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摘 要

摘 要

量子技术在近年来在学术与商业上均取得了一系列可喜进展，超导、光子体系

在过去五年内上陆续实现了“量子霸权”，完成了随机量子线路采样与玻色采样，

这些成果的展现出了量子计算机远超经典芯片的计算能力，尽管陆续有相关用经

典计算器件仿真量子霸权的模拟算法被提出，并展现出不输于量子计算器件的能

力，这种类似于十九世纪初期“马追火车”的尝试也将为未来量子器件全面超越

经典器件设定一系列标准。

离子阱是当代最先进的量子信息处理平台之一，拥有全平台最高的量子体积

与量子算法演示质量，并且演示了超过一小时的相干时间。但是离子阱平台中量

子比特数量往往在 5～20之间，相较于超导、中性原子动辄数十、数百的量子比特

数量相对较少；且离子阱在过去数十年间一直致力于研究一维离子晶体上的量子

信息处理，尽管在 Penning阱中有些许基于二维离子晶体的工作，但如何使用这些

二维离子晶体实现更加通用的量子模拟依然是一个开放问题。

在本文中，我们将会介绍首次在 Paul阱实现的基于二维离子晶体的量子模拟。

在我们的工作之前，学术界普遍认为 Paul阱中无法使用二维离子晶体进行量子信

息处理，尽管有理论方案被提出，但是并不清楚如何在实验上避免微振动对量子

操作质量带来的致命影响。我们首先基于一款一体化离子阱芯片提出了通过旋转

电场来调整微振动方向，并使其垂直于激光传播方向，进而将微振动“隐藏”起

来，消除其对激光的影响；随后我们基于一体化芯片完成了二维离子晶体的制备，

并开发了针对 171Yb+离子的 EIT冷却技术，来快速制备二维离子晶体的运动基态；

最后，我们在完成初态制备的二维离子晶体上演示了基于 Ising模型的量子模拟。

我们的这项工作开拓了在 Paul阱中基于二维离子晶体进行量子模拟与量子计

算的新方向，尽管我们所尝试的离子数量相对较少，但是随着芯片加工工艺提升

所导致的加热率下降以及将系统放入冷阱中所带来的真空提升与加热率下降，在

该系统中装载上千个量子比特将不再是问题，也允许更大规模的量子信息处理实

验，我们相信这一工作将会在 NISQ时代大幅提升离子阱系统的拓展能力，并允许

实验物理学家基于该系统探究更为丰富的物理现象。

关键词：量子信息；量子模拟；离子阱；二维自旋模型
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ABSTRACT

ABSTRACT

Quantum technology has made promising progress in recent years, both academically

and commercially. Researchers in superconducting and photonic systems have achieved

”quantum supremacy” and completed random circuit and boson sampling in the past three

years. This shows that the quantum system far exceeds the computing capability of classi-

cal chips. However, successive attempts are to simulate quantum hegemony with classical

computing devices. The attempts are similar to the early nineteenth-century ”horse beats

iron horse”, which will set a series of standards for future quantum devices to surpass

classical devices.

The ion trap is one of themost advanced quantum information processing platforms of

our time, with the highest quantum volume and best quantum algorithms demonstration,

and has shown a coherence time of over an hour. However, the number of quantum bits in

ion trap platforms tends to be between 5 and 20, which is relatively small compared to the

tens or hundreds of quantum bits in superconducting and neutral atoms. Moreover, ion

traps have been devoted to studying quantum information processing on one-dimensional

ion crystals for the past few decades. Although there is some work in Penning traps based

on 2D ionic crystals, it is still an open problem to use these 2D ion crystals for more

general quantum simulations. This paper presents the first quantum simulation based on

two-dimensional ion crystals in Paul traps. Before our work, people doubt whether quan-

tum information processing in Paul traps can be performed using two-dimensional ion

crystals. Although theoretical solutions were proposed, it was not clear how to experi-

mentally avoid the lethal effects of micromotions on the quality of quantum operations.

We propose to ”hide” micromotions by rotating the electric field to adjust the direction of

micromotions perpendicular to the laser propagation direction based on a monolithic ion

trap chip to eliminate their detrimental influence on the laser. We prepare two-dimensional

ion crystals based on the monolithic chip and develop a EIT cooling method for 171Yb+

ions to prepare the motional ground state of 2D ionic crystals. Finally, we demonstrate

quantum simulations based on the Ising model.

Our work pioneers quantum simulations and quantum computations based on two-

dimensional ion crystals in Paul traps. Although we only studied relatively small systems,

the size of the system could be scaled up to thousands of ions by improving trap quality and

II



ABSTRACT

putting the trap into a cryogenic system. We believe this work will significantly increase

the scalability of ion trap systems in the NISQ era and allow experimental physicists to

explore richer physics based on the system.

Keywords: Quantum information; quantum simulation; trapped ions; two-dimensional

spin model
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 The Emergence of the Classical Computation Industry

In 1812, English mathematician and inventor Charles Babbage conceived the idea

of using gears and rods to calculate mathematical tables. He later designed the Differ-

ence Engine to tabulate polynomial functions, which served as the prototype for the first

general-purpose computer – the Analytical Engine [1] .

Figure 1.1 The Analytical Engine displayed at the Science Museum (London).

The Analytical Engine comprised several units, such as arithmetic logic units, flow

control with conditional statements and loops, punch cards, and integrated memory. Users

needed to utilize punched cards to input instructions into the engine. However, the Ana-

lytical Engine was never constructed due to insufficient funding during Charles Babbage’s

lifetime. The disparity between the capabilities of the Analytical Engine and the world’s

needs at the time made it challenging for Babbage to secure financial support.

In 1890, recent Ph.D. graduate Herman Hollerith constructed an electromechanical

engine to aid the American census in enumerating and tabulating the collected data [2] .

Hollerith meticulously calculated the cost of the enumeration for the ninth American cen-

sus to be 2, 095, 563.32 and projected that the expense would rise to 3, 000, 000 for the

tenth census. Although the government would cover the enumeration cost for each sub-

sequent census, a machine would only require a one-time fabrication cost. Successfully

bridging the gap between computing technology and societal demand, Hollerith built his

apparatus and later founded The Tabulating Machine Co. This company merged with
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Figure 1.2 The electric tabulating system displayed at the Smithsonian National Museum of
American History (DC).

several others to form the Computing-Tabulating-Recording Company, which eventually

became the industry giant IBM [3] .

In 1936, Alan Turing explored the types of numbers computable by a machine com-

posed of tape, squares, and scanned symbols. This machine is now known as the Turing

machine, which Turing used to demonstrate that there is no solution for Hilbert’s Entschei-

dungsproblem [4] . This problem asks, ”Is there a general process for determining whether

a given formula A of the functional calculus is provable?”. Three years later, Germany

invaded Poland, and World War II began. Turing was tasked with breaking the German

Enigmamachine, whichwas used to encrypt secret messages. He also designed an electro-

mechanical machine called the British Bombe, based on his Turing machine concept, to

decrypt Enigma’s messages.

Concurrently, another cryptanalysis project led by Tommy Flowers, called Colossus,

was under development in Britain. Colossus was the world’s first programmable, elec-

tronic, digital computer andwas built using 18,000 vacuum tubes. The ENIAC (Electronic

Numerical Integrator and Computer) is perhaps the most famous vacuum tube computer,

designed by John Mauchly, a professor at the Moore School of Electrical Engineering at

the University of Pennsylvania, and John Presper Eckert, a graduate student at the same

institution. ENIAC was sponsored by the United States Army Ordnance Department to

expedite the recomputation of artillery firing tables [5] . It occupied a room measuring 30

by 50 feet and weighed 30 tons.

In 1949, the success of ENIAC motivated John Mauchly and John Presper Eckert to
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Figure 1.3 The British Bombe displayed at The National Museum of Computing (Bletchley
Park).

establish the world’s first computer company, Electronic Controls Company. The name

was soon changed to Eckert–Mauchly Computer Corporation (EMCC) in 1950. Similar

to Herman Hollerith’s company, EMCC also aimed to sell their computers to the United

States Census Bureau to help researchers reduce the number of punch cards. EMCC is

now a part of Unisys.

Figure 1.4 The ENIAC displayed at the University of Pennsylvania.

In addition to ENIAC, John Mauchly and John Presper Eckert also constructed ED-

VAC (Electronic Discrete Variable Automatic Computer) at the Moore School of Electri-

cal Engineering. EDVAC was designed to process binary data and store programs inside

the computer. At the time, von Neumann was consulting for EDVAC as a member of

the Scientific Advisory Committee and used ink to write a 23-page sorting algorithm for

EDVAC [6] . During this consulting period, von Neumann described a computer architec-
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ture in which the computer can store data and programs in its memory using the same

address space [7] , now known as the von Neumann architecture. After World War II, von

Neumann returned to the Institute for Advanced Study at Princeton University and de-

signed another binary computer called the IAS machine. The IAS machine was built with

1,700 vacuum tubes, had a 40-bit word, and could store 20-bit instructions. In 1952, two

IBM researchers, Jerrier Haddad and Nathaniel Rochester, created IBM’s first commer-

cial computer, the 701, based on the IAS machine, which launched the computer industry

for IBM.

Figure 1.5 The TRADIC at Bell Labs.

While IBM was marketing its first commercial computer for translation and black-

jack, the era of vacuum tubes was drawing to a close. In 1947, three physicists at Bell

Labs, John Bardeen,Walter Brattain, andWilliam Shockley, invented a point-contact tran-

sistor made of germanium and published their work in Physical Review [8] . Research on

semiconductor transistors was motivated by the need to replace unreliable vacuum tubes,

which were too fragile due to their glass cover. Following the invention of the transistor,

Jean Howard Felker, another researcher at Bell Labs, began constructing a fully transis-

torized digital computer, the TRADIC (TRAnsistor DIgital Computer or TRansistorized
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Airborne DIgital Computer), which was completed in 1954. One year after the devel-

opment of the TRADIC, William Shockley left Bell Labs and brought silicon to Silicon

Valley. When Shockley founded his own company, reporters asked him why he left Bell

Labs, to which he replied, ”You only live once. I would like to do something else for

a change.” [9] . Shockley believed that the future of the semiconductor industry lay in

silicon, not germanium, as germanium had insufficient thermal stability and insulating

properties. Shockley Semiconductor laid the foundation for the silicon-based classical

information age and set the stage for the legends of Silicon Valley.

1.2 The birth of quantum computation

The idea of using quantum mechanics to process information can be traced back to

the 1960s when Stephen Wiesner came up with the concept of a quantum banknote [10] .

However, the original paper was rejected by the editors and referees of IEEE Transactions

on Information Theory. In 1973, Soviet mathematician Alexander Holevo calculated a

bound for the amount of information transmitted by a quantum channel, and this was the

earliest published paper on quantum information. In 1980, Soviet mathematician Yuri

Manin proposed the idea of using superposition and entanglement to create a quantum

automaton [11] . In the same year, Charles Bennett published a paper in the Journal of

Statistical Physics, demonstrating that any Turing machine could be represented as a time

evolution of a quantum state under a particular Hamiltonian [12] .

One year later, in 1981, IBM and MIT organized the ”Physics of Computation” con-

ference, which brought together some of the most renowned physicists. The talks given at

the conference were published in the International Journal of Theoretical Physics. At the

conference, Richard Feynman delivered a talk titled ”Simulating physics with computers,”

where he asked, ”Can physics be simulated by a locally interacted universal computer?”,

and proposed the idea of simulating quantum physics with quantum computer elements.

