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摘 要

摘 要

离子阱系统作为量子计算机的有希望和领先的候选者，最近在量子计算和量

子模拟中显示出强大的能力。在本文中，我们展示了一个可扩展和独立控制多达五

个离子的捕获离子系统作为一个简单通用的量子模拟器。为了测试其功能和稳定

性，我们提出并实施了一种可扩展的方案，通过调制激光场耦合到多个运动模式来

实现多个 171Yb+离子量子比特的全局纠缠门。为了证明这些全局门的有效性和灵

活性，我们使用单个全局操作生成了四个量子比特的 Greenberger–Horne–Zeilinger
态。制备好的 GHZ态的保真度会受到系统缺陷的限制。随后，我分析了系统误差
模型并实现了概率误差消除方法以改善期望值的估计。我将该方法应用于每个不

完美的基本量子运算，并确定了误差减轻的量子计算的性能。我观察到单比特和

两比特门的有效门保真度比物理门的保真度分别提高了两个和一个数量级。

关 ：离子阱，量子计算，全局量子门，量子误差减轻
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Abstract

Abstract

The trapped ion systems, as a promising and leading candidate for quantum comput-
ers, have shown powerful capabilities in quantum computation and quantum simulation
recently. In this thesis, we present the construction of a scalable trapped-ion system with
full controllability for up to five ions as a small and general quantum simulator. In or-
der to test its capability and stability, we propose and implement a scalable scheme to
realize the global entangling gates on multiple 171Yb+ ion-qubits by coupling the laser
field to multiple motional modes. To prove the power and flexibility of the global entan-
gling gate, we use a single global operation to generate a Greenberger–Horne–Zeilinger
state with up to four qubits. The state fidelities of the prepared GHZ states are limited by
system imperfection. Then, I analyze the system error-model and implement the proba-
bilistic error-cancellation method to improve the estimation of expectation value. I apply
the method to every imperfect elementary quantum-operation and benchmark the perfor-
mance of error-mitigated quantum-computation. I observe significant improvements on
effective gate fidelities of single- and two-qubit gates by two and one orders of magnitude
to those of physical gates, respectively.

Key Words: Trapped ion; Quantum Computation; Global Quantum Gate; Quantum Er-
ror Mitigation
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Quantum computing with high fidelity

Quantum computers [1], as a new and powerful tool for complex computing tasks, can
extend classical computational reach in diverse research fields, including quantum chem-
istry, material science, and even machine learning. The basic unit of a quantum computer
is a quantum bit (qubit). Different from bits of a classic computer, qubit states can not
only exist alone but also coexist in the form of superposition states, which is called quan-
tum parallelism. This feature can exponentially accelerate quantum computing process
and store a large amount of information. However, the observation of computing results
and the extraction of the stored information would compromise the advantages due to
the probabilistic quantum measurement. After each measurement, quantum superposi-
tion states would collapse to a single outcome, which leads to repeated measurements to
obtain sufficient samples for the extraction of computing results or stored information.
In order to maximize the power of quantum computers, exploring schemes like quan-
tum Fourier transformation to construct quantum information with less samples is a very
important task.

Based on recent development in quantum technology, quantum systems capable of
coherently operating tens to hundreds of qubits may be realized within a few years [2].
Such a quantum system may not pose a threat to widely used cryptographic technolo-
gies like the RAS encryption algorithm, which is inconsistent with people’s original ex-
pectations. However, this progress will open a new field to go beyond the computing
power of the most powerful supercomputer at present. As well-known IT companies
such as Google, IBM, Microsoft, Intel, Honeywell, and start-up companies such as IonQ
and Rigetti joined the development of quantum computers, competition in the field of
quantum computing is accelerating. Nevertheless, quantum systems containing tens to
hundreds of qubits can be a starting point of a long journey to develop fully functional
quantum computers in the future. We are still exploring the possibility of efficiently solv-
ing problems that classical computers cannot solve, by using quantum computer without
complete quantum error correction capabilities.

Nowadays, various quantum applications have been pursued with currently avail-
able devices mainly through quantum-classical hybrid schemes [3-4]. The schemes com-

1



Chapter 1 Introduction

bine the advantages of classical and quantum computation, where quantum processors
are used to estimate expectation values of physical observables on certain states for clas-
sical feedback. The hybrid schemes can be applied to estimate the ground state energies
of molecules [4-6], to simulate quantum models in materials [7] and high-energy physics [8]

and to find approximate solutions of optimization problems [9]. Although it is anticipated
that around a hundred well-behaved qubits are required for such schemes to outperform
current classical counterparts in quantum chemistry [10-12], the advantages are only possi-
ble with accurate quantum processors. However, when running target quantum circuits
on noisy quantum devices, output results are inevitably deviated because of errors origi-
nated from both environmental fluctuations and operational imperfections. As the num-
ber of qubit and the depth of the circuit increase, the infidelity of output results would be
tremendous due to the accumulation of error. It will lose all the advantages of quantum
computing because of untrustworthy. Therefore, techniques for improving the accuracy
of noisy quantum processors are of great importance.

Apart from physically improving the devices, the deviations of output results of run-
ning quantum circuits can be suppressed on the algorithmic level. For example, quantum
error correction [13-14] provides a mean of fault-tolerant quantum computation. However,
quantum error correcting codes require complex coding schemes, a large number of phys-
ical qubits and low error rates, which are still far from being affordable for near-term
quantum technologies [2,15]. Consequently, it has not yet been demonstrated that quan-
tum fault tolerance protocols can increase the fidelity of computation operations in any
physical implementation. Alternatively, for the quantum algorithms estimating expecta-
tion values, the reliability of computation result can be improved by recently proposed
error mitigation schemes [16-20] without challenging requirements for quantum error cor-
rections, which provides a comprehensive way to mitigate errors in expectation estimation
tasks [17-18,21].

1.2 Quantum error mitigation

There are two categories of the quantum error mitigation schemes, i.e. the zero-
noise extrapolation [16-17] and the probabilistic error cancellation [17-18]. The first method
extrapolates the results to the zero-noise limit from experiments of varying noise levels,
which has been applied to the variational optimization of certain Hamiltonians [19-20]. It
is theoretically simple and experimentally easy to implement, and the reliability highly

2



Chapter 1 Introduction

depends on the presumed error model of a noisy quantum device. On the contrary, the
probabilistic error cancellation scheme provides a systematic and self-consistent way to
characterize and rectify the impact of errors on the output of noisy quantum computation.
It begins with characterizing imperfect operations on the quantum device by tomography
technique and then cancels errors by sampling random quantum circuits, according to a
quasi-probability distribution derived from reconstructing ideal quantum operations with
characterized imperfect ones.

The current stage of quantum computer research is called the ”Noisy Intermediate-
Scale Quantum” (NISQ) stage [2], which will become the cornerstone of a fault-tolerant
quantum computer. It is expected that building fully functional quantum computers that
are not affected by errors still has a long way to go. At present, various physical platforms,
including trapped ion systems, superconducting circuits, quantum dots, and optical sub-
systems, have made great progress. The unified standard to evaluate the development
mainly contains three parts: the coherence time of qubits, the error rate of logic gates,
and the number of entangled qubits. Recent research about the three aspects shows that
ion trap systems are still in a leading position in the development of quantum computing
systems [22-24].

In this thesis, we present the construction of a trapped-ion system with full control-
lability and investigation of the universal validity of the probabilistic error cancellation
method in a general quantum computational context. We apply the method to every im-
perfect elementary quantum operation and benchmark the performance of error-mitigated
quantum computation [25]. We observe significant improvements on effective gate fideli-
ties of single- and two-qubit gates by two and one orders of magnitude to those of physical
gates, respectively. Here, the effective gate fidelities are obtained by fitting the corre-
sponding expectation values estimated with error mitigation, which are not actual physi-
cal gate fidelities. The cost of the error mitigation increases with the circuit depth, there-
fore, techniques like quantum error correction are still needed for large-scale fault-tolerant
quantum computation. With technologies to tackle the cross-talk error, the probabilistic
error cancellation method of quantum error mitigation can be straightforwardly applied
to systems with more qubits for realizing high-fidelity quantum computation, which can
open up the possibility of implementing high-fidelity computations on a near-term noisy
quantum device.

3



Chapter 1 Introduction

1.3 Thesis structure

In chapter 2, I will introduce the basic principle of trapped ion system and talk about
our five-segment blade trap, including the geometric structure, electrode control, and the
bifilar helical resonator. The detailed trap-assembling process will be discussed in the
chapter 4. The knowledge about 171Yb+ will also be introduced here.

In chapter 3, I mainly focus on the quantum manipulation for trapped ion system,
including laser-ion interaction, microwave operation, Raman laser operation and state
initialization. The spin-dependent force will also be introduced, which is the key part to
realize our entanglement gate in chapter 5 and chapter 6.

In chapter 4, I will talk about the blade trap system setup in detail, including the trap-
assembling procedure, the technique of making photonic crystal fiber cable, and building
the individual addressing system with EOD or multi-channel AOM approach.

In chapter 5, I will introduce our research about global entangling gates on arbitrary
ion qubits. The single-mode and multi-mode approaches are both discussed with the pulse
scheme and the experimental realization. The GHZ state preparation result through global
gate is shown there.

In chapter 6, I will discuss the quantum error mitigation technique and show our
improved effective single- and two-qubit fidelity through randomized benchmarking
method. The gate set tomography technique and maximum likelihood estimation scheme
will be also introduced.

Chapter 7 is the conclusion and outlook.
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Chapter 2 Trapped 171Yb+ ion system

2.1 The Paul trap

2.1.1 Principle of trapping ions

According to Earnshaw’s theorem [26], charged particles cannot be trapped in a stable
equilibrium by electrostatic field. One general option is through radio frequency(RF)
oscillating electric field and a static electric field(DC) to confine charged particles, which
is called the Paul trap [27-28]. In general, we can define three independent directions X, Y,
Z in space. I mainly focus on the research of a linear ion-chain along the Z direction. So
we need a dynamic confinement on the X-Y plane and a static potential confinement in
the Z direction. The total potential form can be written as [29]

𝑈(𝑥, 𝑦, 𝑧, 𝑡) = 𝑉𝑅𝐹
2 cos(𝜔𝑅𝐹 𝑡)𝑥2 − 𝑦2

𝑅2 + 𝑉𝐷𝐶
2

2𝑧2 − 𝑥2 − 𝑦2

𝑅2 , (2-1)

where 𝑉𝑅𝐹 and 𝜔𝑅𝐹 is the amplitude and frequency of the RF oscillating electric field,
𝑉𝐷𝐶 is the amplitude of the DC electric field, and 𝑅 is the distance between the potential
center (ion chain position) and the electrodes.

From equation (2-1), we may easily see the motion of the trapped ion in the X and Y
directions are analogous and the frequency of motion in the two directions are same. We
can rewrite the equation to the standard form of the Mathieu equation in the X direction:

𝑑2𝑥
𝑑2𝜏

+ [𝑎𝑥 − 𝑞𝑥 cos(2𝜏)]𝑥 = 0, (2-2)

where 𝜏 = 𝜔𝑅𝐹 𝑡
2 , 𝑎𝑥 = 4𝑒𝑉𝐷𝐶

𝑚𝜔2
𝑅𝐹 𝑅2 , and 𝑞𝑥 = 2𝑒𝑉𝑅𝐹

𝑚𝜔2
𝑅𝐹 𝑅2 . Here, 𝑚 and 𝑒 are the mass and charge

of the ion. The exact solution of the Mathieu equation has plenty terms, but we have the
lowest-order approximation in the case (|𝑎𝑥|, 𝑞2

𝑥) ≪ 1 (𝑞2
𝑥 ≪ 1 is also the requirement of

a stable trap [29]), which is good enough for us to understand the ion’s motional trajectory
:

𝑥(𝑡) = 𝑥0 cos(𝜔𝑥𝑡)[1 + 𝑞𝑥
2 cos(𝜔𝑅𝐹 𝑡)], (2-3)

where 𝜔𝑥 = √𝑎𝑥 + 𝑞2
𝑥/2. We can easily see it can be approximated as a simple harmonic

oscillator with a trap frequency 𝜔𝑥. The rest part is the micro-motion term, which should
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be as small as possible and can be compensated by adding some finite DC potential fields
(we will talk about it later).

From the calculation above, we know the trap frequencies of X and Y directions are
same, which is not convenient for our setup and sideband cooling (we will talk about it
later). We need another one DC potential field to split the motional modes to two inde-
pendent directions and make them not to be degenerate any more, which is

𝑈𝑠𝑝(𝑥, 𝑦) =
𝑉𝑠𝑝
2 (1 + 𝑥2 − 𝑦2

𝑅2 ), (2-4)

where 𝑉𝑠𝑝 is the amplitude of the additional DC electric field. By combining equations
(2-1) and (2-4), and using the similar method, we can get two different trap frequencies
as 𝜔𝑥 = √𝑎′

𝑥 + 𝑞2
𝑥/2 and 𝜔𝑦 = √𝑎′

𝑦 + 𝑞2
𝑦 /2, where 𝑞𝑦 = −𝑞𝑥, 𝑎′

𝑥 = 4𝑒(𝑉𝑠𝑝−𝑉𝐷𝐶 )
𝑚𝜔2

𝑅𝐹 𝑅2 and

𝑎′
𝑦 = 4𝑒(𝑉𝑠𝑝+𝑉𝐷𝐶 )

𝑚𝜔2
𝑅𝐹 𝑅2 .

2.1.2 Blade trap

In order to apply all the electric fields for trapping ions stably, the 3D structure of
electrodes should be designed properly. The four-rod trap system was used previously,
as shown in fig. 2.1. The opposite two RF electrodes are connected with a same RF
field, together with the needle voltages DC1 and DC2 to achieve the ion trapping and the
confinement in Z-direction. The ion position can also be shifted by changing DC1 and
DC2. The other opposite two DC(ground) electrodes are connected with same DC field
for splitting the motional modes in the X-Y plane(DC3). It needs another two electrodes
for micro-motion compensation(DC4 and DC5). This design is proved a great setup for
single-ion simulation experiment, but cannot confine a multi-ion chain stably based on
our experience. We suspect the rough electrodes surface may introduce some RF noise
on the DC electrodes, which results in unstable trapping potential.
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RF

RF

DC3

DC3

DC1

DC2

DC4

DC5

Figure 2.1 The general four-rod trap design and the electrodes connection

Now, we change the setup to five-segment blade trap system for several advantages
compared with the four-rod trap. The micro-motion electrodes can be removed due to the
sufficient freedoms from the segments design. And the distance between the ion and the
electrodes can be much smaller due to the thinner blade shape, which benefits to achieve
higher trap frequency with lower RF power. In addition, by designing the pattern of the
DC field on each segment, we can achieve a uniform spacing with multi-ion condition.
For now, we simplify the electrodes connection, as shown in fig. 2.2. The RF1 and RF2
fields together with DC1 and DC2 fields can realize the ion trapping. The ion position can
also be controlled by adjusting DC1 and DC2 voltages. The DC3 and DC4 fields are used
to split the motional modes in the X-Y plane. Here, It may be noticed that we separate the
RF electrodes with RF1 and RF2 and add two different DC voltages on the two opposite
DC(ground) electrodes(DC3 and DC4). So we can just add another one DC offset on RF2
electrode to get sufficient freedom for micro-motion compensation by controlling DC3,
DC4 and DC5.
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DC2

DC3

DC4

DC1

RF1

RF2+DC5

Figure 2.2 The blade trap design and the electrodes connection

Figure 2.3 The assembled blade trap picture

The assembled blade trap picture is shown in fig. 2.3. The parameters in our
blade trap setup are as follows: 𝑉𝑅𝐹 (𝑅𝐹 1, 𝑅𝐹 2) ≈ 600𝑉 , 𝑉𝐷𝐶 (𝐷𝐶1, 𝐷𝐶2) ≈ 12𝑉 ,
𝑉𝑠𝑝𝑙𝑖𝑡(𝐷𝐶3, 𝐷𝐶4) ≈ 7𝑉 , 𝑉𝑚𝑖𝑐𝑟𝑜−𝑚𝑜𝑡𝑖𝑜𝑛(𝐷𝐶5) ≈ 0.5𝑉 , and 𝜔𝑅𝐹 = 33MHz. Under these
conditions, the trap frequency is 𝜔𝑥 = 2𝜋 × 2.2MHz and 𝜔𝑦 = 2𝜋 × 1.8MHz. With
the UHV condition to minimize the background molecular impact [30], we can stably trap
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multiple ions, as shown in Fig. 2.4.

Figure 2.4 Ions figure.

2.1.3 Bifilar helical resonator

The RF oscillating electric field is one of the most important parts for trapping ions
and should be ”clean” and stable. The blade electrodes can be treated as a capacitor,
which means it has high voltage but low current when applying RF field. Due to miss of
impedance matching, the direct connection with signal generator does not work. So we
introduce a device called helical resonator to solve this problem [31], which can be treated
as a special filter and amplifier. The quality factor Q is used to indicate its performance
as 𝑄 = 𝜔𝑅𝐹

𝛿𝜔𝑅𝐹
, where 𝛿𝜔𝑅𝐹 is the full width half maximum. In order to obtain a higher Q

factor, we can carefully design the structure and shield size, reduce the resistance inside
by a stable connection and clean the shield.

