1/2]3/2 level, which is resonant at the wavelength of 375.856 nm [74].

The Yb ions are loaded by ionizing neutral atoms. The first ionization energy of Yb
atom is 6.25416 eV [75], which is equivalent to a photon with the wavelength of 198.242
nm. To avoid using such deep ultraviolet (UV) laser, we take a two-step ionization
method [63,76]. A photon with the wavelength of 398.911 nm first excites the neutral Yb
atom from the 1S0 level to the 1P1 level. Then the wavelength of the second photon should
be less than 394.088 nm in order to excite the outermost electron into the continuum
region. Note that, the 369.526 nm laser satisfies the requirement for the second step
excitation, or in some cases 355 nm or 375 nm laser is utilized. In practice, an oven filled
with the neutral Yb source is placed inside the vacuum chamber and heated by applying
a constant current. The atoms are thermally ejected from the oven, with a small portion
passing through the center of the trap. The laser beams of 398.911 nm and 369.525 nm
are aligned to overlap with the ejected atoms at the trap center. Therefore, the atoms in
this region can be ionized, and captured after efficient cooling. Due to the isotope shift,
we can selectively ionize different isotopes by finely tuning the wavelength of 398.911
nm laser, and the path of lasers is preferably perpendicular to the atomic flow to suppress
Doppler shifts.
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Figure 3.1 Energy structure of 171Yb+. The qubit is encoded in the hyperfine levels belonging to
the ground manifold 2S1/2, shown in red color. Due to the non-zero external static magnetic field
(∼6 Gauss), the derivative of the qubit energy gap ωq with magnetic field (∂ωq/∂B) is around
3.7 kHz/Gauss. The main optical transitions are shown in the blue lines, and the related decay
channels are shown in the gray-dotted lines. With the help of repumping lasers, the cycle transition
2S1/2 ↔

2 P1/2 is effectively closed.

3.1.1 Doppler cooling

After the ionization, the average speed of the Yb ions can be over hundred meters
per second according to Maxwell velocity distribution (the melting point at the standard
pressure is 824 ◦C), and such "hot" ions are easy to escape from the trap potential and hard
to crystallize. Therefore, a cooling process is necessary. The ions can be laser cooled by
applying a laser beam which wavelength is red-detuned from the cycle transition, known
as Doppler cooling [31-32], as shown in Fig. 3.2. The ion would lose (obtain) ~®k momentum
during the absorption process when ion move opposite to (away from) the laser beam,
where | ®k | = 2π/λ is the momentum of a single photon. Due to the Doppler effect, the
wavelength of incident photons shifts by a value of −®k · ®v in the ion-frame. Therefore,
when the ion moves oppositely to the beam, it absorbs more photons than when it moves
away because, in the latter case, the wavelength is more detuned from the resonance.
The spontaneous emission after absorption is homogeneous, and the average momentum-

20



Chapter 3 Qubit encoded with Ytterbium ion and single-qubit operations

changing turns out to be zero. Overall the ion tends to lose momentum and be slowed
down.

2.105 GHz
2P1/2

2S1/2

F = 1

F = 0

F = 1

F = 0

mF = −1
mF = 0

mF = 1

mF = 0

/2 = 19.7 MHz
 = 8.07 ns

1

0

12.643 GHz





scattering photons

Figure 3.2 Implementation of the Doppler cooling. Two cycle transitions, 2S1/2 |F = 1〉 ↔
2P1/2 |F = 0〉 and 2S1/2 |F = 0〉 ↔ 2P1/2 |F = 1〉 , are driven simultaneously to cover all hyper-
fine structures and avoid dark states. Here, we do not show the polarizations of the cooling laser.
For a efficient cooling process, all the polarization are required.

To find the optimal values for red-detuning and laser intensity, we first ignore the
hyperfine structures in the 2S1/2 and 2P1/2 manifold and treat them as a two-level system
(different from the two-level system of the qubit). The damping force ®F induced by the
cooling laser can be modeled as [77],

®F(®v) = ~®kRscatt = ~®k
s0γ/2

1 + s0 + 4(δ − ®k · ®v)2/γ2
. (3-1)

Here Rscatt is the scattering rate of the upper 2P1/2 level, δ is the value of the red-detuning,
and s0 = I/Isat is the ratio between the incident laser intensity and the saturated intensity,
where Isat = 2π2~cγ/3λ3. We can expand the damping force near ®v = ®0 and only keeping
the first order,

®F(®v) ≈ ®F(0) − β®v, (3-2)

where the value of ®F(0) is much smaller than the binding force and can be neglected.
Here, we obtain the damping coefficient of β in the following form,

β =
4~| ®k |2s0δ/γ

[1 + s0 + 4δ2/γ2]
2 . (3-3)
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To achieve the highest cooling rate we need to maximize β. We treat the damping
coefficient as a function of detuning δ and saturated parameter s0, β = β (δ, s0), while
other parameters are determined by the features of ion species. We numerically calculate
the damping coefficient with different values of δ and s0, and the results are shown in
Fig. 3.4. Obviously, the value of β reaches to its maximum when δ = γ/2 and s0 = 1.
Therefore, for 171Yb+, the optimal parameters for Doppler cooling are δ = 2π×9.85 MHz
and I = Isat = 51 mW/cm2.
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Figure 3.3 Relationship between damping coefficient and values of red-detuning and saturated
parameter. When the absorption of the upper 2P1/2 level is not saturated (s0 < 1), the scattering
rate Rscatt increases as the incident laser power increases. However, when the incident power is
much larger than the saturated value (s0 > 1), the optimal detuning is further redshifted, and the
peak value of the damping coefficient drops due to the power broadening.

Due to fluctuations in the processes of absorption and spontaneous emission, Doppler
cooling process can not completely freeze the ion, only cool to a specific minimum
temperature, known as the Doppler cooling limit with the form of [77],

kBTD =
~γ

2
. (3-4)

In the case of 171Yb+, this limitation is around 473 µK. Several sub-Doppler cooling
methods are developed to break this limitation, such as Sisyphus cooling [78], electromag-
netically induced transparency (EIT) cooling [79-81], and resolved sideband cooling [82-83].
The last one will be introduced later.

In practice we mainly drive the cycle transition of 2S1/2 |F = 1,mF = 0,±1〉 ↔
2P1/2 |F = 0〉 for the laser cooling. To cover all the Zeeman levels, the polarization of
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Figure 3.4 Experimental results of the Doppler spectroscopy. (a) The number of the scattering
photons Nph varies with the value of the detuning δ, following the Lorentz line-shape. The red
dots are the experimental results, while the solid black line refers to the fitting result. (b) The
derivation of the results in (a). The red dots are obtained by numerically calculating the derivation
of the smoothed experimental data, and the solid black line is the derivation of the fitting line in
(a). For the optimal parameters of the Doppler cooling, the number of the scattering photons is
most sensitive to the value of the detuning.

the incident cooling laser should be adjust to contain all the π and σ± components after
the quantized axis is determined by the external static magnetic field. Meanwhile, the
off-resonate coupling of the cooling laser to the 2P1/2 |F = 1〉 level may lead the ion
trapped in the 2S1/2 |F = 0,mF = 0〉 state, which would stop the cooling process. To solve
this problem, an additional 14.7 GHz sideband on the cooling laser is required to cover
the cycle transition of 2S1/2 |F = 0,mF = 0〉 ↔ 2P1/2 |F = 1〉 [63].

3.1.2 Qubit state initialization

For any quantum computation or simulation task, the qubit should be determinis-
tically initialized to a pure state. In the trapped-ion platform, this process is achieved
through the method of optical pumping.

As shown in Fig. 3.5, the transition from 2S1/2 |F = 1〉 to 2P1/2 |F = 1〉 is driven.
The state of the ion has a high probability of decaying to the |0〉 state, and then the ion
would not get involved in further excitation due to a 12.6 GHz detuning. This fast process
can reach at least 99.8% fidelity of initialization within 5 µs for a single ion. In Ref. [14],
the error in state initialization is proved to be less than 10−4.
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Figure 3.5 Implementation of qubit state initialization through optical pumping.

3.1.3 Qubit state detection

The detection process is crucial to obtain the results of quantum tasks or apply quan-
tum error correction. Here, the techniques of state-dependent fluorescence detection is
employed for high-fidelity readout [84], as shown in Fig. 3.6. By driving the resonant cycle
transition of 2S1/2 |F = 1〉 ↔ 2P1/2 |F = 0〉, the ion can scatter many photons when the |1〉
state is projected. On the contrary, if the projected state is |0〉, almost no photonwould scat-
ter due to a 14.7 GHz detuning for the nearest transition of 2S1/2 |F = 0〉 ↔ 2P1/2 |F = 1〉
(the transition of 2S1/2 |F = 0〉 ↔ 2P1/2 |F = 0〉 is dipole-forbidden). Therefore, we could
distinguish the projected state by counting the number of scattering photons.

In our system, around 7% of the scattering photons during the detection process is
collected by an objective lenswith a numerical aperture (N.A.) of 0.61 (PhotonGear) [67,85].
The ion is imaged to either an electron-multiplying charge-coupled device (EMCCD)
(Andor iXon Ultra 897) or a photomultiplier tube (PMT) (Hamamatsu H10682-210)
through a two-step imaging system, as shown in Fig. 3.7. Due to the better performance
on the quantum efficiency and the signal-to-noise ratio (SNR), we prefer to use the PMT
as the device to count the number of incident photons. For a single ion, to quantify the
fidelity of qubit state detection, we prepare the qubit to either the |0〉 state or the |1〉 state,
and then apply the detection laser beam lasting 40 µs and count the collected photons
simultaneously. The sequence for each state is repeated 2000 times to obtain a statistical
distribution. The histograms of the collected photons for both states are shown in Fig. 3.7.

The statistics of the number of incident photons almost follow the Poisson distribu-
tion, with the average photons of 0.05 and 9.58 for the |0〉 and |1〉 state, respectively. The
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Figure 3.6 Implementation of qubit state detection. If the ion is projected to the |1〉 state, the
ion would keep scattering photons because it would decay to the 2S1/2 |F = 1〉 levels and then be
excited again. On the contrary, once the |0〉 state is projected, the ion would be transparent to the
detection laser due to the 14.7 GHz detuning to the nearest resonant transition. Therefore, this
process results in a high signal-to-noise ratio.
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Figure 3.7 Imaging system and photon statistics of different qubit states. The magnification of
the whole imaging system is around 91 (7×13 for the first objective lens and the second lens,
respectively.). The pinhole at the imaging position of the first objective lens serves as a spatial
filter. We can control the flip mirror to determine which device would be used. The blue and
red histograms in the inset figure shows the statistics of the collected photons for the |1〉 and |0〉
states, respectively.
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well-separated distributions allow us to distinguish the projected state by a fixed threshold.
For a single-time measurement (single-shot), we category the projected state to be the |1〉
state if the number of collected photons is larger than one. Otherwise, the projected state
is treated like the |0〉 state. The error rate for a single-time measurement is estimated to
be 2 × 10−3 and 7 × 10−3 for the state of |0〉 and |1〉, respectively.

One critical error source for detection is the off-resonant coupling to the 2P1/2 |F = 1〉
state during the detection process. For the initial |1〉 state, this off-resonant coupling can
pump the ion to the |0〉 state, at a rate of [67],

R1→0 ≈
s0γ

9

( γ

2 × 2π × 2.105 GHz

)2
≈

(
3 × 10−4) s0 µs−1. (3-5)

Here s0 is the saturated parameter of the detection beam, and 2π × 2.105 GHz is the
hyperfine splitting of the 2P1/2 manifold. The number of collected photons in a single-
time measurement would significantly decrease once the |1〉 state is pumped into the |0〉
state. The evidence is that in Fig. 3.7, for the initial |1〉 state, the probabilities of collecting
no photon and single-photon are 4 × 10−3 and 3 × 10−3, which are much larger than the
probabilities of 7 × 10−5 and 7 × 10−4 in the Poisson distribution, respectively. On the
contrary, the |0〉 state also has a chance to be pumped into the |1〉 state, at a rate of [67],

R0→1 =
s0γ

3

( γ

2 × 2π × 14.7 GHz

)2
≈

(
2 × 10−5) s0 µs−1, (3-6)

which is much smaller than the inverse process due to a much larger detuning.
To suppress errors due to the off-resonant coupling, we should reduce the duration of

the detection process while keeping the number of incident photons. The key is to increase
the scattering and collecting rate of photons. For the scattering rate, we should optimize
the gaps of the Zeeman splittings in 2S1/2 state, as well as the power and polarization of
the detection laser to destabilize coherent dark states [86]. For the collecting rate, we have
already used the 0.61 N.A. objective lens to replace the previous 0.21 N.A. one, which
increases the solid angle of photon collection by a factor of 10 in theory (a factor of 7
in practice due to the uncompensated optical aberrations). For other options, we can
tag the collected photons with their arriving time and utilize timing information to help
distinguish the projected state [67,87], and the classical machine learning techniques also
have advantages in classifying compared with the fixed threshold method [87-88].
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Figure 3.8 Brief schematic diagram of laser alignment. Part of the optical elements are not
shown in the figure.
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3.1.4 Alignment of lasers

In Fig. 3.8, we briefly summarize the alignment of the 369.526, 398.911 and 935.188
nm lasers. The 369.526 nm laser is generated by a 739.052 nm laser diode through
the second-harmonic generation (SHG) (Toptica TA-SHG pro). Therefore, we indirectly
stabilize the frequency of the 369.526 nm laser by locking the frequency of the 739.052
nm laser to a homemade optical cavity and the saturated absorption spectra of the io-
dine molecules [63]. The 369.526 nm laser beam first passes an acousto-optic modulator
(AOM) (Brimrose QZF-210-40), resulting in a 220 MHz frequency shift in the +1st order
diffractive beam which resonates to the transition 2S1/2 |F = 1〉 ↔2 P1/2 |F = 0〉 and works
as the detection beam. The 0th order beam goes through the second AOM (Brimrose
QZF-210-40), which also provides a 220 MHz frequency shift in the +1st order. This +1st
order beam continues to pass an electro-optic modulator (EOM) (New focus 4431) then
obtain a 2.105 GHz sideband. One of the sideband-frequencies resonates to the transition
of 2S1/2 |F = 1〉 ↔2 P1/2 |F = 1〉, working for the optical pumping process. Finally, the
remained 0th order sequentially passes an EOM (Qubig EO-WG14.7M2, which has 75%
transmission rate and can reach 1% strength on the 14.7 GHz sidebands with only 1 W
input power) and an AOM (Brimrose QZF-200-100), which are driven at the frequencies
of 14.7 GHz and 210 MHz, respectively. The +1st order diffractive beam of the last AOM
is 10 MHz red-detuned from the transition of 2S1/2 |F = 1〉 ↔2 P1/2 |F = 0〉 and has the
14.7 GHz sideband, working for the optimal Doppler cooling. The 0th order beam of the
last AOM is used for the ionization process and is also capable of cooling the ions with
higher speed, called the "strong beam". Note that the AOMs here are not only utilized as
the frequency shifters but also work as the fast optical switches.

After separating the 369 nm laser into several beams for detection, optical pumping,
Doppler cooling and ionization, they are combined again through two polarizing beam
splitters (PBS) and one beam splitter (BS). All the 369 nm beams are coupled to a single-
mode fiber (Thorlabs P3-305A-FC) tomodularize the previous laser path. The 398.911 nm
laser beam (Toptica DL pro) also goes into the fiber with the help of a customized dichroic
mirror. After the fiber, the combined beams pass a diffractive optical element (DOE)
(HOLO/OR). The 935.188 nm laser beam (Toptica DL pro), after gains a 3.105 GHz
sideband through a fiber-EOM (EOspace), would be combined through another dichroic
mirror, and then all the beams are focused at the trap center with a proper lens. The DOE
here modulates the phase of the 369 nm beams which would form a 60 µm × 180 µm
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rectangular shape at the ion-position after focused by the final lens.

3.2 Coherent operations on a single qubit

After initializing the qubit to the |0〉 state, coherent operations are required to perform
any quantum algorithm or quantum simulation. To drive the hyperfine qubit with a 12.6
GHz energy splitting, we can utilize either magnetic fields oscillating at the resonant
microwave frequency [63] or two-photon stimulated Raman transitions [89]. Both methods
are introduced as follows.

3.2.1 Microwave induced magnetic dipole transition

Hamiltonian in dressed-state picture

Generally speaking, the Hamiltonian of the ion qubit driven by amicrowavemagnetic
field can be written as (~ = 1 always),

H =
ωq

2
σz +Ω cos (®k · ®r − ωt + φ)σx. (3-7)

The first term describes the reduced Hilbert space of the qubit system with an energy
splitting of ωq, while the second term originates from the magnetic dipole interaction,
where the magnetic field oscillates at a frequency ω with an initial phase φ. The Rabi
frequency ofΩ quantifies the strength of dipole interaction. The notations of σi here refer
to the Pauli matrices defined in the qubit system. The spatial term, ®k · ®r , can be neglected
due to a small value of | ®k | ≈ 3 × 10−4 µm−1 when ω is around 12.6 GHz. By choosing
the free Hamiltonian of H0 = ωσz/2, we transfer the free-frame Hamiltonian into the
dressed-state picture,

HI = eiH0t(H − H0)e−iH0t

= −
µ

2
σz +

Ω

2
(σ+eiωt + σ−e−iωt)(ei(ωt−φ0) + e−i(ωt−φ0))

≈ −
µ

2
σz +

Ω

2
(
σ+eiφ + σ−e−iφ)

= −
µ

2
σz +

Ω cos φ
2

σx +
Ω sin φ

2
σy, (3-8)

where µ = ω − ωq is the energy difference between the qubit and a single microwave
photon, and the last line is obtained after the rotating wave approximation (RWA) by
neglecting the terms oscillating at the frequency of 2ω. The advantage of the dressed-
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state picture is that the final Hamiltonian can be time-independent, and the amplitude
along each Pauli matrix is fully determined by the parameters of the applied microwave.

For an initial state of |ψ(0)〉 = c0(0)|0〉 + c1(0)|1〉 where |c0(0)|2 + |c1(0)|2 = 1, its
time evolution is governed by the evolution operator U(t),

|ψ(t)〉 = U(t)|ψ(0)〉 = exp (−iHIt) |ψ(0)〉. (3-9)

This evolution can be analytically solved, and the complex amplitudes are given as follows
if we set |ψ(0)〉 = |0〉 for convenience,

c1(t) = −i
Ω

Ωeff
eiφ sin

Ωefft
2
, (3-10)

c0(t) = cos
Ωefft

2
− i

µ

Ωeff
sin
Ωefft

2
, (3-11)

where Ωeff =
√
Ω2 + µ2 is the effective Rabi frequency [77]. The population occupied in

the |1〉 state, p1(t) = |c1(t)|2, reaches its maximum value Ω2/(Ω2 + µ2) for the first time at
t = π/Ωeff. The Rabi oscillations with different detunings µ are shown in Fig. 3.9.
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Figure 3.9 State evolutions under different detunings. (a) Representation of the state evolutions
on the Bloch sphere. According to the optical Bloch equation of the two-level system, Û®r = ®r × ®Q,
the state vector ®r =

{
2Re

[
c1c∗0

]
, 2Im

[
c1c∗0

]
, |c1 |

2 − |c0 |
2}, precesses along the effective field

®Q = {Ω cos φ, Ω sin φ, −µ}. The normalized effective fields for different detunings of µ are
shown in colored arrows, while circles with the same color on the Bloch sphere represent the
corresponding state evolutions. (b) Rabi oscillations. As the detuning increases, the oscillation
becomes faster while the contrast keeps dropping. The black dots indicate the experimental results
under the resonant condition.

For quantum computation, we always set µ ≈ 0 to realize arbitrary single-qubit
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rotations,

Rφ(θ) = U
(
θ

Ω
, φ

)
= exp

[
−i
θ

2
σφ

]
, (3-12)

where σφ = σx cos φ + σy sin φ. For the initial |0〉 (|1〉) state, the population can be
fully transferred to the |1〉 (|0〉) state at θ = π or equivalently t = π/Ω. This kind of
operation Rφ(π), which called as the π-rotation along the φ axis, is similar to the NOT
gate in classical computation. Moreover, we can define the π/2-rotation along the φ axis,
Rφ(π/2), by setting θ to be π/2, which can be utilized to prepare the superposition state
of the |0〉 and |1〉 states with equal populations.