At the same conference, Tommaso Toffoli [13] and Edward Fredkin [14] also discussed the

possibility of using quantum systems to perform computation. However, credit for found-

ing quantum computation is mostly given to Feynman, possibly due to his more concrete

ideas and others’ citations. The ideas that emerged from the ”Physics of Computation”

conference indeed inspired the birth of quantum computation. In 1984, David Deutsch

proposed his idea of the quantum Church-Turing principle, stating that ”Every finitely

realizable physical system can be perfectly simulated by a universal model computing

5
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machine operating by finite means” [15] . In this proposal, Deutsch also explained that

the advantage of quantum computers originated from ”quantum parallelism.” Five years

later, David Deutsch envisioned quantum computational networks to discuss how to phys-

ically realize a quantum Turing machine [16] . At that time, nobody knew what a quantum

computer could do.

Entering the 1990s, the field of quantum computation developed rapidly. In 1991,

David Deutsch and Richard Jozsa discovered the first quantum algorithmwith exponential

speed-up over classical algorithms [17] . In 1993, Seth Lloyd suggested that applying a se-

quence of electromagnetic pulses to arrays of weakly coupled quantum systems could co-

herently perform computation [18] ; Ethan Bernstein andUmeshVazirani first used the term

”bounded-error quantum polynomial time (BQP)” and asked whether BQP≠BPP [19] ; An-
drewChi-Chih Yao proved that any function computable in polynomial time by a quantum

Turing machine has a polynomial-size quantum circuit [20] . In 1994, Peter Shor at Bell

Labs developed the first practical, useful quantum algorithm for factoring numbers with

exponential speed-up, which marked a historical turning point for large-scale investments

in quantum computation. When Shor’s paper was published, nobody knew how to build

a quantum computer, so it was time for experimental physicists to consider how to turn

the idea of a quantum computer into reality.

The earliest idea of building a qubit came from Klaus Obermayer and his colleagues,

who suggested using the position of an electron in different energy levels of a quantum dot

to store information [21] . Then, in 1994, Serge Haroche’s group proposed an idea of en-

coding information based on cavity quantum electrodynamics and creating entanglement

through spontaneous emission [22] . In the same year, physicists were excited by Shor’s

algorithm and seriously tried to find a way to build an actual device. One year later,

the field of quantum computation witnessed an explosion of experimental works: Harry

Kimble’s group realized a conditional phase gate based on nonlinear optical response for

qubits stored in polarization [23] ; David Wineland’s group realized a controlled-NOT gate

between qubits stored separately in the internal and external degrees of freedom of a sin-

gle trapped 9Be+ ion [24] ; Ignacio Cirac and Peter Zoller proposed an idea of entangling

internal states of trapped ions through a phononic bus [25] . Around 1994, photons were

the first candidate qubits, but their lack of interaction made it challenging to perform

two-qubit gates. However, after 1995, ions became the most promising candidates. The

Cirac-Zoller paper was the first to show a practical way to build a quantum computer from
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a theoretical imagination, opening up the experimental race to create a real device in the

lab.

(c) (d)

(b)(a)

Figure 1.6 Systems suitable for quantum computation.
(a) Electrons trapped on the surface of helium. (b) Persisten qubit in Josephson junctions. (c)

Qubits confined in a Si host. (d) Linear ion crystal confined in vacuum.

After the Cirac-Zoller paper, many other systems capable of quantum computation

were proposed. In 1997, Isaac Chuang proposed an approach based on multi-pulse reso-

nance techniques for quantum computation [26] ; Alexander Shnirman and Dmitri Averin

independently proposed an approach based on coherent tunneling of Cooper pairs in low-

capacitance Josephson junctions for quantum computation [27] ; Daniel Loss and David

DiVincenzo proposed an approach based on coupling the electron spin states of single-

electron quantum dots [28] . In 1998, Bruce Kane presented a scheme based on atoms in

doped silicon devices to implement quantum computation [29] . In 1999, Atac Imamoglu

proposed an idea of using quantum dot spin inside a high finesse microcavity to build a

solid-state quantum computer [30] ; Johan Mooij proposed an idea of using persistent cur-

rent inside Josephson junctions to build a solid-state quantum computer [31] ; Philip Platz-

man proposed an idea of using electrons trapped above a thin film of liquid helium for
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quantum computation [32] . In the early 21st century, a few new platforms were proposed.

In 2001,Mikhail Lukin presented an idea of using dipole-dipole interaction between atoms

excited into Rydberg states to realize two-qubit gates [33] . Motivated by these various pro-

posals for building an actual quantum computer, in 2000, David DiVincenzo summarized

a checklist to test whether a system is suitable for quantum computation, now known as

the DiVincenzo criteria [34] :

1. a scalable physical system with well-characterized qubits

2. the ability to initialize the state of the qubits to a simple initial state

3. long decoherence times (that exceed the gate operation time)

4. a universal set of quantum gates

5. the ability to perform qubit-specific measurements

All of the above systems are under heavy research efforts, while none of them is

recognized as the most suitable one for quantum computation with wide consensus. The

race to build a large-scale quantum computer could still continue for several decades.
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2.1 Quadrupole Trapping Fields

The idea of ion traps arose from the question [35] : What happens if one injects charged

particles into a multipole field? Electric or magnetic multipole fields can generate binding

forces that trap charged particles. Generally, the order of trapping potential depends on

the number of ”poles”, and the trapping potential 𝑉 is given by [35]

𝑉 ∝ 𝑟𝑚/2 cos(
𝑚
2 𝜃) (2.1)

where 𝑚 is the number of ”poles”, 𝑟 is the distance from the equilibrium position, and

𝜃 is the angle from a symmetric axis of the multipole.

In this work, we focus on quadrupole fields. An electric quadrupole field is given by

𝑉 (𝑥, 𝑦, 𝑧) = 𝑉0
2𝑅2

0
(𝛼𝑥2 + 𝛽𝑦2 + 𝛾𝑧2) (2.2)

Maxwell’s equation ∇ ⋅ E = −Δ𝑉 = 0 restricts the coefficients as

𝛼 + 𝛽 + 𝛾 = 0 (2.3)

In the past, two-dimensional quadrupole fields were popular for mass filters and rep-

resented the simplest case of quadrupole fields. Two-dimensional quadrupole fields sat-

isfy the condition 𝛼 = −𝛽 = 1, 𝛾 = 0. Under this condition, the electric field is given
by

E = −∇𝑉 = 𝑉0
𝑅2

0
(−𝑥 ̂𝑖 + 𝑦 ̂𝑗) (2.4)

In this electric field, charged particles are accelerated along the y-direction and will

eventually hit the electrodes. To avoid this problem, scientists used periodic voltage in-

stead of static voltage [35] . The electric force periodically changes the sign, simultaneously

focusing and defocusing the particle in both the x- and y-directions. It is challenging to

write down the motion of a particle directly, but it is simple to write the equation of motion

using 𝐹 = 𝑚𝑎:

9
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𝑥̈ + 𝑄𝑉0
𝑚𝑅2

0
cos(Ω𝑡)𝑥 = 0 ̈𝑦 − 𝑄𝑉0

𝑚𝑅2
0
cos(Ω𝑡)𝑦 = 0 (2.5)

where 𝑚/𝑄 is the mass/charge of the particle.

Mathematicians have studied this type of equation for many years and named it the

Mathieu differential equation.

2.2 Mathieu Differential Equation

150 years ago, ‘Emile L’eonard Mathieu first wrote down the following equation to

investigate the oscillation of an elliptic membrane [36] :

𝑑2𝑢
𝑑𝜏2 + (𝑎 − 2𝑞 cos(2𝜏))𝑢 = 0 (2.6)

The equation can be solved by calculating the coefficients of the Floquet expan-

sion [37] .

𝑢(𝜏) ≈ 𝑢(0)(𝜏) + 𝑢(1)(𝜏) = 𝐴0 cos (𝛽𝑢𝜏) + 𝐴1 cos ((𝛽𝑢 + 2) 𝜏) + 𝐴−1 cos ((𝛽𝑢 − 2) 𝜏)
(2.7)

Substituting the expansion Eq.2.7 into the Mathieu equation Eq.2.6, we obtain the

following linear equations

(𝐴1𝑞 + 𝐴−1𝑞 + 𝐴0𝛽2
𝑢 ) cos (𝛽𝑢𝜏) + (𝐴0𝑞 + 𝐴1 (𝛽𝑢 + 2)

2
) cos ((𝛽𝑢 + 2) 𝜏)

+ (𝐴0𝑞 + 𝐴−1 (𝛽𝑢 − 2)
2
) cos ((𝛽𝑢 − 2) 𝜏) = 0

(2.8)

By setting all the coefficients before the oscillating terms to zero, we obtain

𝑞2 2𝛽2
𝑢 + 8

(𝛽2
𝑢 − 4)

2 = 𝛽2
𝑢 (2.9)

This equation provides a relationship between the parameters of the Mathieu differ-

ential equation, which can be useful for understanding the properties of the solutions and

their applications in quadrupole trapping fields.

Substituting the coefficients into the expansion Eq. 2.7, we can obtain the approximate

solution of the motion:

10
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𝑢(𝜏) ≈ 𝐴0 cos(
𝑞

√2
𝜏

) (1 + 𝑞
2 cos(2𝜏)) (2.10)

Comparing Eq.2.5 and Eq.2.6, we find that Eq. 2.5 is a Mathieu equation with 𝑎 =
0, 𝑞 = − 2𝑄𝑉0

𝑚Ω2𝑅2
0
, whose approximate solution is:

𝑥(𝑡) ≈ 𝐴0 cos(
𝑄𝑉0

√2𝑚Ω𝑅2
0

𝑡
) (

1 − 𝑄𝑉0
𝑚Ω2𝑅2

0
cos(Ω𝑡)

)
, (2.11)

where 𝑟micromotion = 𝑄𝑉0
𝑚Ω2𝑅2

0
represents the strength of unavoidable micromotion, and

𝜔trap = 𝑄𝑉0
√2𝑚Ω𝑅2

0
represents the trap frequency. If we naively increase the trap frequency

by increasing the power of the RF field, the amplitude of the unavoidable micromotion

would also increase. Considering the ratio between these two parameters, we obtain

𝜔trap = Ω
√2

𝑟micromotion, which means that if we want to increase the trap frequency with-
out increasing the amplitude of micromotion, we should simultaneously increase the RF

power and the RF frequency.