The helical resonator mainly contains three parts: the small coil for input; the big
inner coil for output and a shield. The original design just has one big inner coil, and
the output is connected to the both RF electrodes, which results in insufficient degree
of freedom for micromotion compensation without additional DC electrodes. We put two
independent big inner coils side by side into the shield as a bifilar helical resonator and add
a small DC offset to only one blade electrode(see fig. 2.2) for micromotion compensation
through the corresponding big inner coil. The two big inner coils are connected by a 10nF
capacitor for phase synchronization. We also add two capacitors(0.2pF and 20pF) in series
between one big inner coil and ground to pick up 1% voltage as a feedback to stabilize
the RF electric field to get a stable trap frequency, as shown in fig. 2.5. The measured Q
factor is about 200.
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RF

Ground

0.2pF

Pick-up 20pF

Pick-up circuit

Phase synchronization 
capacitor

Figure 2.5 The stabilization of the RF power

2.2 171Yb+ ion

2.2.1 Energy structure

We choose 171Yb+ ion to encode a qubit, which has been studied and developed
a lot for quantum simulation and computation by Maryland university [32-36]. 171Yb+

ion is a hydrogen-like ion, which has a simple and ”clean” energy structure. The sim-
plified energy structure of 171Yb+ is shown in fig. 2.6 [37]. The strong dipole transition
2𝑆1/2 ↔2 𝑃1/2 can be used for Doppler cooling, optical pumping and state detection. By
applying magnetic field, the hyperfine structure will not be degenerated and split into Zee-
man levels. A pair of clock states in the ground-state manifold 2𝑆1/2, i.e. |𝐹 = 0, 𝑚𝐹 = 0⟩
and |𝐹 = 1, 𝑚𝐹 = 0⟩, are denoted as the computational basis {|0⟩ , |1⟩} of a qubit, which
has an extremely long relaxation time (𝑇1), is insensitive to magnetic field fluctuations,
and can reach 10 minutes coherence time [22].
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2𝑃1/2

2𝑆1/2

𝐹 = 1

𝐹 = 0

𝐹 = 0
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Figure 2.6 Energy structure of 171Yb+

2.2.2 Ionization of 171Yb atom

The 171Yb atom is ionized based on the two-photon step [38-39]. We use an atom oven
to emit atom beam by heating it up with certain current. The emitting direction is right
to the trap center. The 398.911nm laser can excite the 171Yb from 1𝑆0 to 1𝑃1 level and
the 369.526nm laser can make it emit an electron and become an ion. The two beams
are overlapped in the trap center. Once the atom is ionized, the RF field can capture the
ion immediately. Through the Doppler cooling scheme, 171Yb+ ion can stably rest in the
potential center. The optical system around the trap is shown in fig. 2.8. In practice, we
combine the 399nm and 370nm lasers as one beam for easier alignment. To cover more
ions and make the most of the laser power, we use a diffractive optical element (DOE)
bought from HOLO/OR as a beam shaper to change the round beam shape to a rectangle
shape with 180𝜇𝑚 × 60𝜇𝑚 on the ion position. The typical power of 399nm and 370nm
laser are around 1mW and 0.6mW.
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Doppler Cooling laser 370nm

Photoionization laser 399nm

Repumping laser 935nm

Sub-Doppler Cooling laser 370nm

Sub-Doppler Cooling laser 370nm

To Vacuum System

RF

Global Raman laser 375nm

Individual Raman laser 375nm

Figure 2.7 Optical system setup

2.2.3 Doppler cooling and repumping

We use the strong dipole transition 2𝑆1/2 ↔2 𝑃1/2 to cool down the ions. The basic
idea of Doppler cooling is that the ion absorbs a photon and excites from 2𝑆1/2 state to
2𝑃1/2 state, then emits a photon through spontaneous decay. The emitted photon is in all
directions with equal probability, which results in the momentum loss of the ion motion
on average [40].

The typical Doppler cooling scheme is shown in fig. 2.8. In experiment, we shine a
370nm laser for the basic cooling cycle, which is red-detuned from the resonance of tran-
sition 2𝑆1/2 |𝐹 = 1⟩ ↔2 𝑃1/2 |𝐹 = 0⟩. However, when the ion is in state 2𝑃1/2 |𝐹 = 1⟩, it
may decay to 2𝑆1/2 |𝐹 = 0⟩ through spontaneous emission due to the other allowed tran-
sition 2𝑆1/2 |𝐹 = 1⟩ ↔2 𝑃1/2 |𝐹 = 1⟩, which needs an additional sideband of 370nm laser
to close the cycle of Doppler cooling. Since the transition 2𝑆1/2 |𝐹 = 0⟩ ↔2 𝑃1/2 |𝐹 = 0⟩
is forbidden, the alternative option is using the transition 2𝑆1/2 |𝐹 = 0⟩ ↔2 𝑃1/2 |𝐹 = 1⟩
by adding a 14.74GHz sideband of 370nm to close the cooling cycle. The shape and
power of Doppler cooling laser is 180𝜇𝑚 × 60𝜇𝑚 and about 10𝜇W.
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scattering

2𝑆1/2

Figure 2.8 Doppler cooling scheme. The solid line means resonant stimulating and spontaneous
emission. The dash line means off-resonant stimulating.

There is still 0.5% leakage from the state 2𝑃1/2 to 2𝐷3/2. We need a repumping laser
935nm with 3.1GHz sideband to repump the state from 2𝐷3/2 to 2𝐷[3/2]1/2. The state
2𝐷[3/2]1/2 can quickly decay to 2𝑆1/2 state through spontaneous emission(see fig.2.6).

Sometimes, the ion could be in the dark state 2𝐹7/2 through the background collision.
The 638nm laser or the 355nm(375nm) Raman pulse laser can help to bring it back to the
cycle of Doppler cooling. Now, we find the 760nm laser also works well [41].

2.2.4 Detection

We manifold the ground state 2𝑆1/2, i.e. |𝐹 = 0, 𝑚𝐹 = 0⟩ and |𝐹 = 1, 𝑚𝐹 = 0⟩ as
a qubit state. These two states can be distinguished by photon fluorescence through the
transition 2𝑆1/2 ↔2 𝑃1/2. The detection scheme is shown in fig. 2.9 [42]. In experiment,
we shine a 370nm laser, which is resonant with the transition 2𝑆1/2 |𝐹 = 1, 𝑚𝐹 = 0⟩ ↔2

𝑃1/2 |𝐹 = 0, 𝑚𝐹 = 0⟩. We can collect photon fluorescence if the ion is in state
2𝑆1/2 |𝐹 = 1, , 𝑚𝐹 = 0⟩, which is called ”bright” state. Correspondingly, the other state
is called ”dark” state for no fluorescence due to the 14.7GHz detuning. The typical shape
and power of detection laser is 180𝜇𝑚 × 60𝜇𝑚 and 3𝜇W.
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Figure 2.9 Detection scheme.

Typically, for single-ion detection, we use a single-channel photomultiplier
tube(PMT), taking the advantages of its high sensitivity and low noise. Our general de-
tection time is 300𝜇s by using a CVI objective lens(NA=0.2). Now we change it to High
NA objective lens(NA=0.6), which can collect about 7% scattering photons [43-44], and
the detection time can be reduced to 60𝜇s. The typical detection fidelity is 99.6%.

For multi-ion detection, we first use Andor EMCCD, taking advantages of its low
detection crosstalk between the photon fluorescence from each ion. Due to the limita-
tion of its data-taking procedure and some programming problems, the typical detection
time is 800𝜇s and the average detection fidelity is about 96%. So we try to reduce the
detection time by using the multi-channel PMT(32-channel). However, we found the
quantum efficiency of multi-channel PMT we bought is four times lower than that of the
single-channel PMT, and the detection time can only be reduced to 200𝜇s. In addition,
the detection crosstalk is a little larger than that of EMCCD. Now, we try to replace it
by fiber array solution, combining the advantages of short detection time, high detection
fidelity and low crosstalk.
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3.1 Laser-ion interaction

The clock states of 171Yb+ ion, which are insensitive to magnetic fields, can be de-
noted as the computational qubit. We define them as spin |↓⟩ and |↑⟩ state. The Hamilto-
nian of a two level system can be written as

𝐻𝑒 = ℏ𝜔0
2 𝜎𝑧, (3-1)

where 𝜔0 is the energy level difference of spin |↓⟩ and |↑⟩. In addition, the ions are trapped
with the RF oscillating field, and its motion can be approximated as a harmonic oscillator.
We can write down the motional Hamiltonian as

𝐻𝑚 = ℏ𝜔𝑚(𝑎†𝑎 + 1
2), (3-2)

where 𝑎† and 𝑎 are the creation and annihilation operators, and 𝜔𝑚 is the frequency of
motional mode. In principle, we have three motional modes in X, Y and Z directions.
Here, we take just one mode as example, and the situations of the other modes are similar.

The general laser-ion interaction Hamiltonian can be written as

𝐻𝑖 = 𝑒𝑟 ⋅ �⃗� cos(𝑘𝑥 − 𝜔𝑡 + 𝜙),

where 𝜔 is the frequency of laser, and 𝑘 is the effective wave vector, which is chosen
along the 𝑥 direction for simplification. We can transform it to a coupling Hamiltonian as

𝐻𝑖 = ℏ𝛺
2 (𝜎+ + 𝜎−)(𝑒𝑖(𝑘𝑥−𝜔𝑡+𝜙) + 𝑒−𝑖(𝑘𝑥−𝜔𝑡+𝜙)), (3-3)

where 𝜎+ = |↑⟩ ⟨↓|, 𝜎− = |↓⟩ ⟨↑| and the Rabi frequency 𝛺 = |𝑒𝑟 ⋅ �⃗�|/ℏ.
It is not straightforward to have an intuitive picture with the total Hamiltonian 𝐻𝑒 +

𝐻𝑚 + 𝐻𝑖. We can transform it into the interaction picture by defining the disengaged
Hamiltonian 𝐻0 = 𝐻𝑒 +𝐻𝑚. With the time evolution 𝑈0 = 𝑒𝑥𝑝(−𝑖𝐻0𝑡/ℏ), the interaction
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Hamiltonian can be written as [29]

𝐻𝐼 = 𝑈 †
0 𝐻𝑖𝑈0

= ℏ𝛺
2 𝑒𝑖𝐻0𝑡/ℏ(𝜎+ + 𝜎−)(𝑒𝑖(𝑘𝑥−𝜔𝑡+𝜙) + 𝑒−𝑖(𝑘𝑥−𝜔𝑡+𝜙))𝑒−𝑖𝐻0𝑡/ℏ

= ℏ𝛺
2 𝑒𝑖𝜔0𝜎𝑧𝑡/2(𝜎+ + 𝜎−)𝑒−𝑖𝜔0𝜎𝑧𝑡/2𝐻𝑚

𝐼

= ℏ𝛺
2 (𝜎+𝑒𝑖𝜔0𝑡 + 𝜎−𝑒−𝑖𝜔0𝑡)𝐻𝑚

𝐼 ,

(3-4)

where 𝐻𝑚
𝐼 = 𝑒𝑖𝐻𝑚𝑡/ℏ(𝑒𝑖(𝑘𝑥−𝜔𝑡+𝜙) + 𝑒−𝑖(𝑘𝑥−𝜔𝑡+𝜙))𝑒−𝑖𝐻𝑚𝑡/ℏ is the motional part and not

straightforward to calculate. Here, we can consider that in the Heisenberg picture, the
operator 𝑥 follow the evolution [29] 𝑥(𝑡) = 𝑥0[𝑎𝑤∗(𝑡) + 𝑎†𝑤(𝑡)], where 𝑥0 = √

ℏ
2𝑚𝜈 is

wave packet widening of the ground state and 𝑤(𝑡) is the corresponding solution accord-
ing to the driven field. So we can cleverly write down the motional part of interaction
picture as

𝐻𝑚
𝐼 = 𝑒𝑖[𝜂(𝑎†𝑒𝑖𝜔𝑚𝑡+𝑎𝑒−𝑖𝜔𝑚𝑡 )−𝜔𝑡+𝜙] + 𝑒−𝑖[𝜂(𝑎†𝑒𝑖𝜔𝑚𝑡+𝑎𝑒−𝑖𝜔𝑚𝑡)−𝜔𝑡+𝜙], (3-5)

where 𝜂 = 𝑘𝑥0 is called Lamb-Dick parameter.
Using rotating-wave approximation, we can get the simplified interaction Hamilto-

nian as [29]

𝐻𝐼 = ℏ𝛺
2 (𝜎+𝑒𝑖[𝜂(𝑎†𝑒𝑖𝜔𝑚𝑡+𝑎𝑒−𝑖𝜔𝑚𝑡)−𝛿𝑡+𝜙]) + 𝐻.𝑐., (3-6)

where 𝛿 = 𝜔 − 𝜔0 is the laser detuning from the ion energy gap. We can control the laser
intensity, frequency and phase to manipulate the ion with flexible freedoms.

3.2 Microwave operations

Microwave operation is one of the most robust and handy implementations of quan-
tum gates, but its Lamb-Dick parameter 𝜂 ≪ 1, close to zero. From equation ( 3-6), the
part 𝜂(𝑎†𝑒𝑖𝜔𝑚𝑡 + 𝑎𝑒−𝑖𝜔𝑚𝑡) ≈ 0, and we get the interaction Hamiltonian of microwave as

𝐻𝑀 = ℏ𝛺
2 (𝜎+𝑒𝑖(𝜙−𝛿𝑡) + 𝜎−𝑒−𝑖(𝜙−𝛿𝑡)). (3-7)

It is obvious that the microwave cannot drive any transition related to phonon number
change.

In experiment, the frequency of microwave is very close to the qubit energy gap.

16



Chapter 3 Quantum manipulation

With 𝛿 = 0, the rotation of the qubit state on the Bloch sphere can be defined as

𝑅𝜙(𝜃) = 𝑒−𝑖𝐻𝑀 𝑡/ℏ

= 𝑒−𝑖 𝜃
2 (𝜎+𝑒𝑖𝜙+𝜎−𝑒−𝑖𝜙),

(3-8)

where 𝜃 = 𝛺𝑡 is the rotation angle and 𝜙 determines the rotation axis. We cannot directly
apply the rotation on Z axis. One method is to apply three rotations as

𝑅𝑧(𝜃) = 𝑅−𝜋/2(𝜋/2)𝑅0(𝜃)𝑅𝜋/2(𝜋/2).

The other way is using off-resonant coupling. By setting 𝛺 ≪ 𝛿, we can also achieve the
rotation on Z axis. But the speed is lower than the previous one, which is proportional to
𝛺/𝛿.

3.3 Raman laser operations

3.3.1 Carrier, blue sideband and red sideband transitions

Except for the microwave, the stimulated Raman transition is another way to im-
plement quantum gates. We use the 375nm pulse lase(mira) to achieve the two-photon
transition through the energy levels 2𝑆1/2 and 2𝑃1/2. The Lamb-Dick parameter is much
larger than that of microwave as 𝜂 ≈ 0.1 for the single-qubit case. In the Lamb-Dick
regime, we can apply Taylor expansion to equation ( 3-6) and keep the lowest order in 𝜂.
The interaction Hamiltonian of Raman laser can be approximated as

𝐻𝐿 = ℏ𝛺
2 𝜎+[1 + 𝑖𝜂(𝑎†𝑒𝑖𝜔𝑚𝑡 + 𝑎𝑒−𝑖𝜔𝑚𝑡)] + 𝐻.𝑐.. (3-9)

By setting the detuning 𝛿, we can get three resonances as carrier transition, blue sideband
transition and red sideband transition

𝐻𝑐𝑎𝑟 = ℏ𝛺
2 (𝜎+𝑒𝑖𝜙 + 𝜎−𝑒−𝑖𝜙), 𝛿 = 0

𝐻𝑏𝑠𝑏 = 𝑖ℏ𝛺
2 𝜂(𝜎+𝑎†𝑒𝑖𝜙 − 𝜎−𝑎𝑒−𝑖𝜙), 𝛿 = 𝜔𝑚

𝐻𝑟𝑠𝑏 = 𝑖ℏ𝛺
2 𝜂(𝜎+𝑎𝑒𝑖𝜙 − 𝜎−𝑎†𝑒−𝑖𝜙), 𝛿 = −𝜔𝑚,

(3-10)

Here, the phase 𝜙 is the relative phase between the two Raman beams.
The carrier transition can drive the transition |↓, 𝑛⟩ ↔ |↑, 𝑛⟩ with Rabi frequency

𝛺. The blue sideband transition can drive the transition |↓, 𝑛⟩ ↔ |↑, 𝑛 + 1⟩ with Rabi
frequency √𝑛 + 1𝜂𝛺. And the red sideband transition can drive the transition |↓, 𝑛⟩ ↔
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|↑, 𝑛 − 1⟩ with Rabi frequency √𝑛𝜂𝛺, as shown in fig. 3.1. Since 𝜂 ≈ 0.1, the Rabi
frequencies of first order blue and red sideband transitions are about ten times slower
than that of the carrier transition.

| ۧ↑

| ۧ↓
| ۧ0

| ۧ1

| ۧ2

| ۧ3

…

Carrier

Blue sideband

Red sideband

Ω

𝜂Ω

𝜂Ω

Ω

Ω

Ω

2𝜂Ω

2𝜂Ω

3𝜂Ω

3𝜂Ω

2𝜂Ω

Figure 3.1 The three resonances with Raman laser.