In the experimental realization, the microwave magnetic field is emitted from a
microwave horn near a viewport of the vacuum chamber, as shown in Fig. 3.10 (a). The
injected microwave signal to the horn is generated by mixing a 12.462812118466 GHz
microwave signal (generated from ROHDE&SCHWARZ SMB 100A) and a RF signal
around 180 MHz, as illustrated in Fig. 3.10 (b). This RF signal can be produced by
either a direct digital synthesizer (DDS) (Analog AD9910) or an arbitrary wave generator
(AWG) (SPECTRUMDN2.662-08), depending on applications. By tuning the frequency,
amplitude, and phase of the RF signal, the parameters of the microwave magnetic field
can be well controlled.

Microwave 
Horn

(a)

RF
Signal

Microwave 
Signal

Microwave
Amplifier

Horn

Mixer

12.462812118466 GHz

~ 180 MHz

(b)

Figure 3.10 Generation ofmicrowavemagnetic field. (a)Microwave horn used in the experiment.
(b) Generation of the microwave signal. The 12.6 GHz microwave signal is generated by mixing
a 12.4 GHz signal with a 180 MHz signal and then amplified. Compared with the signal in the
microwave range, the RF signal can be controlled more precisely.
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Coherence measurement

Now we can utilize coherent operations driven by the microwave magnetic fields to
characterize our ion qubit. One of the most important parameters is the coherence time
of the qubit, which can be extracted through a Ramsey-type method. In the experiment,
after qubit state initialization, we first apply a π/2-rotation Rφ(π/2) to prepare the equal-
populated superposition state (|0〉 + e−iφ |1〉)/

√
2. After that, we wait for a duration of τ,

and then apply the second π/2-rotation Rφ+πτ/τo(π/2) to recover the state, as shown in
Fig. 3.11 (a). Here τo is a preset constant. Ideally, the probability of projecting the final
state to the |1〉 state should oscillate with the delay time τ,

p1(τ) =
1
2
(1 + cos

[
(µ +

π

τo
)τ

]
), (3-13)

where the constant τo determines the oscillating period. The value of µ should be small
because we tend to drive the transition resonantly, but can not be ignored when τ is long.
However, due to noisy environments, decoherence is inevitable, causing the pure state to
decay into a mixed state. Mathematically, decoherence can be quantified as the decay in
off-diagonal terms if we describe the quantum state in its density matrix form,

ρ =|0〉〈0| + |1〉〈1| + eiφ |0〉〈1| + e−iφ |1〉〈0|

→|0〉〈0| + |1〉〈1| + eiφ f (τ)|0〉〈1| + e−iφ f (τ)|1〉〈0| , (3-14)

where f (τ) is the decay profile. Therefore, Eq. (3-13) should be modified to include
decoherence, which turns out to be,

p1(τ) =
1
2
(1 + f (τ) cos

[
(µ +

π

τo
)τ

]
). (3-15)

In the experiment, the decay profile can be exponential form f (τ) = e−τ/τc or Gaussian
form f (τ) = e−τ2/τ2

c , depending on the feature of the noise spectrum. The coherence
time τc is defined as the time when the oscillating contrast drops to e−1 ≈ 0.37. The
experimental decay of the Ramsey oscillation measured by using the microwave is shown
in Fig. 3.11. Note that the stability of the relative phase between the two π/2-rotations
would also affect the final state. Therefore, the coherence time of the qubit can not
be properly characterized when it exceeds the phase-correlated time of the microwave
magnetic field.

Although the microwave method has the advantages of high-stability and simple-
controllability, it lacks scalability due to the long wavelength, which is much larger than
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Figure 3.11 Measurement of qubit coherence time. (a) Ramsey-type method. The decay of
coherence during the delay τ can be characterized by being sandwiched by two π/2-rotations with
a proper phase difference. Here we assume that the duration of rotations can be ignored. (b)
Coherence timemeasured in the experiment by using the microwavemagnetic field. No significant
decay of the Ramsey oscillation is observed after 10 ms.

the length of a ion-chain. We can only globallymanipulate all the qubits without individual
controllability. In principle, we can additionally introduce a gradient on the external static
magnetic field [65], or use the gradient of a near-field microwave [90]. However, the previous
method discards the homogeneity between different ion qubits, while the latter one has
extreme complexity in designing large-scale microwave circuits. Despite these shortages,
the microwave is still the most convenient tool to troubleshoot fundamental problems of
the experimental system.

3.2.2 Stimulated Raman transition

Effective Hamiltonian

Compared with the microwave magnetic field, the optical laser can be spatially
focused due to a much shorter wavelength. To drive the hyperfine qubit with a mi-
crowave frequency splitting, we employ the two-photon stimulated Raman transition, and
a schematic diagram is illustrated in Fig. 3.12.

By simultaneously driving the electric dipole transitions from the |0〉 and |1〉 states
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Figure 3.12 Λ-type two-photon Raman transition.

to an intermediate level |e〉, as shown in Fig. 3.12, the Hamiltonian of the whole system
in the free frame can be written as,

H =
ωq

2
σz +

(
ωe +

ωq

2

)
|e〉〈e|

+
Ω1

2
(|e〉〈0| + |e〉〈1| + h.c.)(ei(®k1 ·®r−ω1t+φ1) + h.c.)

+
Ω2

2
(|e〉〈0| + |e〉〈1| + h.c.)(ei(®k2 ·®r−ω2t+φ2) + h.c.), (3-16)

where Ωi, ®ki and φi are the dipole coupling strength, wave vector and optical phase of the
i-th Raman laser, respectively, and h.c. represents Hermitian conjugation. By choosing
the rotating frame with respect to H0 = ωqσz/2 + (ωe + ωq/2)|e〉〈e|, the interaction
Hamiltonian turns out to be,

H =
(
Ω1

2
ei(−∆−µ)tei(®k1 ·®r+φ1) +

Ω2

2
ei(−∆+ωq)tei(®k2 ·®r+φ2)

)
|e〉〈0|(

Ω1

2
ei(−∆−µ−ωq)tei(®k1 ·®r+φ1) +

Ω2

2
ei(−∆)tei(®k2 ·®r+φ2)

)
|e〉〈1| + h.c., (3-17)

where the detunings −∆ and µ are shown in Fig. 3.12. Here, we use the relations of
ω1 = ωe +ωq + µ− (−∆) and ω2 = ωe − (−∆) to simplify Fig. 3-17. Under the assumption
of |∆| � Ω1, Ω2 and |∆| � ωq � µ, the intermediate level |e〉 can be adiabatically
eliminated, yielding an effective Hamiltonian in the qubit system [91],

Heff =
δdiff

2
σz +

Ω

2

(
σ+ei(®k ·®r−µt+φ) + σ−e−i(®k ·®r−µt+φ)

)
, (3-18)

where Ω = Ω1Ω2/(2∆), ®k = ®k1 − ®k2 and φ = φ1 − φ2 are the effective Rabi frequency,
effective wave vector and relative optical phase, respectively. δdiff in the above equation
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has a form of,

δdiff = −

(
Ω2

1

4(−∆ − µ − ωq)
+
Ω2

2

4(−∆)

)
+

(
Ω2

1

4(−∆ + µ)
+

Ω2
2

4(−∆ + ωq)

)
≈ −
Ω2

1 +Ω
2
2

4∆
ωq

∆
, (3-19)

which is the differential light shift in the energy levels of the qubit and is pretty small due
to ωq/|∆| ∼ 10−3 � 1 in our setup. This term can be absorbed by changing the frequency
of the rotating frame from ωqσz to (ωq + δdiff)σz, which is ignored in the latter discussion.
The effective Hamiltonian here has no difference from the resonant case of Eq. (3-8) if
we take ®k1 = ®k2 and µ = δdiff ≈ 0. Therefore, we can also utilize the two-photon Raman
transition to achieve the arbitrary single-qubit rotations.

Single-qubit rotation and qubit-motion coupling

However, the value of the effective wave vector | ®k | can vary from 0 (co-propagating)
to 4π/λ (counter-propagating) by changing the angle of the propagating Raman beams.
The maximum value of | ®k | can reach around 10 µm−1 because λ falls into the range of
optical wavelength, which provides a probability of ion-motion coupling. By treating
the ion as a quantized harmonic oscillator which vibrates at the frequency of ν, the
Hamiltonian in Eq. (3-18) should be revised as,

Heff = νa†a +
Ω

2

(
σ+ei(η(a+a†)−µt+φ) + h.c.

)
. (3-20)

Here we simplify the problem by only considering one dimensional motion (®r = x).
Therefore, a and a† are the creation and annihilation operators, respectively, and k · x is
equal to k∆x(a + a†) = η(a + a†) where ∆x =

√
~/2Mν is the size of the ground state

wave function and η = k∆x is known as the Lamb-Dicke parameter. By choosing a new
rotation frame with respect to H0 = νa†a and then expanding exp

(
i®k · ®r

)
to the first order,

we obtain the approximated interaction Hamiltonian,

HI ≈
Ω

2
[
σ+

(
1 + iηae−iνt + iηa†eiνt ) e−iµt+iφ + h.c.

]
. (3-21)

This approximation only establishes when η
√
〈(a + a†)2〉 � 1, known as the Lamb-Dicke

approximation, where 〈·〉 denotes the averaging over the quantum state. In the experiment,
we always require η � 1; otherwise, high order transitions would appear. By tuning the
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value of µ to be around 0, −ν, and ν, we can obtain three types of transitions,

Hcar =
Ω

2
(σ+eiφ + h.c.), (3-22)

Hrsb =
iηΩ

2
(σ+aeiφ − h.c.), (3-23)

Hbsb =
iηΩ

2
(σ+a†eiφ − h.c.), (3-24)

known as carrier, red-sideband and blue-sideband transitions, respectively, as shown in
Fig. 3.13. Similarly, the carrier transition described in Eq. (3-22) can be utilized to
implement the arbitrary single-qubit rotations of Rφ(θ). The Hamiltonian of the red
or blue sideband transition, known as the Jaynes-Cummings or anti-Jaynes–Cummings
model respectively, couples the qubit to its external quantized motion, which is crucial in
entangling multiple ion qubits.
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Figure 3.13 Carrier and sideband transitions. (a) Hilbert space including the qubit and its
quantized harmonic oscillation. |nF〉 represents the Fock-state basis of the harmonic oscillator.
Gray arrows refer to the carrier transition ( |0〉 |nF〉 ↔ |1〉 |nF〉 ), while red and blue arrows refer
to the red sideband (|0〉 |nF〉 ↔ |1〉 |nF − 1〉 ) and the blue sideband (|0〉 |nF〉 ↔ |1〉 |nF + 1〉 ),
respectively. The Rabi frequency of the sideband transitions has a factor of √nF for the different
|nF〉 states. (b) Raman spectrummeasured in the experiment. Note that the second order sideband
transitions occur due to a large average phonon number of n̄F =

〈
a†a

〉
after Doppler cooling.
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Sideband cooling

The sideband transitions enable us to manipulate a much vaster Hilbert space. One
crucial function is that we can combine the red-sideband transition together with the
optical pumping process to further cool the ion to its motional ground state, called
sideband cooling. The brief principle of sideband cooling is shown in Fig. 3.14. Here we
alternately apply the π-rotation of the red-sideband transition (ηΩt ≈ π) and the optical
pumping, and then all the populationwould be accumulated in the |0〉|0F〉 state finally. The
cooling rate is almost determined by the coupling strength of the red-sideband transition
(ηΩ), because the duration of optical pumping can be neglected compared with that of the
sideband transition. Typically, the cooling rate can achieve around 102 ∼ 103 phonons/ms,
and the final temperature can reach hundreds of nK. The limitation in the final temperature
is due to the heating effect from the detuned blue sideband transition and electric noises
in the surrounding environment.

1

0
0F

1F
2F

3F

……

2P1/2

Figure 3.14 Implementation of sideband cooling. The |0〉 |0F〉 is a dark state for the red sideband
transition and the optical pumping, and finally, most of the state population would be transferred
to this state.

Raman transition driven by pulsed laser

In the above sections, we consider using two beamswith continuouswavelength (CW)
to drive the stimulated Raman transition. However, it is challenging in the experiment
since the phases of the two beams must be strictly correlated. To achieve this requirement,
we can separate two Raman beams from the same laser, and then shift a frequency by 12.6
GHz on one of the beams. However, either AOMs or EOMs have pretty low efficiency of
shifting such a considerable frequency.

Instead, we employ a pulsed laser to drive the Raman transitions, because it naturally
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Figure 3.15 Rabi oscillation of carrier transition. (a) The average phonon number n̄ is around
5 after Doppler cooling, and then the high-order transitions which neglected in the Lamb-Dicke
approximation would significantly modify the Rabi frequency of the carrier and make it depend on
the phonon state [41]. This effect results in a fast decay in the Rabi oscillation. (b) After sideband
cooling, the average phonon number drops to around 0.02, and the Lamb-Dicke approximation is
well established. The Rabi oscillation with a full contrast can be observed.

has discrete combs in the frequency domain [92]. Mathematically, when the duration of the
laser-ion interaction is much longer than the inverse of the repetition rate ω−1

rep, the laser
pulses can be decomposed into multi-frequency electric fields oscillating in phase,

®E(t) =
∑
l

®El exp
[
i
(
®kc · ®r − (ωc + lωrep)t + φ

)]
. (3-25)

Here ®kn ≈ ®kc = 2πωc/c which ignore the tiny difference in the values of wave vectors,
ωc is the center frequency, and φ is the common phase. To get a non-zero effective
wave vector, we separate the pulsed laser into two beams and then hit the ion in different
directions. Additionally, we use two AOMs to shift each beam by frequencies of ω(1)AOM

and ω(2)AOM, respectively. In this case, we revise the interaction Hamiltonian in Eq. (3-17)
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to include the multiple frequency combs,

HI =

2∑
j=1

∞∑
l=−∞

g
(j)

l

2

[
|e〉〈0| ei(−∆+ωq−ω

( j)
AOM−lωrep)t + |e〉〈1| ei(−∆−ω( j)AOM−lωrep)t

]
ei(®k( j)c ·®r+φi ) + h.c.,

(3-26)
where g(j)

l
is the coupling strength of the l-th frequency comb in the j-th beam, and we

assume that ωc + (−∆) = ωe. To realize the resonant Raman transition, we should make
sure that the frequency difference of the two combs from two Raman beams matches
the energy gap of the qubit, as shown in Fig. 3.16, indicating that one of the following
equations should be satisfied,

−∆ + ωq − ω
(1)
AOM − l1ωrep = −∆ − ω

(2)
AOM − l2ωrep, (3-27)

−∆ + ωq − ω
(2)
AOM − l2ωrep = −∆ − ω

(1)
AOM − l1ωrep, (3-28)

where l1 and l2 is the l1-th and l2-th comb from the first and second Raman beams,
respectively. By simplifying the above equations, the values of ωq, ω(j)AOM and ωrep should
satisfy,

ωq − (ω
(1)
AOM,r − ω

(2)
AOM,r) = (l1 − l2)ωrep, (3-29)

or

ωq + (ω
(1)
AOM,r − ω

(2)
AOM,r) = (l2 − l1)ωrep. (3-30)

Here ω(j)AOM,r is the value of ω
(j)

AOM which satisfies the resonant conditions.
Without loss of generality, we first assume that ∆AOM = ω

(1)
AOM,r − ω

(2)
AOM,r > 0 and

the condition of Eq. (3-30) is satisfied, as shown in Fig. 3.16. In practice, we always set
ω(2)AOM = ω

(2)
AOM,r, while ω

(1)
AOM = ω

(1)
AOM,r + µ is slightly detuned from the resonant condition

(µ � ωrep). Note that all the comb-pairs with the same difference of∆l = (ωq+∆AOM)/ωrep

can coherently drive the Raman transition; therefore, the final effective Hamiltonian turns
out to be,

Heff =
Ω

2

(
σ−eiµte−i(®k ·®r+φ) + h.c.

)
, (3-31)

where Ω =
∑

l2 g
(1)
l2+∆l

g
(2)
l2
/(2∆), ®k = ®k (1)c − ®k

(2)
c and φ = φ1 − φ2 are the effective Rabi

frequency, effective wave vector and relative optical phase, respectively. The differential
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Figure 3.16 Raman transition driven by pulsed laser. The right part clearly shows the frequency
combs of the two Raman beams. By tuning the repetition rate or the difference of the two Raman
AOMs, we can make sure that the frequency difference of the two combs from two Raman beams
matches the energy gap of the qubit.

light shift, which is neglected in the effective Hamiltonian, can be estimated as,

δdiff ≈ −

∑
l1(g

(1)
l1
)2 +

∑
l2(g

(2)
l2
)2

4∆
ωq

∆
. (3-32)

By tuning the value of µ to near 0, ν and −ν, we can selectively excite the carrier, red-
sideband and blue-sideband transitions, respectively. Therefore, the method of utilizing
the pulsed laser is equivalent to that of using the CW laser.

171Yb+ driven by 375 nm pulsed laser

In our system, the pulsed laser is produced by a laser of Model Mira-HP (Coherent
Laser Group). It is a mode-locked pico-second laser (pulse width ∼4 ps), utilizing a
titanium: sapphire as the gain medium (pumped by a 532 nm laser generated from Verdi-
G18) to generate the laser whichwavelength can vary from 700 nm to 1000 nm. The center
wavelength is set at around 750 nm by rotating the birefringent filter, and then around 500
mW 375 nm pulsed laser is obtained by frequency doubling. The inner structure of the
Mira-HP is shown in Fig. 3.17. The length of the laser cavity leads to a repetition rate
around 76 MHz. Note that we additionally install a motorized actuator to one of the end
mirrors of the cavity; therefore, we can change the repetition frequency by around 0.5
MHz. The repetition rate is directly stabilized by feeding back to the fast response mirror
controlled by the piezo. The details of the stabilization system are discussed in App. B.
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Ti: Al2O3

Motorized actuator

Pump laser

Birefringent filter

To SHG partPZT controlled mirror

Figure 3.17 Inside alignment of pulsed laser Mira-HP. In this figure, we do not include two parts
of the pump laser (Verdi G-18) and the cavity for the second harmonic generation (SHG).

0

F = 1

F = 0

F = 1

F = 0

2P1/2

1

-

2S1/2

- −+

+

12.6 GHz

10 THz

2.105 GHz

1/ 3

1/ 3 −1/ 3

1/ 3

Figure 3.18 171Yb+ ion qubit driven by 375 nm pulsed laser. Because the transitions of |1〉 ↔
2P1/2 |F = 1,mF = 0〉 and |0〉 ↔ 2P1/2 |F = 0,mF = 0〉 are dipole-forbidden, we can only use
the 2P1/2 |F = 1,mF = ±1〉 as the intermediate levels. A large detuning of 10 THz makes sure
that the ion has an extremely small probability to be excited to the 2P1/2 levels, which minimizes
operational errors caused by Raman scattering.
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A 171Yb+ driven by the 375 nm pulsed laser is shown in Fig. 3.18. In this specific
energy structure, we can choose either 2P1/2 |F = 1,mF = −1〉 or 2P1/2 |F = 1,mF = 1〉 or
both as the intermediate level(s) to realize the Raman transitions. These two paths can be
coherently added together, and the contribution of each path depends on the polarization
of the incident Raman beams and the quantized axis determined by the external magnetic
field. Note that the polarization of the Raman beams can not be parallel at the ion’s
position if they are both linearly polarized. Otherwise, the effective Rabi frequency from
each path would coherently cancel each other due to theminus sign in the Clebsch–Gordan
coefficients (shown in Fig. 3.18). Moreover, the fourth-order light shift from single Raman
beams can be minimized simultaneously if we choose above polarizations [93].
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Figure 3.19 Qubit coherence time measured by non-copropagating Raman lasers. Due to the
phase instability, the measured coherence time for a single qubit is limited to 6.5 ms.