2.3 Pseudopotential

Eq. 2.11 shows that the secular motion of an ion follows the form of a harmonic os-

cillator. The emergence of harmonic motion can also be understood from the perspective

of pseudopotential. The ion’s motion under an oscillating electric field is determined by

the following equation of motion:

𝑚 ̈𝑟(𝑡) = 𝑄𝐸⃗(𝑟(𝑡)) cosΩ𝑡 (2.12)

There is no general way to analytically solve Eq. 2.12 due to the composite function

𝐸⃗(𝑟(𝑡)). To obtain an approximate description of the ion’s motion under an oscillating
field, we need to separate the mutual dependency between the electric field and ion’s

motion. We can assume the ion’s motion is much slower than the oscillating speed of the

electric field, and then approximate 𝑟(𝑡) ≈ 𝑟(𝑡0) + 𝛿𝑟 and 𝐸⃗(𝑟(𝑡)) ≈ 𝐸⃗(𝑟(𝑡0)).
The pseudopotential Φ(𝑟) is a time-averaged behavior of an oscillating electric field,

which can be presented as:

11
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𝐹 coarse = 1
𝑇 ∫ 0𝑇 𝑄𝐸⃗(𝑟(𝑡)) cosΩ𝑡𝑑𝑡 ≈ −𝑄∇Φ(𝑟). (2.13)

Since in ion traps the oscillating fields are periodic and we assume the ion’s motion is

much slower than the oscillating speed, the first-order term in the averaged force is zero:

∫
𝑇

0
𝑄𝐸⃗(𝑟(𝑡)) cosΩ𝑡𝑑𝑡 ≈ ∫

𝑇

0
𝑄(𝐸⃗(𝑟(𝑡0)) + 𝛿𝐸⃗) cosΩ𝑡𝑑𝑡 = ∫

𝑇

0
𝑄𝛿𝐸⃗ cosΩ𝑡𝑑𝑡, (2.14)

where 𝛿𝐸⃗ = (𝛿𝑟 ⋅∇)𝐸⃗(𝑟(𝑡0)) can be calculated by Taylor expansion. To calculate 𝛿𝐸⃗,

we first simplify Eq. 2.12 to:

𝑚𝛿 ̈𝑟(𝑡) = 𝑄𝐸⃗(𝑟(𝑡0)) cosΩ𝑡 (2.15)

Then, we obtain:

𝛿𝑟(𝑡) = 𝑄𝐸⃗(𝑟(𝑡0))
𝑚Ω2 (1 − cosΩ𝑡) (2.16)

And also:

𝛿𝐸⃗ = 𝑄
𝑚Ω2 (1 − cosΩ𝑡)(𝐸⃗ ⋅ ∇)𝐸⃗ = 𝑄

2𝑚Ω2 (1 − cosΩ𝑡)∇|𝐸⃗|2 (2.17)

Substituting Eq.2.17 into Eq.2.14, we can get (set 𝑇 = 2𝜋
Ω ):

𝐹 coarse ≈ 1
𝑇 ∫ 0𝑇 𝑄𝛿𝐸⃗(𝑟(𝑡)) cosΩ𝑡𝑑𝑡 = − 𝑄2

4𝑚Ω2 ∇|𝐸⃗|2 = −𝑄∇Φ (2.18)

Therefore, the pseudopotential can be approximated as:

Φ ≈ 𝑄
4𝑚Ω2 |𝐸⃗(𝑟)|2 (2.19)

2.4 Geometric structure and motional modes

In this section, we primarily discuss simulating the classical mechanical properties

of ion crystals, such as geometry, mode frequencies, and so on. The classical interaction

potential energy of ions confined by a Paul trap can be expressed as follows:

12
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𝑉 = ∑
𝑖

1
2𝑚𝜔2

𝑥 [
𝑥2

𝑖 + (
𝜔𝑦
𝜔𝑥 )

2
𝑦2

𝑖 + (
𝜔𝑧
𝜔𝑥 ) 𝑧2

𝑖 ]
+∑

𝑖<𝑗

𝑒2

4𝜋𝜖0√(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2
,

To remove dimensions, we can define 𝑥𝑖 = 𝑙𝑢𝑖, 𝑦𝑖 = 𝑙𝑣𝑖, and 𝑧𝑖 = 𝑙𝑤𝑖, resulting in

𝑉
𝑚𝜔2

𝑥
= 𝑙2

∑
𝑖

1
2 (𝑥2

𝑖 + 𝑟2𝑣2
𝑖 + 𝑠2𝑤2

𝑖 )+ 𝑒2

4𝜋𝜖0𝑚𝜔2
𝑥𝑙 ∑

𝑖<𝑗

1

√(𝑢𝑖 − 𝑢𝑗)2 + (𝑣𝑖 − 𝑣𝑗)2 + (𝑤𝑖 − 𝑤𝑗)2
,

where 𝑟 = 𝜔𝑦/𝜔𝑥 and 𝑠 = 𝜔𝑧/𝜔𝑥. To make the potential energy dimensionless, we

need

𝑙2 = 𝑒2

4𝜋𝜖0𝑚𝜔2
𝑥𝑙

Then, 𝑙3 = 𝑒2/(4𝜋𝜖0𝑚𝜔2
𝑥), and the potential energy can be transformed into a dimen-

sionless form

𝑉
𝑚𝜔2

𝑥𝑙2
= ∑

𝑖

1
2 (𝑢2

𝑖 + 𝑟2𝑣2
𝑖 + 𝑠2𝑤2

𝑖 )+∑
𝑖<𝑗

1

√(𝑢𝑖 − 𝑢𝑗)2 + (𝑣𝑖 − 𝑣𝑗)2 + (𝑤𝑖 − 𝑤𝑗)2
(2.20)

When ions crystallize, their geometry automatically minimizes the value of the po-

tential given by Eq.2.20. To theoretically simulate the equilibrium positions, we typically

numerically minimize the potential energy from Eq.2.20 to obtain dimensionless param-

eters 𝑢𝑖, 𝑣𝑖, and 𝑤𝑖, and then add the dimension 𝑙 to solutions to acquire the real space
position by 𝑥𝑖 = 𝑙𝑢𝑖, 𝑦𝑖 = 𝑙𝑣𝑖, and 𝑧𝑖 = 𝑙𝑤𝑖.

As ions crystallize, we can calculate their collective motional normal modes based on

classical mechanics. Considering ions moving in a three-dimensional space, the classical

Hamiltonian in real space coordinates can be written as a summation of kinetic energy

and potential energy:

ℋ = 1
2𝑚 ∑

𝑖
(𝑥̇2

𝑖 + ̇𝑦2
𝑖 + ̇𝑧2

𝑖 ) + 𝑉 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)

When ions crystallize, we can assume ions move very slightly around their equilib-

rium positions, and use the deviation 𝜂𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖,0 from the equilibrium positions as

generalized coordinates. Then we can perturb the potential energy using Taylor expan-

sion:
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𝑉 = ∇𝑉 (𝜂) ⋅ 𝜂 + 1
2𝜂𝑇 𝐻𝜂,

where 𝜂 = (⋯ , 𝜂𝑥𝑖, ⋯ , 𝜂𝑦𝑖, ⋯ , 𝜂𝑧𝑖, ⋯), and 𝐻𝑖𝑗 = 𝜕𝑉 /𝜕𝜂𝑖𝜂𝑗 is the Hessian matrix.

Since ions are in equilibrium positions, the first-order term vanishes, ∇𝑉 (𝜂) ⋅ 𝜂 = 0. The
classical Hamiltonian can be rewritten as

ℋ = 1
2 ̇𝜂𝑇 𝜂 + ∇𝑉 (𝜂) ⋅ 𝜂 + 1

2𝜂𝑇 𝐻𝜂, (2.21)

Next, we can perform a linear transformation 𝜂 = 𝑈𝜌 to diagonalize the quadratic

form in Eq. 2.21, yielding

ℋ = 1
2𝑚 ̇𝜌𝑇 𝑈 𝑇 𝑈 ̇𝜌 + 1

2𝜌𝑇 𝑈 𝑇 𝐻𝑈𝜌 = 1
2𝑚 ̇𝜌𝑇 ̇𝜌 + 1

2𝜌𝑇 𝑈 𝑇 𝐻𝑈𝜌.

We can solve for the matrix 𝑈 to diagonalize 𝐻 by 𝑈 𝑇 𝐻𝑈 = 𝐾 , where 𝐾 is a

diagonal matrix. Then we obtain a Hamiltonian of a set of independent classical harmonic

oscillators:

ℋ = 1
2𝑚 ̇𝜌𝑇 ̇𝜌 + 1

2𝜌𝑇 𝐾𝜌 = ∑
𝑖

1
2𝑚 ̇𝜌𝑖

2 + 1
2𝑘𝑖𝜌2

𝑖 .

From this, we can obtain mode frequencies as √𝑘𝑖/𝑚.
For our dimensionless potential energy ̃𝑉 = 𝑉 /(𝑚𝜔2

𝑥𝑙2), we can directly diagonalize
the Hessian matrix 𝐻̃ corresponding to ̃𝑉 to obtain a diagonal matrix ̃𝐾 with diagonal

elements ̃𝑘𝑖. Then, we have

𝐻̃𝑖𝑗 = 𝜕2 ̃𝑉
𝜕𝜂𝑖𝜕𝜂𝑗

= 1
𝑚𝜔2

𝑥

𝜕2𝑉
𝜕𝑞𝑖𝑞𝑗 = 1

𝑚𝜔2
𝑥

𝐻𝑖𝑗 , (2.22)

where 𝑞𝑖 represents real space coordinates 𝑥𝑖, 𝑦𝑖, 𝑧𝑖. Eq. 2.22 indicates that the eigen-

values of the real space Hessian matrix are 𝑘𝑖 = 𝑚𝜔2𝑥𝑘̃𝑖. Thus, we can first diagonalize
the dimensionless Hessian matrix 𝐻̃ to obtain eigenvalues 𝑘̃𝑖, and calculate the mode

frequencies by

𝜔𝑖 = √
𝑘𝑖
𝑚 = 𝜔𝑥√𝑘̃𝑖
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2.5 Qubits encoded with trapped ions

2.5.1 Types of qubits

The simplest ions that can be used to encode qubits are hydrogen-like ions, which

have only one electron in their valence shell. Compared to more complex ions with mul-

tiple valence electrons, hydrogen-like ions exhibit simpler energy structures and closed-

cycle optical transitions between the 2𝑆1/2 and 2𝑃1/2 manifolds, which can be easily ma-

nipulated by lasers. Typically, the most frequently used ions possess only two electrons

in their outermost shell, with all other inner shells being either completely filled or empty.

Therefore, all Group IIA elements of the periodic table can be employed. Group IIA ele-

ments include Beryllium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium

(Ba), and Radium (Ra). In addition to Group IIA elements, other elements that meet this

requirement can be predicted based on the filling order of atomic orbitals. As depicted

in Fig. 2.1, when the s shell is fully filled, electrons can still be added to the inner shell.

This category of elements includes Helium (He, 1s2), Zinc (Zn, 3d104s2), Cadmium (Cd,

4d105s2), Ytterbium (Yb, 4f146s2), Mercury (Hg, 4f145d106s2), Nobelium (No, 5f147s2),

and Copernicium (Cn, 5f146d107s2).

s p d f2 6 10 14

0 1 2 3
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Figure 2.1 Electron orbitals

Depending on the choice of energy level, there are three methods for encoding qubits:

encoding into optical energy levels with optical transition, encoding into optical energy

levels of the ground state manifold, and encoding into optical energy levels of metastable
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manifolds. Qubits can be encoded into the ground states of ions. For ions without nu-

clear spin, qubits are encoded into the Zeeman states of the S manifold, often referred

to as Zeeman qubits. For ions with nuclear spin, qubits are typically encoded into the

clock state of hyperfine energy levels, often called clock state qubits, and the clock states

consist of two 𝑚𝐹 = 0 states in the hyperfine manifold. Clock states’ energies are first-

order insensitive to magnetic field fluctuations due to 𝑚𝐹 = 0, and also to qubit splitting.
Consequently, qubits encoded in clock states can have long coherence times exceeding 1

hour [38] . Qubits can also be encoded into energy levels with optical transitions, such as

using a state in the ground state manifold as |0⟩ and a state in a metastable manifold as
|1⟩. This encodingmethod is often called an optical qubit. Compared to clock state qubits,
optical qubits can exhibit better detection efficiency due to larger energy splitting of the

qubit, which reduces off-resonant coupling. Meanwhile, states in metastable manifolds

also have relatively long lifetimes and 𝑚 = 0 states, so optical qubits can also maintain

relatively long coherence times. Qubits encoded into energy levels of metastable mani-

folds are referred to as metastable state qubits. Metastable state qubits can be utilized as

memory to temporarily store information during cooling or detection [39] .

2.5.2 Initialization

To use qubits encoded in ions’ internal states, we must first initialize the qubits into a

specific state. The technical details for different types of qubits and energy level structures

may vary, but the main idea involves using a laser to generate a single dark state.