3.3.2 Spin-dependent force

The effective laser field for carrier, blue sideband and red sideband transitions only
contains a single frequency. By combining the blue and red sidebands with or without
detuning, we can achieve the spin-dependent force operation [45]. In general, with 𝜙 = 0,
the Hamiltonian is

𝐻𝑠𝑑𝑓 = 𝐻𝑏𝑠𝑏 + 𝐻𝑟𝑠𝑏

= 𝑖ℏ𝛺
2 𝜂(𝜎+𝑎†𝑒−𝑖𝛥𝑡 − 𝜎−𝑎𝑒𝑖𝛥𝑡) + 𝑖ℏ𝛺

2 𝜂(𝜎+𝑎𝑒−𝑖𝛥𝑡 − 𝜎−𝑎†𝑒𝑖𝛥𝑡)

= ℏ𝛺
2 𝜂𝜎𝑦(𝑎†𝑒−𝑖𝛥𝑡 + 𝑎𝑒𝑖𝛥𝑡),

(3-11)

where 𝛥 = 𝜔 − 𝜔𝑚 is the laser detuning from the ion’s motional mode, and 𝐻𝑠𝑑𝑓 is
the spin-dependent force in 𝜎𝑦 basis. To have an intuitive picture, let’s first consider the
motional part with 𝛥 = 0 as

𝐻𝑓𝑚 = ℏ𝛺
2 𝜂(𝑎† + 𝑎). (3-12)
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It’s easy to derive the time evolution, which results in the displacement operator as

𝐷(𝛼) = 𝑒𝛼𝑎†−𝛼∗𝑎, (3-13)

where 𝛼 = −𝑖𝜂𝛺𝑡/2. Adding the spin part, the motion will entangle with the spin state. In
general, our initial state is spin down state, which can be decomposed with the eigenstates
of 𝜎𝑦 as |↓⟩ = 1

√2
(|+𝑦⟩ + |−𝑦⟩). These two parts will be ”pushed” out in the phase space,

as shown in fig. 3.2a.

a

Δ = 0

Im(𝛼)

Re(𝛼)

𝛼 = 𝜂Ω𝑡/2

b

Δ ≠ 0

Im(𝛼)

Re(𝛼)

−
𝜂Ω

2Δ
(1 − 𝑒𝑖Δ𝑡)

ൿ| +𝑦

ൿ| −𝑦

Figure 3.2 The motional trajectory in phase space with and without detuning.

If 𝛥 ≠ 0, the two parts will go back to the original point through a circle in the phase
space after time 𝑇 = 1/𝛥, as shown in fig. 3.2b. The radius of the circle is 𝜂𝛺/(2𝛥) [46].
The enclosed area will accumulate a geometric phase with time(we will talk about it later).
If we keep applying the spin dependent force, the number of turns of the trajectory will
also contributes to the phase accumulation.

3.3.3 Mølmer-Sørensen gate

The two-qubit entangling gate is always the research interest during last several
decades. Two popular approaches are the Cirac-Zoller(CZ) gate [47-48] and Mølmer-
Sørensen(MS) gate [49]. The CZ gate directly uses the phonon state as intermediary, which
really entangles the internal qubit and motional Fock state and depends on a good phonon
state initialization to achieve a high entanglement fidelity. On the contrary, the MS gate
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just uses the phonon as a ”bus”, which does not entangle any phonon state. The procedure
is based on the geometric phase accumulation when coupling the qubit state with motional
mode. After the gate time, the qubit and phonon states are decoupled. This method does
not rely on a good phonon state preparation and is more robust to the phonon heating
effect.

Here, let’s first introduce the essential knowledge about the geometric phase. Geo-
metric phase is caused by a phenomenon called ”global change without local changes” [50],
which is based on a closed trajectory. In 1984, Berry’s research [51] about cyclic evolution
of system under adiabatic conditions shows the nonintegrable character of the geometric
phase.

Considering a quantum system, the Hamiltonian ℋ changes with a varying parameter
𝑃 (𝑥1, 𝑥2, ...). Form time 𝑡 = 0 to 𝑡 = 𝑇 , 𝑃 has a closed trajectory, namely 𝑃 (0) = 𝑃 (𝑇 ).
The state evolution can be described by the Schr ̈𝑜dinger equation

𝐻[𝑝(𝑡)] |𝜙(𝑡)⟩ = 𝑖ℏ ∂
∂𝑡 |𝜙(𝑡)⟩ . (3-14)

Assuming the system has a basis of discrete eigenstates |𝑛[𝑃 (𝑡)]⟩, which satisfies

𝐻[𝑝(𝑡)] |𝑛[𝑃 (𝑡)]⟩ = 𝐸𝑛[𝑃 (𝑡)] |𝑛[𝑃 (𝑡)]⟩ , (3-15)

where 𝐸𝑛[𝑃 (𝑡)] is the eigenenergy. If the initial state of the system is |𝑛[𝑃 (0)]⟩, and adia-
batically evolves from 𝑃 (0) to 𝑃 (𝑇 ) in the parameter space, the eigenstates and energies
will also continuously and slowly change and go back to the original place, as shown in
fig. 3.3.

The state of the system can be written as

|𝜙(𝑡)⟩ = 𝑒𝑖𝜃𝑛𝑒𝑖𝑔𝑛 |𝑛[𝑃 (𝑡)]⟩ , (3-16)

where 𝜃𝑛 = − 1
ℏ ∫𝑡

0 𝐸𝑛[𝑃 (𝑡′)]𝑑𝑡′ is the dynamical phase factor and 𝑔𝑛 is the geometric
phase factor. We can substitute it into Schr ̈𝑜dinger equation ( 3-14) as

∂
∂𝑡 |𝑛[𝑃 (𝑡)]⟩ + 𝑖 𝑑

𝑑𝑡𝑔𝑛(𝑡) |𝑛[𝑃 (𝑡)]⟩ = 0. (3-17)

Through inner product with ⟨𝑛[𝑃 (𝑡)]|, we can get

𝑑
𝑑𝑡𝑔𝑛(𝑡) = 𝑖 ⟨𝑛[𝑃 ]| ▿𝑝 |𝑛[𝑃 ]⟩ 𝑑𝑃

𝑑𝑡 (3-18)
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After the integration, the geometric phase can be written as [50]

𝑔𝑛(𝐶) = 𝑖 ∮
𝐶

⟨𝑛[𝑃 ]| ▿𝑝 |𝑛[𝑃 ]⟩ 𝑑𝑃 , (3-19)

which depends on the closed trajectory of 𝑃 (𝑡) in the parameter space and is nonintegrable.

𝑥𝑖

𝑥𝑖+1

𝑃(𝑡)

𝑃(0)

ۧ|𝑛[𝑃(𝑡)]

…
…

Figure 3.3 Schematic diagram for parameterized time evolution.

In 1987, Aharonov and Anandan [52] proposed a cyclic evolution that is not limited
by adiabatic conditions. This is an extension of Berry’s phase, which means that we
don’t need a parameter space to describe the cyclic evolution Hamiltonian, but only the
projected Hilbert space that the system tracks to draw a closed curve. This generalization
of Berry’s phase is called Aharonov-Anandan phase.

Considering a Hilbert space HS, in which the time-dependent Hamiltonian is not
cyclic, which means 𝐻(𝑇 ) ≠ 𝐻(0), but the final state is similar to the initial state except
a different phase

|𝜙(𝑇 )⟩ = 𝑒𝑖𝛷 |𝜙(0)⟩ , (3-20)

as shown in fig. 3.4.
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HS

PHS

C

C*

Figure 3.4 The cyclic evolution in the projective and normal Hilbert space.

The trajectory of 𝑃 (𝑡) in parameter space is not closed. But we can find a projective
Hilbert space PHS, in which trajectory 𝑃 ∗(𝑡) is closed and the corresponding state vector
|𝜒(𝑡)⟩ satisfies

|𝜒(𝑇 )⟩ = |𝜒(0)⟩ . (3-21)

The relation of state vector between the normal Hilbert space and the projective Hilbert
space is

|𝜙(𝑡)⟩ = 𝑒𝑖𝛼(𝑡) |𝜒(𝑡)⟩ , (3-22)

where 𝛼(𝑇 )−𝛼(0) = 𝜙. We can substitute it into Schr ̈𝑜dinger equation ( 3-14), and obtain
the equations for 𝛼(𝑡) and 𝜒(𝑡) [50]

𝑖ℏ 𝑑
𝑑𝑡 |𝜒(𝑡)⟩ = (𝐻 + ℏ�̇�) |𝜒(𝑡)⟩ (3-23)

ℏ 𝑑
𝑑𝑡 |𝛼(𝑡)⟩ = 𝑖 ⟨𝜒| ∂

∂𝑡 |𝜒⟩ − ⟨𝜒| 𝐻 |𝜒⟩ . (3-24)

After the integration for equation, we can get the phase

𝛷 =
𝑇

∫
0

𝑑
𝑑𝑡𝛼(𝑡)𝑑𝑡 = 𝜃 + 𝛽, (3-25)
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which contains two parts: The dynamical phase is

𝜃 = − 1
ℏ

𝑇

∫
0

⟨𝜒| 𝐻 |𝜒⟩ = − 1
ℏ

𝑇

∫
0

⟨𝜙| 𝐻 |𝜙⟩ . (3-26)

And the geometric phase is [50]

𝛽 = 𝑖 ∮
𝐶∗

⟨𝜒| ∂
∂𝑡 |𝜒⟩ 𝑑𝑡. (3-27)

The Aharonov-Anandan phase does not need the requirement for cyclicity of time
evolution of the system and is suitable for any initial state instead of the eigenstates of the
Hamiltonian.

The Mølmer-Sørensen gate can be treated as the application of Aharonov-Anandan
phase in trapped ion systems. We use Raman laser field to drive the internal state and
motional modes, which is the dynamical way, rather than adiabatic way. When we im-
plement the MS gate, the Hamiltonian of Raman laser is not a cycle with time and the
trajectory of laser parameter like amplitude, frequency and phase is not closed. But we
can project Hamiltonian to the phase space as the closed projective Hilbert space.

For simplicity, let’s consider the two-qubit MS gate. In general, the two ions have
two motional modes in each X, Y, and Z axis, we can take the X modes as example. The
MS gate is implemented by applying the detuned blue and red sidebands to the both ions.
The total Hamiltonian can be written as [46,53]

𝐻𝑠𝑑𝑓 =
2

∑
𝑗=1

2

∑
𝑘=1

𝑖ℏ𝛺
2 𝜂𝑗,𝑘(𝜎𝑗,+𝑎†

𝑘𝑒−𝑖𝛿𝑡 − 𝜎𝑗,−𝑎𝑘𝑒𝑖𝛿𝑡) + 𝐻.𝑐.

=
2

∑
𝑗=1

2

∑
𝑘=1

ℏ𝛺
2 𝜂𝑗,𝑘𝜎𝑗,𝑦(𝑎†

𝑘𝑒−𝑖𝛿𝑡 + 𝑎𝑘𝑒𝑖𝛿𝑡),

(3-28)

where 𝑗 is the index of ions, 𝑘 is the index of modes and 𝛿 = 𝜔 − 𝜔0 is the laser detuning
from the ion energy gap.

It is similar with the case for single-qubit spin-dependent force with detuning. Here,
we have two parts of spin terms 𝜎1,𝑦 + 𝜎2,𝑦 and two parts of motional terms (𝑎†

1𝑒−𝑖𝛿𝑡 +
𝑎1𝑒𝑖𝛿𝑡) + (𝑎†

2𝑒−𝑖𝛿𝑡 + 𝑎2𝑒𝑖𝛿𝑡). If we set the detuning in the middle of the two modes as
𝛿 = 𝜔𝑚1+𝜔𝑚2

2 , these two modes will accumulate the geometric phase together with the
same speed 𝑇 = 1/(𝜔 − 𝜔𝑚1). It should be noticed that the sign of the geometric phase
is controlled by the rotation direction of the trajectory. The two parts of spin terms can
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also speed up the phase accumulation. Considering there are four basis states in the 𝜎𝑦𝜎𝑦

axis as |+𝑦+𝑦⟩, |−𝑦−𝑦⟩, |+𝑦−𝑦⟩, and |−𝑦−𝑦⟩, we can draw the four trajectories in phase
space, as shown in fig. 3.5.

According to the area and direction of trajectories, we can write down the time evo-
lution of the four basis states as

|+𝑦+𝑦⟩ ⟶ 𝑒𝑖𝜙 |+𝑦+𝑦⟩

|+𝑦−𝑦⟩ ⟶ 𝑒−𝑖𝜙 |+𝑦−𝑦⟩

|−𝑦+𝑦⟩ ⟶ 𝑒−𝑖𝜙 |−𝑦+𝑦⟩

|−𝑦−𝑦⟩ ⟶ 𝑒𝑖𝜙 |−𝑦−𝑦⟩ ,

(3-29)

where phase 𝜙 = 2𝐴 and 𝐴 is the area of the closed trajectory. We can adjust the laser
intensity to control the Rabi frequency 𝛺 and change the gate time to obtain different
geometric phase. Typically, if 𝜙 = 𝜋/4, we call it the maximum entanglement. In general,
the initial state of the system is spin down or spin up in 𝑍 basis. It is easy to change the
state evolution in 𝑌 basis to 𝑍 basis. By setting 𝜙 = 𝜋/4, we can get the GHZ state for
the two-qubit case

|↓↓⟩ ⟶ 1/√2(|↓↓⟩ + 𝑖 |↑↑⟩)

|↓↑⟩ ⟶ 1/√2(|↓↑⟩ + 𝑖 |↓↑⟩).
(3-30)

Im(𝛼)

Re(𝛼)

ൿ| +𝑦 +𝑦

ൿ| −𝑦 −𝑦

Im(𝛼)

Re(𝛼)

ൿ| −𝑦 +𝑦
ൿ| +𝑦 −𝑦

A

Figure 3.5 The trajectories of the four basis states in phase space.
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3.4 State initialization

3.4.1 Optical pumping

We use the strong dipole transition 2𝑆1/2 ↔2 𝑃1/2 for optical pumping to pump the ion
qubit to the internal ground state 2𝑆1/2 |𝐹 = 0, 𝑚𝐹 = 0⟩. The scheme is shown in fig. 3.6.
In experiment, we shine a 370nm laser with a 2.105GHz sideband, which can cover the
transition 2𝑆1/2 |𝐹 = 1⟩ ↔2 𝑃1/2 |𝐹 = 0⟩ and 2𝑆1/2 |𝐹 = 1⟩ ↔2 𝑃1/2 |𝐹 = 1⟩. The state
2𝑃1/2 |𝐹 = 1⟩ can decay to 2𝑆1/2 |𝐹 = 0, 𝑚𝐹 = 0⟩ through spontaneous emission. Due
to the far detuning, 2𝑆1/2 |𝐹 = 0, 𝑚𝐹 = 0⟩ state will not be excited. Since the state can
also decay to 2𝐷3/2 state, the 935nm repumping lase is also applied to bring it back to
the optical pumping process. The typical shape and power of optical pumping laser is
180𝜇𝑚 × 60𝜇𝑚 and 5𝜇W with a 99.8% ”dark” state fidelity.

2𝑃1/2

𝐹 = 1

𝐹 = 0

𝐹 = 0

𝐹 = 1 | ۧ↑

| ۧ↓

scattering

2𝑆1/2

Figure 3.6 Optical pumping scheme.

3.4.2 Sideband cooling

The optical pumping can pump the internal state to ground, and the motional state
should be also cooled down to the vacuum state for full quantum state initialization. After
Doppler cooling, the motion of the ion is in a thermal state. If we apply carrier transition,
the Rabi oscillation will quickly decay after several periods. Here, the sideband cooling
technique is introduced. The basic idea is to apply red sideband transition and optical
pumping alternately to create a ”phonon slope”. The distribution of phonon can slip to
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the vacuum state along the designed path, as shown in fig. 3.7.
In experiment, we first use Doppler cooling limit to estimate the average phonon

number. Then we estimate the average Rabi frequency of red sideband transition by the
phonon distribution. We apply the sideband cooling procedure 100 times and can reach
the average phonon number 0.012.

| ۧ↑

| ۧ↓
| ۧ0

| ۧ1
| ۧ𝑛

| ۧ𝑛 + 1
…

Optical pumping

Red sideband

Figure 3.7 Sideband cooling scheme.
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Chapter 4 Blade ion trap system setup

4.1 System design through fiber connection

The ion trap system can be mainly divided into five components: blade trap system,
CW laser system, pulse laser(microwave) system, detection system and control system.
The blade trap system contains the atom oven for loading ions, RF electric field for trap-
ping ions, DC field for confining ions, compensating micromotion, and splitting motional
modes, and magnetic field for splitting the Zeeman levels. The CW laser system is used
for system alignment, which contains the (toptica) laser, the strong beam, the Doppler
cooling and repumping beam, optical pumping beam and detection beam. The pulse laser
system is used for quantum manipulation, which contains the (mira) laser, the two Raman
beams(global beam and individual beams). The detection system is for quantum mea-
surement, which contains single(multi)- channel PMT or camera and imaging system.
The control system controls the laser and detection system, which contains computer for
experiment design, and FPGA board for generating time sequence.

Our original design is using fiber(array) to connect the laser and detection system to
the blade trap system. We combine the four 370nm laser beam to one beam through BS
and PBS with half power loss, which is coupled to one fiber. The two Raman beams can
be coupled into two fibers(array), separately. The fluorescence of each ion can also be
collected independently by fiber array. This separated design has lots of advantages: It is
convenient to optimize and scale up the whole system; the fiber can optimize the shape
of laser beam and reduce the phase fluctuation; the fiber array can reduce the detection
crosstalk to improve measurement fidelity.

Due to the limitation of our system, we actually make some compromises, as shown
in fig. 4.1. The system we build is our first multi-qubit blade trap system and we do not
have much experience to align the fiber array stably. So for the detection system, we still
build it in free space. We find the stability of the mira laser is not good enough to match
each individual beam to the fiber array well with conditions for experiment. In order to
reduce the laser fluctuation and optimize the beam shape, we just add a fiber before the
individual system setup. Due to the limitation of laser power and the fact that the global
beam is much less sensitive to the laser shaking, the global beam is still directly aligned
from the mira laser.
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Figure 4.1 Blade trap system design.