Comparedwith themethod of utilizingmicrowavemagnetic fields, the way of driving
stimulationRaman transitions providesmore controllability and feasibility inmanipulating
the ion qubit and its quantized motion. However, from the aspect of stability, especially
the phase stability, a laser system is worse than a microwave horn. The coherence time
measured by the non-copropagating Raman beams (®k , 0) drops to around 6.5 ms, while
more than 20 ms coherence time can be reached if we apply the co-propagating beams
(®k = 0). This evidence indicates the noise on the phase difference of the two Raman
beams. Currently, we attribute this noise to the jittering of the laser paths. Further passive
or active stabilization methods are under exploring.

3.3 Timing control in experiment

Up to now, we have introduced initialization, coherent manipulation, and readout of
a single 171Yb+ qubit. Currently, for most demonstrations of quantum computation and
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simulation tasks, experimental sequences can be organized in the following steps,
1. Qubit initialization (both qubit and motion),

(a) Doppler cooling
(b) Sideband cooling
(c) Optical pumping

2. Qubit manipulation (either microwave or laser),
3. Qubit readout.

The duration and order of each step should be precisely controlled. Therefore, we utilize
timing signals generated by a field-programmable gate array (FPGA) to control the switch-
on/off of each device, as shown in Fig. 3.20. Details of our controlling system please
check in the thesis of Junhua Zhang [94]. Because the qubit state would collapse once being
measured, we have to repeat the experimental sequence many times (typically 100 times)
to obtain the statistical population on each output state.

Doppler 
cooling

…

…
Coherent 

manipulation

Readout

Timing signals
0 t

Sideband cooling

Optical pumping

RF 
switch

FPGA
Control
Computer Signal 

Generator

TTL

Output to Doppler 
cooling AOM

RF 
switch

TTL

AWG

Signal 
Generator

To Raman AOM

Output

OutputTo Raman AOM
or microwave horn

ZASW-2-50DR+

TTL in RF in

RF out BRF out A

RF switch

Figure 3.20 Timing control in experiment. The FPGA chip receives a experimental sequence
from the computer, and then generates and sends TTL signals to TTL-controlled RF switches.
Therefore, we can control the on/off of each operation by controlling the on/off of the RF signal
(including all the diffractive beams from the AOMs and the microwave). Typical switching time
of the RF switch (Minicircuits ZASW-2-50DR+) is 10 ns, while that of the AOM is around 10-20
ns.
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Chapter 4 Application: Quantum nonequilibrium work relation in
the presence of decoherence

The trapped-ion system is extremely attractive for quantum simulation, due to the
huge Hilbert space, including the internal electron levels and the quantized harmonic
oscillation. Even with just a single ion, the experiments such as the Majorana dynam-
ics [95], the quantum Rabi model [96], the molecular vibronic spectroscopy [97] have been
successfully demonstrated by our group.

Thanks to the feature of well-isolation, it is feasible to study quantum thermody-
namics by utilizing the trapped-ion system. One of the most important researches in
the regime of quantum thermodynamics and the statistical mechanics is the fluctuation
theorems, which gives a fresh insight to study the nonequilibrium process. Although
nonequilibrium work and fluctuation relations have been studied in detail within classical
statistical physics, and been explored in the closed quantum system and experimentally
studied, extending these results to open quantum systems has proven to be conceptually
difficult. The main obstruction is that the definitions of work and heat are not fully settled,
hindering experimental verification.

In this chapter, the work relation is studied for a specific example of an open quantum
system – namely, a system solely undergoes decoherence as a result of contacting with
its environment [98]. Based on the trapped-ion system, we experimentally engineer a
controllable decohering effect and study its non-trivial influence on work distributions
when we dowork to a quantum system. Our experimental results reveal the work relation’s
validity over a variety of driving speeds, decoherence rates, and effective temperatures
and represent the first confirmation of the work relation for evolution described by a
non-unitary master equation.

4.1 Theoretical background

Statements of the second law of thermodynamics are generally expressed as inequal-
ities. For instance, the work performed on a system during an isothermal process must
not exceed the net change in its free energy,

W ≥ ∆F . (4-1)
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When statistical fluctuations are appropriately included these inequalities can be reformu-
lated as equalities, such as the nonequilibrium work relation (Jarzynski equality) [99],

〈e−βW 〉 = e−β∆F, (4-2)

where β is an inverse temperature and angular brackets denote an average over repetitions
of the process. For classical systems, this prediction and related fluctuation theorems have
been extensively studied both theoretically [100] and experimentally [101-103], and have been
applied to the numerical estimation of free energy differences [104].

The last decade has seen growing interest in extending these results to quantum
systems [105]. This pursuit is made challenging both by the fact that classical work is
defined in terms of trajectories – a notion that is typically absent in the quantum setting –
and by the lack of a quantum "work operator" [106]. To avoid these difficulties, many studies
have focused on closed quantum systems, which evolve unitarily. In the absence of a heat
bath there is no heat transfer to or from the system and the first law of thermodynamics
reads,

W = ∆U ≡ E f − Ei . (4-3)

Here the classical work depends only on a system’s initial and final configuration and can
be determined from two measurements. This idea is easily lifted to the quantum regime
through the two-point measurement (TPM) protocol [107], according to which the work
performed during a single experimental run is the difference between energy values Ei

and E f resulting from initial and final projective measurements.
If a system is prepared in equilibrium at inverse temperature β with initial Hamilto-

nian H(0) =
∑
εn |n〉〈n|, then evolves unitarily as the Hamiltonian is varied from H(0) at

t = 0 to H(τ) =
∑
ε̄m |m̄〉〈m̄| at t = τ, the TPM work distribution is given by

p(W) =
∑
n,m

pn pm̄ |n δ[W − (ε̄m − εn)]. (4-4)

Here pn = Z−1
0 e−βεn is the probability to obtain the value Ei = εn during the initial energy

measurement, pm̄ |n is the conditional probability to obtain the final energy value E f = ε̄m,
given the initial value εn, and Z0 is the partition function for the initial equilibrium state.
To date, both proposed [108-111] and implemented experimental tests [112-113] of the quantum
work relation Eq. (4-2) have focused on evaluating equation Eq. (4-4) for a closed system.

A number of authors have proposed definitions of work and derived fluctuation theo-
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rems for quantum systems in contact with general thermal environments [114-116]. Generally
speaking, when a quantum system is coupled to a thermal environment, there arise two
distinct departures from unitary dynamics: dissipation, that is the exchange of energy, and
decoherence, the leakage of the system’s quantum coherences into the environment [117].
In this project, we consider situations in which dissipation is negligible over experimen-
tally relevant time scales, but decoherence is substantial. The state evolution under this
situation follows the Lindblad master equation,

dρ
dt
= −i[H(t), ρ] −

∑
i,j

γi jρi j |i〉〈 j | , (4-5)

which describes both unitary evolution under H(t) and the decohering effects of the
environment. Here γi j ≥ 0 are decay rates for the coherences ρi j ≡ 〈i | ρ| j〉, in the
instantaneous eigenbasis of H(t). Let

Λτ : ρ0 → ρτ, (4-6)

denotes the quantum evolution that maps an initial density matrix to a final density matrix,
under the dynamics of Eq. (4-5). This mapping here is known as the unital evolution,
which satisfies the relation,

Λτ(I) = I, (4-7)

where I is the identity matrix. Under such conditions the environment is a decohering (or
dephasing) environment: it suppresses coherences but does not exchange energy.

Consider a system in contact with a decohering environment. At t = 0, following
a projective energy measurement, the system begins in an energy eigenstate |εn〉, then it
evolves as its Hamiltonian is varied with time. At t = τ its energy is again measured,
yielding ε̄m. By assumption, no energy is exchanged with the environment, therefore we
claim that it is natural to identify work to be the difference between the initial and final
energies, W = ε̄m− εn, just as for a closed quantum system. If we accept this as a plausible
definition of work in the presence of a decohering environment, then the left hand of Eq.
(4-2) can be calculated as follows [118]

〈e−βW 〉 =
∑
n,m

pn pm̄ |n e−β(ε̄m−εn)

=
∑
n,m

e−βεn
Z0
〈m̄|Λτ(|n〉〈n|)|m̄〉e−β(ε̄m−εn)
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=
1
Z0

∑
m

e−βε̄m 〈m̄|Λτ(I)|m̄〉 =
Zτ
Z0
= e−β∆F . (4-8)

Therefore, the nonequilibrium work relation Eq. (4-2) remains valid even the system
undergoes in a decohering environment. The details of a phenomenological approach to
derive Eq. (4-2) please check in Ref. [98]

4.2 Experimental realization

4.2.1 Model Hamiltonian and experimental sequence

To test Eq. (4-2) experimentally, we employ a two-level system engineered from a
171Yb+ ion. Different from the conventional choice to encode the qubit, in this chapter
we use the energy levels |F = 0,mF = 0〉 ≡ |⇓〉 and |F = 1,mF = −1〉 ≡ |⇑〉 in the 2S1/2

manifold as our two-level system, as shown in Fig. 4.1 (a). By applying microwave pulses
resonant to our states’ energy difference ωzq ≡ ωq − δz, where δz = (2π) 13.586MHz, the
system can be driven according to the Hamiltonian

H(t) =
Ω(t)

2
[
σx cosΦ(t) + σy sinΦ(t)

]
=
Ω(t)

2
σΦ(t). (4-9)

Here σx,y are the standard Pauli matrices defined in the {|⇑〉, |⇓〉} basis while Ω and Φ are
parameters controlled through the amplitude and phase of the microwave pulses. In our
experiment, we use the driving protocols,

Ω(t) = Ω0

(
1 −

t
2τ

)
, (4-10)

Φ(t) =
πt
2τ
, (4-11)

whereΩ0 is the initial Rabi frequency of the magnetic dipole transition, which can also be
treated as the effective energy gap of the two-level system in the dressed state picture, and
τ is the duration of the process. Together equations Eq. (4-9) and Eq. (4-10) represent the
Hamiltonian portion of our system’s dynamics, or the protocol of applying the work to
the system. Our Hamiltonian has the form H(t) = B(t) · σ, where the effective field B(t)
undergoes rotation by 90◦ in the xy-plane, as shown in Fig. 4.1 (b). By varying the value
of τ, a different amount of work can be done to the system. The controllable decohering
rate γ = γ⇓⇑ = γ⇑⇓ in Eq. (4-5) is engineered by adding an intensity noise to the Rabi
frequency of the magnetic dipole interaction [119-121], which will be discussed in the later
section in detail.
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Figure 4.1 Two-level system encoded in 171Yb+ ion and experimental driving protocol. (a) In
this project, the Zeeman levels is employed as our two-level system, which is convenient to prepare
the initial effective thermal state by utilizing its short coherence time. (b) In this experiment, the
driving protocol is designed to rotate the effective field by 90 degree while reducing the strength
to half.

Given this system, the procedure for measuring the work applied during a single
experimental trial involves four steps,

1. thermal state preparation,
2. initial energy measurement,
3. application of the driving protocol,
4. final energy measurement,

as shown in Fig. 4.2. Here we introduce every step in detail as follows.
Thermal state preparation. For technical reasons, the initial thermalization is

prepared in the σz basis. We create the initial thermal state using the following pro-
cedure. First we prepare the pure state |ψ〉 = c⇑ |⇑〉 + c⇓ |⇓〉 by applying the single-
qubit rotation Rφ(θ) with a proper θ (the rotation axis φ can be arbitrary). After
waiting more than 10 times the coherence time (τc is around 140 µs for our Zeeman
qubit during this project), the state becomes a mixed-state described by the density op-
erator ρini = |c⇑ |2 |⇑〉〈⇑| + |c⇓ |2 |⇓〉〈⇓|, which is identical to thermal equilibrium state
exp(−H(0)/kBT) with an effective temperature

T =
~Ω0

kB ln(|c⇓ |2/|c⇑ |2)
, (4-12)

For our experiment, Ω0 = 2π × 50 kHz while |c⇓ |2 took values of 0.804 ± 0.034 and
0.605 ± 0.041, corresponding to effective initial state temperatures of T1 = 5.63 µK and
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Figure 4.2 Conceptual and actual experimental schematics of TMP protocol. In the experiment,
thermal state preparation and initial energy measurement occur in the σz eigenbasis before being
transferred to the basis of σx with the aid of an adiabatic shortcut. Similarly, the system is again
rotated, this time from the σy to σz basis, proceeding the second fluorescence measurement.
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T2 = 1.70 µK, respectively. The density matrices for both effective thermal state obtain
through the state tomography are shown in Fig. 4.3.
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Figure 4.3 Density matrices after preparing effective thermal states, which are equivalent to
(a-b) T1 = 5.63 µK and (c-d) T2 = 1.70 µK.

Initial energy measurement. Following initial state preparation, the energy of the
system is measured in σz basis. When the ground state |⇓〉 (dark state) is measured, the
system remains unchanged during the detection sequence and we simply continue to the
next step of the experiment. If the excited state |⇑〉 (bright state) is detected, the system is
left in a mixture of the three levels of F = 1 in 2S1/2 manifold. Therefore, we re-prepare
the |⇑〉 state using the optical pumping and a π-rotation before continuing the experiment.
As noted above, the actual measurements are performed with respect to the Hamiltonian
σz which is then switched to σx using an adiabatic shortcut, which will be introduced in
the latter section.

Application of driving with decohering. At this point the noisy microwave pulses
are applied to the system resulting in evolution according to the Hamiltonian in Eq. (4-9)
with the protocols in Eq. (4-10). To verify the nonequilibrium equation, we should vary
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the ratio between the duration τ and the inverse energy gap Ω−1
0 from τ/Ω−1

0 > 1 to
τ/Ω−1

0 < 1 to cover the near adiabatic, intermediate, and far-from-equilibrium protocols.
The amplitude of the noise on the Rabi frequency is controlled to achieve different
decoherence rate.

The final energy measurement. Prior to the final energy measurement, another
adiabatic shortcut is used to switch the system’s Hamiltonian–this time from σy to σz.
Following this transfer, the energy of the system is once again measured. By calculating
the difference between the initial and final energy measurements, a work value for the
experimental trial is obtained.

The work distribution is obtained by repeating the sequence with the same effective
temperature, the duration of the process and the decohering rate for over 2000 times.

4.2.2 Engineering decoherence environment

In the experiment, the decohering environment is induced or simulated by adding an
extra noise to the amplitude of the microwave magnetic field. The noisy version of the
driving Hamiltonian Eq. (4-9) can be written as,

HN(t) =
Ω(t) +Ω0ξ(t)

2
σΦ(t) = H(t) + ξ(t)Hξ (t). (4-13)

Here ξ(t) is a Gaussian white noise which satisfies the conditions of 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t ′)〉 = α2δ(t − t ′), where 〈·〉 denotes the ensemble averaging over all the possible
noise and δ(t − t ′) is the standard delta function. For convenience, we define the Wiener
process,

W(t) =
∫ t

0
ξ(s)ds, (4-14)

dW(t) = W(t + dt) −W(t), (4-15)

〈dW(t)〉 = 0, (4-16)

〈dW(t)dW(t)〉 = α2dt. (4-17)

The state evolution governed by the Hamiltonian in Eq. (4-13) follow the stochastic
Schrödinger equation [122],

d|ψ〉 = −iH(t)|ψ〉dt −
α2

2
Hξ (t)Hξ (t)|ψ〉dt − iHξ (t)|ψ〉dW, (4-18)
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or in the form of density matrix,

dρ = −i[H(t), ρ]dt −
α2

2
{Hξ (t)Hξ (t), ρ}dt + α2Hξ (t)ρHξ (t)dt − i[Hξ (t), ρ]dW, (4-19)

where [·] and {·} denote the commutator and the anti-commutator, respectively. By
averaging over all the possible noise, the evolution of the ensemble state, ρ̄ = 〈ρ〉,
follows,

dρ̄
dt
= −i[H(t), ρ̄] + α2

{
Hξ (t)ρ̄Hξ (t) −

1
2
{Hξ (t)Hξ (t), ρ̄}

}
. (4-20)

Given Hξ in Eq. (4-13), the above equation can be further simplified to be,

dρ̄
dt
= −i[H(t), ρ̄] −

α2Ω2
0

2
(ρ⇑Φ⇓Φ |⇑Φ〉〈⇓Φ | + ρ⇓Φ⇑Φ |⇓Φ〉〈⇑Φ |), (4-21)

where |⇑Φ〉 and |⇓Φ〉 are the instantaneous eigenbasis of H(t). Eq. (4-21) is the exactly
same to Eq. (4-5) with

γ =
α2Ω2

0

2
. (4-22)

Therefore, the decohering rate of γ can be controlled in the experiment by varying the
deviation of α of the white noise.
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Figure 4.4 Power spectral density of discrete Gaussian white noise with standard deviation α = 1
and sampling rate 1 MHz

In practice, we can only apply discrete noise with a sampling rate of Rs instead of
ideal continuous-Gaussian white noise. When R−1

s /2 is much less than the duration of
the operation, the digital noise can be approximated as a ideal Gaussian white noise,
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which has a finite bandwidth due to the discrete sampling, as shown in Fig. 4.4. And the
auto-correlation function is modified to be 〈ξ(t)ξ(t ′)〉 = α2R−1

s δ(t − t ′). Therefore, the
decohering rate should be revised as

γ =
α2Ω2

0

2Rs
. (4-23)

In our experiment, the noise sampling rate is set to 1 MHz. Therefore, the decoherence
rate is given by γexp = (αΩ0)

2/2 MHz when Ω0 is measured in MHz. And Fig. 4.5 clearly
shows this linear relation between the decoherence rate and the effective auto-correlation
amplitude of the applied discrete Gaussian white noise.

fitting slop: 0.953 ± 0.060
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Figure 4.5 Experiment results of decoherence rate γ relation with (σΩ0)
2/2Rs. Here sampling

rate is set as 1 MHz. The slop of the fitting result is 0.953±0.060, with respect to the theoretical
value of 1.

4.2.3 Adiabatic shortcuts in projective measurement

For our setup, the initial and final energy measurements are performed in the σz

basis. Between the measurement sequences and the driving protocol, the state of the
system must be transferred between the z-axis and x-y plane of the Bloch sphere. To
accomplish this task, we use adiabatic shortcuts – a protocol that has the same effect as an
adiabatic switching of the Hamiltonian but occurs in finite time [123-124]. Specifically, we
apply an additional counterdiabatic term to our Hamiltonian during the switching process
to achieve the adiabatic shortcut.

Here we take the first projective measurement as an example. In detail, the basis
rotation is achieved by rotating the effective field from the σz direction to the σx direction.
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The Hamiltonian of this process can be written as,

H1st(t) =
Ω0

2

[
σz cos

(
πt

2τ1st

)
+ σx sin

(
πt

2τ1st

)]
, (4-24)

where t varies from 0 to τ1st, and τ1st should be much longer than Ω0 to satisfy the
adiabatic approximation. However, due to the limited coherence time of the two-level
system encoded in the Zeeman levels, the adiabatic transition would result in serious
errors in the stage of the basis rotation. To realize a fast and robust basis rotation, we
apply an adiabatic shortcut by adding an additional counterdiabatic term [124],

Hc,1st = i
∑
m,n

|m〉〈m| ∂tH1st |n〉〈n|
En − Em

. (4-25)

Here |m〉 and |n〉 should be the instantaneous eigenbasis of H1st(t), and Em and En are the
corresponding eigen-energies. By inserting Eq. (4-24) into Eq. (4-25), the counterdiabatic
Hamiltonian turns out to be,

Hc,1st =
Ω0

2
σy. (4-26)

The term proportional to σy suppresses non-adiabatic excitation. In the experiment,
we choose τ1st = 5 µs, which is much shorter than the conventional adiabatic rotation.
Similarly, the Hamiltonian for the basis rotation in the second projective measurement is,

H2nd(t) =
Ω0

4

[
σy cos

(
πt

2τ2nd

)
+ σz sin

(
πt

2τ2nd

)]
+
Ω0

4
σx, (4-27)

where τ2nd is chosen to be 10 µs, and the counterdiabatic term is proportional to σx.