(a) (b)

171Yb + 174Yb +

Figure 2.2 Clock state qubit and Zeeman qubit initialization
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Fig.2.2 illustrates the initial state preparation methods for clock state qubits and Zee-

man qubits. In Fig.2.2(a), the initialization of a clock state qubit is achieved by simulta-

neously exciting the 𝐹 = 1 states in the 𝑆 manifold to the 𝐹 = 1 states in the 𝑃 manifold,

leaving the 𝐹 = 0 state in the 𝑆 manifold uncoupled. Since the transition cycle is not

closed, the population is continuously pumped into the 𝐹 = 0 state in the 𝑆 manifold.

This scheme will not work if we excite the 𝐹 = 1 states in the 𝑆 manifold to the 𝐹 = 0
state in the 𝑃 manifold, as the transition from the 𝐹 = 0 state in the 𝑃 manifold to the

𝐹 = 0 state in the 𝑆 manifold is forbidden. In Fig. 2.2(b), the initialization of a Zee-

man qubit is accomplished by using only a 𝜎+ laser to excite ions, causing the population

in the 𝑚 = −1/2 state to be pumped into the 𝑚 = +1/2 state. This method is sensitive

to the laser’s polarization, and if any 𝜎− or 𝜋 component exists, the fidelity of the qubit

initialization will decrease.

The initialization method for optical qubits is the same as the method for clock state

qubits or Zeeman qubits. An optical qubit typically consists of at least one state in the

ground state manifold, and the state in the ground state manifold can be prepared using

the methods described above.

2.1𝐺𝐺𝐺𝐺𝐺𝐺

12.6𝐺𝐺𝐺𝐺𝐺𝐺

F=1

F=0

F=1

F=0

2𝑃𝑃1/2

2𝑆𝑆1/2

2D3/2

F=1

F=2

435nm

F=1

F=03[3/2]1/2

Figure 2.3 Optical qubit initialization

Fig. 2.3 displays an optical qubit in a 171Yb+ ion. To initialize this optical qubit, we

can use the same method for the clock state qubit, since the |0⟩ state of the clock state
qubit and the optical qubit is encoded into the same energy level.

For metastable state qubits, population transfer is required. We first use the method
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described in Fig. 2.2 to initialize the ion’s internal state into the 𝐹 = 0 state in the 𝑆
manifold. For example, if we want to initialize a qubit in the metastable manifold 2𝐹7/2

of 171Yb+ , we need to first initialize a clock state qubit in the 𝑆 manifold, and then

transfer the population to the 2𝐹7/2 manifold, as shown in Fig.2.4. Alternatively, we can

first prepare a coherent state of a clock state qubit and then coherently transfer it into a

metastable state qubit [39] .

2.1𝐺𝐺𝐺𝐺𝐺𝐺

12.6𝐺𝐺𝐺𝐺𝐺𝐺

F=1

F=0

F=1

F=0

2𝑃𝑃1/2

2𝑆𝑆1/2

2D3/2

F=3

F=2

411nm

F=1

F=03[3/2]1/2

F=3

F=4

3432nm
2𝐹𝐹7/2

2𝐷𝐷5/2

Figure 2.4 Metastable state qubit initialization

2.5.3 Operation

There are two primary methods to manipulate the qubit encoded in ions. The first is

to directly drive the qubit states, where the frequency of the external driving field exactly

matches the qubit splitting. For clock state qubits, Zeeman qubits, and metastable state

qubits, the qubit splittings are typically in the giga or mega Hertz level, and the external

driving fields are often microwaves. For optical qubits, the qubit splitting is in the optical

range, and the external driving fields are usually visible lasers. Since the external driv-

ing field interacts with the ion’s motional degree of freedom through the dependency of

laser phase 𝑘⃗ ⋅ 𝑥⃗, microwaves typically cannot drive the motional modes of ions due to
their small wave vector 𝑘⃗. One way to solve this limitation is to use a spatial magnetic
field gradient [40-41] , where the magnetic field gradient adds a spatial dependency of qubit

energy splitting.

𝐻̂ lab = ℏ𝜔0
2

̂𝑆𝑧 + ℏ𝜈 ̂𝑎† ̂𝑎 + ℏΩ0 ̂𝑆(𝑒𝑖(𝑘𝑥̂−𝜔𝑡) + h.c.) + ℏ𝑆 ⋅ Δ𝐵⃗(𝑥⃗), (2.23)

where Δ𝐵⃗(𝑥⃗) = (𝑥⃗ ⋅ ∇)𝐵⃗. The red term represents the effect of the magnetic field

gradient on the ion, and by changing which component of the magnetic field has a gra-

dient and which one of 𝑥, 𝑦, 𝑧 the gradient is dependent on, we can realize ̂𝑆𝑖 ̂𝑗, where
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𝑖, 𝑗 ∈ 𝑥, 𝑦, 𝑧. For instance, if we want to generate ̂𝑆𝑦𝑥̂, we can use a magnetic field

𝐵⃗ = (0, Ω𝑔𝑥, 𝐵0), where Ω𝑔 represents the strength of the gradient.

The other method is using Raman transitions to drive qubits. Raman beams consist of

visible lasers with a large wave vector, which can also drive gigahertz transitions matching

their frequency difference.

2.5.4 Measurement

To measure the information stored in a qubit, we need a way to distinguish the |0⟩
and |1⟩ states. The main idea of measuring atomic qubits is to make only one of |0⟩
and |1⟩ emit fluorescence during measurement, and collect emitted photons using photon
detectors. For the detection of clock state qubits, we excite the 𝐹 = 1 states in the 𝑆
manifold to the 𝐹 = 0 state of the 𝑃 manifold, as shown in Fig. 2.5(a). Since the transition

from the 𝐹 = 0 state of the 𝑃 manifold to the 𝐹 = 0 state of the 𝑆 manifold is forbidden,

if the ion’s internal state is in 𝐹 = 1, there will be fluorescence, and if the ion’s internal
state is in 𝐹 = 0, there will be no fluorescence. If the transition were allowed, the 𝐹 = 0
state of the 𝑃 manifold could decay to the 𝐹 = 0 state of the 𝑆 manifold, and the ion

could not continuously emit photons. Ideally, if the ion is in the 𝐹 = 0 state of the 𝑆
manifold, it should not emit any photons. However, the existence of 𝐹 = 1 states in the 𝑃
manifold enables the |0⟩ state to emit photons through off-resonant coupling, which is the
main limitation for the detection fidelity of a clock state qubit. The detection of Zeeman

qubits typically involves shelving qubits to a metastable state, since the lack of hyperfine

structure makes it difficult to find a forbidden transition. As shown in Fig. 2.5(b), to detect

a Zeeman qubit, we first need to shelve one of the qubit states into another state outside the

detection cycle, and then turn on the detection beam to continuously excite fluorescence.

The detection of optical qubits is similar to the detection of Zeeman qubits.

The detection of metastable qubits requires repumping the population from the

metastable state back to the ground state to excite fluorescence. As shown in Fig. 2.5(c),

we first need to apply a 3432 nm laser without an additional sideband to selectively re-

pump one of the qubit states back to the 2D5/2 state, and then use a 976 nm laser to repump

the population back to the ground state manifold.
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(a)

(b)

174Yb +

171Yb +

(c)

Figure 2.5 Qubit measurement methods.
(a) Detection scheme of clock state qubit. (b) Detection scheme of Zeeman qubit. (c) Detection

scheme of metastable state qubit.

20



CHAPTER 3 EXPERIMENT SETUP

CHAPTER 3 EXPERIMENT SETUP

3.1 The vacuum setup

3.1.1 Baking procedure

During the baking procedure, we used three different vacuum pumps: a turbopump, a

big ion pump, a small ion pump, and a getter pump, as shown in Fig. 3.1. The turbopump

reduces the vacuum level from atmospheric pressure to High Vacuum (HV). The big ion

pump brings the system from the HV region to the Ultra-High Vacuum (UHV) region.

The small ion pump and the getter pump are used for daily operations. Typically, the ion

pump works in an environment where the pressure is below 10−6mBar, and we usually

use it after the turbopump reduces the pressure to that level.

1. Turbopump: 
Agilent TwisTorr

304FS
Trap

2. Big ion pump:
Agilent VacIon

Plus 300

Valve

3. Small ion pump 
/Getter pump:
NEXTorr D-200

Figure 3.1 Vacuum pumps used during baking
The three vacuum pumps used during baking. The turbopump and big ion pump are purchased

from Agilent, and the small ion pump and getter pump are obtained from SAES Getters.

Table.3.1 presents the baking procedure. The baking process is primarily conducted

at 150 °C. The turbopump remains open throughout the baking process, while the big ion
pump is opened when the turbopump cannot further reduce the pressure. As depicted in

Fig.3.1, both the turbopump and the big ion pump are placed outside the chamber and

are used only for baking. These two pumps handle the majority of the baking process.

The small ion pump and the getter pump are not used during baking, and we open them

only for degassing contamination. The degassing for the ion pump is relatively quick;

typically, rapidly opening and closing the ion pump several times is sufficient. However,
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Table 3.1 Baking procedure

Time IMG (mBar) Big ion pump
(mBar)

Small ion pump Temperature Other operations

08/14
17:00

7.8 × 10−6 closed closed 25 Start baking, increase T

08/15
10:00

6.7 × 10−8 closed closed 150

08/15
10:00

6.7 × 10−8 closed closed 150 Degassing the small ion pump.
Note: before opening the
small ion pump we must check
whether the pressure below
10−5 Torr

08/15
10:01

7.0 × 10−7 closed closed 150 Degassing make vacuum a little
bit worse

08/15
10:10

6.5 × 10−8 closed closed 150 Start conditioning, pressure be-
gin to increase

08/15
10:11

7.1 × 10−7 closed closed 150 Wait the pressure decrease

08/15
10:50

4.4 × 10−8 closed closed 150 Open the big ion pump

08/15
10:51

3.7 × 10−8 9.9 × 10−9 closed 150

08/16
8:00

7.6 × 10−9 1.1 × 10−9 3.4×10−9 mBar
(222nA)

150

08/16
17:58

6.9 × 10−9 9.8 × 10−9 closed 150 Begin to decrease the tempera-
ture

08/16
22:50

4.9 × 10−9 8.2 × 10−9 closed 100 Start TmdActivation mode

08/16
23:50

3.0 × 10−8 1.8 × 10−7 closed 100 During the activation, hydrogen
go out and make the vacuum
worse.

08/16
23:53

6.3 × 10−9 3.8 × 10−8 closed 100

08/17
02:46

4.4 × 10−9 8.0 × 10−9 6nA 100 The hydrogen had been clear
out. Isolate the trap (close the
valve) and decrease the temper-
ature
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the activation process for the getter pump takes several hours, and after activation, we

need to wait for the hydrogen released during the activation process to be absorbed by the

big ion pump and the turbopump. After degassing and activation, we isolate the vacuum

chamber from the big ion pump and the turbopump by closing the valve. For the UHV

valve we used, we must ensure that each time we close the valve, the torque applied is

slightly greater than the previous time. This requires us to record the torque used for

closing the valve.

3.1.2 The vacuum chamber

Valve

Small Ion Pump
+
Getter Pump

Trap

Figure 3.2 The vacuum chamber
The vacuum chamber consists of three main parts: valve, trap, and ion&getter pump.

As depicted in Fig. 3.2, we use a hemispherical chamber to hold the trap, which is

placed at the front of the largest viewport. The vacuum chamber can be separated into

three parts: valve part, trap part, and pump part. The valve part is used only before baking.

The trap part houses the trap and contains ovens and electrodes connected inside. The

pump part is responsible for maintaining the UHV environment. In previous experiments,

we found that the 355nm pulsed laser could induce accumulated charges on the viewport,

causing ion shifts during Raman operation. In our latest version, we use a metallic mask to

shield charges accumulated on the viewport. The largest viewport is also used for imaging

ions, while the other viewports are primarily used for transmitting operation lasers. On
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top of the hemispherical chamber, a feedthrough is used for transmitting RF power. At the

bottom of the hemispherical chamber, a thin neck connects the hemispherical chamber and

the other parts. Due to the neck’s diameter being only 16mm, the vacuum conductance

of the neck is limited. In the next version, we could add a non-evaporable getter inside

the hemispherical chamber to improve the vacuum.