Note that the maximum power of the CW laser is 10mW, we can use the normal fiber
from thorlabs to couple CW laser beam. However, the average power of Raman laser can
reach 500mW, and the peak power would be even higher. The normal fiber would be
damaged immediately when coupling into so strong power. We use a special photonic
crystal fiber, which can bear such high laser power level and has a single-mode output
for full wavelength. But the fiber cable is not commercial, which needs a special process.
The procedure of making fiber cable will be discussed later.

4.2 Blade trap assembling

4.2.1 Electrode connection

The blade material is alumina ceramics. We design five segments of independent
electrodes. We send our design drawing to Delong laser Ltd. for laser cutting, and discuss
a lot of times for the thickness of the top edge, which we want as thin as possible. But it is
easier to be broken when it is thinner. We have two versions, one is 30𝜇𝑚, and the other
one is 60𝜇𝑚. We use microscope to compare the flatness of the surface and decide to use
the 60𝜇𝑚 version. Then we cooperate with Dayu electronic Ltd. for the gold coating. For
the DC blade, we need to draw the coating pattern to separate each segment electrode. The
RF blade is all-coated by gold. They first coat 10nm titanium, then coat 3um gold. We
want the gold layer as thick as possible, but 3um is the maximum of electroplate method.
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After we receive the coated blade, we also use the microscope to check the flatness of gold
layer and the completion of laser cutting. Everywhere we designed should be all coated
by gold. If there is alumina exposed, it may be charged when we apply the RF electric
field or the strong Raman beam, which will keep shifting the position of ion and affect its
stability. The designed blade picture and the real blade are shown in fig. 4.2.

250𝜇𝑚

60𝜇𝑚(thickness)

Figure 4.2 The five-segment blade picture.

We bought a machine from West Bond Inc., which can attach a gold ribbon to the
surface of the blade. The gold ribbon and the blade should be both heated to around
200∘C and the operating parameter should be tested first, including the pressure and time.
Otherwise, the attachment may be not stable enough or easy to break off. We decide to
attach two ribbons on each electrode for insurance.

The other side of gold ribbon is connected to a wire through a spot welder machine.
We use a piece of stainless steel to wrap the gold ribbon and the wire, then use a pulse
current around 3A to heat it up. Then, the gold ribbon and the wire are attached to the
stainless steel piece. The parameter of current should be also tested first.

The strong RF electric field on the blade will affect the ground blade, on which we
will also add DC voltage for splitting the motional modes or compensating micromotion.
The filter system should be added on the DC electrodes. Before, we put the filter system
outside of the trap. We observe that when we load more and more ions, the stability of
the ion chain becomes worse and worse. We suspect that the filter outside does not work
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well and there is still RF noise on the DC electrodes. So in the latest version of blade trap,
we decide to put the capacitor inside the trap, just on the surface of the blade. We first cut
two short gold ribbons and attach one on each surface of capacitor. Then the other sides
of the two ribbons are attached the DC electrode and the ground, separately, as shown in
fig 4.3.

Figure 4.3 The attached capacitor picture.

4.2.2 3D structure assembling

The potential shape of RF electric field is very sensitive to the 3D structure of the
four blades, which should be symmetry and uniform. The design of 3D structure has some
considerations. After assembling the blades, the blades can not block the laser path and
affect the fluorescence collecting. Since we are using high NA(0.6) objective lens, the
angle facing to the detection system should be carefully designed. And in order to have
the capability to rotate the principle axis of X, Y motional modes, the shape of the center
cannot be a square. We decide to make it a rectangle with 400𝜇m*200𝜇m.

We draw the structure in Autodesk inventor software to make sure it meets all the
requirements, and design a holder to fix the blades. In the first version, the holder has
two parts. One is a piece of alumina to hold the blade without electrical connection and
decide the distance between the ion and the blade. The other one is a piece of stainless
steel to decide the angle of the blade in the 3D structure. When assembling them together,
we find it usually deviates from the design due to the limitation of manufacture precision.
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In the latest version, we combine the two holders as one alumina holder.
During assembling, we actually first roughly fix the blades on the holder. Before

carefully optimizing the 3D structure, we do the spot welder connection. For one reason,
we add several additional holes to twine and hole the wire. It is safer and more convenient
to do spot welder connection when we have fixed the wire. Otherwise, the twining may
drag the gold wire and destroy all of the process. For the other reason, optimizing the
3D structure is the most important part during assembling, which we want to leave to the
last step in case that the structure changes after other assembling process. The blade trap
picture with electric connection is shown in fig. 4.4.

Figure 4.4 The assembled trap picture.

The blades are attached to the holder with screws. In order to adjust the distance
between blades and the whole structure, the screw hole in the holder is a little larger than
the diameter of the screws. The four blades should be as uniform as possible in the Z
direction, and each segment on the blade should match with that on the other blade face
to face as exactly as possible. It needs patience and takes long time to make it perfect. We
use microscope the check the quality of the 3D structure and measure the rectangle size
of the center, as shown in fig. 4.5 and fig. 4.6. The two figures are obtained with the same
microscope magnification. From the measurement in fig. 4.5, 𝐷1 ≈ 168pixels and we
know the corresponding real length is about 250𝜇m, so each pixel means 1.49𝜇m. Then,
we can get the real 3D structure size through D3 and D4 in fig. 4.6 as 380𝜇m×205𝜇m,
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which is quite close to our design.

Figure 4.5 The symmetry quality through microscope.

Figure 4.6 The 3D structure of blade trap through microscope.

4.2.3 Vacuum system

After finishing assembling the ”core” of the trap, we put the structure to the vacuum
system. The RF wires and atom oven wires are connected to the two-pin and four-pin feed-

32



Chapter 4 Blade ion trap system setup

through. The 10 DC wires(we have two DC blades and each blade has five electrodes)
are connected to a 19-pin feed-through. The correspondence between each pin and each
electrode is recorded carefully.

Before, we use an ion pump and a titanium sublimation pump to maintain the UHV.
The ion pump has a great capability of absorbing molecules except for hydrogen, and the
titanium sublimation pump makes it up, which makes our system very huge and clumsy.
Now we use the new NEG pump to replace them. Although the NEG pump contains an
ion pump and a getter pump, it is still very small and light. The whole system is shown
in fig. 4.7. Here, we should notice that when opening a new NEG pump for the first time,
we should avoid the moist air to damage the ion pump part by purging into dry nitrogen.

Figure 4.7 The blade trap picture with vacuum system.

Typically, all the stainless steel components should be baked with 300∘C for sev-
eral days in advance. After we finish assembling the whole vacuum system, we put it
into our baking oven to start pump process. We first open the mechanical pump and
turbo-molecular pump, which work well for big molecules. When the vacuum is below
10−6Torr, we start to increase the temperature to 150∘C slowly within 24 hours(The maxi-
mum temperature the magnet inside the NEG pump can take is 150∘C). At the same time,
we open the getter pump with conditioning mode. When the temperature has reached
150∘C and the vacuum is still below 10−6 Torr, we open the big ion pump. After several
days, when the vacuum of big ion pump is below 10−8 Torr, we close the big ion pump
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and start to decrease the temperature to 100∘C within 18 hours. Then we do the degassing
of the ion pump inside the NEG pump and change the getter pump to activation mode for
several hours. After that, we close the bakeable valve of trap system and close mechan-
ical pump and turbo-molecular pump. Finally, we decrease the temperature to the room
temperature to finish the whole pumping process. After that, we can automatically reach
a UHV system quickly.

4.3 Photonic crystal fiber cable

We bought the photonic crystal fiber from NKT Photonic.lnc, which is just a bare
fiber and cannot be directly used in experiment. Surely, we can buy the commercial
fiber cable with the same type. But it will get damaged soon when coupling strong pulse
laser due to the lack of the hydrogen loading [54], which the company cannot provide. We
bought two types of bare fiber: one is LMA-10-UV, which is just a single mode fiber and
not polarization-maintained specially. The other one is LMA-PM-10-UV, and PM means
polarization-maintained. These two types of fiber both have the 10𝜇𝑚 core diameter and
the hole array around the core. The procedure of making the special fiber cable contains
three steps: hydrogen loading, connectorization and curing.

4.3.1 Hydrogen loading

The bare fiber should be put into the hydrogen(99.95%) at room temperature with
high pressure about 10MPa for around two weeks. We first contract the Institute of Semi-
conductors in Beijing, who has the instrument to finish this procedure. Then, we find the
Department of Electronics in Tsinghua University also have the capability to do it, which
is more convenient to us. After the hydrogen loading, the fiber should be kept in very
low temperature to prevent the diffusion of hydrogen until we finish the whole procedure.
Here, we use dry ice to store the hydrogen-loaded fiber. Actually, the order of hydrogen
loading and connectorization can be exchanged, and connectorization first may be better
for storing the fiber in principle. We did not do it in that way because the size of the
hydrogen loading instrument cannot hold the connectorized fiber.

4.3.2 Connectorization

We cooperate with the Lambda company to do the connectorization, which needs
machines like fiber splicer, fiber grinder and heating plate. The procedure should be done
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as quickly as possible once the fiber is taken out from the dry ice.
The first step is removing the cladding part of the fiber. As we know, the bare fiber

has three parts: core, coating and cladding part, and the inner diameter of the connector is
matched with the coating diameter. It should be noticed that the coating diameter of the
two types of fiber is a little different, which is around 230𝜇𝑚 for the LMA-10-UV and
about 280𝜇𝑚 for the LMA-PM-10-UV. We use two different skinning knifes to deal with
them.

The second step is to collapse the fiber tip. This procedure will melt the holes around
the core, which makes it easy to do the next curing process and can help to prevent the
diffusion of hydrogen. We use the fiber fusion splicer to generate a pulse current to heat the
tip, which may need to repeat several times to reach the collapsing length(about 400𝜇m).
And the parameter of fiber splicer including the current and time should be tested first and
kept optimizing all the time.

The third step is connectorization. The inner diameter of the connector with 250𝜇m
and 300𝜇m is chosen for the two different types of fiber. We put the coating part of the
fiber into the connector and use high-temperature UV glue to fix it. The UV glue will
solidify after we put the connector to the heating plate with 200∘C for around 10 minutes.
The high temperature is not good for maintaining the hydrogen, but we did not find a
better solution for now.

The last step is to grind the fiber cable surface. We use a rough grinding plate first
and change it more and more finely, which takes around 20 minutes.

4.3.3 Curing

After we finish the connectorization, we should start the curing procedure when the
hydrogen is not much diffused out. The curing means that the fiber material and the
hydrogen can interact when applying strong UV laser, which will change the property of
the fiber and make it have capability to take high power laser [55-56].
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Figure 4.8 The coupling efficiency vs time during curing.

We couple the Paladin pulse laser with around 100mW average power into the fiber
for 78 hours, which is long enough to finish the curing procedure. At the beginning, we
want to finish the curing as soon as possible and do not pay much attention to improve the
coupling efficiency(around 47%). We record the output power and the coupling efficiency
change with time, as shown in fig. 4.8. After that, We carefully adjust the input beam
diameter and the focal length of the collimator to do the mode matching and can reach
the maximum coupling efficiency with 64%. We test the stability of the output power and
the capability of the fiber for high input power 200mW, as shown in fig. 4.9. The result
shows there is no obvious decay of coupling efficiency for 92 hours and the fiber has been
used in our system very well.
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Figure 4.9 High power test result.

There are still some unsolved problems. We find sometimes after the fiber is used
for around two months, the coupling efficiency may slowly decay. We can observe the
obvious scattering around the connector on the beam input side. We suspect the damage
may be caused by the dust in the air, and tried to purge the nitrogen to the collimator.
Unfortunately, it does not help much. We are still trying to solve this problem. In addition,
we do the connectorization in the factory now. After we finish the hydrogen loading,
we send the fiber to the factory in JiangSu with dry ice. Then they send it to us after
connectorization. The lifetime of the fiber is even worse than before. We think it is
caused by the hydrogen diffusion during the delivery.

4.4 Individual addressing system

For quantum manipulation, we use two photon process through two Raman beams
shining the ions simultaneously. We design our individual addressing system by one hor-
izontal global beam through the small viewport and one vertical individual beam through
the big viewport in the bottom. The two beams has an angle with 90 degree, and can
mainly excite one motional mode(X mode), which makes us ignore the other transverse
mode(Y mode) for sideband cooling(See fig. 2.8). Originally, we want to design the in-
dividual beam through the horizontal viewport, too. It does not work due to too long
distance between the small viewport and the ion.
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The two Raman beams are splitted by a PBS from the laser source. The global beam
is controlled by an AOM with frequency shift and switch on or off. In order to make sure
the global beam can cover the whole ion chain and make the most of the laser power,
we use two cylindrical mirrors to make the beam shape become an ellipse instead of a
square. The two axis lengths of the ellipse beam on the ion plane are 10𝜇m and 50𝜇m.
Considering that our typical separation between two ions is 5𝜇𝑚, the global beam can
cover almost 10 ions.

The other beam from the PBS goes into one photonic crystal fiber to stabilize the
beam position and optimize the beam shape. We have two approaches for the setup of
individual beams. One is using two EOD to control the two individual beams position,
from which we can realize the single-qubit operations with arbitrary one ion and two-qubit
entangling gate on arbitrary two ions within the ion chain. The other appoach is multi-
channel AOM approach. We bought a diffractive optical element (DOE) from HOLO/OR
as a beam splitter to split one beam to five beams with equal intensity to match the multi-
channel AOM.

4.4.1 EOD approach

The EOD is an optical component which can control the output beam’s angle through
the driven voltage. We first use a simple optical alignment to test the relation between the
angle and the driven voltage, as shown in fig. 4.10.
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Figure 4.10 The optical path for testing the EOD quality.
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The laser beam comes from the photonic crystal fiber. We use one UV100 and UV50
lenses(Thorlabs) to make the beam collimated with beam width around 1100𝜇m. After
the beam goes through the EOD, we use two lenses(UV100 and UV47) to focus the beam
to 3.5𝜇m. We want to use a beam profiler to directly measure the beam waist and quality.
And the manual of beam profiler also claims that it can reach such high precision. How-
ever, according to our test, the measurement result of beam profiler cannot be trusted for
the beam point smaller than 15𝜇m. And due to the rotation of the photosensitive element
inside the device, the measured beam shape always has a ”tail” for small beam point, as
shown in fig. 4.11. So I add an objective lens to expand the beam waist by around 10.5
times. By measuring the final beam waist(38𝜇m), we can estimate the beam waist on the
focal point as 3.7𝜇m, which is quite close to our calculation.

Figure 4.11 The fake beam shape ”tail” with beam profiler device.

We measure the beam shift by changing the driven voltage step by step from -480V
to 480V, as shown in fig. 4.12, which is an almost perfect linear relation. The offset range
220𝜇m on the vertical axis is the imaging plane on the beam profiler. Considering the
10.5 times gain from the objective lens, we can get that the real offset range on the ion
plane is around 21𝜇m, which can cover 5 ions in principle.
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Figure 4.12 The offset on the beam profiler vs the driven voltage on the EOD.

Next, we test the responding speed of EOD by switching on or off the driven voltage.
The setup is shown in fig. 4.13. We add a HWP and a PBS to reduce the power from the
Paladin laser(3.75W). After the beam goes through EOD, we use a fiber to optimize the
beam shape and reduce the beam fluctuation. Finally, we use a PD to measure the signal.
By setting a TTL driven voltage and synchronizing it with the PD output, we can observe
the signal rising and falling edges on the oscilloscope, as shown in fig. 4.14. The pink
line is the TTL driven voltage signal and the green line is the PD signal. We can see the
EOD works well when the TTL frequency is lower than 50KHz, and the rising edge time
is around 3𝜇s. In our experiment, the typical gate time for single-qubit and two-qubit
operation is around 3𝜇s and 30𝜇s, so the responding time of EOD is too long to finish
our single-qubit operation and just may be used with two-qubit gate. We noticed there is
another technique through shifting the beam position to do individual addressing called
MEMS mirror, which has a faster responding speed around several nanosecond. Due to
the limitation of technique and precision of the company we try to cooperate with, we
haven’t tried this solution. Then, we just move to the multi-channel AOM approach.
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Figure 4.13 The optical path for testing the EOD responding speed.
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Figure 4.14 The EOD responding speed testing figure with oscilloscope.

4.4.2 Multi-channel AOM approach

The schematic individual beam setup is shown in fig. 4.15. We use the DOE as a
beam splitter to separate one beam to five beams. The separation angle is well matched
with the five-channel AOM after a collimation lens. The aperture of each channel inside
the AOM is around 250𝜇m and the separation between neighboring channels is 900𝜇m.
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Each channel can be independently controlled by RF signal with frequency shift and
switch on or off. Considering that our typical ions separation is 5𝜇m, the beam would
be focused to around 1.4𝜇m. Actually, we cannot directly focus the 250𝜇m to 5𝜇m, be-
cuase the calculated focal length of the objective lens is too small and the distance between
the ion and the closest viewport is not short enough. So we use two-stage telescope sys-
tem with four lens to expand the beam diameter from 250um to around 12mm. Then an
objective lens with working distance around 35mm can easily focus the beam to 1.4𝜇m.

Figure 4.15 The schematic individual beam setup.

The two important parts in the system are the DOE and five-channel AOM. The
DOE can determine the separation angle and power distribution through the fixed grating
structure. The five-channel AOM can control each beam’s intensity, frequency, and phase
through RF field, which can be flexibly adjusted. The choice of the DOE type seems more
important because it is unadjustable. After careful calculation, we decide to use the type
MS-499-U-Y-X, whose separation angle is 0.33deg.

42



Chapter 4 Blade ion trap system setup

paladin
HWPPBS

Block

Lens

A50

Lens

A250Lens 

A100
Objective Lens

(13 times gain)

DOE

Beam profiler

Figure 4.16 Setup for testing DOE.