4.3 Experimental results

In the experiment, we start from the effective thermal state with two different tem-
peratures of T1 = 5.63 µK and T2 = 1.70 µK, as we mentioned before. The duration of
applying work is chosen to be τ = 50, 10 and 5 µs, corresponding to the near adiabatic,
intermediate and far-from-equilibrium process, respectively. The decohering rate γ is
set to 0, 448 or 1340 kHz which corresponds to the cases of no, intermediate, or the
large decohering strength, respectively. Fig. 4.6 shows the work distributions resulting
from experiments conducted with twelve different combinations of effective temperature
T , driving time τ, and decoherence rate γ. From the data, it is clear that decoherence
non-trivially affects the work distribution for a given process – for instance compare (a.4)
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γ = 0 kHz
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Figure 4.6 Work distributions measured with different work protocols. The distributions (a.1)-
(a.6) correspond to an initial temperature of T1 = 5.63 µK while (b.1)-(b.6) have T2 = 1.70
µK.
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- (a.6) (or (b.4) - (b.6)) in figure 4.6. A more careful inspection reveals that the qualitative
behavior of the work distribution is governed by a competition between driving speed and
decoherence.

For near-adiabatic driving, the work distribution is peaked at values W = ε̄i − εi

corresponding to the measurement of two energies with the same quantum number.
Increasing driving speed (decreasing τ) tends to induce transitions among energy states
with different quantum numbers, thereby broadening the work distribution. This effect
is exemplified in figure 4.6 by distributions (a.1), (a.2), and (a.4). With above work
distributions in the decoherence-free condition, we can estimate the changing of the free
energy, ∆F, utilizing either

∆FJ = −
1
β

ln
[
〈e−βW 〉

]
, (4-28)

or

∆FAd = 〈W〉, (4-29)

while the exact value of ∆F can be calculated by

∆F =
1
β

ln

[
Tr

[
e−βH(0)

]
Tr [e−βH(τ)]

]
. (4-30)

Note that, Eq. (4-29) should be established only when the driving process is near adiabatic.
According to the work distribution shown in (a.1), Eq. (4-28) and Eq. (4-29) estimate ∆F

to be ∆FJ = 0.036~Ω0 and ∆FAd = 0.051~Ω0, respectively, while the exact value of
∆F is around 0.039~Ω0. Both methods estimate the changing of the free energy quite
well, indicating that we drive the system adiabatically. However, if we consider the work
distribution of (a.4), these two methods reveal the estimated ∆F of ∆FJ = 0.034~Ω0 and
∆FAd = 0.094~Ω0. Now, the free energy difference estimated by Eq. (4-29) deviates from
the real value a lot, indicating the driving process in (a.4) is surly away from equilibrium.

In contrast, decoherence in the eigenbasis of Ĥ(t) suppresses transitions among
energy states with different quantum numbers, bringing the work distribution closer to its
adiabatic form. This can be seen by comparing the near adiabatic distribution (a.1) with
the fast driving cases (a.4),(a.5), and (a.6) which have varying degrees of decoherence.
Interpreting this decoherence as the environmental measurement of the system’s energy,
one can see that the system is forced to follow the adiabatic trajectory due to wave
function collapse. When the collapse rate γ becomes large, the system becomes trapped
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in an eigenstate of the instantaneous Hamiltonian – a scenario analogous to the quantum
Zeno effect.

With these distributions, the work relation can be tested for each choice of the
experimental parameters T , τ, and γ by direct comparison of the left- and right-hand
sides of Eq. (4-2). Note that the quantity 〈e−βW 〉 is calculated using the work distribution
while e−β∆F follows straightforwardly from knowledge of the energy levels of Ĥ(0) and
Ĥ(τ). The results of these calculations, shown in Fig. 4.7, agree to within the error of the
experiment and hence validate the work relation.
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Figure 4.7 Comparison of the exponential average of work for distributions in Fig. 4.6 to the
exponential of the free energy difference calculated from the initial and final energy levels of H(t).

4.4 Conclusion

While lots of theoretical developments focus on environment-induced decoherence,
in fact, the dephasing master equation of Eq. (4-5) can be interpreted in various ways.
For instance, (a) the same master equation describes – at the ensemble level – a system
that evolves unitarily but is interrupted at random by projective measurements. More
precisely, if our experimenter makes measurements in the instantaneous eigenbasis of
H(t) at times dictated by a Poisson process with rate γ, then the density operator resulting
from averaging over all measurement realizations obeys Eq. (4-5), with γi j = γ. Yet
another interpretation of the dephasing master equation arises when (b) one averages over
the noise that is introduced by adding an appropriately designed, randomly fluctuating
term to the bare systemHamiltonian H(t) [119-120]. Both interpretations, (a) and (b), support

57



Chapter 4 Application: Quantum nonequilibrium work relation in the presence of decoherence

a fluctuation theorem.
In summary, we have studied the quantum work relation for a system in contact with

a decohering bath. Using a system constructed from trapped ions subjected to noisy
dynamics, we conducted an experiment that demonstrated the work relation’s validity for
a dephasing process and represents the first test of Eq. (4-2) beyond the regime of closed
quantum systems. These results demonstrate the applicability of fluctuation theorems to
open quantum systems, at least for the special case of a decohering heat bath, and may
spur additional tests of the work relation for systems with dissipation.
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Chapter 5 Quantum control on multiple qubits

Up to now, we have already introduced quantum operations on a single ion qubit
in Chap. 3, and shown that some quantum simulations can be demonstrated even with a
single ion. It is time to move to manipulations of multiple qubits. For large-scale universal
quantum computation, we require not only a scalable architecture to hold a large amount
of the qubits, but also the physical realization of a universal gate set consisting of arbitrary
single-qubit rotations and two-qubit entangling gates [20].

In the ion trap community, both Quantum CCD and ion-photon [125-126], two architec-
tures are pursued simultaneously for the scalable quantum computing. In any situation, a
single ion-crystal consisting of several ion qubits is treated as the minimal modular, and
the capability of individually controlling each qubit is required to apply the universal gate
set.

In this chapter, we would first introduce how a two-qubit entangling gate can be
achieved on two ion qubits through the collective motion shared by the different ions,
where a feature called full connectivity among the whole ion-chain naturally occurs. Then
starting from a single ion-crystal as the hardware, we would discuss the experimental
realization of multiple qubits initialization, individually coherent manipulations, and
detection. Here, the most crucial part is the so-called individual laser addressing system.
Finally, as complementary, we would briefly show several schemes to achieve robust
single- and two-qubit operations when noises of the system are considered.

5.1 Two-qubit entangling gate

In the trapped-ion system, the outmost electron of each ion occupies its lowest orbit,
and the average ion-spacing is usually around microns. Therefore, unlike Rydberg atoms,
ions cannot interact with each other directly. Instead, an ion-ion interaction is excited
through the collective motion induced by the Coulomb interaction. The first scheme
of the two-qubit entangling gate was proposed by Ignacio Cirac and Peter Zoller in
1995 [127], known as Cirac-Zoller (CZ) gate, and experimentally implemented in 2003 [128].
However, the performance of the CZ gate can quickly drop if the ions are not well cooled
to their motional ground state, and this critical requirement makes it hard to scale up.
Another proposal of a Doppler-free gate was made in 1999 by Klaus Mølmer and Anders
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Sørensen [129], known asMølmer-Sørensen (MS) gate, whichwas developed into geometric
phase gates soon after [130-133]. This type of gate is insensitive to the initial motional state,
which makes it widely used in the trapped-ion community. In this section, we would
detail the realization of the MS-type two-qubit entangling gate.

5.1.1 State-dependent force

For the sake of simplicity, we illuminate the same intensity of the driving laser onto
an ion-chain containing two ions. The interaction Hamiltonian of Eq. (3-20) is revised to,

H =
2∑

m=1

νma†mam +

2∑
j=1

Ω

2

(
σ

j
+ei(

∑2
m=1 η j ,m(am+a

†
m)−µt+φ) + h.c.

)
. (5-1)

Here am and a†m are the annihilation and creation operators of the m-th normal mode,
respectively, and νm is the corresponding mode frequency. σ j is the Pauli matrices of the
j-th ion qubit. We also assume that the effective wave vector of two Raman lasers only
couples to one of the transverse direction (denoted as x-direction), resulting in a relation
of,

k · xj =

2∑
m=1

ηj ,m(am + a†m). (5-2)

Here the local position operator xj is decomposed into the linear combination of the
normal-mode operators. ηj ,m is the scaled Lamb-Dicke parameter in which includes the
factor from the normal mode transformation matrix [43],

ηj ,m = bj ,mk

√
~

2Mνm
. (5-3)

By tuning the value of µ to near νm or −νm, we can excite either multi-mode blue or red
sideband transition as follows,

Hb =

2∑
j=1

2∑
m=1

iηj ,mΩb

2

(
σ

j
+a
†
mei(νm−µb)teiφb − h.c.

)
, (5-4)

Hr =

2∑
j=1

2∑
m=1

iηj ,mΩr

2

(
σ

j
+ame−i(νm+µr)teiφr − h.c.

)
. (5-5)

Here we have already chosen the rotating framewith respect to
∑2

m=1 νma†mam, and ignored
the off-resonant terms. Note that, a state-dependent force can be obtained if we apply
bichromatic fields with µb = µ and µr = −µ simultaneously, which can be expressed as a
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Hamiltonian with the form of [89,134],

HSDF =

2∑
j=1

2∑
m=1

ηj ,mΩ

2
(
a†meiδmte−iφp + ame−iδmteiφp

)
σ

j
φs
. (5-6)

Here δm = νm − µ is the detuning with respect to the m-th mode, and the strengths of
both sideband transitions are assumed to be the same, Ωr = Ωb = Ω. The optical phases,
φb and φr, can be decomposed into two parts for the motion and qubit, with the forms of
φp = (φr − φb)/2 and φs = (φb + φr + π)/2, respectively. We can also define a complex
force of fj ,m = ηj ,mΩe−iφp/2. Without loss of generality, we set φp = φs = 0, leading to a
σx-dependent force,

HSDF =

2∑
j=1

2∑
m=1

ηj ,mΩ

2
(
a†meiδmt + ame−iδmt

)
σ j

x . (5-7)

5.1.2 Unitary evolution operator

The time evolution governed by the Hamiltonian in Eq. (5-7) can be written as,

U(τ) = T exp
[
−i

∫ τ

0
HSDF(t)dt

]
. (5-8)

This is a time-ordered integral because of [HSDF(t2),HSDF(t1)] , 0 if t2 , t1. Fortunately,
by utilizing Magnus formula, Eq. (5-8) can be analytically calculated as follows [89],

U(τ) = exp
{
−i

∫ τ

0
HSDF(t)dt −

1
2

∫ τ

0
dt2

∫ t2

0
[HSDF(t2),HSDF(t1)] dt1

}
. (5-9)

In detail, the first integral in the exponential turns out to be,

T1 = − i
∫ τ

0
HSDF(t)dt

= − i
∫ τ

0

2∑
j=1

2∑
m=1

ηj ,mΩ

2
(
a†meiδmt + ame−iδmt

)
σ j

x dt

=

2∑
j=1

2∑
m=1

(
αj ,m(τ)a†m − α

∗
j ,m(τ)am

)
σ j

x, (5-10)

where,

αj ,m(τ) = −i
ηj ,mΩ

2

∫ τ

0
eiδmtdt =

ηj ,mΩ

2
1 − eiδmτ

δm
. (5-11)

Obviously, the result of the first integral reveals to be a state-dependent displacement oper-
ator on multiple motional modes, which entangles the qubit states with their displacement
in the position-momentum phase space.
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The second term in Eq. (5-9) is a double-integral which can be simplified to be,

T2 = −
1
2

∫ τ

0
dt2

∫ t2

0
[HSDF(t2),HSDF(t1)] dt1

= −

2∑
j , j′=1

2∑
m,m′=1

ηj ,mηj′,m′Ω
2

8
σ j

xσ
j′

x∫ τ

0
dt2

∫ t2

0
dt1

[
a†meiδmt2 + ameiδmt2,a†m′e

iδm′ t1 + am′eiδm′ t1
]

=i
2∑

j , j′=1

2∑
m=1

ηj ,mηj′,mΩ
2

4
σ j

xσ
j′

x

∫ τ

0
dt2

∫ t2

0
dt1 sin [δm (t2 − t1)]

=i
2∑

j , j′=1

2∑
m=1

ηj ,mηj′,mΩ
2

4

(
τ

δm
−

sin(δmτ)
δ2
m

)
σ j

xσ
j′

x

= − iθ1,2(τ)σ
1
xσ

2
x , (5-12)

where,

θ1,2(τ) = −2
2∑

m=1

η1,mη2,mΩ
2

4

(
τ

δm
−

sin(δmτ)
δ2
m

)
. (5-13)

All self-interaction terms vanish because of σ j
xσ

j
x = I, leading to constant phases which

are ignored. The factor of two in the coupling strength θ1,2 is due to the symmetrical
contributions from σ1

xσ
2
x and σ2

xσ
1
x . The qubit-qubit coupling term here provides pos-

sibilities to entangle different qubits. Note that, The even higher-order integrals vanish
because of [HSDF(t3), [HSDF(t2),HSDF(t1)]] = 0.

5.1.3 Two-qubit entangling gate in a two-ion chain

By inserting Eq. (5-10) and Eq. (5-12) into Eq. (5-9), we finally obtain the simplified
evolution operator,

U(τ) = exp

[
2∑
j=1

2∑
m=1

(
αj ,m(τ)a†m − α

∗
j ,m(τ)am

)
σ j

x − iθ1,2(τ)σ
1
xσ

2
x

]
. (5-14)

In order to have a pure qubit-qubit coupling, the qubit-motion should be disentangled at
the time τ, indicating that αj ,m(τ) should be zero for any j,m. According to Eq. (5-11),
these are equivalent to δmτ is an integer multiple of 2π for any m. For a two-ion chain,
above conditions can be satisfied by setting µ = (ν1 + ν2)/2 and τ = 2nπ × 2/(ν1 − ν2)

(assuming ν1 > ν2) where n belongs to the positive integers, as shown in Fig. 5.1. The
coupling strength turns out to be,
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Figure 5.1 State-dependent displacement in phase space. Here αm =
〈
α1,mσ

1
x + α2,mσ

2
x
〉
and

〈·〉 denotes the projection to the qubit-state. |±〉 are the eigenstates of the σx operator. As we can
see, for the 1st mode (COM mode), the force pushes the two ions in the same direction; therefore,
only the |±±〉 states can be driven. On the contrary, for the 2nd mode (zigzag mode), the ions are
driven oppositely, and then the |±∓〉 states are coupled. In order to satisfy the requirements of
αj ,m(τ) = 0 for any j,m, the trajectories for all the qubit-states should be enclosed at the time τ.

θ1,2 = −
nπΩ2

δ1

(
η1,1η2,1

δ1
+
η1,2η2,2

δ2

)
≈ −

2nπη2
1,1Ω

2

δ2
1

. (5-15)

The last simplification is due to the relations of δ1 = −δ2 and η1,1 = η2,1 ≈ η1,2 = −η2,2.
The final evolution operator reveals the two-qubit entangling operation written as,

XX1,2(θ1,2) = U(τ) = exp
[
−iθ1,2σ

1
xσ

2
x
]
, (5-16)

which is one of the Ising-type gates and is denoted as the XX-gate. The two-body coupling
strength can be tuned by changing the power of driving laser (Ω).

In the quantum computing community, the Controlled-NOT (CNOT) gate is the more
well-known two-qubit gate. The XX-gate can be transformed into the CNOT gate by being
sandwiched by several single-qubit rotations [16], as shown in Fig. 5.2. In this sense, we
always choose arbitrary single-qubit rotations and two-qubit XX gates, instead of CNOT
gates, as our universal gate set in the trapped-ion platform.

One of the most important functions of the XX-gate is to prepare entangled states, as

63



Chapter 5 Quantum control on multiple qubits

Ry(
𝜋

2
) Rx(-

𝜋

2
)

Rx(
𝜋

2
)

Ry(-
𝜋

2
)

XX(
𝜋

4
) ⇒

Figure 5.2 Construct a CNOT gate with a XX gate and several single-qubit gates. Two circuits
shown in the figure are equivalent except a global phase shift.

shown in the following equation,

XX (θ) |00〉 = cos θ |00〉 − i sin θ |11〉. (5-17)

When choosing θ to be ±π/4, the prepared states are the maximally entangled states,
(|00〉 ∓ i|11〉) /

√
2, which are equivalent to the Bell states. The state fidelities of these

states are always used to characterize the performance of XX-gates. As shown in Fig. 5.3,
we experimentally apply a XX(−π/4) gate and then measure the population of the final
state. We can observe the domain population occupying the states of |00〉 and |11〉.
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Figure 5.3 Population measurement of prepared entangled state. (a) Probability distribution
of the number of incident photons during the detection process. Here we use the normal PMT
as our detecting device, and the distribution is obtained after 3000 times repetition. The final
distribution is treated as the sum of three Poisson distributions with the average photon numbers
of n0 ≈ 0, n1 and n2 ≈ 2n1, corresponding to the cases of no bright ion (|00〉 ), single bright ion
(|01〉 or |10〉 ) and two bright ions (|11〉 ), respectively. (b) Population on each qubit state. By
fitting the distribution with the sum of three Poisson distributions, we can obtain the weight of
each distribution (solid red line in (a)), which is treated as the population of the corresponding
qubit state. The fitting results here indicate (98.3 ± 0.01)% population occupied in the states of
|11〉 and |00〉 .
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To determine the state fidelity defined as,

F = Tr
[
|ψid〉〈ψid | ρexp

]
=
ρ00 + ρ11 + |ρ01 | + |ρ10 |

2
, (5-18)

where |ψid〉 is the ideal maximally entangled state and ρexp is the density matrix of the
prepared state, we still need to quantify the correlation between the states |00〉 and |11〉.
A standard method is applying π/2-rotations along the φ-axis to both qubits, as shown in
Fig. 5.4 (a). The parity of the final state, defined as

〈
(−1)σ1

zσ
2
z

〉
= P00 + P11 − P10 − P01,

would oscillate with the value of φ, while the contrast of the oscillation indicates the value
of |ρ10 |, as shown in Fig. 5.4. Here 〈·〉 denotes the average over the final state, and Pi is
the population on the |i〉 state.
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Figure 5.4 Correlation measurement and parity oscillation. (a) Circuit of measuring the state
correlation. Note that in our experimental measurement, the single-qubit rotations are along the
−φ-axis, while the contrast of the parity oscillation would not be affected. (b) Population of the
final state with different φ. For each point, we repeat 500 times and then obtain the population on
different states by fitting the probability distribution of the number of incident photons. (c) Parity
oscillation obtained from the data in (b). All the red circles refer to the experimental results, while
the solid black line is the fitting result. Here the contrast of the oscillation is (95.0 ± 0.01)%,
indicating the state fidelity of (96.7 ± 0.01)% at that time.
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5.1.4 Further discussion

Two-qubit entangling gate in a N-ion chain

Now we consider realizing two-qubit entangling gates on an ion-chain with N ions
(N > 2). Note that, all-to-all connections between each ion and each collective motional
mode lead to all-to-all connectivity among all ion qubits. Therefore, we can directly apply
two-qubit gates on arbitrary qubit-pair even if they are not adjacent in physical space, and
this feature is known as full-connectivity [16,135]. However, the challenging part is that the
number of normal modes increases linearly with the number of ions. By applying state-
dependent forces on the target two ions (assuming we have the individual controllability
on each ion), we have to decouple the ions from all their motional modes at the gate time
τ to achieve the pure qubit-qubit interaction as shown in Eq. (5-16), which indicates the
constraints of,

αscaled
m =

αj ,m(τ)

ηj ,m
= −i

∫ τ

0

Ω

2
eiδmte−iφp = 0, (5-19)

for m = 1,2, ...,N . These constraints are easy to satisfy when N = 2 but become a tricky
problem when more modes get involved, because the δm with different indexes are always
irrational to each other.