Helical 
resonator

Imaging 
system

935nm

399nm

370nm

370nm

Microwave

Figure 3.3 The whole system
The whole system consists of the vacuum chamber, the helical resonator, and the optical

elements.

Fig. 3.3 illustrates the external setup around the vacuum chamber. At the top of the

vacuum chamber, a helical resonator is placed to filter and amplify the RF signal. The

orange square indicates the position of the imaging system, where a long tube is used to

hold lenses inside. The green square shows a horn used to generate microwaves, which are

primarily used for calibrating camera detection. The 370nm, 399nm, and 935nm lasers

are combined by two dichromatic mirrors. The blue square displays an additional 370nm

laser used for cooling down the vertical motional mode. This is necessary because, during

2D experiments, one of the motional modes is vertical and cannot be efficiently cooled

down only by the horizontal 370nm laser.
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3.2 The monolithic ion trap

We have developed a Paul trap capable of producing a pancake-like harmonic poten-

tial to trap a 2D crystal of ions and set the direction of micromotions on the plane of the

2D crystal. The trap is a three-dimensional monolithic trap [42-44] constructed on a single

layer of gold-plated laser-machined alumina [45-46] . Fig. 3.4 illustrates the structure of

our trap. In this configuration, the 2D crystals of ions reside in the z-x plane, which is

achieved by compressing the harmonic potential along the y-axis, where the micromotion

occurs along the z-axis. The net-propagation direction of the Raman laser beam is along

the y-axis, which is perpendicular to the direction of micromotion. Consequently, quan-

tum operations performed by Raman laser beams will not be affected by the micromotion.

The trap is functionally divided into three layers: the front and back layers contain

dc electrodes, and the middle layer serves as the RF electrode, as conceptually depicted

in Fig. 3.4(a). The RF electrode has a slope with an angle of 45∘ relative to the normal

direction of the alumina piece. In each DC layer, there are ten electrodes, with five on

both the upper and lower sides and a 50 𝜇m spacing. At the trap’s center, a 260 𝜇m × 4

mm slot is present, where ions are trapped. Fig. 3.4(b) displays the trap’s front side. The

angle of the slope and the gap between DC and RF electrodes are optimized to maximize

the trap frequency. We employ CPO (Charged Particle Optics) software to calculate the

electric potential generated by the electrodes. We also compare the simulated potential

with the real potential to calibrate the simulation coefficient for further trap simulation. In

the experiment, only six of the twenty electrodes are connected to the stable DC sources,

while the others are connected to GND, as shown in Fig. 3.4(b).

The monolithic trap is situated inside a vacuum chamber depicted in Fig. 3.4(c). The

trap and vacuum system are designed to ensure sufficient optical access. 171Yb+ ions are

loaded into the middle of the trap through photo-ionization and Doppler cooling [47] . We

create a 2D crystal of ions in a plane that consists of the axial axis (x-axis) and one of

the radial axes (z-axis). We apply two Doppler-cooling laser beams to couple all three

directions of ion motions, as shown in Fig. 3.4(a). The magnetic-field insensitive states

of 171Yb+ ions in the ground-state manifold 2𝑆1/2, |𝐹 = 0, 𝑚𝐹 = 0⟩, and |𝐹 = 1, 𝑚𝐹 = 0⟩
are mapped to qubit states |0⟩ and |1⟩, respectively. The qubit state is detected by the laser
beam resonant to the transition between 𝐹 = 1 of 2𝑆1/2 and 𝐹 = 0 of 2𝑃1/2 and initialized

to |0⟩ by applying the optical pumping laser beam resonant with the transition between

𝐹 = 1 of 2𝑆1/2 and 𝐹 = 1 of 2𝑃1/2. The qubit is coherently manipulated by a pair of 355
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nm picosecond pulse laser beams with a beatnote frequency close to the qubit transition

𝜔0 = 2𝜋 × 12.642821 GHz.

oven

shielding

(c)

(b)(a)

RF
Raman

Cooling

Cooling
Optical Pumping
Detecting

Repumping

B
z

x y

Figure 3.4 Trap structure and beam configuration.
(a) Conceptual drawing of our trap and the configuration of laser beams for cooling, pumping,
detection (370 nm and 935 nm) and coherent operations (355 nm). The magnetic field is applied
vertically. (b) Scanning electron microscope (SEM) image of our trap (white scale bar, 400 𝜇m).
The trap structure is laser-machined on a single piece of alumina with less than 10 𝜇m precision.
Gold is electro-plated on the surface of alumina with 10 𝜇m thickness. The trap has a total of 20
electrodes, where fourteen of them are connected to GND and the others to DC sources. The

gray letters label the electrodes on the opposite side of the trap.(c) Image of our monolithic trap
mounted in a hemi-sphere vacuum chamber. The trap is shielded with stainless steel plates on
the front and back, respectively, which are connected to GND. The dashed lines show the

electrodes underneath the shield.

3.2.1 Fabrication processes

The substrate is a single piece of alumina with a thickness of 380 𝜇m and a surface

flatness of less than 30 nm. The electronic structure is fabricated by laser-machining

and coated with 3 𝜇m gold using electroplating technology. The detailed procedure to

fabricate the electrode structure is as follows: 1) Carve a 260 𝜇m slot at the center of the

piece, as shown in Fig. 3.6(a); 2) Create a 45∘ slope on each side by cutting small steps to

fit the slope, as shown in Fig. 3.6(b); 3) Make a tiny groove on each slope with a width of

around 50 𝜇m; 4) Apply gold coating on both sides of the chip, as shown in Fig. 3.6(c);
5) Cut deeper in the groove position to remove gold, electrically separating the center

layer from the top and bottom layers; 6) Laser cut the slots on the top and bottom layers

to electrically separate all DC electrodes. Among all the steps, the second is the most
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𝑫 𝑯



DC Electrodes
Ground

RF Electrodes 

Figure 3.5 Important geometric parameters for the trap design
We generate 3D models with all combinations of three parameters and calculate the

pseudo-potential and the secular frequency with CPO software. Maximizing the secular
frequencies given fabrication limitation and laser-light scattering, we choose 𝐷 = 260 𝜇m,

𝜃 = 45∘ and 𝐻 = 40 𝜇m for the trap.

subtle one. The geometry of the four slopes is crucial for ion control with DC voltages.

In step 2), for each slope, we apply 40 laser cutting iterations with different durations and

a 5 𝜇m shift in cutting position. The cutting duration for each pulse is calculated based

on the calibrated relationship between cutting depth and cutting time. The laser cutting

precision is ±1 𝜇m, limited by worktable instability. Using a laser with a power of 2W, a

wavelength of 355 nm, and a beam waist of around 15 𝜇m, we achieve a cutting speed of
100 mm/s.

3.2.2 Structure of the trap

We use CPO software to simulate the trap performance with various geometric pa-

rameters. There are three important parameters for the trap design: the distance between

two RF electrodes 𝐷, the height of RF electrodes 𝐻 , and the angle of the slope 𝜃, as
shown in Fig. 3.5. We optimize these three parameters primarily to achieve large secular

frequencies in the radial direction, given fabrication limitations. The secular frequency

is approximately inversely proportional to 𝐷2 [37] , which is confirmed in our numerical

simulation. We balance the requirement of a large trap frequency and low UV-light scat-

tering, leading to the choice of 𝐷 = 260 𝜇m. For the slope angle 𝜃, our simulation shows
the best performance at 𝜃 ≈ 47∘. Due to the fabrication difficulty of the angle, we choose

𝜃 = 45∘. Our simulation shows the best value of 𝐻 is around 30 𝜇m. Considering the
laser cutting precision, we decide on 𝐻 = 40 𝜇m.
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(a) (b)

(c) (d)

Figure 3.6 Steps for fabricating the structure of electrodes.
(a) Laser cut the 260 𝜇m slot. (b) Cut 40 small steps for each slope with 45∘. (c) Laser cut the
small groove and electroplate gold on the surface. (d) Cut the slots on the grooves and two sides

of the chip to electrically separate all DC and RF electrodes.

3.2.3 Trap simulation calibration

Due to fabrication imperfections, the actual trap potential may deviate from the ideal

model in the simulation. We develop a method to quantitatively calibrate the differences

between reality and simulation, which is useful for further simulations and predictions of

trap behavior. Taking 𝜙C(𝑥, 0, 0) as an example, we can describe the difference between
reality and simulation as follows:

𝜙real,C(𝑥, 0, 0) = 𝜂C,x𝜙sim,C(𝑥, 0, 0), (3.1)

where 𝜙real,C(𝑥, 0, 0) is the actual potential generated by electrode DCC along the x-axis,
𝜙sim,C(𝑥, 0, 0) is the simulated potential, and 𝜂C,x is the imperfection coefficient for DCC
in the x-axis. We study the relationship between the actual axial trap frequency and the

simulated axial trap frequency to calibrate 𝜂C,x.

We begin by calculating the axial mode frequency, which is 𝜔x =
√𝜕2𝜙(𝑥, 0, 0)/𝜕2𝑥|𝑥=0. Using the expression of 𝜙 in Eq. (4.1), we obtain

𝜔2
𝑥 = 𝑉C

𝜕2𝜙C(𝑥, 0, 0)
𝜕2𝑥

+ 𝑉NC
𝜕2𝜙NC(𝑥, 0, 0)

𝜕2𝑥
|𝑥 = 0. (3.2)

With Eq. (3.2) and a fixed value of 𝑉 NC, we can treat𝜔2
𝑥 as a linear function of 𝑉C, which

has a slope 𝑎 = 𝜕2𝜙C(𝑥,0,0)
𝜕2𝑥 |𝑥 = 0 and an intercept 𝑏 = 𝑉 NC𝜕2𝜙NC(𝑥,0,0)

𝜕2𝑥 |𝑥=0. We can write

two versions of Eq. (3.2)
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𝜔2
x,real = 𝑎real𝑉C + 𝑏real, (3.3)

𝜔2
x,sim = 𝑎sim𝑉C + 𝑏sim, (3.4)

where

𝑎real =
𝜕2𝜙real,C(𝑥, 0, 0)

𝜕2𝑥
, (3.5)

𝑎sim =
𝜕2𝜙sim,C(𝑥, 0, 0)

𝜕2𝑥
. (3.6)

Thus, we obtain

𝜂C,x =
𝜙real,C(𝑥, 0, 0)

𝜙sim,C(𝑥, 0, 0) = 𝑎real
𝑎sim

. (3.7)

Combining Eq. (3.3), Eq. (3.4), and Eq. (3.7), with the same value of 𝑉C, we obtain

𝜔2
x,real = 𝜂C,x𝜔2

x,real + 𝑏C, (3.8)

where 𝑏C is an intercept determined by 𝑉NC and the geometries of other electrodes. We

measure the axial trap frequency 𝜔x,real by adding a modulation signal to one of the DC

electrodes and examining the ion image. When the modulation frequency is close to the

axial mode frequency, the motion of the ion is resonantly excited and melts in the axial

direction. By changing 𝑉C and plotting the points 𝜔2
x,real, 𝜔2

x,sim in Fig. 3.7(a), we can fit

the coefficient of 𝜂C,x = 0.97. By performing the same measurement but only changing
𝑉NC, we can obtain 𝜂NC,x = 0.87. 𝜂C,x is close to 1, which means the geometry of the

center electrodes is nearly perfect in the axial direction. On the other hand, 𝜂NC,x = 0.87
indicates that the DCNC electrodes are farther away from the ion in reality than in the

simulation. Wheneverwewant to simulate the axial potential, we need to take into account

𝜂C, x and 𝜂NC,x.