The five beams should be uniformly spacing with equal intensity. We use the setup
as shown in fig. 4.16, to test the output beam intensity and quality. The beam width
of Paladin laser is around 0.8mm and we use lens A50 and lens A250 to expand it five
times to around 4mm because the DOE works better with larger beam width. After the
beam goes through DOE, we use a lens A100 to focus the beam to about 11𝜇m. As we
discussed before, the beam profiler doesn’t work well with such small beam point. We
add another objective lens to expand it 13 times larger in front of beam profiler. The
measured image picture is shown in fig. 4.17. The five beams are equally spaced with a
little different intensity. Actually, we cannot trust intensity distribution of beam profiler
due to its shaking and fluctuation problem. So, we change the setup by adding a pin-hole
on the focal point and replace the beam profiler with PD, as shown in fig. 4.18.
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Figure 4.17 The measured image picture of five beams.
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Figure 4.18 The setup to measure the intensity distribution of DOE output.

We use the pin-hole as a spatial filter to measure the beams’ intensities one by one.
The pin-hole’s position is carefully adjusted and is right in the beam waist. We use the
PD as a detector, which is very sensitive to the laser power. By shifting the pin-hole’s
position along the beam chain and recording the voltage of PD, we can get the precise
uniformity. Considering the beam waist is around 11𝜇m, we use two types of pin-holes
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with diameter 10𝜇m and 15𝜇m to double check it. In order to make sure the output of
pin-hole just contains one beam, we can optimize the pin-hole’s position to maximize the
output power with powermeter and also check the image picture on the beam profiler. The
results are shown in fig. 4.19.
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Figure 4.19 The intensity distribution through pin-hole measurement.
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Figure 4.20 The energy distribution histogram.

The two results are consistent with each other. We average them and get the estimated
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energy distribution histogram, as shown in fig. 4.20. The measured uniformity with the
five beams is less than 10%, which can be compensated by the next five-channel AOM
through tuning the intensity of RF field. When building the whole individual beam setup,
we also optimize the combination of the lens group with different types and focal length
to minimize the imaging aberration. Finally, we use the EMCCD to check the beam image
quality precisely, as shown in fig. 4.21. There is still coma aberration around the beam
spots. By the way, the individual beams and the fluorescence from ions can be collected
through the same EMCCD, which make it easier to align the individual beams to the ions.

Figure 4.21 The individual beams imaging on the EMCCD.
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Chapter 5 Global quantum entanglement

5.1 Overview of global gate

Nowadays, people are exploring various implementations of quantum algorithm,
such as the factorization of a large number [57], variational quantum eigensolver [5,58], Shor
algorithm [57,59] and the simulation of quantum many-body systems [1,60-61]. It is con-
firmed that these universal quantum algorithms can be decomposed into a combination of
single-qubit gates and two-qubit entanglement-gates [62], thereby realizing the possibility
of building universal quantum computers and simulators. It is worth mentioning that this
intuitive and general decomposition may not be efficient [63-65]. There is research having
shown that global quantum entangling gates can simplify this decomposition and accel-
erate quantum circuits implementation [66-69]. The global quantum gate is an extension of
the two-qubit MS gate and still using phonons as a ”bus” [70-72].

In ion-trap system, all the ions are fully connected via Coulomb interactions [73-75].
According to the direction of motion, phonon modes can be divided into the axial and
two transverse modes, which all can be used to generate the qubit entanglement. By
adjusting the angle between the laser vector direction and the phonon modes, a certain
motion direction can be mainly coupled to ignore the other modes. Even so, as the number
of ions increases, the number of motional modes, such as the X transverse motion, still
contains the same number of phonon modes to the number of ions. When we apply the
laser to manipulate ions, these phonon modes in X direction can all be coupled with qubits
in the phase space.

There are two schemes to realize the global entangling gate. One is to mainly use one
single phonon mode to minimize the involving of the other modes. Incomplete decoupling
of the rest modes will lead to a reduction of gate fidelity. The phonon mode in the axial
direction is relatively easier to realize the decoupling due to the relatively larger separation
among phonon modes than that of transverse modes. The global entangling gates have
been realized by only coupling to the axial center-of-mass (COM) mode [24,76-77], which
is difficult to scale up because the mode separation becomes smaller as the number of
ions increases [24,78-79]. The other way is using all the laser-coupled phonon modes [78-82],
which has been implemented in experiment with two qubits [82-84]. Here, we studied the N-
qubit global gate with this scalable way. Through precisely controlling all the trajectories
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of the modes in phase space, the qubits can be decoupled with all the phonon modes and
obtain the desired geometric phase after the gate time.

The general implementation of the global entangling gate can be represented in YY
interaction as

𝑈𝐺(𝜒) = 𝑒𝑥𝑝[−𝑖𝜒
𝑁

∑
𝑗<𝑗′

𝜎𝑗,𝑦𝜎𝑗,𝑦], (5-1)

where 𝜒 is the coupling strength of all the two-body terms. In general, by controlling
the geometric phase to achieve the global gate as 𝑈𝐺[𝜋/4]], we can prepare the N-qubit
GHZ state [85]. Next, I will discuss the experimental implementation with single-mode
and multi-mode approach.

5.2 Single-mode approach

5.2.1 Scheme

The single-mode approach is similar with the two-qubit MS gate method, which can
be realized through the global detuned blue and red sideband transition on all the qubits.
We can write down the Hamiltonian as

𝐻𝑠𝑚 =
𝑁

∑
𝑗=1

𝑖ℏ𝛺
2 𝜂(𝜎𝑗,+𝑎†𝑒−𝑖𝛥𝑡 − 𝜎𝑗,−𝑎𝑒𝑖𝛥𝑡) + 𝐻.𝑐.

=
𝑁

∑
𝑗=1

ℏ𝛺
2 𝜂𝜎𝑗,𝑦(𝑎†𝑒−𝑖𝛥𝑡 + 𝑎𝑒𝑖𝛥𝑡),

(5-2)

where 𝑗 is the ion index, and 𝛥 = 𝜔 − 𝜔𝑚 is the laser detuning from the ions’ motional
mode. In this case, we don’t need the individual addressing system to operate each qubit
independently. Here, we have the N spin terms ∑𝑁

𝑗=1 𝜎𝑗,𝑦 and just one motional terms
(𝑎†𝑒−𝑖𝛿𝑡 + 𝑎𝑒𝑖𝛿𝑡) by ignoring the effect of other modes. After time 𝑇 = 1/𝛥, the motional
mode and the qubit state will be decoupled and generate the N-qubit entanglement.

In experiment, we build a fully-controlled multi-qubit system by confining a 171Yb+

ion chain. The global beam and individual beams are shown in fig. 5.1. These two beams
have a 90∘ angle and can mainly drive the modes in x-direction.
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Figure 5.1 The experiment setup.
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Figure 5.2 The effective Raman laser detuning for single-mode approach.

For the transverse mode in the x-direction, the maximum frequency belongs to the
COM mode, which has the uniform Lamb-Dick parameter for all the ions and is used as
the motional ”bus”. In order to minimize the effect of the rest mode, we set the laser
detuning a little bit larger than the frequency of COM mode, and the separation between
laser detuning and the neighboring mode is n times larger than that with COM mode,
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as shown in fig. 5.2 for four-ion case as example. For the single-mode approach, the
neighboring mode next to COM mode affects the gate fidelity most. With the setting
above, when trajectory of COM mode in the phase space is closed after one round, the
trajectory of the neighboring mode will also be closed after 𝑛 rounds, which can realize
the decoupling with the spin qubits.

5.2.2 Three-qubit GHZ state test

We first test our scheme with three ions. The transverse mode frequencies in x-
direction is {𝜈1, 𝜈2, 𝜈3} = 2𝜋 × {2.184, 2.127, 2.004}MHz. We set the detuning a little bit
larger than the COM mode as 2𝜋 × 2.198MHz. The separation between the detuning and
the frequency of the second mode is around 5 times larger than that with COM mode. The
total gate time is around 70𝜇s.

The time evolution of three-qubit entangling gate and the parity oscillation are shown
in fig. 5.3. In order to create the GHZ state for three-qubit, another global pulse with 𝜋/2
rotation in 𝑥 axis should be applied. We measured the population fidelity(87.79%) and
parity fidelity(72.33%), and get the three-qubit GHZ entanglement fidelity with 80.06%.

In addition, we realize the two-qubit entangling gate within the three-ion chain by
shining lasers just on the related ions. The result of YY gate between ion 1 and ion 2 is
shown in fig. 5.4. The population fidelity is 96.99% and parity fidelity is 91.88%. And
two-qubit GHZ entanglement fidelity is 94.44%. We also measure the other subset in the
chain. The parity oscillation is shown in fig. 5.5. The entanglement fidelity is 94.89% for
ion 1 and ion 3, and 92.13% for ion 2 and ion 3.
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Figure 5.3 The time evolution of three-qubit entangling gate and the parity oscillation.
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a

b

Figure 5.4 The time evolution of two-qubit (ion 1 and ion 2) entangling gate and the parity
oscillation within three-ion chain.
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a b

Figure 5.5 The parity oscillation of two qubit entanglement (ion 1 and ion 3)(ion 2 and ion 3).

5.3 Multi-mode approach

5.3.1 Scheme

The Hamiltonian for the multi-mode approach can be written as

𝐻𝑚𝑚 =
𝑁

∑
𝑗=1

𝑁

∑
𝑘=1

𝑖
ℏ𝛺𝑗(𝑡)

2 𝜂𝑗,𝑘(𝜎𝑗,+𝑎†
𝑘𝑒−𝑖𝛿𝑡𝑒𝑖𝜙𝑗 (𝑡) − 𝜎𝑗,−𝑎𝑘𝑒𝑖𝛿𝑡𝑒−𝑖𝜙𝑗 (𝑡)) + 𝐻.𝑐.

=
𝑁

∑
𝑗=1

𝑁

∑
𝑘=1

ℏ𝛺𝑗(𝑡)
2 𝜂𝑗,𝑘𝜎𝑗,𝑦(𝑎†

𝑘𝑒−𝑖𝛿𝑡𝑒𝑖𝜙𝑗 (𝑡) + 𝑎𝑘𝑒𝑖𝛿𝑡𝑒−𝑖𝜙𝑗 (𝑡)),

(5-3)

where 𝑗 is the ion index, 𝑘 is the mode index and 𝛿 = 𝜔 − 𝜔0 is the laser detuning from
the ion energy gap. The time evolution term can be written as

𝑈(𝑡) = 𝑒𝑥𝑝[∑
𝑗,𝑘

𝛽𝑗,𝑘(𝑡)𝜎𝑗,𝑘 − 𝑖 ∑
𝑗<𝑗′

𝜃𝑗,𝑗′(𝑡)𝜎𝑗,𝑦𝜎𝑗′,𝑦], (5-4)

where 𝛽𝑗,𝑘(𝑡) = 𝛼𝑗,𝑘(𝑡)𝑎†
𝑘 − 𝛼∗

𝑗.𝑘(𝑡)𝑎𝑘, is the displacement term, and 𝜃𝑗,𝑗′(𝑡) is the coupling
strength as

𝜃𝑗,𝑗′(𝑡) = − ∑
𝑘

𝑡

∫
0

𝑑𝑡1

𝑡1

∫
0

𝑑𝑡2
𝜂𝑗,𝑘𝜂𝑗′,𝑘𝛺𝑗(𝑡2)𝛺𝑗′(𝑡1)

2

sin{(𝜔𝑘 − 𝛿)(𝑡2 − 𝑡1) − [𝜙𝑗(𝑡2) − 𝜙𝑗′(𝑡1)]}.

(5-5)

Our goal is to make all the trajectories of motional modes closed and get the coupling
strength we want after the gate time T, which can be written as

𝛼𝑗,𝑘(𝑇 ) = 0, (5-6)
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𝜃𝑗,𝑘(𝑇 ) = 𝜒. (5-7)

We can control the amplitude and phase of the Raman laser to meet the requirements. In
experiment, the total gate time is divided into several segments(K) with same duration,
which gives us 𝑁 × 𝐾 parameters to control. We decide to use phase modulation to con-
struct an optimization problem. By minimizing the objective function ∑𝑗,𝑘 |𝛼𝑗,𝑘(𝑇 )|2 with
the coupling strength constraint [82,86-87], we can get the feasible pulse scheme to realize
the perfect global gate through classical calculation. The detailed calculation process and
the comparison between intensity modulation and phase modulation are discussed in the
previous thesis of my colleague(Yao Lu [88])

5.3.2 Three- and four-qubit GHZ state results

For three-qubit case, the transverse mode frequencies in x-direction is {𝜈1, 𝜈2, 𝜈3} =
2𝜋 × {2.184, 2.127, 2.004}MHz. We set the detuning 𝛿 between the last two modes to be
2𝜋× 2.094 MHz. By fixing the gate time to 80𝜇s and dividing the pulse to 6 segments,
we calculate the experimental implementation of a global three-qubit entangling gate, as
shown in fig. 5.6.

In experiment, we apply the pulse scheme and prepare the three-qubit GHZ state and
measure the population distribution and parity oscillation [89], as shown in fig. 5.7. The
state fidelity is (95.2 ± 1.5)%. And by controlling the individual beams on or off, we
prepare the two-qubit GHZ state within the three-ion chain with fidelities (96.7 ± 1.8)%
for {ion 2, ion 3}, (97.1 ± 1.9)% for {ion 1, ion 3}, and (96.5 ± 1.5)% for {ion 2, ion 3}.
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Figure 5.6 Experimental implementation of a global three-qubit entangling gate.
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Figure 5.7 The GHZ state of the global entangling gates in three-ion chain.

For four-qubit case, the transverse mode frequencies in x-direction is
{𝜈1, 𝜈2, 𝜈3, 𝜈4} = 2𝜋 × {2.186, 2.147, 2.091, 2.020}MHz. We set the detuning 𝛿
between the middle two modes to be 2𝜋× 2.104 MHz. By fixing the gate time to 120𝜇s
and dividing the pulse to 12 segments, we calculate the experimental implementation of
a global three-qubit entangling gate, as shown in fig. 5.8 and fig. 5.9.

In experiment, we apply the pulse scheme and prepare the four-qubit GHZ state, as
shown in fig. 5.10. The state fidelity is (93.4 ± 2.0)%. And by controlling the individual
beams on or off, we prepare the three and two-qubit GHZ state within the four-ion chain
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with fidelities (94.2 ± 1.8)% for {ion 2, ion 3, ion 4}, and (95.1 ± 1.8)% for {ion 1, ion 3}.

Figure 5.8 Experimental implementation of a global three-qubit entangling gate.
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Figure 5.9 The trajectory of motional modes.

5.4 Discussion

By numerically calculating the prepared GHZ fidelity, we compared the single-mode
and multi-mode approaches, as shown in fig. 5.11. As the number of qubits increases, for
the multi-mode approach, the GHZ state fidelity can be always 1 in principle and the
gate duration increases near linearly. However, for the single-mode approach, due to the
residual coupling between the qubit state and the motional mode, the GHZ state fidelity
cannot be 100% and keeps dropping a lot with the increasing number of qubits. One way
to achieve a higher fidelity is increasing the gate duration, but the improvement may not
be very significant.
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Figure 5.10 The GHZ state of the global entanglement-gates in four-ion chain.
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Figure 5.11 Comparison between gate durations of single- and multi-mode approaches.
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Chapter 6 Quantum error mitigation

6.1 Paradigm of error-mitigated quantum computation

The paradigm of error-mitigated quantum computation is shown in Fig. 6.1. The
noisy quantum device is treated as a multi-qubit black box in Fig. 6.1a, capable of prepar-
ing each qubit into an initial state 𝜌0, performing a set of single-qubit and two-qubit gates
and two-outcome measurement on each qubit, which is described by a positive operator-
valued measure (POVM) ℳ ≡ {𝐸0, 𝐼 − 𝐸0} with 𝐼 being the 2 × 2 identity operator.
These quantum operations are generally not accurate because of errors from operational
imperfections and environmental fluctuations. As proposed in Ref. [18], we perform the
gate set tomography [90-92] and characterize state preparation and measurement (SPAM)
and gates of noisy quantum devices by Gram matrices and Pauli transfer matrices (PTMs),
respectively [92] as shown in Fig. 6.1b. When we repeatedly execute a quantum circuit with
such a noisy device aiming at obtaining the expectation values of observables of interest,
the estimation will be deviated from the ideal case due to the imperfection of the quantum
device, as shown in Fig. 6.1c. The correction of each noisy quantum operation can be
decomposed to the combination of experimental basis operations (which we give later)
with quasi-probabilities as shown in Fig. 6.1d. Since some of the quasi-probabilities can
be negative, we cannot physical implement the decomposition. However, the expectation
of the decomposition can be estimated by sampling circuits with random basis operations
according to the quasi-probabilities [17-18]. After running the random circuits with the cor-
rections, the probability distribution of the output expectation value is shifted towards the
ideal value at a cost of enlarged variance due to the presence of negative values in the
quasi-probabilities [18], as shown in Fig. 6.1c. The variance can be reduced by increasing
the repetition number, which is the number of random-circuit instances.
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Figure 6.1 Paradigm of error-mitigated quantum computation. a. Quantum black box based
on a trapped 171Yb+-ion system. Each button on the surface corresponds to an operation exerted
on the quantum system encapsulated, where the buttons with 𝜌 and 𝑀 are for initial-state prepa-
ration and computational-basis measurement, whose results are indicated by the lights. The other
buttons are for single-qubit and two-qubit quantum operations on certain qubits. The operations
are implemented by global (blue) and individual (purple) laser beams illuminating the ion qubits.
b. Characterization of the quantum black box. The error-affected state preparation and mea-
surement is characterized by the Gram matrix 𝑔, and the effect of each operation 𝐺, like 𝑌 𝜋

2
and

𝑀𝑆𝑌 𝑌 , is described by a Pauli transfer matrix 𝑅𝐺 in the superoperator formalism, which is ob-
tained by gate set tomography. c. Construction of unbiased estimator of an expectation value
specified by a quantum circuit, with building blocks including initial state preparation, different
single-qubit and two-qubit gates, and final measurement. With error-mitigation, the distribution
of the output expectation value is shifted towards the ideal value at a cost of enlarged variance.
d. Quasi-probability decomposition for the ideal initial state and exemplary single-qubit and two-
qubit gates. Since the errors in state preparation and those in measurement are indistinguishable,
we ascribe both of the errors to state preparation and decompose the ideal initial state with a set of
experimental basis states, prepared by state initialization followed by a random fiducial gate. The
PTM of an ideal quantum gate can be expanded as a quasi-probability distribution over random
gate sequences consisting of the experimental gate and one of the experimental basis operations,
Pauli operations in the experiment. The error-mitigated estimation of the expectation value is then
obtained by the Monte-Carlo method(which we show later).