Several schemes are developed since the first proposal in 2006 [136-137]. The main
idea is utilizing modulated state-dependent force to drive target qubits, resulting in the
modified constraints of,

αscaled
m = −i

∫ τ

0

Ω(t)
2

eiδm(t)te−iφp(t) = 0. (5-20)

This can be achieved by changing the parameters of the laser fields in time, including
either power (Ω) [138], frequency (δm) [139], phase (φp) [140-141], or their combinations. Such
modulated forces provides enough degree of freedoms to close all the motional trajectories
in the phase space with much more complex shapes instead of the simple circle shown
in Fig. 5.1. Meanwhile, the modulated pulses can be designed to be robust to system
noises [139-143], including such as the drifting in trap frequencies, the heating of motional
modes, which makes gate operations more practical.

Off-resonant coupling to carrier transition

Here, we had better review the Hamiltonian of the state-dependent force. In the
derivation of Eq. (5-7), we neglect the off-resonant coupling to the carrier transition in
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the sideband Hamiltonian by assuming that Ω � µ. However, this assumption is not
always true, especially when we purse a fast gate operation, which requires pretty large
Ω. Therefore, the fast oscillation term of the carrier should be included, which modifies
the state-dependent fore of Eq. (5-7) to be,

HFull
SDF = Hc + HSDF

=
∑
j

Ω cos (µt)σ j
y +

∑
j ,m

ηj ,mΩ

2
(
a†meiδmt + ame−iδmt

)
σ j

x . (5-21)

Note that, the term of Hc in Eq. (5-21) is proportional to σ j
y , while HSDF ∝ σ

j
x . Therefore,

these two parts yield a non-zero commutator of [HSDF,Hc] ∝ σ
j
z , which make the calcu-

lation of Eq. (5-8) a complicated problem because
[
HFull

SDF(t3),
[
HFull

SDF(t2),HFull
SDF(t1)

] ]
is not

zero anymore.
This trouble is still unsolved. Therefore, no σxσx-type ultra-fast gate has been

demonstrated. However, the operation duration of a σzσz-type gate has already reach 480
ns [59], which is comparable to solid systems. Because the frequencies of driving a σz-
dependent force can bemuch far away from the carrier transition, the off-resonant coupling
is negligible even in the fast gate region, while aZeemanqubit is required [144]. Moreover, in
Ref. [59], the researchers also point out that the high-order sideband transitions also should
be considered due to the breakdown of the Lamb-Dicke approximation. To accelerate
σxσx-type gates, several methods like utilizing standing-waves or near-field oscillating
magnetic fields are under-exploring, in which the amplitude of the driving fields can
vanish while the gradient remains. Note that, in Ref. [145], the authors mention that
the error from the carrier term can be effectively suppressed when the modulating pulse
satisfies

∫ τ

0 Ω(t) ≈ 0. For now, although we limit ourselves in the slow-gate region, the
open question of fast σxσx-type gates is worthwhile for further researches.

5.2 Individual laser addressing on five ion qubits

5.2.1 Brief introduction to multiple qubits control

It is time to move to hardware levels. To realize a universal quantum computing
systemon a linear ion-chain, we should have capabilities of achieving single-qubit rotations
and two-qubit XX-gates on arbitrary single-qubit and qubit-pair, respectively. Therefore,
we need to distinguish each ion and to apply driving fields onto target qubits.

Because ions are always spatially crowded, we can separate all the qubits in the
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frequency domain. This scheme can be achieved by employing Zeeman qubits and
applying a static magnetic with a spatial gradient [146-147]. When a certain qubit is driven
resonantly, others that are not desired to be manipulated would be hidden from the control
field. Moreover, the sizeable magnetic gradient offers the possibility of exciting the ion-
motion coupling even by the long-wavelength microwave. However, the additional phases
induced by off-resonate coupling on all other qubits can not be ignored if we apply the
long-depth circuits, and high stability of the control field is required if we want to calibrate
them. Meanwhile, the Zeeman qubits may suffer from the short coherence time due to
the magnetic fluctuation, while a "engineered clock qubit" is proposed and implemented
to overcome this shortage [64-65].

Another scheme is spatially resolving each qubit by tightly focusing each beam in
an array of the driving laser beams onto each ion in an ion-chain. By independently
controlling each driving beam, we can individually manipulate each qubit. Therefore,
this setup is usually called as the individual addressing system. In some realizations,
the individual beams, which are perpendicular to an ion-chain, execute arbitrary single-
qubit rotations or shelve part of qubits to their metastable states when a global entangling
operation is applied by the beam which is parallel to the ion-chain [57]. While in some
setups, the individual beams are employed to execute the whole universal gate set [16-17].
Here we choose the final one as our solution to construct a fully controllable quantum
computing system, which would be introduced in the following content.

5.2.2 Design of the individual addressing system

In practice, the alignment of the whole individual laser addressing system is shown
in Fig. 5.5. To drive the two-photon stimulated Raman transition, the pulsed laser is
divided into two paths, which are denoted as the individual part and the global part, by
a PBS. The individual part is modularized by coupling to a high-power photonic-crystal
fiber (provided by NKT Photonics, while the hydrogen loading is done by ourselves). The
global Raman beam, which is the−1st diffractive order from a conventional single-channel
AOM, is designed to cover all the whole ion-chain. With the help of two cylinder-lens,
which are perpendicular to each other, the global Raman beam is focused at the ion-chain
position into an elliptical Gaussian beam, with waists of about 30 µm along the ion-chain
and about 5 µm in the perpendicular direction. The delay line is used to balance the length
difference between the global part and the individual part. Note that, to compensate for
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Figure 5.5 Alignment of Raman lasers. Part of the optical elements are not shown in the figure.
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the optical path induced by the fiber in the individual part, the total length of the global
Raman path is around 3 m. Therefore, to reduce the phase noise due to the airflow, the
whole Raman system is covered by several designed boxes.

The more complicated individual part can be divided into three sections, including
generating an array of almost identical beams, providing independent control ability, and
focusing at the ion-chain position. As shown in Fig. 5.5, after going through a noise eater,
which is used to stabilize the laser power, the laser beam first passes a DOE, specifically
a diffractive beam splitter (HOLO/OR MS-499-U-Y-X). This element is a transmissive
binary phase grating, which is designed to uniformly distribute the most of the laser
power (∼75%) to the {−2,−1,0,+1,+2} diffractive orders. Here the diffractive angle ϑd

is around 6.08 mrad at the wavelength of 375 nm. Before going through a multi-channel
AOM (Gooch&Housego 97-02411-03, 5 channels), a lens with the proper focal length
( f1 ∼146 mm) is placed to make the five beams parallel to each other, and then the spacing
of the beams matches that of the AOM channels which is around 0.035 inch, as shown in
Fig. 5.6 (c). The −1st orders from all the channels work as the individual Raman beams.
Moreover, by employing a multi-channel AWG (SPECTRUM DN2.662-08, 8 channels)
to generate RF signals to each AOM channel, the frequency, power, and optical phase of
each individual Raman beam can be independently controlled.

To achieve a tightly focusing at the positions of ions, we employ a multi-stage
telescope system to amplify the size of the individual beams and then focus them with
an objective lens with a quite short work distance, as shown in Fig. 5.5 and Fig. 5.6 (a).
To simplify the analysis, we treat each optical lens as the ideal thin one. The individual
beam along the chief optical axis (0th diffractive order) is used to estimate the size of the
Gaussian beam at the ion position, while the propagating trajectories of all the diffractive
beams are tracked to obtain the spacing of the final beam points by utilizing the geometric
optical method, as illustrated in Fig. 5.6. The whole amplification system includes three
sub-telescopes, providing a total magnification of,

Mt =
f2
f1
×

f4
− f3
×

f6
− f5

, (5-22)

where fi is the focal length of each optical lens. With the initial Gaussian beam size of
ω0 at the DOE position, the beam is expanded to the size of ω′0 = Mtω0 after the 6th lens
( f6), while the diffractive angle is suppressed from ϑd to ϑ′d = ϑd/Mt. After focusing by

70



Chapter 5 Quantum control on multiple qubits

Convex lens
Concave lens

f1 f2 -f3 f4 -f5

f6 f7

(b) (c) (d)(e)

(a)

ω0 ϑd

(b)

dAOM ∼ 889 μm

ωAOM

(c)

ϑd'

ω0'

(d)

dfin ∼ 5 μm

ωfin

(e)

Figure 5.6 Telescope system to achieve tightly focusing. (a) Overall of the three-stage telescope
system. The pairs of { f1, f2}, { f3, f4} and { f5, f6} form the first, the second and the third
sub-telescopes, respectively. The concave lenses here are utilized to save the optical length. (b)
Starting point of the telescope system. After passing the DOE, the five almost identical beams
propagate with the diffractive angle of ϑd. We assume that the waist of the beam is at the position
of the DOE. (c) Place to insert the multi-channel AOM. The five beams are adjusted with a lens
to be parallel propagation, and the spacing matches that of the AOM. (d) End of the telescope
system. The size of the beam is expanded to be ω′0, while the diffractive angle is reduced to be
ϑ′d. (e) Final focused individual beams. The spacing of the final focused position is designed to
be around 5 µm. Here, the waists of the individual beams are pretty small, resulting in a pretty
short Rayleigh range. The beams would quickly diverge after the focused position.
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the final objective lens, the size of each beam can be estimated as,

ωfin ≈
λ f7
πω′0

=
λ f7

πMtω0
, (5-23)

with a spacing of

dfin ≈ f7ϑ′d =
f7ϑd

Mt
. (5-24)

Note that, for an ideal situation, the ratio between the final beam waist and the beam-
spacing,

ωfin

dfin
=

λ f7
πMtω0

×
Mt

f7ϑd
=

λ

πω0ϑd
, (5-25)

is determined by the beam waist at the DOE position if we fix the parameters of the
telescope system. To suppress the crosstalk of the individual beams to their nearby ion
qubits, we expect above ratio to be as small as possible. However, such tiny size of the
focused beam requires pretty highN.A. of the final objective ( f7) and careful compensation
for optical aberrations.

As a tradeoff, we expect to achieve the final beam waist to be around 0.7 µm,
while the beam spacing is desired to be 5 µm. In this situation, the amplitudes of
electric fields spread to the nearby ions are estimated to be exp(−5.02/0.72) ∼ 10−25.
We choose a final objective lens (RONAR-SMITH 355nmFL47Q) that has an effective
focal length around 47 mm and N.A around 0.25, which provides a resolution of around
0.61λ/2N.A. ≈ 0.45 µm. The total magnification of the telescope system Mt is expected
to be around 58 by using the lenses listed in Tab. 5.1. Those lenses are selected by the
simulation in Zemax to minimize the accumulated optical aberrations.

Table 5.1 Lenses of telescope system

Lens index Focal length (mm) Details
f1 146.2 Doublets of Thorlabs LA4579-UV
f2 160.6 Thorlabs LA1708-A and LA1464-A
f3 -29.2 Thorlabs LC4252-UV
f4 243.1 Thorlabs LA4158-UV
f5 -47.5 Thorlabs LC4888-UV and LF4938-UV
f6 302.5 Thorlabs AC508-300-A

The finale focused individual beams achieved in the experiment are shown in Fig.
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5.7. Because the objective lens of individual addressing and that of imaging systems are
opposite to each other, we can check the quality and size of the beams on the EMCCD.
By directly obtaining the position of each individual beam on the camera, we estimate
the spacing of the nearest beams to be around 4.75 µm in practice. The waist of each
beam is around 1 µm, and we suspect the difference to the theoretical value is due to the
uncompensated optical aberrations. In the experimental system, the final objective lens
is placed on a five-axis stage (three translational axes two rotational axes) and carefully
adjusted, because it is the most sensitive element to introduce huge aberrations. However,
in Fig. 5.7, we can still observe the coma aberration from the beam spots on both sides. The
spherical aberration is also much larger than the expectation, resulting in optical spillovers
to the nearby ions around 1-3%. Because the effective Rabi frequency of the stimulated
Raman transition is proportional to the multiplication of the electric field amplitudes of
the global Raman beam and the individual beam, Ω ∝ EglobalEind, the spillovers turn into
crosstalks in quantum operations.

∼ 4.7μm

Figure 5.7 Focused individual beams imaged on the EMCCD.

In addition, in the inset figure of Fig. 5.5, we show the geometric configuration of the
Raman laser beams. The global beam goes through a side viewport, while the individual
beams pass the bottom re-entrant viewport. The global beam and the individual beams
intersect each other perpendicularly at the ion chain, resulting in the effective wave vector
along the radial x-direction. Such geometry makes it possible to only drive the normal
modes in x-direction, simplifying the pulse optimization when we apply entangling gates.
The beams are polarized linearly, perpendicular to each other, while the static magnetic
field is applied along the direction of the individual beams.

5.3 Initialization and readout on multiple qubits

Up to now, we do not require independent initialization or detection ofmultiple qubits,
compared with individually coherent control on each ion. Therefore, it is straightforward
to extend state initialization&detection to the multi-qubit case. We briefly introduce each
part as follows.
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5.3.1 Multiple qubits initialization

As we have already discussed in Sec. 3.1, single-qubit state initialization is achieved
by the standard optical pumping techniques. To extend it to the multi-qubit case, we can
broaden the optical pumping beam to cover the whole ion-chain and pump all the ion
qubits to the |0...0〉 state simultaneously. Therefore, the duration of this process does not
increase with the scale of the system.

For motional state initialization, we can also broaden the beam for Doppler cooling
to cool the motion of the ion-chain to the Doppler cooling limit. However, to guarantee
the fidelity of single-qubit rotations and two-qubit entangling gates, we also demand
the ground-state cooling of motional states. Because the collective motional modes
are separated in the frequency domain and the conventional sideband cooling has a
pretty narrow bandwidth, the problem of multi-ion ground-state cooling becomes less
straightforward. In principle, We can alternately drive red sideband transitions of different
modes to cool down each mode one by one. The duration of the multi-mode sideband
cooling would increase more than linearly (N3/2) with the number of the ions N if we fix
the power of the driving laser beam. Here, the factor of N comes from the number of
the motional modes, while the factor of N1/2 is due to the decay of the scale Lamb-Dicke
parameters.

......

νi' → ioni

νj' → ionj

νk' → ionk

Figure 5.8 Simultaneous sideband cooling of multiple motional modes.

Fortunately, with the help of the individual addressing system, we can apply the
multi-mode sideband cooling simultaneously, as shown in Fig. 5.8. The red sideband
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transition of each mode is mapped on each ion to reduce one quanta phonon of each
mode, and then the optical pumping is applied to the whole ion-chain to reset the state
of the qubits. Therefore, the duration of the ground state cooling would be proportional
to
√

N . Moreover, we must carefully arrange which ion to use to cool which mode. For
example, in a three-ion system, the 2nd breathing mode is decoupled from the 2nd ion, as
illustrated in Fig. 2.4; therefore, we can not utilize this ion to cool down the 2nd mode.

5.3.2 Spatially resolved detection

For multiple ions detection, we have already demonstrated one of the methods in
Sec. 5.1, when we characterize the fidelity of the Bell state prepared by the two-qubit
entangling gate. Here we discuss to extend this method to the multi-qubits case. After
repeating a specific experimental sequence many times, we would obtain a distribution of
the number of incident photons. If we can ignore the side-effects from the off-resonant
coupling of the detection beam, the distribution should follow the form of,∑

Nb=0

ANbPoisNb(n) =
∑
Nb=0

ANb

(n̄Nb)
ne−n̄Nb

n!
, (5-26)

where PoisNb(n) is the Poisson distribution, Nb is the number of bright ions and n̄Nb ≈ Nbn̄1

is the corresponding average number of incident photons. The weights ANb are fitted by
experimental results to estimate the populations of the measured state. This method has
several shortages. First, we can only know how many ions are in the |1〉 state instead of
which ions are in this state, as shown in Fig. 5.3. Then, we can not apply the single-shot
measurement. In the single-qubit situation, the single-shot measurement works because
of a tiny overlap between the Poisson distributions of the dark (|0〉) and single-bright (|1〉)
event, as shown in following,

∞∑
n=0

Min [Pois0(n),Pois1(n)] < 10−3, (5-27)

Here the corresponding average photon numbers are estimated to be n̄0 ≈ 0.05 and n̄1 ≈ 10.
Therefore, we can use a fixed threshold to determine the projected state in a high fidelity,
as we discussed in Sec. 3.1. However, as the number of ions increasing, the overlap,

∞∑
0

Min
[
PoisNb(n),PoisNb+1(n)

]
, (5-28)
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quickly increases, as shown in Fig. 5.9. This is because the signal ratio drops from
n̄1/n̄0 > 102 to n̄Nb+1/n̄Nb < 2 when Nb ≥ 1. The threshold method suffers from serious
detection errors and can not work. Meanwhile, the fitting method would also fail due to
the significant overlap between different distributions.
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Figure 5.9 Probability distribution of the number of photons during multi-ion detection and
their overlap. Nb is the number of the bright ions, and the effect of the off-resonant coupling is
neglected here.

Detection with EMCCD

To distinguish multi-qubit projected states in a single shot, we replace the detection
device with the EMCCD. The chip of our EMCCD contains 512 × 512 active pixels and
the size of each pixel is 16 µm × 16 µm. The positions of all the ions can be naturally
resolved, as shown in Fig. 5.10 (a). To detect the state of each qubit, we select several
regions of interest (ROI) which contain one ion in each ROI, and then use the brightness
(counts) of each pixel to determine the projected state.

In principle, we can sum the counts of all the pixels in each region, and then use
the threshold method to estimate the projected state of each ion. However, the counts
contributed from the nearby ROIs and pretty high background counts would degrade the
detection fidelity. To overcome these problems, we fit the profile of each imaged ion with
a Gaussian distribution and then utilize the fitted height of the distribution to determine
qubit states [148]. The data of each ROI is summed vertically; therefore, we can apply a
one-dimensional Gaussian fitting. We first pre-calibrate the positions and sizes of all the
ions by shining the detection laser to the ion-chain and exposing them to the camera for a
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ROI 1 ROI 2 ROI 3 ROI 4 ROI 5

(a)

(b)

Figure 5.10 Labview interface for detection with the EMCCD. Here, we show the calibration of
the positions and the sizes for five ions.

long time. The data of each ROI is fitted with the form of,

f cal
i (x) = Ai exp

[
−
(x − xi)2

2σ2
i

]
+ Bi, (5-29)

where Ai, Bi, xi and σi are the fitting parameters for the i-th ion. Fig. 5.10 (b) shows the
profiles of five ions during the calibration process. After pre-calibration, the position (xi),
size (σi) and offset (Bi) of each ion are fixed to be the calibrated results, xcal

i , σcal
i and Bcal

i ,
respectively. The form of

f exp
i (x) = A′i exp

[
−
(x − xcal

i )
2

2(σcal
i )

2

]
+ Bcal

i , (5-30)

is utilized to fit the data obtain in the experiment. Here only the height of the distribution,
A′i, is the fitting parameter, and its value is compared with a given threshold to determine
the projected state.

To characterize the fidelity of single-qubit detection, we obtain the histogram dis-
77



Chapter 5 Quantum control on multiple qubits

tributions of the fitting height by preparing the initial |0〉 or |1〉 state. The experimental
results are shown in Fig. 5.11. Due to a low quantum efficiency of the EMCCD, the
detection duration is extended to 800 µs. Therefore, the effect of the off-resonant cou-
pling from the detection beam can not be ignored. In the distribution of the |1〉 state,
the tail near zero is much higher than the standard Poisson distribution. The off-resonant
coupling, together with the low signal-to-noise ratio of the EMCCD, degrade the fidelity
of single-qubit detection to around 96%.
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Figure 5.11 Probability distribution of the fitted height of the Gaussian distribution. The red
data represents the distribution of the initial |0〉 state while the blue one represents the results of
the |1〉 state.

For now, we do not have a clear idea to improve detection fidelity. Instead, we utilize
the method introduced in Ref. [149] to correct the detection errors after obtaining the
whole populations of all the qubit-states. For a single ion, the measured populations and
the real values should have a relationship of,(

Pmea
1

Pmea
0

)
=

(
1 − p1→0 p0→1

p1→0 1 − p0→1

) (
Preal

1

Preal
0

)
=M.

(
Preal

1

Preal
0

)
. (5-31)

Here Pmea
i and Preal

i is the measured and the real population of the |i〉 state, and pi→j is
the probability of detecting the |i〉 state as | j〉. Assuming we have the knowledge of the
detection errors of each state, the real state populations can be reconstructed by reversing
Eq. (5-31), (

Preal
1

Preal
0

)
=M−1.