To calibrate the imperfection coefficients of the two radial principal axes, y-axis and

z-axis, we execute the same procedure as for the axial calibration, but with more careful

consideration regarding the principal-axes rotation. During the process of changing 𝑉NC
or 𝑉C, only if we maintain the rotation angle of the principal axes within a small regime
can we have similar equations to Eq. (3.8) for the y-axis and z-axis:

𝜔2
y,real ≈ 𝜂C,y𝜔2

y,real + 𝑏C,y, (3.9)

𝜔2
z,real ≈ 𝜂C,z𝜔2

z,real + 𝑏C,z, (3.10)
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𝜔2
y,real ≈ 𝜂NC,y𝜔2

y,real + 𝑏NC,y, (3.11)

𝜔2
z,real ≈ 𝜂NC,z𝜔2

z,real + 𝑏NC,z. (3.12)

All the data are shown in Fig. 3.7. From the data and the linear fitting, we can obtain 𝜂C,y =
1.65, 𝜂C,z = 1.92, 𝜂NC,y = 1.23, and 𝜂NC,z = 1.11. All these imperfection coefficients
are larger than 1, which indicates that, relative to the ideal model, the DC electrodes are

closer to the ion in the radial direction in reality. When we simulate the radial potential

and check the principal axes rotation in the yz-plane, we use the average values 𝜂C,yz =
1/2(𝜂C,y + 𝜂C,z) = 1.785 and 𝜂NC,yz = 1/2(𝜂NC,y + 𝜂NC,z) = 1.17 as the coefficients

multiplied to 𝜙C(0, 𝑦, 𝑧) and 𝜙NC(0, 𝑦, 𝑧).
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Figure 3.7 Axial potential calibration
(a) We only change the value of 𝑉NC and measure 𝜔real,x. Then, we simulate the ideal 𝜔sim,x
using the same DC voltage condition. By linearly fitting the points 𝜔2

x,real, 𝜔2
x,sim, we obtain

𝜂NC,x = 0.87. (b) We only change the value of 𝑉C and plot all the points 𝜔2
x,real, 𝜔2

x,sim. By
linearly fitting the points, we obtain 𝜂C,x = 0.97.

3.3 The imaging system

3.3.1 Designing a high-NA objective lens

(a) (b)

Figure 3.8 The structure of the custom-made lens.
(a) Surface SRF index. (b) 3D model.
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To enhance detection fidelity, we designed a custom high-NA objective lens, the

structure of which is depicted in Fig. 3.8. When designing a high-NA objective lens,

the thickness of the viewport is a crucial parameter. Typically, a high-NA objective lens

can only be used with the specific viewport for which it was designed. Utilizing the lens

to image ions behind a viewport with a different thickness would significantly reduce the

image quality. The quality of imaging could be reduced to the level of focusing quality.

An ideal focus point requires all rays to have the same optical path length, but the pres-

ence of a viewport dramatically increases the optical path length difference between the

center ray and the edge ray, especially for high-NA lenses. Therefore, it is imperative to

carefully choose or design a high-NA objective lens for a viewport.

Our design is inspired by a design from the University of Maryland [48] , and we mod-

ified the parameters to suit our experimental setup. The parameters we adjusted for op-

timization include the distance between Surface 3 and Surface 4, the distance between

Surface 13 and Surface 15, the radii of Surfaces 2, 12, and 13, and the thickness of Sur-

face 12. We used the point-spread function to evaluate the performance of the lens and

employed Zemax to automatically optimize the parameters. To separate individual lenses

with the specific distances generated by Zemax, we designed a set of spacers with the

corresponding distances. These spacers ensure that the actual distances deviate minimally

from the designed values, provided that individual lenses are attached to the spacers.

After finalizing the parameters, we collaborated with a domestic company,福晶科技,

to manufacture the individual lenses, and commissioned Taobao to produce the spacers.

We then assembled the high-NA lens in-house.

3.3.2 The imaging setup

Hemispherical 
chamber

6.35mm 
Viewport

Objective lens f=200mm Iris f=150mm

EMCCD

PMT

370 filter

Translation 
stage

Figure 3.9 Imaging system for 171Yb+ .
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Fig. 3.9 shows the setup for imaging ions. The high-NA objective lens collects the

fluorecense emitted by ions, and outputs a parallel beam. A lens of 200mm focal length is

used to focus the fluorecense on the plane of an iris, and the iris is used to block scattering

of 370nm laser. After the iris, a lens of 150mm focal length is used to image ions to

the PMT or camera. At the begining, we use a 100mm lens instead of 200mm, and a
100mm lens instead of 150mm. But during experiment we find the detection fidelity

using EMCCD is worse than PMT. Based on numerical simulation, we find the problem

comes from the second lens, and the point spread function after the second lens is below

0.3. The beam size on the second lens is too large and induce aberrations that reduce the

quality of the focus point. To improve the imaging quality, we change the focal length of

the first lens from 100mm to 200mm, the focal length of the second lens from 100mm
to 150mm. In this setup, the beam size on the second lens decreases, and a larger focal

length also reduces the radius of the lens. Our simulations shows this modification could

improve the point spread function to above 0.98.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.10 Adjust the aberration.

In an imaging system with a high-NA lens, the aberration is very sensitive to the rel-

ative position between the viewport and the objective lens. Fig. 3.10 shows how image

quality changes with during the adjustment. Fig. 3.10(a) shows images of ions without
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any aberration compensation, and we can clearly observe comatic aberration which in-

dicates the optical axis of the objective lens is mismatched with the optical axis of the

viewport. Fig. 3.10(b) shows a defocusing image of ions, and ellipses also indicate co-

matic aberration. To eliminate the aberrations, we use a 5-axis translation stage to adjust

the otical axis of the objective lens. After the aberration compensation, the quality of

imaging improves a lot. Fig. 3.10(c,d,e,f) show images after aberration compenstion, and

from (c) to (e) still needs a little bit of compensation.

3.4 Laser settings

3.4.1 Hollow-cathode lock

We lock the wavelength of the 369 nm laser to a hollow cathode using polarization

spectroscopy. Polarization spectroscopy employs two counter-propagating beams to gen-

erate a Doppler-free signal: one for pumping and the other for probing. Compared with

saturated absorption spectroscopy, polarization spectroscopy is more robust against am-

plitude fluctuations [49] .

In polarization spectroscopy, a circularly polarized pumping beam is used to saturate

the transition from 𝑚 = −1 to 𝑚 = 0, and to generate an unbalanced absorption rate

for left-circularly-polarized and right-circularly-polarized lasers, a phenomenon called

circular dichroism. The difference in absorption rates, Δ𝛼 = 𝛼+ − 𝛼−, can be converted

to a difference in refractive indices according to the Kramers-Kronig dispersion relation:

𝑛+ − 𝑛− = 𝑐
𝜔0

Δ𝛼0𝑥
1 + 𝑥2 (3.13)

Here, 𝑥 = (𝜔0 − 𝜔)/(Γ/2), 𝜔0 is the frequency of the atomic transition, 𝜔 is the

frequency of the laser, and Γ is the spontaneous emission rate of the corresponding excited

state. We then use a linearly polarized beam to probe the circular dichroism. Let the

laser propagating direction be the z-axis, and the vertical axis be the x-axis. Assume the

polarization of the probe beam has an angle of 𝜙 with respect to the x-axis. The electric

field of the probe beam can be written as:

𝐸𝑝 = 𝐸0𝑒𝑖(𝜔𝑡−𝑘𝑧)(cos𝜙𝑥̂ + sin𝜙 ̂𝑦) (3.14)

The left-circularly polarized component and the right-circularly polarized component
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are then 𝐸+ = 1
2𝐸0𝑒𝑖(𝜔𝑡−𝑘𝑧)𝑒−𝑖𝜙(𝑥̂ + 𝑖 ̂𝑦) and 𝐸− = 1

2𝐸0𝑒𝑖(𝜔𝑡−𝑘𝑧)𝑒𝑖𝜙(𝑥̂ − 𝑖 ̂𝑦), respectively.
If the length of the circular dichroism region is 𝐿, the circular dichroism induces a phase

difference on the circularly polarized components. The phases of the circularly polarized

beams become 𝜙+ = −2𝜋
𝜆 𝑛+𝐿 − 𝜙 and 𝜙− = −2𝜋

𝜆 𝑛−𝐿 + 𝜙. Due to the unbalanced

absorption, the amplitudes of the circularly polarized beams become 𝐸+ = 𝐸0𝑒− 𝛼+
2 𝐿 and

𝐸− = 𝐸0𝑒− 𝛼−
2 𝐿, where 𝛼/2 is used for intensity decay with 𝑒−𝛼𝐿. The circularly polarized

components can then be written as:

𝐸+ = 1
2𝐸0𝑒− 𝛼+

2 𝐿𝑒𝑖𝜔𝑡𝑒−𝑖( 2𝜋
𝜆 𝑛+𝐿+𝜙)(𝑥̂ + 𝑖 ̂𝑦)

𝐸− = 1
2𝐸0𝑒− 𝛼−

2 𝐿𝑒𝑖𝜔𝑡𝑒−𝑖( 2𝜋
𝜆 𝑛−𝐿−𝜙)(𝑥̂ − 𝑖 ̂𝑦)

After the circular dichroism region, if we project the light field into horizontal and ver-

tical directions using a PBS, we obtain (note that 𝑒𝐴+𝑒𝐵 = 𝑒(𝐴+𝐵)/2(𝑒(𝐴−𝐵)/2+𝑒−(𝐴−𝐵)/2)):

𝐸𝑥 = 1
2𝐸0𝑒𝑖𝜔𝑡𝑒− 𝛼𝐿

2 𝑒−𝑖 𝑘𝐿
2 (𝑒− Δ𝛼

4 𝐿𝑒−𝑖( Δ𝑘
2 𝐿+𝜙) + 𝑒

Δ𝛼
4 𝐿𝑒𝑖( Δ𝑘

2 𝐿+𝜙)
)

𝐸𝑦 = 𝑖
2𝐸0𝑒𝑖𝜔𝑡𝑒− 𝛼𝐿

2 𝑒−𝑖 𝑘𝐿
2 (𝑒− Δ𝛼

4 𝐿𝑒−𝑖( Δ𝑘
2 𝐿+𝜙) − 𝑒

Δ𝛼
4 𝐿𝑒𝑖( Δ𝑘

2 𝐿+𝜙)
)

Here, 𝛼 = 𝛼++𝛼−

2 , 𝑘 = 𝑘++𝑘−

2 , Δ𝛼 = 𝛼+ − 𝛼−, and Δ𝑘 = 𝑘+ − 𝑘− = 2𝜋
𝜆 (𝑛+ − 𝑛−) =

2𝜋𝑐
𝜆𝜔0

Δ𝛼𝑥
1+𝑥2 . If we probe the power difference of these two components using a balanced PD,

we get:

𝐼𝑏 = |𝐸𝑥|2 − |𝐸𝑦|2 = 𝐸2
0𝑒−𝛼𝐿 cos(Δ𝑘𝐿 + 2𝜙)

Let 𝜙 = 𝜋
4 ; the formula above can be simplified to:

𝐼𝑏 ≈ 𝐼0𝑒−𝛼𝐿 sin(Δ𝑘𝐿) ≈ 𝐼0𝑒−𝛼𝐿Δ𝛼𝐿 𝑥
1 + 𝑥2

Fig. 3.11 shows the optical path used for polarization spectroscopy. The output power

of the laser head is approximately 8.3mW, and 0.7mW is used for the hollow-cathode

lock. Initially, we put all of the power into the lock part to observe the hole burning

signal. In daily use, we can only see the error signal after a lock-in amplifier and cannot

directly observe the hole burning.