Here, we provide an illustrative example of applying the probabilistic error cancel-
lation technique to a simple quantum circuit, Suppose an experimenter plans to apply an
ideal gate 𝐺𝑖𝑑 ≡ [𝑒−𝑖𝑌 𝜋

4 ] on an ideal initial state 𝜌𝑖𝑑 ≡ |0⟩ ⟨0|, and get the ideal ex-
pectation value of observable ⟨𝑋⟩𝑖𝑑 ≡ 𝑇 𝑟[𝑋𝐺𝑖𝑑(𝜌𝑖𝑑)] = 1. However, as a example
of a noisy quantum device, the actual initial state could be 𝜌 = 90% |0⟩ ⟨0| + 10%𝐼

2 ,
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and the actual gate could be 𝐺 = 80%𝐺𝑖𝑑 + 20%𝐷, where 𝐷(𝜌) = 𝐼
2 . Then, the ac-

tual result is ⟨𝑋⟩ = 𝑇 𝑟[𝑋𝐺(𝜌)] = 72%. With the error-cancellation procedure, the
ideal initial state is decomposed as 𝜌𝑖𝑑 = (𝜌 − 10%𝐼

2 )/90%, and the ideal gate is decom-
posed as 𝐺𝑖𝑑 = (𝐺 − 20%𝐷)/80%. Then, the ideal expectation value can be obtained by
⟨𝑋⟩𝑖𝑑 = 𝑇 𝑟[𝑋𝐺(𝜌)] × (1/72%) − 𝑇 𝑟[𝑋𝐺(𝐼

2 )] × (10%/72%) − 𝑇 𝑟[𝑋𝐷(𝜌)] × (20%/72%) −
𝑇 𝑟[𝑋𝐷(𝐼

2 )]×(2%/72%), where the four terms can be obtained by running the noisy quan-
tum device. By computing each term on the noisy quantum device and substituting results
into the formula, we can obtain the ideal expectation value.

For a computation with multiple gates, the state preparation, measurement and each
gate can be treated in a similar way. Then, the formula of the ideal expectation value,
i.e. a weighted summation of noisy computations has exponential terms with respect to
the gate number. Therefore, instead of evaluating each term, we compute the summation
using the Monte-Carlo method.

In this example, we consider the depolarizing error model. The decomposition can
be applied to general error models without correlations. The decomposition formula is
obtained by inverting the noise. For the gate 𝐺, the noise is 𝑁 = 80%[𝐼] + 20%𝐷, and
𝐺 = 𝑁𝐺𝑖𝑑 . The inverse of the noise is 𝑁−1 = ([𝐼] − 20%𝐷)/80%. Then, the ideal gate
𝐺𝑖𝑑 = 𝑁−1𝐺 = (𝐺 − 20%𝐷)/80%.

6.2 Experimental realization

In our experimental realization, the quantum hardware encapsulated in the black box
is a trapped-ion system, where 171𝑌 𝑏+ ions are trapped into a linear crystal and indi-
vidually manipulated by global and individual laser beams, as shown in Fig. 6.1a. To
encode quantum information, a pair of clock states in the ground-state manifold 2𝑆1/2, i.e.

|𝐹 = 0, 𝑚𝐹 = 0⟩ and |𝐹 = 1, 𝑚𝐹 = 0⟩, are denoted as the computational basis {|0⟩ , |1⟩}
of a qubit. At the beginning of executing a quantum circuit, each ion qubit is initialized
to |0⟩ by optical pumping. We implement single-qubit operations by Raman laser beams
with beatnote frequency about the hyperfine splitting 𝜔0 = 2𝜋 × 12.642821 𝐺𝐻𝑧. And
the two-qubit operation, i.e. the Mølmer-Sørensen 𝑌 𝑌 -gate (𝑀𝑆𝑌 𝑌 ) is realized by driv-
ing transverse motional modes [71,73], with frequencies in the x-direction {𝜈1, 𝜈2}={1.954,
2.048} MHz. We apply amplitude-shaped [93] bichromatic Raman beams with beatnote
frequencies 𝜔0 ± 𝜇, where 𝜇 is set to be the middle frequency of the two motional modes,
and achieve the 𝑀𝑆𝑌 𝑌 gate for 25 𝜇s. We also realize the Mølmer-Sørensen 𝑍𝑍-gate
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(𝑀𝑆𝑍𝑍) by adding single-qubit rotations before and after the 𝑀𝑆𝑌 𝑌 gate [94](see Sup-
plementary Fig. 4b). At the end of the execution, internal states of qubits are measured
by state-dependent fluorescence detection [95]. Note that to collect fluorescence photons,
we use a photomultiplier tube (PMT) in the single-qubit case and an electron-multiplying
charge-coupled device (EMCCD) in the two-qubit case.

6.3 Characterization of noisy quantum gates

6.3.1 PTM representation

We introduce the PTM representation for the mathematical description of an 𝑛-qubit
noisy quantum device, where density operators 𝜌 and physical observable 𝐸 are repre-
sented by 2𝑛-entry column vectors |𝜌⟩⟩ and row vectors ⟨⟨𝐸|, and quantum gates 𝐺 are
represented by 22𝑛 × 22𝑛 PTMs 𝑅𝐺. Here, the expectation value of the observable ̂𝐸
after operating 𝐺𝑠 on the initial state ̂𝜌 is represented by ⟨⟨𝐸|𝑅𝐺|𝜌⟩⟩. PTMs can be de-
termined by gate set tomography, which requires informationally complete data obtained
from experiments with initial states from a basis set 𝒮𝑛 ≡ {|0⟩ , |1⟩ , |1⟩𝑋 , |1⟩𝑌 }

⊗𝑛 and
measurement of the observables from the 𝑛-qubit Pauli basis 𝒫𝑛 = {𝐼, 𝑋, 𝑌 , 𝑍}⊗𝑛, where
|1⟩𝑋 and |1⟩𝑌 are the eigenstates of Pauli operators 𝑋 and 𝑌 . Compared to quantum pro-
cess tomography, gate set tomography is featured by appropriately taking consideration
of SPAM errors, which is of great importance in quantum computations with high accu-
racy. In gate set tomography, the states in 𝒮𝑛 and the measurement of observables in 𝒫𝑛

are realized by using a set of fiducial gates ℱ𝑛 ≡ {𝐼, 𝑋𝜋 , 𝑌− 𝜋
2
, 𝑋 𝜋

2 }
⊗𝑛

consisting of the
identity operation and the 𝑋 or 𝑌 axis rotations on each qubit, which are to be character-
ized together with the rest of the quantum operations. The single-qubit SPAM errors are
reflected in the Gram matrix [92], as shown in Fig. 6.2, which is obtained by preparing the
qubit in one of the states 𝒮1, |𝜌𝑖⟩⟩ = 𝑅𝐹𝑖|𝜌0⟩⟩, and measuring the expectation values of
the operators in the single-qubit Pauli basis 𝒫1, ⟨⟨𝐸𝑖| = ⟨⟨𝐸0|𝑅𝐹𝑖 , where 𝜌0 and 𝐸0 are
ideally associated with |0⟩ ⟨0| and 𝑍, respectively.
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Figure 6.2 Gram matrix. The single-qubit experiments are implemented with a single trapped
ion. The Gram matrix characterize the SPAM error, which is obtained by preparing states in 𝒮1
and measuring expectation values of operators in 𝒫1. The left column shows the experimentally-
obtained matrices and the right column shows the difference between the experimental and the
ideal matrices.

6.3.2 Maximum-likelihood gate set tomography

For single-qubit randomized benchmarking [25], we design pulse sequences for im-
plementing major-axis 𝜋 pulses {𝑋±𝜋 , 𝑌±𝜋 , 𝑍±𝜋} and 𝜋

2 pulses {𝑋± 𝜋
2
, 𝑌± 𝜋

2 }. Thus the

gate set for the single-qubit case is 𝒢1 = {𝐼, 𝑋±𝜋 , 𝑌±𝜋 , 𝑍±𝜋 , 𝑋± 𝜋
2
, 𝑌± 𝜋

2 }, where 𝐼 is
the identity operation. The gate set for implementing two-qubit random circuits are
𝒢2 = 𝒢⊗2

1 ∪ {𝑀𝑆𝑌 𝑌 , 𝑀𝑆𝑍𝑍}. We experimentally obtain the PTMs of all the gates
in the gate set by maximizing a likelihood function with the assumption that Pauli errors
are dominant in our devices.

To obtain the PTMs of all the gates in the gate set, we experimentally measure infor-
mationally complete data consisting of the average �̄�𝑖𝑗𝑘 and variance 𝛥𝑖𝑗𝑘 of the expecta-
tion value ⟨⟨𝐸𝑖|𝑅𝐺𝑗 |𝜌𝑘⟩⟩, which are obtained by repeating the corresponding experimen-
tal settings enough number of times. We assume Pauli errors are dominant in our device,
where each of the noisy quantum gate 𝐺𝑗 ∈ 𝒢𝑛 is modeled with the ideal gate 𝐺𝑖𝑑

𝑗 followed
by a Pauli error channel. We use maximum likelihood estimation for the reconstruction
of PTMs of all the gates in the gate set, parameterized as ansatz 𝑅𝐺𝑗 = 𝑁𝑗𝑅𝑖𝑑

𝐺𝑗
, where

𝑁𝑗 = ∑𝑙 𝑝𝑗,𝑙𝑅𝑃𝑙 , with variational parameters being gate-specific Pauli error rates 𝑝𝑗,𝑙.
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With the ansatz for each gate, we calculate the ansatz prediction for the expectation value
of each experimental setting, denoted as 𝑚𝑖𝑗𝑘. We then define the following likelihood
function [92],

ℒ = ∏
𝑖,𝑗,𝑘

exp [−(𝑚𝑖𝑗𝑘 − �̄�𝑖𝑗𝑘)2/𝛥2
𝑖𝑗𝑘] , (6-1)

which takes its maximum value when the experimental average values �̄�𝑖𝑗𝑘 and the ansatz
expectations 𝑚𝑖𝑗𝑘 coincide with each other. Thus, the gate-specific Pauli error rates can
be determined by maximizing the likelihood function, with which we construct the PTMs
of the imperfect gates that are implementable in the quantum device.

6.3.3 PTMs for single- and two-qubit gate set

We use gate set tomography to characterize the single-qubit operations. In the su-
peroperator formalism, each experimental single-qubit operation 𝑅𝐺𝑠 can be describe as
an ideal 4 by 4 PTM followed by a PTM of noise operation 𝑁𝑠. With Pauli error as-
sumption, each 𝑁𝑠 can be written as 𝑁𝑠 = 𝑝𝑠,0𝑅𝑖𝑑

𝐼 + 𝑝𝑠,1𝑅𝑖𝑑
𝑋 + 𝑝𝑠,2𝑅𝑖𝑑

𝑌 + 𝑝𝑠,3𝑅𝑖𝑑
𝑍 , where

𝑝𝑠,𝑗 are the Pauli error rates and ∑𝑗 𝑝𝑠,𝑗 = 1 for trace preserving condition. Since there
are 11 gate in 𝒢1, ℱ1 ⊂ 𝒢1 and the experimental initial state 𝜌0 can be characterized by
3 parameters, we need to obtain the values for 11 × 3 + 3 = 36 parameters. We run
3 × 11 × 4 different experimental settings specified by ⟨⟨𝐸0|𝑅𝐹𝑘𝑅𝐺𝑗 𝑅𝐹𝑖|𝜌0⟩⟩ with repeti-
tions of 10000 per setting to collect experimental data �̄�𝑖𝑗𝑘, where 𝑖 = 1, … , 4 for state
preparation, 𝑗 = 1, … , 11, and 𝑘 = 1, 2, 3 for different measurement settings. The ansatz
prediction 𝑚𝑖𝑗𝑘 = ⟨⟨𝐸0|𝑁𝐹𝑘𝑅𝑖𝑑

𝐹𝑘
𝑁𝐺𝑗 𝑅𝑖𝑑

𝐺𝑗
𝑁𝐹𝑖𝑅

𝑖𝑑
𝐹𝑖

|𝜌0⟩⟩ contain Pauli error rates as varia-
tional parameters, which we numerically optimize to maximize the likelihood function.
The reconstructed PTMs of 𝑋± 𝜋

2
, 𝑌± 𝜋

2
, 𝑋±𝜋 , 𝑌±𝜋 , 𝐼 and𝑍±𝜋 for the single-qubit case are

shown in Fig. 6.3.
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Figure 6.3 PTMs of single-qubit gates for the single-qubit case. The single-qubit experiments
are implemented with a single trapped ion. Here we show the PTMs of experimental gates 𝑋± 𝜋

2
and 𝑌± 𝜋

2
, the so-called computational gates in randomized benchmarking. And single-qubit ran-

domized benchmarking needs not only the computational gate set, but also the identity and 𝜋
pulses [25]. In order to implement error-mitigation for single-qubit randomized benchmarking,
these gates should be characterized. In each subfigure, the left column shows the experimentally-
obtained matrices and the right column shows the difference between the experimental and the
ideal matrices, i.e. 𝑅𝐺 − 𝑅𝑖𝑑

𝐺 with 𝐺 being one of the quantum operations being characterized.

For the gate set tomography of two qubits, we apply a two-step parameter estimation,
since the infidelities for the single-qubit gates are about an order lower than those of the
two-qubit gates. We first determine the Pauli error rates for all the single-qubit gates
in 𝒢⊗2

1 as described above, and then characterize the two-qubit gate 𝑀𝑆𝑌 𝑌 based on the
knowledge of the characterized single-qubit gates. The 𝑀𝑆𝑍𝑍 gate is derived from those
results.

The two-qubit gate set, i.e. 𝒢2, includes single-qubit operations in 𝒢⊗2
1 and two-qubit

operations {𝑀𝑆𝑌 𝑌 , 𝑀𝑆𝑍𝑍}. Since infidelities for the single-qubit gates are about an
order lower than those of the two-qubit gates, it is reasonable to divide the maximum
likelihood estimation into two steps.

First, we treat each qubit in the two-qubit system as a single-qubit system and char-
acterize the single-qubit gate set 𝒢1 by gate set tomography, obtaining single-qubit PTMs.
The two-qubit PTMs of the single-qubit operations in 𝒢⊗2

1 is then obtained by direct prod-
uct of the single-qubit PTMs on both qubits. Since the fiducial set ℱ2 ∈ 𝒢⊗2

1 , the PTMs
of the fiducial operations are determined at this step.
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Second, we characterize the native two-qubit 𝑀𝑆𝑌 𝑌 gate. Under the Pauli-error
assumption, the PTM of the experimental 𝑀𝑆𝑌 𝑌 gate is decomposed as 𝑅𝑀𝑆𝑌 𝑌 =
𝑁𝑀𝑆𝑌 𝑌 𝑅𝑖𝑑

𝑀𝑆𝑌 𝑌
, where 𝑁𝑀𝑆𝑌 𝑌 is the PTM of the Pauli-error channel containing 16 two-

qubit Pauli components. After considering the trace-preserving constraint, 𝑁𝑀𝑆𝑌 𝑌 has
15 parameters, which are determined by linear equations connecting the ansatz prediction
⟨⟨𝐸⊗2

0 |𝑅𝐹𝑘𝑁𝑀𝑆𝑌 𝑌 𝑅𝑖𝑑
𝑀𝑆𝑌 𝑌

𝑅𝐹𝑖|𝜌
(1)
0 ⊗𝜌(2)

0 ⟩⟩ and corresponding experimental results. In or-
der to minimize the projection error, we choose 15 linearly independent equations out of
16 × 9 different settings, with most of the measured probabilities close to 0 or 1. Fig. 6.4
shows the corresponding circuits for the experimental settings.
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Figure 6.4 Experimental circuits for the characterization of the 𝑀𝑆𝑌 𝑌 gate. The two-qubit
system is first prepared in the initial |00⟩ state by optical pumping. After implementing one of the
quantum circuit, a projective measurement of 𝑍⊗2 is carried out. The above sequence is repeated
3000 times for each circuit to estimate the probability of the dark |00⟩ state, which, together with
the corresponding ansatz prediction, determines one of the Pauli-error rate for the experimental
𝑀𝑆𝑌 𝑌 gate.
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X-π
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Figure 6.5 The 𝑀𝑆𝑍𝑍 gate is realized by adding single-qubit rotations before and after the
𝑀𝑆𝑌 𝑌 gate.