(
Pmea

1

Pmea
0

)
. (5-32)
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For a N-qubit system, the error transfer matrix M has 2N × 2N elements. When crosstalk
errors in the detection process can be effectively neglected, the N-qubit error transfer
matrix can be decomposed into,

M =MN ⊗ ... ⊗M1, (5-33)

where Mi is the error transfer matrix of the i-th ion. By experimentally determining the
matrix M, the real population of each state can be reconstructed by ®Preal = M−1. ®Pmea,
where ®P = {P1...1, ...,P0...0}. In practice, to avoid non-physical results, we utilize the
maximum-likelihood method to estimate the real populations by minimizing the 2-norm
‖ ®Pmeas −M. ®Preal‖2 subject to the constraints of

∑
i Preal

i = 1 and ®Preal > 0.
By combining the tools of the individual laser addressing and the spatially resolved

detection, we can independently apply and detect single-qubit rotations on each ion, and
the Rabi oscillations obtained in the experiment are shown in Fig. 5.12. Here, all the
motional modes are cooled to their ground states, so that we can observe almost full
contrast for each oscillation. Due to the mismatch between the equal-spaced individual
beams and the unequal-spaced ion-chain, some ions suffer from a higher intensity noise,
and the corresponding oscillations are not smooth enough; for example, the oscillation
in Fig. 5.12 (a). Moreover, we again prepare a maximally entangled state by applying
the two-qubit entangling gate in a two-qubit chain, and the results are illustrated in Fig.
5.13. Compared with the previous results shown in Fig. 5.3 and Fig. 5.4, the state fidelity
is improved to (98.6 ± 1.1)% after further stabilizing the pulsed laser and the individual
addressing system.

Updating: detection with multi-channel PMT

By utilizing the EMCCD as the detection device, we can resolve the state of each
qubit. However, due to the low quantum efficiency at UV wavelength and slow speed of
the readout process, the performance of detection by the EMCCD is worse than that of by
the PMT. To achieve spatially resolved detection while keeping the detection speed and
fidelity, we are updating the detection device to a multi-channel PMT [150].

For now, we have already installed a 32-channel PMT (Hamamatsu H11460) in our
system. All the PMT channels are distributed in a one-dimensional array with a spacing
of 1 mm for the nearby two-channel. The active area of each channel is 0.8 mm×7
mm. Considering that the spacing of the ions is around 5 µm, an imaging system with a
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Figure 5.12 Rabi oscillation of carrier transition on each ion. Here, a chain consisting of four
ion qubits are confined.
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Figure 5.13 Fidelity measurement of the prepared maximally entangled state. (a) Population on
each qubit-state. Now we can distinguish all the possible states. The total populations occupied
in the |00〉 and |11〉 states is 99.3%. (b) Measurement of state correlation. The parity oscillation
(shown in the purple dots) is obtain from the state oscillations (shown in the blue, green, red and
orange lines for the |00〉 , |01〉 , |10〉 and |11〉 states, respectively). The fitting result of the parity
oscillation (shown in the purple line) indicate a contrast of 98.0%. All the data is detection error
corrected.
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magnification of 1 mm/5 µm ∼ 200 is required. Therefore, we update the imaging system
shown in Fig. 3.7 to a new version, which is illustrated in Fig. 5.14.

To EMCCD
Iris

Objective 
Lens

Multi-channel
PMT

1 mm

2nd lens

3rd lens

Active aperture

Flip mirror

……

Figure 5.14 Updated imaging system. The 3rd lens is installed to provide an additional magni-
fication around four in this path.

To minimize the detection crosstalk from nearby ions, we map all the ions to the
channels with the odd (or even) number, as shown in the inset figure of Fig. 5.14, which
requires the magnification provided by the third lens to be around four. The collected
fluorescence from five ions by using the multi-channel PMT is shown in Fig. 5.15, in
which each ion can be clearly distinguished. However, it is challenging to focus the image
of each ion well and then map them to the corresponding channel. In the figure, the spread
of the ion’s fluorescence to the nearby channels is quite severe. The primary error source,
which induces the spread, is due to the serious spherical aberration. Because the quantum
efficiency of this type multi-channel PMT is only a half of the single-channel one, and
the part of counts would be lost due to the dead area between the adjacent channels, the
duration of detection is extended to 250 µs to keep the same amount of the average photon
number.

This detection setup is still under exploring, and the detection fidelity and the crosstalk
of multiple qubits should be carefully characterized. In order to suppress the crosstalk
and improve the detection fidelity, we can try to optimize the imaging of the ion-chain.
Meanwhile, several schemes are proposed to improve the fidelity of classifying the pro-
jected state by the way of machine learning [87-88]. Moreover, it is believed that by coupling
fluorescence from the ion-chain to a fiber-array can significantly suppress crosstalk, due
to limited N.A. of fibers.
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Figure 5.15 Photons collected by each PMT channel. Here, five ions are mapped on the odd
channels of {11, 13, 15, 17, 19}. Due to the mismatch between the ion-spacings and channel
spacings, and the dead area between nearby two channels, the counts of the 2nd and the 4th ions
are less than the others.

5.4 Robust universal gate set

As we mentioned at the beginning of this chapter, to achieve universal quantum
computation, the universal gate set, including single-qubit rotations and two-qubit entan-
gling gates, is required. According to the discussion in Chap. 3 and this chapter, we have
been clear of how to scalably realize the universal gate set in the trapped-ion platform.
However, for fault-tolerant quantum computation, we need quantum gates with pretty low
error rates. On the one hand, we should fully stabilize the whole system, suppressing
all potential noises as well as possible. On the other hand, robust schemes are pursued
to make gates insensitive to particular noises. In the following content, several popular
schemes would be introduced.

5.4.1 Single-qubit rotation

For single-qubit rotations, Rφ(θ), the noises in the rotation angle θ, and the rotation
axis φ are mainly considered, which are directly related to the intensity and phase of the
driving fields.

Intensity insensitive rotation

Here, we characterize the noise on the rotation angle as a small perturbation εθ. The
intensity noisy rotation, Rφ(θ̃), can be express as,

Rφ(θ̃) = Rφ (θ(1 + ε))

= Rφ(θ)
(
1 − i

εθ

2
σφ

)
+ O(ε2), (5-34)

where θ is the desired value of the rotation angle, while θ̃ = θ(1+ ε) is the corresponding
noisy one. The last line is obtained from the Taylor expansion of Rφ(εθ). Therefore,
the conventional single-qubit rotation is sensitive to the first-order of the intensity noise.
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To reduce the sensitivity, a simple way is to utilize composite rotations, and one of the
broadly used methods is known as SK1 (SK stands for Solovay-Kitaev) [151]. The sequence
of the SK1 composite rotations can be written as,

RSK1
φ (θ) = Rφ(θ̃)Rφ+φθ ( ˜−2π)Rφ−φθ ( ˜−2π), (5-35)

where φθ = arccos(θ/4π). By inserting Eq. (5-34) into Eq. (5-35), the composite rotations
can be approximated to be,

RSK1
φ (θ) = Rφ(θ)

(
1 − i

εθ

2
σφ

) (
1 + iεπσφ+φθ

) (
1 + iεπσφ−φθ

)
+ O(ε2)

= Rφ(θ)
(
1 − i

εθ

2
σφ

) (
1 + i

εθ

2
σφ

)
+ O(ε2)

= Rφ(θ) + O(ε2), (5-36)

where the simplification of the first line is due to Rφ±φθ (−2π) = −1, and the second line
is due to the relation of σφ+φθ + σφ−φθ = 2 cos(φθ)σφ. Obviously in Eq. (5-36), the
first order sensitivity to the intensity noise vanishes. Experimentally we test the SK1
composite rotations with θ = π and θ = π/2, corresponding to the π-rotation and π/2-
rotation respectively, by varying the relative intensity error ε from −1 to 1. The results
are summarized in Fig. 5.16. The wider plateaus near ε ∼ 0, compared with that of by
using the conventional single-qubit rotation, indicate the robustness to the intensity noise.

Moreover, in general, the n-th order SK composite gate (SKn) can get rid of all the
noise sensitivity up to the n-th order, resulting in an operation described by [151],

RSKn
φ (θ) = Rφ(θ) + O(εn+1). (5-37)

As a trade-off, such a composite pulse would be decomposed into a pretty long sequence
of noisy rotations. Other than the SK method, there are still several methods to construct
the composite sequence, for example the broadband method [152] and the transformed SK
method [153].

Phase insensitive rotation

For the single-qubit rotation achieved by the two-photon stimulated Raman transition,
the rotating axis φ is determined by the relative optical phase of the two Raman beams.
However, if we apply non-copropagating Raman beams, the jittering of the relative optical
length, δr , would introduce a phase noise, δφ = kδr , resulting in a phase-noisy rotation
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Figure 5.16 Application of the SK1 composite rotations to achieve intensity insensitive single-
qubit rotation. The population on the |1〉 state with varying relative error ε is measured experi-
mentally. (a) and (b) refer to the π-rotation and π/2-rotation, respectively. The black lines are the
theoretical prediction by applying the SK1 composite rotations, while the gray lines indicates the
theoretical results by using the noisy rotation in Eq. (5-34). The red dots are experimental results,
which match the theoretical calculation well.

Rφ̃(θ), where φ̃ = φ + δφ. Note that, the value of the effective wave vector k is
√

2 ×
2π/375 nm ≈ 24 µm−1 according to the Raman geometry shown in Fig. 5.5, which means
that 0.13 µm shift in the relative optical length would cause a π phase shift. Such jittering
mainly comes from mechanical fluctuations and vibrates at low frequencies. Therefore,
the value of φ might be stable in the duration of a single rotation, but be fluctuating
between different rotations, resulting in an unpredictable rotation axis.

In practice, we passively stabilize the Raman system by tightly fixing every optical
element and cover the laser path to reduce the influence of the airflow. We also consider
an active lock of the length difference through an interferometer consisted of the two
Raman arms in the future. However, it is still challenging to control the stability of the
laser path in long term. Instead, another straightforward way is to apply co-propagating
Raman beams, getting rid of the phase noise by vanishing the effective wave vector k,
resulting in a phase-insensitive single-qubit rotation, Rco

φ (θ). The ensuing problem is how
to realize a two-qubit entangling gate in the phase-insensitive way.

5.4.2 Two-qubit entangling gate

Implementing a phase-insensitive two-qubit gate is tricky because we have to apply
non-copropagating Raman beams for the ion-motion coupling. Therefore, the phase noise
from the jittering optical path is inevitable. To cancel such phase noise, a composite-like
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gate [55,89],

ZZ(θ) = Rπ/2+δφ
(π

2

)
.e−iθσδφσδφ .Rπ/2+δφ

(
−
π

2

)
= e−iθσzσz, (5-38)

might work, where a phase-noisy XX-gate is sandwiched by two phase-noisy single-qubit
rotations along the y-axis, yielding a phase-free ZZ-gate. We can employ phase-insensitive
single-qubit rotations, Rco

φ (θ), and above phase-free ZZ-gate as our practical universal gate
set. Note that, both phase insensitive and sensitive single-qubit rotations are required here.

Another scheme is proposed by applying the blue sideband and red sideband induced
by different geometric configurations of the Raman laser beams [89], as shown in Fig. 5.17.
The effective Hamiltonian of the sideband transitions from these two configurations can
be written as,

Hbsb =
iηΩ

2

(
σ+a†ei(ν−µ)teiφb − h.c.

)
, (5-39)

Hrsb =
−iηΩ

2

(
σ+ae−i(ν−µ)teiφr − h.c.

)
, (5-40)

Effective vector 𝑘b Effective vector 𝑘r

Blue sideband Red sideband

Figure 5.17 Different geometric configurations to apply sideband transitions. In the left config-
uration, the frequency of the Raman beam in the darker blue arrow is higher than that of in the
lighter blue arrow, yielding an effective wave vector pointing to the right. On the contrary, in the
right configuration, the frequency of the Raman beam in the darker blue arrow is lower, resulting
in an effective wave vector pointing to the left.

The additional minus sign in the red sideband transition is due the opposite directions
of the two effective wave vectors. The state-dependent force obtained from those two
sidebands can be expressed as,

HSDF =
iηΩ

2
(
σ+eiφs + h.c.

) (
a†ei(ν−µ)te−iφp − h.c.

)
, (5-41)
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where φs = (φr + φb)/2 and φs = (φr − φb)/2. Now considering a perturbation on the
relative optical length, δ®r , the above phases turn out to be,

φs →
φr + φb + (®kr + ®kb) · δ®r

2
= φs, (5-42)

φp →
φr − φb + (®kr − ®kb) · δ®r

2
= φp + δφ. (5-43)

The phase noise in the qubit part, φs, vanishes because of ®kr = −®kb, while the noise
in the motional part remains. Obviously, by utilizing the configurations shown in Fig.
5.17 to apply the blue and red sidebands on two ion qubits, the entangling operation,
σφsσφs , would be free to the phase noise from the jittering in the optical path. The phase
noise occurred in the motion part would not affect much if it is stable in the duration of
single entangling operation, because we would reset the motional state at the end of the
entangling operation by closing all the trajectories.

This scheme can be implemented in the experiment by apply the bichromatic RF
signals with frequencies of ω(1)AOM,r + µ and ω(1)AOM,r − 2∆AOM + µ to the AOM in the 1st
Raman path. The driven sideband transitions are shown in Fig. 5.18, which satisfy the
configurations in Fig. 5.17. The challenge in practice is that the AOM needs quite broad
bandwidth to cover both two RF frequencies.

……

AOM

rep

……

frequency

Raman 2

Raman 1-r

q + 

q - 



……

AOM - 

Raman 1-b

Figure 5.18 Experimental realization of phase-insensitive two-qubit entangling gate. By assum-
ing the relation of lωrep + ∆AOM = ωq and fixing the frequency of the AOM in the 2nd Raman
arm as ω(2)AOM,r, we choose two frequencies for the 1st AOM, ω(1)AOM,r = ω

(2)
AOM,r ± ∆AOM, to drive

the carrier transition. For the phase-sensitive gate, both sideband transitions are selected from the
same carrier frequency, while for the phase-insensitive gate, two sideband transitions are picked
up from different carrier frequencies.
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Chapter 6 Extension: Global entangling gates on arbitrary ion
qubits

In the framework of the quantum circuit model, any universal quantum computation
task, such as the quantum phase estimation [20], the Shor’s algorithm [4] or the quantum vari-
ational eigensolver [21], can be decomposed into a sequence consisting of the single-qubit
rotations and the two-qubit entangling gates. However, such decomposition is not neces-
sarily efficient. It has been pointed out that polynomial or even exponential speedups can
be obtained with global N-qubit (N greater than two) entangling gates [154-156]. Such global
gates involve all-to-all connectivity, which emerges naturally among trapped-ion qubits
with laser-driven collective motional modes [16,135,157-160], and have been implemented by
using a single motional mode [12,56]. However, the single-mode approach is hard to scale
up because isolation of single mode is challenging as the number of ions increases in a
single crystal. The multi-mode schemes, as we briefly introduced in Sec. 5.1, are scal-
able [136-137,161], but no one has explored the possibility of experimentally applying them
to the global N-qubit case yet.

In this chapter, we would introduce a scalable scheme to realize the global entangling
gates on multiple 171Yb+ ion qubits by coupling to multiple motional modes through
modulated laser fields. Such global gates require decouplingmultiple motional modes and
balancing all pairwise coupling strengths during the gate, demanding fully independent
control capability on each ion [16]. To demonstrate the usefulness and flexibility of these
global gates, we experimentally generate a Greenberger-Horne-Zeilinger (GHZ) state with
up to four qubits using a single global operation. Our approach realizes global entangling
gates as scalable building blocks for universal quantum computing, motivating future
research in scalable global methods for quantum information processing.

6.1 Entangling multiple ion qubits through multiple motional modes

One of the representative more than 2-qubit entangling gates is a global entangling
gate, which can generate entanglement among all involved qubits in a symmetric way.
The global entangling gate acting on N qubits is defined as,

GEN (Θ) = exp

[
−i Θ

N∑
j< j′

σ j
xσ

j′

x

]
, (6-1)
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where all of the two-body couplings are driven simultaneously. Apparently, a global
entangling gate applied to N qubits is equivalent to N(N − 1)/2 pairwise entangling
gates [156], which provides the possibility of simplifying the quantum circuits. For example,
the N−1 pairwise entangling operations in the preparation of the N-qubit GHZ state [13,138]

can be replaced by a single global entangling gate GEN (π/4), as shown in Fig. 6.1. In
fact, several theoretical works have already indicated that innumerous quantum algorithms
and universal quantum simulation of various many-body systems would benefit from the
global entangling gates in the efficient construction of quantum circuits. In particular,
a set of O(N) CNOT gates in the quantum phase estimation algorithm [156] and each
O(N)-body interaction term emerged in the simulation of fermionic systems due to the
Jordan-Wigner transformation [21,162], which requires O(N) two-qubit entangling gates,
can be both efficiently implemented by O(1) global gates.

H0
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0000 + 1111
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i 0000 + 1111
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i
4GE ( /4)
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Figure 6.1 Efficient construction of a quantum circuit using a global gate. For the generation of
the four-qubit GHZ state, we need one Hadamard gate (H gate in the figure) and three pairwise
entangling gates, which can be replaced by a single global four-qubit entangling gate. The phase
gate (S gate) at the end of the first circuit is used to compensate for the phase difference between
two circuit outputs.

Considering the experimental realization, as we discussed in the last chapter, the ion
qubits are entangling through the collective motional modes. Therefore, the ion qubits
confined in a single ion crystal have the long-range interaction naturally, which is similar
to the form of Eq. (6-1). By simultaneously applying the state-dependent forces [163] to
the multiple ions, as shown in Fig. 6.2, the Hamiltonian in Eq. (5-6) can be extended to
be [137],

HSDF =

N∑
j=1

M∑
m=1

ηj ,mΩj(t)
2

(
a†meiδmte−iφ j (t) + ame−iδmteiφ j (t)

)
σ j

x . (6-2)

Here we consider a general situation with N qubits and M collective motional modes, and
have already assumed to modulate the forces on each ion independently. The evolution
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� � �� � �

Individual Beams

Global Beam

Figure 6.2 Experimental setup used for the implementation of the global entangling gate. Each
ion in the trap is individuallymanipulated byRaman beams: a global beam (blue) and an individual
beam addressing a single ion (red). The individually addressed qubits are involved in the global
entangling gate.

operator governed by the above Hamiltonian turns out to be

U(τ) = exp

[∑
j ,m

(
αj ,m(τ)a†m − α

∗
j ,m(τ)am

)
σ j

x − i
∑
j< j′

θ j , j′(τ)σ
j
xσ

j′

x

]
. (6-3)

Here θ j , j′(τ) represents the coupling strength between the j-th and the j ′-th qubit, which
has the form of,

θ j , j′(τ) = −
∑
m

∫ τ

0
dt2

∫ t2

0
dt1

ηj ,mηj′,mΩj(t2)Ωj′(t1)

2

sin
[
δm(t2 − t1) −

(
φ j(t2) − φ j′(t1)

) ]
, (6-4)

while the residual displacement of the j-th ion and m-th mode is given by

αj ,m(τ) = −iηj ,m
∫ τ

0

Ωj(t)e−iφ j (t)

2
eiδmt = 0. (6-5)

Comparedwith the evolution operator in Eq. (5-14), all the pairwise coupling are included.
To perform the global gate GEN (Θ) in Eq. (6-1) from the time evolution of Eq. (6-3),

we have to close all the motional trajectories and balance all the coupling strengths, which
lead to the following constraints,

αj ,m(τ) = 0, (6-6)

θ j , j′(τ) = Θ. (6-7)

Given the size of thewhole system, there are N×M constraints fromEq. (6-6) and
(N

2
)
from

Eq. (6-7). Therefore, we have to satisfy a total number of N(N − 1)/2 + N M constraints.
In principle, we can fulfill the constraints by independently modulating the amplitude
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Ωj(t) or the phase φ j(t) of the Rabi frequency on each ion in a continuous or discrete
way. In the experimental implementation, we choose discrete phase modulation because
we have high-precision controllability on the phase degree of freedom. We divide the
total gate operation into K segments with equal duration and independently modulate the
phase on each ion in each segment, which provides N ×K independent variables. Because
of the nonlinearity of the constraints, it is challenging to find analytical solutions of the
constraints Eq. (6-6) and Eq. (6-7). Therefore, we construct an optimization problem to
find numerical solutions. We minimize the objective function of

∑
j ,m

��αj ,m(τ)
��2 [139,142-143]

subject to the constraints of Eq. (6-7). The details of the constraints under discrete phase
modulation and the optimisation problem construction are provided in the following
section.