Fig.3.12 displays the hole burning signal directly observed in the absorption spec-
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Laser 
head

Balanced PD

Hollow 
cathode

Figure 3.11 Optical path for 370 lock

troscopy. To measure the absorption spectroscopy, we scan the laser frequency by chang-

ing the piezo voltage with a triangular waveform. We separately measure outputs of the

balanced PD, where one output is proportional to the power of the horizontally polarized

component, while the other is proportional to the power of the vertically polarized com-

ponent. We adjust a quarter-wave plate applied to the pumping beam to maximize the

difference between the outputs of the balanced PD. Fig.3.12 (a,c) show the spectroscopy

without a pumping beam, and the deep signal represents the Doppler absorption of the

ions in the hollow cathode. Fig.3.12(d) displays the hole burning generated by a circu-

larly polarized pump beam, where the absorption from ions is suppressed. Fig.3.12(b)

exhibits the spectrum of the other polarization, and the result shows the absorption on the

other polarization is enhanced.

3.4.2 Phase Locked Loop Implementation

Given the constant fluctuations in the repetition rate of the pulsed laser, we implement

a phase locked loop (PLL) to track these changes in the repetition rate. This feedback

mechanism helps stabilize the Raman transition. Fig. 3.14 depicts the electronic circuitry
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Without pump beam With pump beam

(a) (b)

(c) (d)

Balanced PD output 1

Balanced PD output 2

Figure 3.12 Cicurlar dichroism signal of 171Yb+ .
(a,c) The absorption spectroscopy of a Ytterbium hollow cathode without an extra pumping
beam. (b,d) The absorption spectroscopy with an extra pumping beam, and the hole burning

signal. The orange curves represent the signal with pumping, and the blue curves are the same as
(a,c), and are used to guide the eye. (a,b) are collected from port 1 of the balanced PD. (c,d) are
collected from port 2 of the balanced PD. The horizontal axis represents time, and the vertical

axis represents voltage.

Figure 3.13 The error signal.
The blue curve is the error signal after a lock-in amplifier. The green and purple curves are the

outputs of the balanced PD.

36



CHAPTER 3 EXPERIMENT SETUP

associated with the phase locked loop.

Ultra fast PD:
Alphalas UPD-

30-VSG-P

Frequency 
multiplier

Mixer

Reference signal:
Rohde Schwarz

Oscilloscope

Amplifier:
ZX60-83LN-S+

Amplifier:
ZX60-83LN-S+

Mixer:
ZMX-7GR-S

PID

Signal generator

Band-pass filter:
6.307GHz±25MHz

Amplifier

Low-pass filter

Coupler

AOM

Figure 3.14 Schematic of the phase locked loop circuit.
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3.5 Observed Imperfections

3.5.1 Rapid Decay of Rabi Oscillation

Upon reviving the system, we encountered an unexpected issue where the Rabi os-

cillations decayed at an accelerated rate. This phenomenon was so severe that almost no

oscillation could be observed, as demonstrated in Fig.3.15(a). Initially, we speculated

that the problem might be due to some leakage from the carrier transition to nearby un-

desired transitions, with the Rabi frequency being too high to encompass them. In order

to validate this hypothesis, we reduced the power and conducted a new Rabi oscillation

scan. The results were in line with our assumption. As seen in Fig.3.15(b,c,d,e,f), as

the Rabi frequency decreases, the decay weakens. When we set a Rabi frequency with a

𝜋-time of 160µs, the first two oscillations exhibit virtually no decay, as demonstrated in
Fig. 3.15(f).
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Figure 3.15 Issue: Rapid Decay of Rabi Oscillations
The Rabi oscillations decay unusually rapidly, with the decay speed correlating with the value of
Rabi frequencies. The higher the frequency, the faster the decay. Figures a,b,c,d,e,f illustrate the

decay of Rabi oscillation at various Rabi frequencies.

However, upon performing a meticulous scan around the carrier transition, we failed

to identify any aberrant transitions. No such transitions were found near the carrier tran-

sition. Consequently, we hypothesized that the decay may not originate from the ion, but

rather from the operation itself. We separated the Rabi oscillation from pumping and de-

tection by introducing a waiting time before and after the Rabi oscillation, and discovered

that if a waiting time is inserted between the optical pumping and the Rabi oscillation, the

decay is significantly reduced, as demonstrated in Fig. 3.16(a,b,c,d).

This observation strongly suggests that the optical pumping process is not cleanly
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Figure 3.16 Insight: Introducing a Waiting Time between Rabi Oscillation and Pumping Proves
Beneficial
Maintaining the same Rabi frequency, an increase in the waiting time between pumping and the
Rabi oscillation results in a slower decay of the resulting oscillation. (a) introduces a waiting
time of 2µs. (b) introduces a waiting time of 20µs. (c) introduces a waiting time of 40µs. (d)

introduces a waiting time of 50µs.

terminated, resulting in leakage of some optical pumping beams into the Rabi oscillation.

To substantiate this hypothesis, we employed a fast photodetector (PD) to monitor the

temporal evolution of the optical pumping beam, revealing a long tail, as illustrated in

Fig.3.17(a). To confirm this issue, we replaced the original Acousto-Optic Modulator

(AOM) with a different one, which exhibits no such long tail in its temporal behavior.

Following this modification, we observed a much clearer Rabi oscillation, as illustrated

in Fig.3.17(b).
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Figure 3.17 Resolution: AOM Replacement
(a) The persistent tail of the optical pumping beam. (b) Following the replacement of the AOM,

the Rabi oscillation is significantly clearer.
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3.5.2 Issues Encountered in Repetition Rate Lock

Original pulse

Another AOM

Forward feedback AOM

Only one peak is locked!

……

Carrier 1

Carrier 2

Reference frequency
fref mod frp

fref − ( fref mod frp) + fAOM

Δ = fref − fAOM

Δ = fref − 2( fref mod frp) + fAOM

fref − fhp

fref − fhp + frp

⋯
fref − fhp + nfrp

Combine with combs

fref + n frp

Will also generate locked peak 
But the frequency is not locked. 
These peak is error compressed.

Error amplified!

Figure 3.18 Erroneous Repetition Lock
The red dashed lines represent the frequency comb generated directly by the pulsed laser. The
black lines represent the frequency combs following the feedforward Acousto-Optic Modulator
(AOM), which have an overall additional frequency shift representing repetition rate fluctuation.

The blue lines represent the frequency combs following another AOM.

Upon first locking the 355 nm pulsed laser, we observed no improvement in coher-

ence time. We soon discovered that we had not locked directly onto the hyperfine splitting

frequency of 12.6GHz, but rather locked the frequency comb to 6.3GHz due to the band-
width limitation of the photodetector (PD). Given that the repetition rate of our pulsed

laser is 120.139 93MHz, the 105th frequency comb is closest to the hyperfine splitting.

This situation is problematic, as there is no 52.5th frequency comb. We can only lock onto

the 52nd or 53rd frequency comb, and then add or subtract an additional 120.139 93MHz

after frequency doubling.

For instance, if we sample the frequency fluctuation of the 52nd frequency comb,

which is 52𝛿𝑓𝑟, after doubling the fluctuation, the output of the phase-locked loop (PLL)

could compensate a fluctuation of 104𝛿𝑓𝑟. We cannot directly utilize the 105th comb, as

we only compensate the accumulated noise of 104 combs. The frequency difference be-

tween the 105th comb and the hyperfine splitting is 28MHz, while the difference between

the 104th comb and the hyperfine splitting is 148MHz, necessitating that the AOMs used

for the Raman transition also have a frequency difference of 148MHz. In the alterna-

tive scenario, we can lock onto the 106th comb, and the frequency difference would be
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92MHz, which is more manageable when selecting an AOM.

Therefore, if we blindly lock the PLL to half of the hyperfine splitting and use the

calculated frequency difference between the 105th comb and the hyperfine splitting, the

Raman transition is effectively unlocked. The key to understanding this phenomenon is

to recognize that there is only one comb stabilized in the feedforward method, and any

transitions driven by unlocked combs will exhibit significant decoherence. For example,

if we lock the 105th comb, the transition driven by the 105th comb of the locked beam

and the 0th comb of the unlocked beam is stabilized, but the transition driven by the 0th

comb of the locked beam and the 105th comb of the unlocked beam will have a frequency

fluctuation twice as large.

3.5.3 Unanticipated Raman Transitions

(a) Red sideband peaks
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(b) Blue sideband peaks
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(c) Carrier after SBC, single ion
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Figure 3.19 An Unexpected Raman Peak
(a) The red-sideband peak. (b) The blue-sideband peak. (c) Carrier Rabi oscillation following

sideband cooling. (d) Carrier Rabi oscillation prior to sideband cooling.

One day, our Raman signal unexpectedly deviated from the norm. As illustrated

in Fig.3.19(a,b), the red-sideband and blue-sideband peaks significantly deviated from
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the ideal profile. Initially, we hypothesized that these unusual peaks occurred because

the duration we set exceeded the 𝜋-time. However, upon attempting to scan the Rabi

oscillation to determine the correct 𝜋-time, we found that the Rabi oscillation of the carrier
transition also behaved oddly, as shown in Fig.3.19(c,d).

After considerable troubleshooting, we traced the problem back to the PLL. We dis-

covered that the gain of the Proportional–Integral–Derivative (PID) controller was set

too high, causing the error signal to oscillate slightly. Upon reducing the PID gain, the

sideband peaks became clear, as shown in Fig. 3.20.
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Figure 3.20 Raman Peaks
(a) The red-sideband peak. (b) The blue-sideband peak.

Nonetheless, we continued to observe these strange peaks on multiple occasions.

Each time, the issue originated from the repetition rate lock, which either jumped or be-

came unstable.

3.5.4 Electrical Breakdown of the Trap

One day, after repeatedly and rapidly toggling the power of the RF signal between

high and low levels, we noticed that the ion suddenly vanished, and the reflection signal

from the helical resonator intensified. We also observed that the vacuum record (as indi-

cated by the ion number) jumped from 0 nA to over 60 nA. We inferred that a significant

event had occurred. First, we activated the conditioningmode of the Non-Evaporable Get-

ter (NEG) pump and waited several hours to reduce the chamber pressure. While waiting,

we attempted to minimize the reflection signal from the helical resonator, but noticed that

the resonant frequency had shifted by approximately 500 kHz. After reloading the ions,
we found that the trap had become very unstable. We attempted to minimize the micro-

motion once again, but as we suspected that a sharp power change might have triggered
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a significant event, we added a low-pass filter to the output of the power switch. When

we switched from high to low power, the ions moved upwards, indicating micromotion.

Surprisingly, when we switched back from low to high power, the ions did not return to

their original position along the same path but instead followed a different, longer path.

We speculated that this unusual behavior could have originated from a strange capacitance

induced by the electrical breakdown.

Since the trap was no longer functional, we opened the vacuum and checked the con-

nection between electrodes, finding that a spark had indeed occurred between the elec-

trodes, completely disrupting the surrounding structure. To understand how the spark had

formed, we examined other unused traps that were produced concurrently with the broken

trap. Fig. 3.21 shows the Scanning Electron Microscope (SEM) image of unused traps.

It is clear that at certain positions on the trap, the distance between the coating layer of

electrodes is too short.

Figure 3.21 Potential sites for electrical breakdown.