Since the 𝑀𝑆𝑍𝑍 is implemented by a 𝑀𝑆𝑌 𝑌 gate sandwiched by proper
single-qubit gates, the PTM of the experimental 𝑀𝑆𝑍𝑍 gate is obtained by mul-
tiplying the PTMs of the corresponding experimental operations, i.e. 𝑅𝑀𝑆𝑍𝑍 =
𝑅𝑋− 𝜋

2
⊗𝑋− 𝜋

2
𝑅𝑀𝑆𝑌 𝑌 𝑅𝑋 𝜋

2
⊗𝑋 𝜋

2
, as shown in Fig. 6.5. The reconstructed PTMs of 𝑀𝑆𝑌 𝑌

and 𝑀𝑆𝑍𝑍 gates for the two-qubit case are shown in Fig. 6.6.
Using these reconstructed PTMs, we numerically simulate the single-qubit random-

ized benchmarking and two-qubit random circuits on a classical computer. The compar-
isons between the numerically-reconstructed and experimental data clearly validate the
Pauli error assumption within both error-bars, as shown in Fig. 6.7.
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Figure 6.6 Pauli transfer matrices of the experimental gates 𝑀𝑆𝑌 𝑌 and 𝑀𝑆𝑍𝑍 in the two-qubit
case. Note that we calibrate the SPAM errors as proposed in Ref. [96], and the PTMs of single-qubit
gates on both qubits (not shown) are not noticeably different to those for the single-qubit case. In
each subfigure, the left column shows the experimentally-obtained matrices and the right column
shows the difference between the experimental and the ideal matrices, i.e. 𝑅𝐺 − 𝑅𝑖𝑑

𝐺 with 𝐺 being
one of the quantum operations being characterized.
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Figure 6.7 Verification of the Pauli-error assumption. a. The average fidelity of the numerical
(purple dots) and experimental (yellow dots) single-qubit random sequences as functions of the
sequece length 𝐿. The numerical data are obtained by simulating the quantum dynamics with
the experimental PTMs with the Pauli-error assumption. The curves are obtained by fitting an
exponential decaying model to the data. The numerical and experimental error rates, being (1.09±
0.06) × 10−3 and (1.10 ± 0.12) × 10−3 respectively, are consistent within fitting errors. b. The
same as a. for random two-qubit sequences. The numerical and experimental error rates are
(0.97 ± 0.05) × 10−2 and (0.99 ± 0.06) × 10−2. Thus the comparison in a. and b. validate the
Pauli-error assumption in our system.

6.4 Decomposition of noise operations

The initial state, quantum gates and measurement are deviated from the ideal ones, as
experimentally characterized by Gram matrix and PTMs. Mathematically, We can recon-
struct the ideal ones by weighted combination of experimental operations [17-18]. Since we
cannot distinguish errors in state preparation from those in measurement, we ascribe all of
the SPAM errors to state preparation and decompose the initial state |𝜌𝑖𝑑

0 ⟩⟩ = ∑𝑖 𝑞0,𝑖|𝜌𝑖⟩⟩.
The quasi-probabilities 𝑞0,𝑖 for the decomposition of the ideal single-qubit initial state is
shown in Fig. 6.8a. Note that for the two-qubit case, the SPAM errors are much more
serious because of the EMCCD, and we calibrate the results to remove the SPAM errors
as proposed in Ref. [96]. We prepare the system in the states |00⟩ and |11⟩, and measure
the state fidelities of |0⟩ and |1⟩ for both qubits. The infidelities of these states give the
SPAM error probability associated with each measurement outcome, which can then be
used to remove the SPAM errors by data processing.
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Figure 6.8 Quasi-probability decomposition. a. Quasi-probabilities in the decomposition of
the ideal single-qubit initial state with experimental initial states in 𝒮1. b. Quasi-probabilities
in the decomposition of the inverse noise operations of the four experimental single-qubit gates

{𝑋± 𝜋
2
, 𝑌± 𝜋

2 }. c. The same as b. for the experimental single-qubit gates {𝐼, 𝑋±𝜋 , 𝑌±𝜋 , 𝑍±𝜋}.

An ideal quantum gate 𝐺𝑖𝑑
𝑠 can be written as the experimental one followed by the

inverse of noise operation, i.e. 𝑅𝑖𝑑
𝐺𝑠

= 𝑁−1
𝑠 𝑅𝐺𝑠 , where the noise operation 𝑁𝑠 intro-

duces errors in the experimental gate 𝑅𝐺𝑠 = 𝑁𝑠𝑅𝑖𝑑
𝐺𝑠

. The inverse of the noise opera-
tion 𝑁−1

𝑠 is then decomposed by the experimental operations associated with the 𝑛-qubit
Pauli group, 𝑁−1

𝑠 = ∑𝑗 𝑞𝑠,𝑗𝑅𝑃𝑗 with Pauli error assumption, where the quasi-probabilities
𝑞𝑠,𝑗 are determined by a set of linear equations. We show decompositions of the inverse
error operations for single-qubit gates {𝑋± 𝜋

2
, 𝑌± 𝜋

2 } in Fig. 6.8b, for single-qubit gates

{𝐼, 𝑋±𝜋 , 𝑌±𝜋 , 𝑍±𝜋} in Fig. 6.7c and for two-qubit gates {𝑀𝑆𝑌 𝑌 , 𝑀𝑆𝑍𝑍} in Fig. 6.9.
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Figure 6.9 Quasi-probabilities in the decomposition of the inverse noise operations for the ex-
perimental two-qubit gates {𝑀𝑆𝑌 𝑌 , 𝑀𝑆𝑍𝑍}.
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6.5 Benchmarking of the quantum error mitigation protocol

We benchmark the performance of the quantum error mitigation using a set of ran-
dom computations, in the spirit of randomized benchmarking. Each specific computation
starts with fully polarized initial states, |0⟩ in the single-qubit case and |00⟩ in the two-
qubit case, and ends with measuring 𝑍 on each qubit. Between the state preparation and
measurement, there is a sequence of randomly-selected quantum gates. We note that the
randomness in selecting the gate sequence is for the purpose of benchmarking the perfor-
mance rather than correcting errors. For each specific computation, i.e. gate sequence,
we apply the error mitigation and modify the gate sequence with random basis opera-
tions to correct errors. We remark that, for each specific computation, we observe the
improvement on the computation accuracy by using the error mitigation.

6.5.1 Single-qubit gate randomized benchmarking

For the single-qubit case, benchmarking computations are selected according to the
standard randomized benchmarking, i.e. a gate sequence of length 𝐿 contains 𝐿 compu-
tational gates and 𝐿 + 1 interleaving identity or Pauli operations, uniformly drawn from
the set {𝑋± 𝜋

2
, 𝑌± 𝜋

2 } and {𝐼, 𝑋±𝜋 , 𝑌±𝜋 , 𝑍±𝜋}, respectively. For each sequence length
𝐿, we choose 4 sequences whose ideal final states are the eigenstates of the Pauli 𝑍 op-
erator. We then repeatedly implement each of the sequences with a trapped-ion system
consisting of a single trapped ion, and measure the state fidelity between the ideal and
experimentally prepared final states. In Fig. 6.7a, we show the dependence of the average
fidelity without error mitigation, obtained by averaging the state fidelities over sequences
of the same length, on the sequence length. We numerically fit the average fidelity with an
exponential function and obtain the error rate per single-qubit gate as (1.10±0.12)×10−3.

In order to obtain unbiased estimator of the expectation value, both the initial
state and 2𝐿 + 1 gates in the selected sequence need to be decomposed and resam-
pled, where the initial state is replaced probabilistically by one of the states in 𝒮1,
and each experimental gate is followed by a random Pauli or identity operation drawn
from 𝒫1. Thus, for a specific computation with (2𝐿 + 1) gates, there are 42𝐿+2 pos-
sible experimental settings. Since the number of settings grows exponentially with
the length of the random sequence, we use the Monte-Carlo method to compute the
result by sampling random experimental settings, which are specified by an index 𝑖
for the initial state |𝜌𝑖⟩⟩ and two (2𝐿 + 1)-entry index vectors a ≡ (𝑎1, … , 𝑎2𝐿+1)
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and b ≡ (𝑏1, … , 𝑏2𝐿+1) specifying the computation and the choices of the error-
compensating operations. We note that for a specific computation, a is determined,
but b is random. The probability of an experimental setting ⟨⟨𝐸0| ∏2𝐿+1

𝑙=1 𝑅𝑃𝑏𝑙
𝑅𝐺𝑎𝑙

|𝜌𝑖⟩⟩,

where 𝐺𝑎𝑙 ∈ 𝒢1 and 𝑃𝑏𝑙 ∈ 𝒫1, is 𝐶−1
|𝑞0,𝑖 (∏2𝐿+1

𝑙=1 𝑞𝑎𝑙,𝑏𝑙)|. Here, the rescaling factor

𝐶 = ∑𝑖,…,(𝑎𝑙,𝑏𝑙),… |𝑞0,𝑖 (∏2𝐿+1
𝑙=1 𝑞𝑎𝑙,𝑏𝑙)| ⩾ 1 characterizes the cost to mitigate the errors.

Note that the signs of the coefficients, i.e., 𝑠𝑔𝑛 [𝑞0,𝑖 (∏2𝐿+1
𝑙=1 𝑞𝑎𝑙,𝑏𝑙)], are integrated into

the measurement results of the random experiments.
The concrete procedure of applying the probabilistic error-cancellation to a given

quantum computation task consists of the so-called characterization and calculation
phases. The characterization phase is described above. In the calculation phase, we
estimate expectation values of quantum circuits with the characterized imperfect quan-
tum device. We first write down the unbiased estimator of the expectation value of a
specific quantum circuit as ⟨⟨𝐸𝑖𝑑

0 |𝑅𝑖𝑑
𝐺𝑎𝐿

… 𝑅𝑖𝑑
𝐺𝑎1

|𝜌𝑖𝑑
0 ⟩⟩, which can be expanded with the

quasi-probability distributions obtained in the characterization phase as follows,

⟨⟨𝐸𝑖𝑑
0 |𝑅𝑖𝑑

𝐺𝑎𝐿
… 𝑅𝑖𝑑

𝐺𝑎1
|𝜌𝑖𝑑

0 ⟩⟩ = ∑
𝑖

∑
𝑏1,…,𝑏𝐿

𝑞0,𝑖𝑞𝑎1,𝑏1 … 𝑞𝑎𝐿,𝑏𝐿

⟨⟨𝐸𝑖𝑑
0 |𝑅𝑃𝑏𝐿

𝑅𝐺𝑎𝐿
… 𝑅𝑃𝑏1

𝑅𝐺𝑎1
|𝜌𝑖⟩⟩,

(6-2)

where the expectation value of ⟨⟨𝐸𝑖𝑑
0 |𝑅𝑃𝑏𝑙

𝑅𝐺𝑎𝐿
… 𝑅𝑃𝑏1

𝑅𝐺𝑎1
|𝜌𝑖⟩⟩ can be obtained by re-

peating the specific experimental setting and averaging the measurement results. The
straightforward way to evaluate the unbiased estimator is summing over all possible set-
tings. However, this is impractical because the number of settings grows exponentially
with the circuit depth. To alleviate the exponential growth, we rewritten the above expan-
sion as a probability distribution as follows,

⟨⟨𝐸𝑖𝑑
0 |𝑅𝑖𝑑

𝐺𝑎𝐿
… 𝑅𝑖𝑑

𝐺𝑎1
|𝜌𝑖𝑑

0 ⟩⟩ =𝐶a ∑
𝑖,b

𝑃a (𝑖,b) 𝑔 (𝑖, a,b)

⟨⟨𝐸𝑖𝑑
0 |𝑅𝑃𝑏𝐿

𝑅𝐺𝑎𝐿
… 𝑅𝑃𝑏1

𝑅𝐺𝑎1
|𝜌𝑖⟩⟩,

(6-3)

with the short-hand notations a ≡ (𝑎1, … , 𝑎𝐿) and b ≡ (𝑏1, … , 𝑏𝐿), where 𝐶a ≡
∑𝑖,b |𝑞0,𝑖| ∏𝑙 |𝑞𝑎𝑙,𝑏𝑙| is the rescaling factor, 𝑃a (𝑖,b) = |𝑞0,𝑖| ∏𝑙 |𝑞𝑎𝑙,𝑏𝑙| /𝐶 is the probability

distribution, and 𝑔 (𝑖, a,b) = 𝑠𝑔𝑛 (𝑞0,𝑖 ∏𝑙 𝑞𝑎𝑙,𝑏𝑙) is the sign of the setting. Then, we use
important sampling to generate 𝑀 experimental settings, specified by (𝑖𝑚,b𝑚) with 𝑚 =
1, … , 𝑀 , according to the probability distribution 𝑃a (𝑖,b), and calculate the expectation
value as follows,
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⟨⟨𝐸𝑖𝑑
0 |𝑅𝑖𝑑

𝐺𝑎𝐿
… 𝑅𝑖𝑑

𝐺𝑎1
|𝜌𝑖𝑑

0 ⟩⟩ = 𝐶a
𝑀

𝑀

∑
𝑚=1

𝑔 (𝑖𝑚, a,b𝑚) 𝑂 (𝑖𝑚, a,b𝑚) , (6-4)

where 𝑂 (𝑖𝑚, a,b𝑚) is the result of the projective measurement of the 𝑚-th setting, being
either 0 or 1 in our experiment.

In Fig. 6.10, we represent the error-mitigated single-qubit randomized benchmark-
ing with length 𝐿 up to 64, and show that the single-qubit gate error rate is effectively
suppressed to (1.44 ± 5.28) × 10−5.

0                  20                 40                  60

1.00

0.96

0.92

Length of Random Sequences (L)

Average Fidelity

Figure 6.10 The single-qubit randomized benchmarking. The data points with (purple square)
and without (yellow diamond) error mitigation are obtained from averaging the final-state fidelity
over different random sequences of the same length (black dots). The error bars are the standard
deviation of the average fidelities computed using the formula of uncertainty propagation. The
solid lines, obtained by fitting, show the exponential decrease of the average fidelities, indicating
the physical and effective average errors per gate being (1.10±0.12)×10−3 and (1.44±5.28)×10−5,
respectively. Please note that some of the fidelities with error mitigation are larger than 1 because
of the rescaling factor 𝐶 > 1 (see Main Text and Methods) and the limited sampling for data
points. Although the current protocol does not guarantee a physical outcome, the error mitigation
procedure shifts the distribution of the computation result towards the true value with large enough
sampling.

6.5.2 Two-qubit gate randomized benchmarking

For the two-qubit case, we select four gate sequences as benchmarking computa-
tions for each length 𝐿. Each sequence contains 𝐿 two-qubit gates uniformly drawn from
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the set {𝑀𝑆𝑌 𝑌 , 𝑀𝑆𝑍𝑍} with interleaving single-qubit gates [97]. The sequence is se-
lected under the restriction that the ideal final state is an eigenstate of 𝑍⊗2. Similar to the
single-qubit case described above, we apply error mitigation to each of the two-qubit gate
sequences with length 𝐿 up to 6, and represent the error-mitigated results in Fig. 6.11,
where the two-qubit gate error rate is effectively suppressed from (0.99 ± 0.06) × 10−2 to
(0.96 ± 0.10) × 10−3.

1.00

0.96

0.92
0                    2                      4                     6 

Average Fidelity

Length of Random Sequences (L)

Figure 6.11 The two-qubit random-circuit computation. Decay rates indicated by the average
fidelity curves without and with error mitigation are (0.99 ± 0.06) × 10−2 and (0.96 ± 0.10) × 10−3,
respectively.

6.6 Analysis on residual errors

Theoretically, the error mitigation technique, combining probabilistic error cancel-
lation and gate set tomography, is capable of completely rectifying the effect of errors in
the estimation of expectation values. However, in our experiment, the effective error rates
after error mitigation are (1.44 ± 5.28) × 10−5 and (0.96 ± 0.10) × 10−3 in the single-qubit
and two-qubit cases, respectively. Generally speaking, the reasons for the residual errors
include the Pauli-error assumption, time-correlated systematic drift, and crosstalk errors
between qubits.

In the single-qubit case, the residual errors mainly come from the introduction of the
Pauli-error model. To quantify the non-Pauli error rate, we simulate the dynamics of the
same random sequences as those used in the experiment with the characterized experi-
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mental PTMs, which are obtained under the Pauli-error assumption. The experimental
and simulated data of average fidelity are shown in Fig. 6.7a, which are then numerically
fitted to extract the error rates. The difference between the simulated and experimental
error rates for single-qubit gates is 1.41×10−5, which are of the same order of the residual
error rate in the single-qubit case. Meanwhile, the data shows that the time-correlated sys-
tematic drift has negligible effect and cannot be faithfully quantified within experimental
and fitting errors.