6.2 Pulse optimization with phase modulation

6.2.1 Expressions of constraints under discrete phase modulation

In this section, we first give the detailed expressions of the constraints under the
discrete phase modulation. For the convenience of theoretical calculation, we fix the
total gate time to be τ and divide it into K equal segments with the segment duration of
τs = τ/K . The phases are modulated discretely with the form of

φ j(t) =



φ j ,1 0 ≤ t ≤ τs

...

φ j ,k (k − 1)τs ≤ t ≤ kτs

...

φ j ,K τ − τs ≤ t ≤ τ

, (6-8)

where φ j ,k is the phase of the Rabi frequency on the j-th qubit in the k-th segment.
Moreover, the amplitude of Rabi frequency on each qubit is also modulated in time, with
the form of,

Ωj(t) = Ωmax
j w(t), (6-9)

where Ωmax
j is the maximal value of the amplitude applied on the j-th qubit, and w(t) is

the pulse-shaping function to slowly turn on (off) amplitude at the first (last) segment. For
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simplicity, here we choose w(t) to be the following form,

w(t) =



sin2
(
π

2τs
t
)

0 ≤ t ≤ τs

1 τs ≤ t ≤ τ − τs

sin2
(
π

2τs
(t − τ)

)
τ − τs ≤ t ≤ τ

. (6-10)

The sin2 −profile pulse shaping here is to flatten the fast oscillation due to the off-resonant
coupling to the carrier transition, minimizing the sensitivity to the gate duration [164].

We further calculate the detailed expression of the constraints. Starting from the
constraint of Eq. (6-5) and then inserting the pulse scheme of Eq. (6-8) and Eq. (6-10),
we can rewrite the residual displacements to be,

αj ,m(τ) = −iηj ,m
∫ τ

0

Ωj(t)e−iφ j (t)

2
eiδmtdt

=
ηj ,mΩ

max
j

2

K∑
k=1

(
−ie−iφ j ,k

) ∫ kτs

(k−1)τs

w(t)eiδmt . (6-11)

Here we define several notations as follows,

Tsm,k =
∫ kτs

(k−1)τs

w(t) sin [δmt] , (6-12)

Tcm,k = −
∫ kτs

(k−1)τs

w(t) cos [δmt] , (6-13)

Xj ,k = cos φ j ,k, (6-14)

Yj ,k = sin φ j ,k, (6-15)

and then the residual displacement αj ,m(τ) can be simplified to be

αj ,m(τ) = ηj ,mΩ
max
j dj ,m/2 (6-16)

dj ,m =

K∑
k=1

(
Tsm,kXj ,k + Tcm,kYj ,k

)
+ i

K∑
k=1

(
Tcm,kXj ,k − Tsm,kYj ,k

)
. (6-17)

Here dj ,m is the scaled residual displacement of αj ,m(τ) to remove the redundant factor,
Similarly, for the coupling strength of Eq. (6-4) we can also rewrite it to be

θ j , j′(τ) = Ω
max
j Ω

max
j′ gj , j′, (6-18)

gj , j′ =
∑
k ,l

Xj ,kGsj , j′,k ,lXj′,l + Yj ,kGsj , j′,k ,lYj′,l
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+ Xj ,kGcj , j′,k ,lYj′,l − Yj ,kGcj , j′,k ,lXj′,l, (6-19)

where gj , j′ is the rescaled coupling strength of θ j , j′(τ) and

Gsj , j′,k ,l =



−
∑
m

ηj ,mηj′,m

2

∫ kτs

(k−1)τs

∫ lτs

(l−1)τs

dt2dt1w(t2)w(t1) sin [δm(t2 − t1)]

l < k

−
∑
m

ηj ,mηj′,m

2

∫ kτs

(k−1)τs

∫ t2

(k−1)τs

dt2dt1w(t2)w(t1) sin [δm(t2 − t1)]

l = k

0 l > k

, (6-20)

Gcj , j′,k ,l =



−
∑
m

ηj ,mηj′,m

2

∫ kτs

(k−1)τs

∫ lτs

(l−1)τs

dt2dt1w(t2)w(t1) cos [δm(t2 − t1)]

l < k

−
∑
m

ηj ,mηj′,m

2

∫ kτs

(k−1)τs

∫ t2

(k−1)τs

dt2dt1w(t2)w(t1) cos [δm(t2 − t1)]

l = k

0 l > k

. (6-21)

Note that, both Gsj , j′,k ,l and Tsj , j′,k ,l are non-zero only when l ≤ k, because the double
integral is performed when t1 ≤ t2

[165]. The advantage of choosing expression of Eq.
(6-17) and Eq. (6-19) is that it is convenient to rearrange them into the matrix-form as
follows,

dj ,m =
(
TsT

mXj + TcT
mYj

)
+ i

(
TcT

mXj − TsT
mYj

)
, (6-22)

gj , j′ = XT
j Gsj , j′Xj′ + YT

j Gsj , j′Yj′ + XT
j Gcj , j′Yj′ − YT

j Gcj , j′Xj′ . (6-23)

Here Tsm, Tcm, Xj and Yj are the column vectors of
{
Tsm,k

}
,
{
Tcm,k

}
,
{
Xj ,k

}
and

{
Yj ,k

}
respectively, whileGsj , j′ andGcj , j′ are the matrix-form of

{{
Gsj , j′,k ,l

}}
and

{{
Gcj , j′,k ,l

}}
respectively. Note that, all the elements in the vectors Tsm and Tcm and the matrices Gsj , j′

and Gcj , j′ are fully determined by the system parameters ({νm},
{{
ηj ,m

}}
) and the laser

detuning respect to the carrier transition (µ).
According to the above calculations, we rewrite the constraints in Eq. (6-6) and Eq.
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(6-7), and then summarize them as below,

dj ,m = 0, (6-24)

Ω
max
j Ω

max
j′ gj , j′ = Θ, (6-25)

XT
j Xj + YT

j Yj = 1, (6-26)

for all the j, j ′,m. The constraints of Eq. (6-24) and Eq. (6-25) originate from Eq. (6-6)
and Eq. (6-7), respectively, while the last one is the requirement for the normalization of
trigonometric functions.

6.2.2 Pulse Scheme Optimization

Although we have already written all the constraints in their detailed matrix-form, it
is challenging to solve the equations of constraints directly, due to the nonlinearity of Eq.
(6-25) and Eq. (6-26). Instead, we construct an optimization problem by minimizing the
following objective function,

fobj =
∑
j ,m

��dj ,m

��2 , (6-27)

which is equivalent to
∑

j ,m

��αj ,m(τ)
��2, subject to the constraints of Eq. (6-25) and Eq.

(6-26). The construction is still non-trivial because we want to efficiently obtain the
suitable pulse scheme. The main difficulty in performing optimization is to fulfill the
non-linear constraints and moreover, the number of the non-linear constraints grows
quadratically with the number of qubits. To simplify the optimization problem, we utilize
the symmetries of the scaled Lamb-Dicke parameters, which always have the relations
of ηj ,m = ±ηN−j+1,m, and then set the φ j(t) and Ωmax

j to be same for the ion qubits j and
(N − j + 1). Taking N = 4 case as an example, the constraints of the coupling strengths
are reduced from

θ1,2(τ) = θ1,3(τ) = θ1,4(τ) = θ2,3(τ) = θ2,4(τ) = θ3,4(τ) = Θ, (6-28)

to

θ1,2(τ) = θ1,3(τ) = θ1,4(τ) = θ2,3(τ) = Θ (6-29)

because θ1,2(τ) = θ3,4(τ) and θ1,3(τ) = θ2,4(τ) always establish. Moreover, in practice we
enforce an additional symmetry to the modulated patterns by presetting the modulated
phases to be φ j(t) = −φ j(τ − t) or φ j ,k = −φ j ,K−k+1 before the optimizing procedure.
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For this small scale case, we rewrite Eq. (6-29) with their scaled coupling strengths.
By utilizing the relations of Ωmax

1 = Ωmax
4 and Ωmax

2 = Ωmax
3 , we can further simplify the

non-linear constraints to be,

g1,2 = g1,3 and g1,2 ∗ g1,3 = g1,4 ∗ g2,3,

resulting in the optimization problem of minimizing fobj subject to the constraints of Eq.
(6.2.2) and Eq. (6-26). Therefore, we do not need to treat the amplitudes of the Rabi
frequencies,

{
Ωmax

j

}
, as the optimization parameters, which can be solved after obtaining

the modulated phase patterns.
Moreover, we note that once we find the solution of the global N-qubit entangling

gate, this solution is still valid for any subset of this N-qubit system after setting Ωmax
j

to be zero for any qubit j does not belong to the subset. This feature indicates that, the
entangling gate can be applied on any subset of qubits by simply turn off the driving lasers
on the qubits outside the subset during the operation.

6.3 Experimental results

We experimentally implement the global entangling gates in a single linear chain of
171Yb+ ions, based on the individual addressing system described in the last chapter. To
test the performance of the global N-qubit entangling gate, we use the GEN (π/4) gate
to generate the N-qubit GHZ state and then measure the state fidelity. Starting from the
product state |0 · · · 0〉, the GHZ state can be prepared by applying the global entangling
gate, while additional single-qubit rotations of R j

x(±π/2) on all the qubits are required if
N is odd,

GEN

(π
4

)
|0 · · · 0〉 =

|0 · · · 0〉 + (−)N/2i|1 · · · 1〉
√

2
N is even, (6-30)∏

j

R j
x

(
±
π

2

)
GEN

(π
4

)
|0 · · · 0〉 =

|0 · · · 0〉 + (−)(N±1)/2i|1 · · · 1〉
√

2
N is odd. (6-31)

Similar to the two-qubit bell state, the fidelity of the GHZ state can characterized as

FN−GHZ =
ρ |0〉⊗N , |0〉⊗N + ρ |1〉⊗N , |1〉⊗N +

��ρ |0〉⊗N , |1〉⊗N �� + ��ρ |1〉⊗N , |0〉⊗N ��
2

. (6-32)

Therefore, after the state preparation, we obtain the state fidelity by measuring the popu-
lation of the entangled state and the contrast of the parity oscillation as well [166].We also
use the fidelity of the GHZ state to test the important feature of the global entangling gate,
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which is that we can realize entangling gates on any subset of qubits that are addressed by
individual laser beams without changing any modulation pattern.

6.3.1 Global entangling gates on a three-ion chain

As the first demonstration, we use three 171Yb+ ions with the frequencies of the
collectivemotionalmodes in the x-direction {ν1, ν2, ν3} = 2π×{2.184,2.127,2.044} MHz.
We choose the detuning µ to be 2π × 2.094 MHz, between the last two modes. The total
gate time is fixed to be 80 µs and divided into six segments. The details of the phase
modulation pattern and the amplitude shaping with relative ratio are shown in Fig. 6.3.
The specific values of the modulated phases are given in Tab. 6.1. With these parameters,
the constraints of Eq. (6-6) and Eq. (6-7) are fulfilled, shown in Fig. 6.4 (a) and (b),
respectively.
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m
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Figure 6.3 Pulse scheme with phase and amplitude modulation. The phase φ j is discretely
modulated, as shown by the coloured lines. The amplitudes of the Rabi frequencies Ωj , shown
by the black and grey curves, are shaped at the beginning (end) of the gate operation using a
sin-squared profile with switching time equal to the duration of a single segment, τs. We note that
the additional π-phase shift of the middle ion is treated as a negative sign for Ω.

Table 6.1 Pulse scheme for the global 3-qubit entangling gate

qubit j 1 2 3
Ωmax

j (MHz) −2π × 0.181 2π × 0.253 −2π × 0.181

φ j ,k(π)

1 0.104 0.104 0.104
2 0.033 0.033 0.033
3 0.095 0.095 0.095
4 -0.095 -0.095 -0.095
5 -0.033 -0.033 -0.033
6 -0.104 -0.104 -0.104
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j = 1,m = 1
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[α

j,m
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Figure 6.4 Visualization of satisfaction of constraints Eq. (6-6) and Eq. (6-7). (a) Motional
trajectories αj ,m. Different colours correspond to the different segments in Fig. 6.3. (b) Accumu-
lation of coupling strength θ j , j′ over the evolution time. All of the coupling strengths increase to
the desired value of π/4.
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Figure 6.5 Experimental results of the global entangling gates in three ion qubits. Left column
shows the capability of the global entangling gate, which can generate entanglement of (a) the
entire qubits or (b)-(d) any pairs by switching on the individual beams on the target ions without
changing any modulated patterns. Right column shows the population (blue histogram) and the
parity oscillation (red circles for the experimental data and red curves for the fitting results) of the
generated GHZ state.
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We use this global 3-qubit entangling gate to prepare the 3-qubit GHZ state with
the state fidelity of (95.2 ± 1.5)%, as shown in Fig. 6.5 (a). Moreover, by turning off the
individual beam on a qubit, we can remove the couplings between the qubit and the others,
as shown in Fig. 6.5. In the 3-qubit system, the global entangling gates on the subsets
become the pairwise gates on the arbitrary qubit-pair, which are used to generate the 2-
qubit GHZ states with the fidelities of (96.7 ± 1.8)%, (97.1 ± 1.9)% and (96.5 ± 1.5)%
for the qubit pairs {2,3}, {1,3} and {1,2}, respectively, as shown in Fig. 6.5 (b-d).

6.3.2 Global entangling gates on a four-ion chain

For the further demonstration, we move to a 4-qubit system with the motional
frequencies {ν1, ν2, ν3, ν4} = 2π × {2.186,2.147,2.091,2.020} MHz. The larger system
meansmore constraints and segments are required. To realize the global 4-qubit entangling
gate, we choose the detuning µ to be 2π × 2.104 MHz and fix the total gate time to be
120 µs, which is divided into twelve segments. The pulse scheme is shown in Fig. 6.6, and
the specific values are shown in Tab. 6.2. The motional trajectories in the phase space are
shown in Fig. 6.7 (a). The number of the constraints in Eq. (6-7) increases quadratically
with the number of the qubits and reaches to six in the 4-qubit case, as shown in Fig. 6.7
(b).
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Figure 6.6 Pulse scheme with phase and amplitude modulation. Using the symmetry of the
system, we set the modulation patterns to be the same for the outer two qubits, {1, 4}, and the
inner two qubits, {2, 3}.
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Figure 6.7 Visualization of satisfaction of constraints for four-qubit global entangling gate.
(a) Motional trajectories αj ,m in phase space for the global four-qubit entangling gate. (b)
Accumulation of coupling strength θ j , j′ over the evolution time.

99



Chapter 6 Extension: Global entangling gates on arbitrary ion qubits

By applying the global 4-qubit entangling gate to all the qubits, we successfully
generate the 4-qubit GHZ state with the state fidelity of (93.4 ± 2.0)%, as shown in Fig.
6.8 (a). Similarly, we can prepare the 3-qubit GHZ state or the 2-qubit GHZ state by
only addressing arbitrary three or two qubits, respectively. Experimentally we choose the
qubits of {2,3,4} to prepare the 3-qubit GHZ state and the qubit-pair of {1,3} to prepare
the 2-qubit GHZ state, with the state fidelities of (94.2 ± 1.8)% and (95.1 ± 1.6)%,
respectively, as shown in Fig. 6.8 (b)-(c).
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Figure 6.8 GHZ states prepared by the global entangling gates. By addressing an arbitrary
subset of qubits—for example, {1, 2, 3, 4}, {2, 3, 4} and {1, 3}—we can apply the entangling
gate on the subset. The frequency of the parity oscillation, which is proportional to the number
of addressed qubits, reveals that the prepared state is the GHZ state.
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Table 6.2 Pulse scheme for the global 4-qubit entangling gate

qubit j 1 2 3 4
Ωmax

j (MHz) −2π × 0.117 2π × 0.168 2π × 0.168 −2π × 0.117

φ j ,k(π)

1 0.041 0.231 0.231 0.041
2 -0.070 0.579 0.579 -0.070
3 0.472 -0.001 -0.001 0.472
4 0.054 0.230 0.230 0.054
5 0.035 0.285 0.285 0.035
6 0.402 -0.170 -0.170 0.402
7 -0.402 0.170 0.170 -0.402
8 -0.035 -0.285 -0.285 -0.035
9 -0.054 -0.230 -0.230 -0.054
10 -0.472 0.001 0.001 -0.472
11 0.070 -0.579 -0.579 0.070
12 -0.041 -0.231 -0.231 -0.041

All of the results are calibrated to remove the detection errors. The state fidelities of
all the prepared GHZ states are mainly limited by the fluctuations of the tightly focused
individual beams and the optical paths jittering of the Raman beams (2 ∼ 4%). Other
infidelity sources in the experiment include the drifting of the motional frequencies
(1 ∼ 2%) and the crosstalk of the individual beams to the nearby ions (∼ 1%). Moreover,
the weak coupling to the y-direction slightly excite the corresponding collective motional
modes, while the high average phonon number after Doppler cooling would amplify
the errors induced from the unclosed trajectories. Meanwhile, the anharmonicity in the
axial potential may lead the experimental Lamb-Dicke parameters to be different from the
theoretically used one, resulting in certain infidelity in the real experiment. The amplitude
noise when we suddenly alternate the optical phase of the 1st order diffractive beam from
the AOM would also introduce certain error in the gate operation, due to the limited
bandwidth of the AOM. The future improvements may consider to continuously modulate
laser parameters, which is much more friendly to physical devices.

6.4 Algorithm demonstration: digitized adiabatic evolution

Adiabatic quantum computation (AQC) is one promising branch of quantum com-
puting, playing an important role in the optimization and the combinatorial search prob-
lem [167-168]. The core of the AQC, the adiabatic evolution, relies on the adiabatic theo-
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rem [7]. For a conventional analog adiabatic evolution, we first prepare the ground state of
the initial Hamiltonian Hini, and then apply the adiabatic evolution of

H(t) =
(
1 −

t
τad

)
Hini +

t
τad

Hfin. (6-33)

Here the Hamiltonian is slowly varied from the initial Hini to the final target Hfin over the
duration of τad. According to the adiabatic theorem, as long as tad is much large than the
inverse of the minimal energy gap between the ground state and first excited state, the final
state can be well approximated as the ground state of the Hamiltonian Hfin. However, in
practice, it is always difficult to program the final target Hamiltonian to be arbitrary form
in an analog way. Instead, we move to a digital way [169].

To achieve a digitized adiabatic evolution, we first decompose the continuous time
evolution into several sequentially applied discrete time evolutions,

U(τad) = T exp
[
−i

∫ τad

0
H(t)dt

]
≈ exp

[
−iH(tp)∆t

]
... exp [−iH(t2)∆t] exp [−iH(t1)∆t] , (6-34)

where p is the number of divided sections, ∆t = τad/p and ti = i∆t (i = 1,2, ..., p). For
each discrete time evolution, it is achieved by utilizing the standard Trotter decomposition,

exp [−iH(ti)∆t] ≈
(
exp

[
−iA1,i

∆t
2n

]
exp

[
−iA2,i

∆t
n

]
exp

[
−iA1,i

∆t
2n

] )n
, (6-35)

where H(ti) = A1,i + A2,i. This is a second-order Trotterization and n is the number of
Trotter steps [20]. In detail, the operators A1,i and A2,i here can be written as,

A1,i =

(
1 −

ti
τad

)
Hini, (6-36)

A2,i =
ti
τad

Hfin. (6-37)

In principle, we can further decompose Eq. (6-35) into gate operations, indicating that the
final Hamiltonian Hfin can be fully programmable. Therefore, we can employ a universal
quantum computer to realize arbitrary adiabatic evolution in the digital way.