In our experiment, we implement two different two-qubit gates, i.e. 𝑀𝑆𝑌 𝑌 and
𝑀𝑆𝑍𝑍 gates. To quantify the residual errors from the Pauli-error assumption, we com-
pare the dynamics of the simulated and experimental random two-qubit sequence, where
the simulation is based on the characterized PTMs with the Pauli-error assumption. The
difference between the simulated and experimental error rates gives the estimation of the
non-Pauli residual error rate, which is about 0.20 × 10−3. As to the crosstalk errors, the
situations for 𝑀𝑆𝑌 𝑌 and 𝑀𝑆𝑍𝑍 gates are quite different because of different imple-
mentation schemes. Specifically, a 𝑀𝑆𝑍𝑍 gate is implemented by a 𝑀𝑆𝑌 𝑌 gate sand-
wiched by proper single-qubit gates, which introduce qubit-crosstalk errors. We model
the crosstalk effect by measuring an effective Rabi frequency 𝛺𝑒𝑓𝑓 on the neighboring
ion induced by leakage laser intensities when a single-qubit gate is being implemented by
lasers focused on one of the ions. The ratio 𝛺𝑒𝑓𝑓 /𝛺, with 𝛺 being the Rabi frequency of
the target ion, thus quantifies the severity of crosstalk errors. As shown in Supplementary
Fig. 6.12, we numerically simulate the state fidelities of the original and error-mitigated
𝑀𝑆𝑌 𝑌 and 𝑀𝑆𝑍𝑍 gates. As expected, the numerical results show that 𝑀𝑆𝑌 𝑌 gates,
either original or error-mitigated ones, are insensitive to the crosstalk errors, while the
fidelities of 𝑀𝑆𝑍𝑍 gates degrade as the severity of crosstalk errors increases. According
to the numerical results, the crosstalk residual error rate is about 0.68 × 10−3 at the ex-
perimental level of qubit crosstalk. Finally, the remaining part of the residual error rate,
0.08 × 10−3, is attributed to the time-correlated systematic drift.
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Figure 6.12 Analysis of the qubit crosstalk effect. We numerically simulate the final-state fi-
delity of the original and error-mitigated 𝑀𝑆𝑌 𝑌 and 𝑀𝑆𝑍𝑍 gates as functions of the qubit
crosstalk strength, which is modeled by the ratio 𝛺𝑒𝑓𝑓 /𝛺, with 𝛺 and 𝛺𝑒𝑓𝑓 being the Rabi fre-
quencies experienced by the target and the neighboring ions when a single-qubit gate is being
implemented. The experimental level of the qubit crosstalk strength is shaded with blue, which
given an estimation of 0.68 × 10−3 for the residual error rate induced by the qubit crosstalk effect.

6.7 Discussion

Our work shows that for the estimation of expectation values, the error mitigation
technique, i.e. probabilistic error cancellation [17-18,21], surely have the capacity of sur-
passing the break-even point, where the effective gates are superior to their physical build-
ing blocks, at an affordable cost with respect to near-future quantum techniques. We note
that error mitigation techniques are developed for the intermediate scale quantum com-
putation. The cost of the error mitigation increases with the circuit depth, therefore, tech-
niques like quantum error correction are still needed for large-scale fault-tolerant quantum
computation. The effective infidelity after error mitigation comes from the Pauli error
assumption, time-dependent systematic drifting [98] for both single-qubit and two-qubit
cases and cross-talk error of single-qubit addressing operations for the two-qubit case.
Thus further improvement requires both calibrating and stabilizing the quantum device.
There are two methods to suppress the cross-talk error: the composite sequences [99] and
the spatial refocusing technique [100]. The first method works well for localized beams to
produce narrowband sequences of improving total pulse area. The latter can use broad
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beams to reconstruct a focused beam by spectrally decomposing the desired amplitude
profile. With technologies to tackle the cross-talk error, the probabilistic error cancella-
tion method of quantum error mitigation can be straightforwardly applied to systems with
more qubits for realizing high-fidelity quantum computation. Our demonstration opens up
the possibility of implementing high-fidelity computations on a near-term noisy quantum
device.
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Chapter 7 Error-mitigated Hubbard model simulation

7.1 Overview of Hubbard model

The fermionic Hubbard model is first proposed to describe the electrons in the solid-
state system, which is the simplest model to describe many-body interactions like the
transition between insulating and conducting systems [101]. It mainly contains two terms in
the Hamiltonian: the tunneling between sites within the lattice and the on-site interaction,
which can be written as [102]

𝐻 = −𝐽 ∑
𝑖

(𝑏†
𝑖 𝑏𝑖+1 + 𝑏†

𝑖+1𝑏𝑖) + 𝑈
𝑁

∑
𝑖=1

𝑛𝑖↑𝑛𝑖↓, (7-1)

where 𝑏†
𝑖 and 𝑏𝑖 are the creation and the annihilation operators for the fermionic mode on

the 𝑖-th site. The first term is the hopping between sites and the second term is the on-site
repulsion. Note that the fermionic operators satisfy the following canonical anticommu-
tation relations,

{𝑏𝑖, 𝑏𝑗} = {𝑏†
𝑖 , 𝑏†

𝑗 } = 0

{𝑏𝑖, 𝑏†
𝑗 } = 𝛿𝑖𝑗 .

(7-2)

Fermionic operators can be mapped to spin operators by the Jordan-Wigner transforma-
tion, which is

𝑏𝑖 =
𝑖−1

∏
𝑗

𝜎𝑗,𝑧𝜎𝑖,−, (7-3)

where {𝜎𝑖,𝑥, 𝜎𝑖,𝑦, 𝜎𝑖,𝑧} are the Pauli matrices on the 𝑖-th site and 𝜎𝑖,± = (𝜎𝑖,𝑥 ± 𝑖𝜎𝑖,𝑦)/2.
After the Jordan-Wigner transformation, the Hamiltonian in Eq.( 7-1) becomes

𝐻 = 𝐽
2 ∑

𝑖
(𝜎𝑖,𝑥𝜎𝑖+1,𝑥 + 𝜎𝑖,𝑦𝜎𝑖+1,𝑦) + 𝑈

4 ∑
𝑖

(𝜎𝑖,𝑧𝜎𝑖+1,𝑧 + 𝜎𝑖,𝑧 + 𝜎𝑖+1,𝑧), (7-4)

which is hard to directly apply on trapped ion systems with the analog scheme, and can
be realized through Suzuki-Trotter expansion with the digital scheme. We can divide the
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Hamiltonian into three parts, 𝐻 = 𝐻1 + 𝐻2 + 𝐻3, with

𝐻1 = 𝐽
2 ∑

𝑖
(𝜎𝑖,𝑥𝜎𝑖+1,𝑥),

𝐻2 = 𝐽
2 ∑

𝑖
(𝜎𝑖,𝑦𝜎𝑖+1,𝑦),

𝐻3 = 𝑈
4 ∑

𝑖
(𝜎𝑖,𝑧𝜎𝑖+1,𝑧 + 𝜎𝑖,𝑧 + 𝜎𝑖+1,𝑧).

(7-5)

Then the exact evolution operator can be decomposed as follows,

𝑒−𝑖𝐻𝑡 = (𝑒−𝑖𝐻1𝛥𝑡𝑒−𝑖𝐻2𝛥𝑡𝑒−𝑖𝐻3𝛥𝑡)𝑛 + 𝑂(𝑛𝛥𝑡2), (7-6)

with 𝛥𝑡 = 𝑡/𝑛 and 𝑛 is the Trotter step, which can be implemented by the combination of
two-qubit gates or global entangling gates and single-qubit rotations.

The main error source contains two parts: the Trotter expansion error in theory and
the error of quantum gates in experiment. The first part can be reduced by increasing the
Trotter steps or using higher-order Suzuki-Trotter expansion. For example, the second
order Trotter expansion can suppress the error by one order of magnitude as

𝑒−𝑖𝐻𝑡 = (𝑒−𝑖𝐻1𝛥𝑡/2𝑒−𝑖𝐻2𝛥𝑡/2𝑒−𝑖𝐻3𝛥𝑡𝑒−𝑖𝐻2𝛥𝑡/2𝑒−𝑖𝐻1𝛥𝑡/2)𝑛 + 𝑂(𝑛𝛥𝑡3). (7-7)

We don’t pay much attention on this part for now. The second part can be improved by
optimizing the stability of the system and using pulse shaping methods in the physical
level, or through the probabilistic error cancellation scheme we discussed in chapter 6 in
the classical programming level. Here, we present the numerical study of error mitigation
for Fermi-Hubbard model dynamics. The simulating results of two and three fermionic
modes show the powerful capability of quantum error mitigation scheme for the general
quantum simulation.

7.2 Simulation of two fermionic modes

The Hamiltonian of Hubbard model with two modes is

𝐻 = 𝐽
2 (𝜎1,𝑥𝜎2,𝑥 + 𝜎1,𝑦𝜎2,𝑦) + 𝑈

4 (𝜎1,𝑧𝜎2,𝑧 + 𝜎1,𝑧 + 𝜎2,𝑧), (7-8)

which can be easily realized with Trotter expansion in experiment. The Trotter step is
shown in fig. 7.1. Note that the native two-qubit entangling gate in our trapped ion system
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is 𝑈(𝜃) = e𝑥𝑝[−𝑖𝜃𝜎𝑦𝜎𝑦], we can realize the two-qubit gates on the 𝜎𝑥 and 𝜎𝑧 basis by
adding single-qubit rotations.
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Figure 7.1 The Trotter step of two fermionic modes.

We numerically simulate the Fermi-Hubbard model dynamics with two modes in the
digital way and find the Trotter expansion error can be ignored due to the commutation
relations among each step. We set the hopping strength 𝐽 = 1, the repulsion strength
𝑈 = 2, 𝑡 = 2𝜋, and Trotter step 𝑛 = 4. Then the basic two-qubit gate in each step
would be 𝑈(𝜋

4 ) = e𝑥𝑝[−𝑖𝜋
4 𝜎𝑦𝜎𝑦], which is just the maximum entangling gate 𝑀𝑆𝑌 𝑌 we

showed in chapter 6. In order to apply quantum error mitigation, the basic quantum gate
in the circuit needs to be characterized first. Here, we can use the experimental circuits in
chapter 6 for the characterization of the basic two-qubit gate in the Trotter circuit.

We first set the initial fermionic state as |10⟩ and simulate the ideal dynamics in the
analog way. We can only observe the hopping evolution with this two-site condition. In
order to simulate the gate error in experiment, we apply a 2% Pauli error on each two-
qubit gate in the numerical calculation. Then, we apply the probabilistic error cancellation
scheme to the noisy gates and get the error-mitigated dynamical evolution, as shown in
fig. 7.2. The detailed process of applying error mitigation on the Trotter steps is similar
(even easier) to apply it on the RB circuits in chapter 6 (Please check the detail in chapter 6
if necessary). We can see the error-mitigated data points are almost same as the predicted
occupation of the modes from Trotter expansion.
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Figure 7.2 The dynamical evolution of fermionic Hubbard model with two modes. The solid
line is the ideal evolution with analog simulation. The circle points are calculated with 2% Pauli
error on each gate. The points with dotted square are the prediction of digital simulation with
Trotter expansion. And the filled circle points are the simulating results with error mitigation.

7.3 Simulation of three fermionic modes

The Hamiltonian of Hubbard model with three modes is

𝐻 =𝐽
2 (𝜎1,𝑥𝜎2,𝑥 + 𝜎2,𝑥𝜎3,𝑥 + 𝜎1,𝑦𝜎2,𝑦 + 𝜎2,𝑦𝜎3,𝑦)+
𝑈
4 (𝜎1,𝑧𝜎2,𝑧 + 𝜎2,𝑧𝜎3,𝑧 + 𝜎1,𝑧 + 2𝜎2,𝑧 + 𝜎3,𝑧).

(7-9)

The Trotter step is shown in fig. 7.3. We also realize the two-qubit gates on the 𝜎𝑥

and 𝜎𝑧 basis by adding single-qubit rotations before and after the native entangling gate
e𝑥𝑝[−𝑖𝜃𝜎𝑦𝜎𝑦].

In chapter 5, we use a single global operation to generate a GHZ state with three and
four qubits, where the coupling strength of all the two-body terms is 𝜋/4. Actually, we can
achieve arbitrary coupling strength by determining the objective function with different
constraint(see equation.( 5-7)), which provides us another implementation for the Trotter
circuit through global entangling gates except for the combination of two-qubit gates.
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Figure 7.3 The Trotter step of three fermionic modes.

We numerically simulate the Fermi-Hubbard model dynamics with three modes in
the digital way. We set the hopping strength 𝐽 = 1, the repulsion strength 𝑈 = 0, and
𝑡 = 𝜋. In order to reduce the Trotter expansion error, we set the basic two-qubit gate
in each step as 𝑈(𝜋

8 ) = e𝑥𝑝[−𝑖𝜋
8 𝜎𝑦𝜎𝑦] and Trotter step 𝑛 = 4. Here, in order to apply

quantum error mitigation, the basic quantum gate in the circuit can be chosen with two
ways: the two-qubit gates 𝑒𝑥𝑝[−𝑖𝜋

8 𝜎1,𝑦𝜎2,𝑦] and 𝑒𝑥𝑝[−𝑖𝜋
8 𝜎2,𝑦𝜎3,𝑦] or the global entangling

gate 𝑒𝑥𝑝[−𝑖𝜋
8 (𝜎1,𝑦𝜎2,𝑦 + 𝜎2,𝑦𝜎3,𝑦)].

For the gate set tomography of two(three)-qubit gates, we can also apply a two-
step parameter estimation, since the infidelities for the single-qubit gates are about an
order lower than those of the two(three)-qubit gates. We first determine the Pauli er-
ror rates for all the single-qubit gates, and then characterize the two(three)-qubit gate
𝑒𝑥𝑝[−𝑖𝜋

8 𝜎𝑖,𝑦𝜎𝑖+1,𝑦]( 𝑒𝑥𝑝[−𝑖𝜋
8 (𝜎1,𝑦𝜎2,𝑦 + 𝜎2,𝑦𝜎3,𝑦)]) based on the knowledge of the charac-

terized single-qubit gates. The two(three)-qubit gates on 𝜎𝑥 and 𝜎𝑧 basis can be derived
from those results.

For the first approach, we need to characterize 2 two-qubit gates and obtain two
PTMs with dimension 16×16, which is similar with the case we discussed in chapter 6. It
is easy to calculate the experimental circuits for two-qubit GST and the total measurements
is 15+15=30. For the second approach, we need to characterize the three-qubit gate and
obtain the PTM with dimension 64×64, as shown in fig. 7.4. It takes a little bit more
time to get the experimental setting for GST, and the total measurement would be 63 in
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principle. We may compare the two approaches in experiment later.

Figure 7.4 The PTM of three-qubit gate 𝑒𝑥𝑝[−𝑖 𝜋
8 (𝜎1,𝑦𝜎2,𝑦 + 𝜎2,𝑦𝜎3,𝑦)] .

We first set the initial fermionic state as (|101⟩ + |110⟩)/√2 and simulate the ideal
dynamics in the analog way. In order to simulate the gate error in experiment, we also
apply a 2% Pauli error on each two-qubit gate in the numerical calculation. Then, we apply
the probabilistic error cancellation scheme to the noisy gates and get the error-mitigated
dynamical evolution, as shown in fig. 7.5. We can see the error-mitigated data points are
almost same as the predicted occupation of the modes from Trotter expansion.
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Figure 7.5 The dynamical evolution of fermionic Hubbard model with three modes. The solid
line is the ideal evolution with analog simulation. The circle points are calculated with 2% Pauli
error on each gate. The points with dotted square are the prediction of digital simulation with
Trotter expansion. And the filled circle points are the simulating results with error mitigation.
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Summary

In this thesis, we demonstrate the development of trapped ion system for quantum
computation. Our trap is composed of four segmented blade RF trap with the capabil-
ity of individual control on ion-qubits. To test the capability and stability of our general
quantum simulator, we propose and implement a scalable scheme to realize the global
entangling gates on multiple 171Yb+ ion qubits by coupling the laser field to multiple
motional modes. The global gate fidelity is limited by the system imperfection. I ana-
lyze the system error-model and implement the probabilistic error-cancellation method
to improve the estimation of expectation value, and investigate its universal validity in a
general quantum computational context. Still, we have a long way to realize a fully func-
tional quantum system. The following researches may be the next step to get close to our
final goal from my perspective.

Crosstalk-suppressed gate

The crosstalk-error, including quantum detection crosstalk and individual laser-
addressed crosstalk, is always a significant contribution to the infidelity of quantum gates.
The error from detection crosstalk can be removed in the classical programming level by
detection error correction with characterization in advance [96]. It needs conditions of very
small time-dependent systematic drifting or frequent characterization, which has been re-
alized in our system. The other way is the fiber array solution together with a series of
single-channel PMTs in the physical level. The fiber array can individually collect the
fluorescence from each ion. And the separated single-channel PMTs can perfectly avoid
the crosstalk from detection devices.

The error from laser-addressed crosstalk is difficult to be fully removed due to the
small separation between neighboring ions and the inevitable imaging aberrations of laser
beams, which the probabilistic error cancellation scheme cannot deal with in the pro-
gramming level. We noticed that the crosstalk-error from two-qubit entangling gates is
not significant due to the off-resonant motional coupling from the differential AC stark
shift in the neighboring ions. There are two theoretical methods to suppress the crosstalk-
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error from single-qubit gates: the composite sequences [99] and the spatial refocusing tech-
nique [100]. The first method works well for localized beams to produce narrowband se-
quences of improving total pulse area. The latter can be applied on broad beams to re-
construct a focused beam by spectrally decomposing the desired amplitude profile. This
inspires us to implement them in experiment to achieve quantum gates with higher fidelity.

Cryogenic trapped-ion system

The long lifetime of multi-ion qubits is the essential part to realize scalable quantum
computers and quantum networks with trapped ion system. The instability of ions may
come from the imperfect trapping potential in theoretical level, the RF noise on the DC
electrodes from the RF field leakage in experiment and the molecular collision in the
vacuum. The first part can be improved by increasing the frequency of the RF field to
reach a smaller 𝑞 factor [29]. The second part can be suppressed by adding a filter system
on the DC blade electrodes. The last part can be reduced by improving the vacuum level,
which has been explored a lot recently.

The current vacuum level in trapped ion systems is UHV, which is almost the pump-
ing limit at the room temperature for now. Cryogenic trapped-ion systems may be an ideal
choice for stably trapping tens to hundreds of ions in the next stage [103]. The segmented
blade ion-trap is enclosed in a 4K cryostat, where all the molecules are liquefied to im-
prove the vacuum level to extremely high vacuum(XHV). Therefore, the ion chain can be
protected from the background collision to survive for several hours. This technique may
help to implement complex quantum circuits and realize a stable and practicable quantum
network and quantum cloud in the future.
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