For the experimental demonstration, we adiabatically prepare the ground state of a
fully connected Ising model with three spins by choosing,

Hini = B
3∑
j=1

σ j
y, (6-38)
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Hfin = J
∑
j< j′

σ j
xσ

j′

x . (6-39)

Due to the limited fidelities of our gate operations, we set p = 4 and n = 1, respectively.
The decomposed quantum circuit is shown in Fig. 6.9. Note that, by utilizing the con-
ventional universal gate set, the final Hamiltonian Hfin should be decomposed into three
two-qubit gates, while here we can achieve it with a single global 3-qubit entangling gate.
In the experimental realization, we set J to be −1.0 while B to be −1.2, making the final
Hamiltonian to be the ferromagnetic Ising model. Therefore, the ground state of Hfin

refers to a 3-qubit GHZ state. We can quantify the overlap between the theoretical ground
state and the experimental final state, by measuring its population and parity oscillation,
as shown in Fig. 6.10. The population occupied in the states of |000〉 and |111〉, and the
contrast of the parity oscillation are 83.9% and 71.9%, respectively, revealing the ground
state fidelity of 77.9%. The theoretical state fidelities are 96.6% and 94.1% by utilizing the
ideal analog and digitized ways, respectively. The experimental result is mainly limited
by the fidelity of the global entangling gate (94.1% × (95.2%)4 ≈ 77.2%).
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Figure 6.9 Quantum circuit for digitized adiabatic evolution. The preparation of the initial
ground state of Hini is achieved by the single-qubit rotations Rx(π/2) on all the qubits, while the
finalmeasurement is applied after rotating the state from theσx-basis to theσz-basis. The evolution
operator in each step can be decomposed into a global 3-qubit entangling gate sandwiched by the
single-qubit rotations with proper rotation angles. The duration of the adiabatic evolution τad is
set to be π.

103



Chapter 6 Extension: Global entangling gates on arbitrary ion qubits

                  
    

    

   

   

   

                  
   

   

   

   

   

   

P000

P001

P010

P011

P100

P101

P110

P111

Ex
p

Si
m

Analog

Po
p

u
la

ti
o

n

|J|t ()

Rotation axis ()

P
ar

it
y

0.5

0.4

0.3

0.2

0.1

0.0
1.00.80.60.40.20.0

Figure 6.10 Ground state of the ferromagnetic Ising model. The figure shows the population
on each qubit state in each Trotterization step. During the adiabatic evolution, the populations
accumulate to the states of |000〉 and |111〉 , which are the degenerate ground states of the final
Hamiltonian. The inset figure show the parity oscillation of the prepared state in the final step
(marked in the red dashed circle). The contrast of the oscillation surpasses the classical boundary,
indicating the genuine entanglement between the different degenerate ground states.

Compared with the previous analog demonstration in the trapped-ion system [170-171],
our results reveal significantly improvement. The conventional adiabatic evolution of the
transverse Ising model in the trapped-ion system suffers from the effect of the phonon
excitation seriously. Therefore, the contrast of the parity oscillation drops to 47% even
with just three ions [171]. On the contrary, the digitized evolution totally gets rid of this
problem, because we close all the motional trajectories in each step to remove the phonon
excitation. Although we can also realize the arbitrary lattice [172] in the analog evolution, it
is much more complicated than the digitized programming. Moreover, the fault-tolerant
techniques allow the digitized adiabatic evolution to be error-free in the future [169], making
it more scalable and practicable.

6.5 Discussion

6.5.1 Comparison of single-mode and multimode approaches

The implementation of global entangling gates would be straightforward if we can
only drive theCOMmode, either in the axial or radial direction [12,56,157]. The homogeneous
ion-motion couplings of the COMmodes, ηj ,1 = ηCOM, make all of the coupling strengths
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θ j , j′(τ) uniform as

θ j , j′(τ) = −
η2

COMΩ
2τ

2δ1
, (6-40)

ensuring αj ,1(τ) = 0 at time τ = 2π/|δ1 | with the condition ofΩj(t) = Ω and φ j(t) = 0 for
all the ions. However, due to the bunching of an increasing number of motional modes
and their crosstalk when the number of ions increases, we have to dramatically slow down
the gate speed to isolate the COMmode [138]. Otherwise, it is inevitable to drive the rest of
the modes. Either of them would decrease the gate fidelity, due to the limited coherence
time or the undesired inhomogeneous couplings. In detail, if we include the contribution
from the nearest second mode, the coupling strength should modified to be,

θ j , j′ = −
δ1

|δ1 |

π(r − 1)2η2
COMΩ

2

∆ν2

(
1 +

ηj ,2ηj′,2

rη2
COM

)
, (6-41)

where ∆ν = |ν1 − ν2 | is the frequency difference of the two modes. The gate duration
τ is 2π |δ1 |

−1 = 2π |r − 1| ∆ν−1. To close the trajectories of both modes simultaneously,
we let δ2/δ1 to be an integer r . The inhomogeneous ηj ,2 would imbalance the coupling
strengths. We numerically evaluate the fidelities of the created GHZ states by calculating

F =

����� 〈0..0|GE†N (π/4) exp

[
−i

∑
j< j′

θ j , j′σ
j
xσ

j′

x

]
|0..0〉

�����2 , (6-42)

with the radial trap frequency of 2π×2.18 MHz and the axial trap frequency varying from
2π × 0.5 MHz (for 3 ions) to 2π × 0.32 MHz (for 6 ions). These values are consistent to
the experimental conditions that the average spacing of the nearby ions is around 4.7 µm.
It is difficult to perform a decent quantum gate with single axial COM mode at such low
axial trap frequencies, due to high heating rates and poor ground state cooling. The gate
fidelity would seriously be degraded as the number of ions increases. Therefore, we only
consider to utilize the radial COM mode for the single-mode method. The results of the
numerical simulation are summarized in the Fig. 6.11.

As shown in the figure, to achieve a certain value of the state fidelity, the minimal
gate duration increases ∼ N2.4 as the number of the ions increases. We note that, we
do not include the other modes in the simulation, which would lead to further decrease
of the fidelity. On the contrary, in our multi-mode approach, we consider the effects of
all the modes. The gate duration increases nearly linear with the number of ions with
unity of the theoretical fidelity. The comparably shorter gate duration would suppress the
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Figure 6.11 Comparison of gate durations between single- and multiple-mode approaches. For
the given trap frequencies, the gate duration τ of the single-mode approach grows more than
linearly (τ ∝ N2.4) to keep the fidelity when the number of ions N increases. The gate duration
of the multi-mode approach grows near linearly with unity of the theoretical fidelity. The vertical
axis is a logarithmic scale.

infidelities from the limited coherence time, the Raman scattering, motional heating and
so on. Moreover, the COM modes suffer from electrical noise more seriously, and the
heating rates increase with the number of ions [81], which would further degrade the gate
fidelity. Therefore, in the experimental realization, we always choose µ to be away from
the COM mode.

6.5.2 Conclusion

We present the experimental realization of the global entangling gates, which can
make the quantum circuit efficient, in scalable approach on the trapped-ion platform. The
duration of a single global gate is comparable to that of a single pairwise gate with the
same total number of ions [138]. We conjecture that the duration of the gate is mainly
affected by the density of the motional spectrum, instead of the number of the qubits we
desire to entangle. The crowder the frequencies of the motional modes are, the longer the
gate would be. Therefore, we clearly observe the speedups of the global gates in total gate
counts and duration.

Moreover, we theoretically optimize the pulse schemes for the five and six qubits, and
we find the required number of segments and the gate duration increase linearly with the
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number of qubits. Therefore, this approach shows well scalability even with an ion-chain
consisting of plenties of ions. As long as the solutions to the optimization problem are
found, we could extend and apply the global entangling gate to a further number of qubits.
However, the general form of the pulse optimization with a large number of qubits belongs
to NP-hard problems, but could be assisted by classical machine learning technique. Note
that, in a recent preprint, the researchers develop a systematic method called "EASE" to
construct arbitrary simultaneously entangling gates [173]. With the help of this protocol,
modulated pulsed schemes can be efficiently constructed, with the number of segments lin-
early scaling with the size of system. Furthermore, by extending the global entangling gate
to a general form with arbitrary coupling strengths of

{
θ j , j(τ) = Θj , j′

} [173-174], we could
further simplify quantum circuits for large-scale quantum computation and simulation.
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Chapter 7 Conclusion and Outlook

Here, we come to the end of this thesis. In my whole Ph.D. life, I started from the
manipulation on a single trapped-ion, and utilized the single-ion system to experimentally
study a certain topics of quantum thermodynamics. Then I gradually moved to the
realization of a multi-qubit system, constructing the individual laser addressing system.
Finally we achieved a small-scale but fully controllable quantum computing system.
Based on such a platform, I theoretically and experimentally explore the possibility of
apply global entangling gate through multiple motional modes. During these years, I have
participated in plenties of researches on quantum simulation and quantum computation as
well, not limited to the projects which I led then list in this thesis. However, we just near
the entrance of the NISQ era, and it is still far away from ultimate fault-tolerant quantum
computation. From my perspective, several directions are worthwhile to follow in the
next stage to achieve a more practical quantum computing system.

Fast&robust gate

For scalable quantum computation, we expect that error rates of gate operations
would not increase as the system scaling up. However, according to current best records
on the experiments, the gate performance, especially for two-qubit entangling gates, does
degrade when the number of ions increases. The infidelity of a two-qubit gate can be
suppressed to be less than 10−3 with a two-ion system, but increase to > 10−2 when
being extended to 11 qubits. Although the motion mediated entangling gate provides
us the feature of full-connectivity, possible errors induced by the increasing number of
motional mode would also challenge us in improving gate performance. Various pulse
shaping methods, which demonstrated recently inspire us to construct a more robust gate
insensitive to specific noises, and we had better figure out what kind of pulse shaping is the
best for both the theoretical construction and experimental implementation. Moreover, the
combination of classical machine learning and real-time feedback may help us to improve
gate performance automatically.

Another aspect is the speed-up of gate operations. Compared with solid systems, the
strengths of ion-laser interactions are much weaker. Recently progresses in ultra-fast gates
are pretty attractive, indicating the possibility of achieving a GHz running-speed even in
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trapped-ion platforms. Therefore, gate schemes beyond the Lamb-Dicke approximation
should be carefully considered and further developed. Moreover, we should explore a
more efficient tool to characterize system noises and gate performance when we deal with
an intermediate or even large scale system.

Integrated trapped-ion system

Another technique direction of the trapped-ion based quantum computing is system
integration. The enlightenment of the development of modern electronic technology is
that integration is an effective way to achieve a large-scale robust system. Currently, the
progress of integration in the trapped-ion community mainly focuses on micro-surface or
chip traps, in which the positions of ions can be precisely controlled with the help of a
large amount of micro-electrodes. Challenges in such micro-traps include the anomalous
heating and the dielectric charging by UV lasers. The mechanism of the anomalous
heating is still under exploring and urgently needs to be solved.

The technique of optical waveguide provides an idea of integrating not only electron-
ics but also optical elements on-chip [68]. The on-chip optical system would significantly
suppress the phase noise due to the jittering in free space, ensuring a long-term phase
stability. Meanwhile, with the help of micro-grating, the laser focusing close to the
diffractive limitation can be achievable [175]. Therefore, we might obtain extremely high
intensities without considerable power of laser beams, which is critical for the realization
of ultra-fast gates. Moreover, other integration techniques, such as detection by nano-wire,
might further make trapped-ion quantum computers more practicable in the near future.
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Appendix A Electric multipole field

InChap. 2, we introduce the classical dynamics of a single ion trapped in a quadrupole
field oscillating at the RF frequency. In practice, the quadrupole field is generated from
the four parallel cylinder electrodes in which the RF voltage and the DC voltage are
alternatively applied, as show in Fig. A.1 (a). So what would happen if we increase the
number of rods? In Fig. A.1 (b), we give an example of the potential generated from eight
electrodes. In the following content, we would estimate the electric potential generated
from m-rod.
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Figure A.1 Electric multipole field. The sub-figures in the left column show the geometric
configuration of 4-rod and 8-rod situations. The RF voltage is applied to the white rods while the
DC voltage is applied to the black rods. The sub-figures in the right column show the electric
potential induced from the rods at a certain time.
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Without loss of generality, we assume that m electrodes are symmetrically arranged
in a circle, and m must be an even number. The electric potential Φ near the center
position can be expanded into the form of (in the cylindrical coordinate),

Φ (r, θ) = A0 +

∞∑
n=1

rn [An cos (nθ) + Bn sin (nθ)] , (A-1)

where all the An and Bn are the undetermined coefficients. For convenience, we temporally
ignore the time-dependent part (cos(Ωrft)). We also assume that the length of the rods
along the z-direction is pretty along, hence the electric potential has the translational
symmetry along the z-direction.

Due the symmetry of the electrode-configuration, we have a set of constraints on the
electric potential,

Φ (r, θ) = (−1)kΦ
(
r, θ + k

2π
m

)
, (A-2)

where k = 1,2,3, ...,m. By inserting Eq. (A-2) into Eq. (A-1) and then setting θ to be 0,
we would have equations written as,

An = (−1)k
[
An cos

(
nk

2π
m

)
+ Bn sin

(
nk

2π
m

)]
. (A-3)

The above equation clearly shows that A0 = 0 and Bn = 0, and the simplified constraints
on the coefficients An are

An

[
(−1)k cos

(
nk

2π
m

)
− 1

]
= 0 (A-4)

Therefore, the value of An can be non-zero only when the equations of,

(−1)k cos
(
nk

2π
m

)
− 1 = 0, (A-5)

are satisfied for all the k. Apparently, the minimal value of n is equal to m/2, which
means that the first non-zero coefficient is Am/2. After neglecting other higher order
contributions, the electric potential generated from m rods can be approximated as,

Φ (r, θ) ∼ rm/2 cos
(m

2
θ
)
. (A-6)

When m = 4, we would have the quadratic potential,

Φ (r, θ) ∼ r2 cos (2θ) = x2 − y2. (A-7)
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To obatin the pseudo-potential when the electric potential oscillates at the RF fre-
quency, Φ(t) → Φ(t) cos(Ωrft), we calculate the electric field induced from the potential
Eq. (A-6),

®E (r, θ) = −
∂Φ

∂r
®er −

1
r
∂Φ

∂θ
®eθ

∼ −
m
2

rm/2−1 cos
(m

2
θ
)
®er +

m
2

rm/2−1 sin
(m

2
θ
)
®eθ . (A-8)

Therefore, the final pseudo-potential generated from m rods turns out to be,

Φp ∼ | ®E |2 ∼ (r2)m/2−1 = (x2 + y2)m/2−1. (A-9)
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Figure A.2 Pseudo-potential along the x-direction with y = 0. The potential gets flatter as the
number of the rods increasing.

As shown in Fig. A.2, the potential is flattening when the high order an-harmonic
potential dominates. One advantage is that ions would be almost uniformly distributed if
we utilize a large number of the rods and then confine a two-dimensional ion-crystal in
the x-y plane. Moreover, the "RF null" line along the center of the multiple rods becomes
an "RF null" volume, which is a significant improvement for the purpose of the precision
measurement.
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Appendix B System stabilization

System stabilization is one crucial part of a real quantum computing system because
quantum systems are fragile to external perturbations. Therefore, we have to suppress
all the possible noises well to achieve high-fidelity quantum controls by either passive
stabilization or active feedback. In this appendix, we would briefly discuss several
feedback loops in our system, which are used to stabilize the repetition rate of the pulsed
laser, the trap frequencies, and the power of the laser.

Repetition rate

In Fig. B.1, we show the schematic diagram of the feedback loop used to stabilize
the pulsed laser’s repetition rate. Thanks to the dual wavelength outputs of the Mira, we
employ the visible laser of 750 nm to measure the repetition rate, while utilize the 375
nm laser for the experiments.

Mira
Fast 

Photodiode

Signal 
Generator

PID

High voltage 
source

High voltage 
board

To piezo

Bandpass 
filter

Amplifier

Lowpass 
filter

Figure B.1 Active feedback loop for repetition rate stabilization.

To measure the repetition rate, we align the 750 nm laser to a fast photodiode. Here,
we simplify the electric field of the pulsed laser as,

®E(t) =
∑
l

El ®ε exp
[
i
(
®k750 · ®r − (ω750 + 2πl frep)t + φ

)]
, (B-1)

where ®ε is the polarization vector and frep = ωrep/(2π). We can obtain its intensity signal,
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I(t) = | ®E(t)|2, from the fast photodiode (EOT ET-4000), which can be written as,

I(t) = | ®E(t)|2

=
∑
l,l′

ElEl′ei2π(l′−l) frept

=
∑
l

E2
l + 2

∑
l<l′

ElEl′ cos
[
2π (l ′ − l) frept

]
=

∑
l

E2
l + 2

∑
l

∑
n=1

ElEl+n cos
[
2πn frept

]
. (B-2)

Note that, the interference part includes all the components in which the frequencies are
the integer times of the repetition rate. The signal with a certain frequency is picked up by a
tunable bandpass filter. In practice, we choose n to be 83, corresponding to a frequency of
n frep ≈ 6.3 GHz which is around half of the 171Yb+ hyperfine splitting. This weak signal,
typically around −40 dBm, is amplified by two amplifiers (Mini Circuits ZVA-183-S+
and ZVE-3W-183+), and then mixed (Mini Circuits ZMX-7GR) with a reference signal of
fref = 12.642812118466/2 = 6.321406059233 GHz (generated by ROHDE&SCHWARZ
SMB 100A). The mixed signal pass through a lowpass filter (Mini Circuits SLP-1.9+),
and then we obtain the error signal,

error = sin
(
2πδrept

)
≈ 2πδrept, (B-3)

where δrep = 83 frep − fref. This signal is delivered to a conventional servo system (New
focus LB1005) and then feed back to the mirror which mounted on a piezo, as shown in
Fig. 3.17. The stabilized repetition rate is monitored by a RF counter (Agilent 53210A).

Trap frequency

The three-dimensional confinements of the trap come from the static harmonic po-
tential (axial direction) and the RF pseudo-potential (transverse directions). The effective
trap frequency in the axial direction is pretty stable, while the transverse trap frequencies
are fluctuating due to the instability of the RF fields. Therefore, we actively stabilize the
amplitude of the RF fields injected to the corresponding electrodes, and the schematic
diagram is shown in Fig. B.2. The method described here is based on Ref. [51].

Around 1% of the injected RF field is picked up through a capacitor-circuits shown in
Fig. 2.7. After a rectifier, followed by a lowpass filter (Mini Circuits SLP-1.9+), we convert
the pick-up RF signal into a DC voltage, which value is proportional to the amplitude of
the RF signal. Then this DC signal is compared with a reference level generated from a
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Figure B.2 Active feedback loop for trap frequencies stabilization.

tunable voltage board (DAC8552). Note that this voltage board is referred by a standard
voltage reference (Linear Technology LTC6655 5V) to guarantee the stability. To get
rid of the DC noise from the servo system (New focus LB1005), we only employ its
proportional-integral (PI) filter modular by turning off its input offset and obtaining the
output from its aux output port in the back panel. Finally, the output from the servo system
is utilized to modulating the amplitude of the RF signal, compensating for the amplitude
fluctuations.

Laser power
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Generator

PID
(LB1005)

Lowpass 
filter

Amplifier

Voltage 
board

Voltage 
reference

Diffractive 
order

AOM

Pick-up mirror

PD

Figure B.3 Active feedback loop for laser power stabilization.

The method of laser power stabilization is similar to that of the trap frequency stabi-
lization, as shown in Fig. B.3. The targeted laser beam first passes an AOM, distributing
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a part of power into the diffractive order (either negative or positive one). Then the
zero-order goes through a pick-up mirror, where the most of the power (> 95%) transmits,
and only a small portion is reflected into a photodiode. Similarly, the signal from the
photodiode would be compared with a reference voltage, and then the difference would
be processed by the PI filter. The output of the servo system is utilized to modulate the
amplitude of the RF signal injected on the AOM. Note that the feedback would fail if the
amplitude of the power fluctuation is larger than the power distributed into the diffractive
order of the AOM.
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