To address this issue, we sent the unused traps back to the manufacturer for modi-

fication. They used a laser to increase the insulating gap between electrodes. With the

improved trap, we have not experienced any further sparks.
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CHAPTER 4 PREPARATION OF 2D CRYSTALS

4.1 Rotation of principle axes

We demonstrate the capability of rotating the principle axes of the trap potential to

ensure the micromotions to be on the 2D plane, which will be perpendicular to the net

𝑘-vector of Raman laser beams. We rotate the principle axes in the y-z plane by adjusting

voltages 𝑉C and 𝑉NC on both of the center electrodes DCC (DC1, DC2 in Fig. 3.4(b)) and
all of the next to the center electrodes DCNC (DC3, DC4, DC5, and DC6 in Fig. 3.4(b)),

respectively.

The total pseudo-potential with voltages of 𝑉C, 𝑉NC and 𝑉RF is described by

𝜙(𝑥, 𝑦, 𝑧) = 𝑉C𝜙C + 𝑉NC𝜙NC + 𝑉RF𝜙RF, (4.1)

where 𝜙C and 𝜙NC are electric potentials at the position of (𝑥, 𝑦, 𝑧) generated by DCC
and DCNC electrodes with unit voltage. And 𝜙RF is the pseudo-potential generated by

the RF electrode with root-mean-square voltage of 1 V. In y-z plane, the symmetric RF

pseudo-potential can be broken by DC potentials, which leads to a elliptical total potential

𝜙(𝑥, 𝑦, 𝑧)|𝑥=0. The two axes of the elliptical potential are the principle axes. In order to

rotate the principle axes to y axis and z axis, we need to satisfy

𝜕𝜙(0, 𝑦, 𝛿𝑧)/𝜕𝑦|𝑦=0 = 0, (4.2)

where 𝛿𝑧 is the radius of a 2D crystal and small enough to be in harmonic regime

for our consideration. In our numerical calculation, we use 30 𝜇m for 𝛿𝑧. Noticing

𝜕𝜙RF(0, 𝑦, 𝛿𝑧)/𝜕𝑦|𝑦=0 = 0 is always true, we can calculate the solution of 𝑉NC/𝑉C, to
satisfy Eq. (4.2) based on numerical simulation. In our trap, 𝑉NC/𝑉C ≈ 5.11. We should

also notice that whenever we set 𝑉NC/𝑉C to the right value and rotate the principle axes to
y axis and z axis, 𝑉RF will no longer affect the rotation of the principle axes. Here, we do
not consider the rotation of the principal axes along the x-direction in the small area near

the trap center due to the transnational symmetry. Indeed, our numerical simulation also

shows a negligible rotation of the principal axes up to 𝛿𝑥 = 50 𝜇m, which would introduce
a micromotion disturbance similar to the level of intrinsic micromotion.

We numerically calculate 𝜙C, 𝜙NC and 𝜙RF with CPO software. We set the RF signal

to be 𝜔 = 2𝜋 × 40 MHz and 𝑉RF = 80 V. When 𝑉NC/𝑉C = ∞ with 𝑉NC = 1.5 V, vertical
principle axis (green line in Fig. 4.1(a)) is clockwise rotated by 22.9∘ from the z-axis.
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When the ratio 𝑉NC/𝑉C = 0 with 𝑉C = 1.5 V, the green axis is counter-clockwise rotated
by 5.7∘ from the z-axis. As shown in Fig. 4.1(b), when the ratio 𝑉NC/𝑉C = 5.11, the green
axis is in line with z-axis.

We experimentally confirm the rotation of the principle axes in y-z plane with single

ion by observing the disappearance of the Raman coupling to z-axis vibrational mode. The

spectrum of vibrational modes, as shown in Fig. 4.1(c)(d) is measured by the following

procedure: 1) we perform Doppler cooling on ion-crystal, which results in thermal states

with ̄𝑛 ≈ 7.1 for mode frequency 𝜔𝑦 ≈ 2 MHz, and initialize the internal states to |↓⟩
by applying the standard optical pumping technique. 2) We apply Raman beams with a

net 𝑘-vector perpendicular to the z-x plane. Once the beatnote-frequency 𝜔R of Raman

beams matching to 𝜔0 ± 𝜔y,z, sideband transitions occurs [37] , which can be detected by

the fluorescence of ions that is collected by imaging system and PMT (Photo-multiplier

tube). In Fig. 4.1(c), the voltage ratio is close to the condition of 𝑉NC/𝑉C = ∞ in Fig.

4.1(a), where the principle axes are tilted away from y-z axes. The net 𝑘-vector of Raman
beams is along the y-axis, which can excite both directions of vibrational modes. Thus,

two peaks in blue-sidebands (𝛿 = 𝜔y,z) as well as red-sidebands (𝛿 = −𝜔y,z) are clearly
visible in Fig. 4.1(c), where detuning 𝛿 = 𝜔R−𝜔0. However, when the principle axes are

rotated to y-z axes as shown in Fig. 4.1(b), Raman beams cannot excite the vibrational

mode along z-axis, which results in vanishing a peak in the Raman spectrum. Based on

the spectrum of Fig. 4.1(d), we estimate that deviation of the principle axes from y-z axes

is below 0.40∘.

4.2 Loading and imaging of 2D-ion-crystals

In order to produce a 2D ion-crystal in z-x plane, we need to satisfy 𝜔y >
(2.264𝑁)1/4𝜔x,z (when 𝜔x = 𝜔z ) [50-51] . In general, we need four control parameters

to rotate the principal axes and set three trap-frequencies independently. In the exper-

iment, we find that three control voltages, 𝑉C, 𝑉NC, and 𝑉RF in Eq. (1), are enough to
produce various geometries of the 2D crystals, which is only determined by the ratio of

𝜔𝑥 and 𝜔𝑧 when 𝜔𝑦 is large enough to be 2D crystals. First, keeping the principle axes to

y-z axes, we can calculate the voltage solution for DC electrodes with a given axial trap

frequency 𝜔x, which is mostly determined by 𝑉NC. With determined DC potential, the

relation between 𝜔y and 𝜔z is given by [37]

𝜔2
y − 𝜔2

z = 𝐶𝑉NC, (4.3)
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Figure 4.1 Principle axis rotation
(a) The contour plot of pseudo-potential when 𝑉NC/𝑉C = ∞, central electrodes are connected to
GND. (b) The contour plot of pseudo-potential when the principle axes are overlapped with y
and z axes, where the voltage ratio is 𝑉NC/𝑉C = 5.11. (c) The Raman spectrum with principle
axes in the condition of (a), where we can see both of the transverse modes. (d) The Raman

spectrum with principle axes in the condition of (b). In this situation, the Raman beams can only
drive the mode of the y-axis, not that of the z-axis. (e) Relation between two radial-mode

frequencies and the RF voltages. By merely changing the RF voltage, we can realize different
ratios of trap frequencies. The red dots are the experimental data, the dark lines are the fitting
results. The dashed lines, which are calculated by 𝜔𝑦/(2.264𝑁)1/4 for different RF voltage, are
the up bounds of the region where the symmetric 2D crystal can be formed for different numbers

of ions.
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(see Appendix D) where 𝐶 is a positive constant determined by the trap geometry. In

the case of 𝑉RF = 0, the z-axis potential, the shallower potential respective to that of

the y-axis according to Eq. (4.3), becomes anti-harmonic, which indicates 𝜔2
z < 0 and

𝜔2
y < 𝐶𝑉NC. On the other hand, since 𝜔y𝑎𝑛𝑑 𝜔z are monotonously increase with 𝑉RF,

there is a critical value of 𝑉RF that makes 𝜔2
y = 𝐶𝑉NC and 𝜔2

z = 0. Therefore, we can tune
𝜔y from √𝐶𝑉NC to ∞, 𝜔z from near zero to ∞ by tuning 𝑉RF. As shown in Fig. 4.1(e),
with different values of 𝑉RF, we can have 𝜔z/𝜔𝑥 from 0 to 2.72 for 10 ions to realize 2D

ion-crystal with different aspect ratios.

Once the requirements of principle axes and trap-frequencies for 2D crystal are

satisfied as discussed above, we can confine ions in the z-x plane. Fortunately, the

strongest trap frequency in our monolithic trap is in y-axis due to the geometry of the

trap, which allows us to easily image the 2D crystal with the same imaging system

to 1D chain. The fluorescence of ions in 2D crystal can be directly imaged through

an objective lens to CCD camera as shown in Fig. 3.4(a). Fig. 5.4(a) are the im-

ages of the 2D crystals and demonstrate the control capability for shapes of 2D crys-

tals with various settings of trap frequencies. For the image of 10 ions, the trap fre-

quencies are {𝜔x, 𝜔y, 𝜔z}/(2𝜋) = {0.427, 1.50, 0.561}MHz. For the image of 19 ions

and 25 ions the trap frequencies are {𝜔x, 𝜔y, 𝜔z}/(2𝜋) = {0.28, 1.50, 0.26}MHz and

{𝜔x, 𝜔y, 𝜔z}/(2𝜋) = {0.28, 1.63, 0.68}MHz respectively. For 25 ions, the dashed line

in Fig. 4.1(e) is the upper bound of the 𝜔x and 𝜔z where the symmetric 2D crystal can

be formed. However, for forming an asymmetry 2D crystal in Fig. 5.4(a), the criteria

are complicated and have been discussed in [52-53] . We numerically study the situation in

Appendix E. We can imagine an oblate ellipsoidal 3D crystal (𝜔y > 𝜔z = 𝜔x ) whose

in-plane trap frequencies are above the bound, then if we reduce 𝜔x, the crystal will tend

to 2D and finally results in a linear chain. The geometries of the crystal are in agreement

with the numerical simulation. We simulate the geometry configuration of the ion-crystal

by numerically minimizing the electrical potential of the ions in a three dimensional har-

monic trap [50] .

4.3 Raman Spectrum of Transverse Vibrational Modes in 2D
Crystals

Upon loading 2D ionic crystals, we manipulate various transverse modes of a 10-

ion-crystal by modulating the detuning between Raman beams, a procedure akin to the
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Figure 4.2 Geometry and mode structure of 2D-ion-crystals.
(a) CCD images of 10,19, and 25 ion-crystals with different trap frequencies. The above ones
are raw data taken from EMCCD, and the bottom ones compare the numerical simulation and

the real data where the white cycles are the positions of ions read out from the CCD pictures and
the red points are simulation results. The white scale bars represent 5 𝜇m distance. (b) Raman
spectrum of the 2D crystal with ten ions. The crystal is first cooled by 1000µs Doppler cooling,
then a 3µs optical pumping is performed to prepare the ground-state of qubits. The vibrational
modes are excited by a 400µs Raman sequence with 5 kHz Rabi frequency. The spectrum is
obtained by collecting the fluorescence with PMT, and each data point is measured 100 times.
The black curve is the experiment result and the red lines are the theoretical prediction of the

mode frequencies [50] .

single ion scenario. Fig. 5.4(b) displays the resultant spectrum, with each peak de-

noting a motional mode along the y-axis. To conduct the measurement, we initially

cool the crystals to their vibrational ground-state using Doppler and EIT cooling, sub-

sequently applying the Raman beams to drive the motional sidebands. The measured

mode spectrum aligns with the theoretical simulation predicated on trap frequencies and

the 2D ion-crystal’s geometry [50] . The trap frequencies utilized for the simulation are

{𝜔x, 𝜔y, 𝜔z}/(2𝜋) = {0.427, 1.5, 0.561}MHz. We perform direct measurements of the

trap frequencies along the y and x axes, employing the trap frequency along the z-axis as

a fitting parameter. The congruence between experimental data and the pseudo-potential

simulation indicates a negligible micromotion induced shift in our system. Further,

we numerically simulate each ion’s micromotion amplitude [54] , estimating a maximum

micromotion-induced frequency shift of 930Hz [50] . Drawing parallels with the linear

chain case [55-59] , when a phase transition from a 2D crystal to a 3D crystal transpires,

the minimal frequency of the modes along the y-axis will incline towards negativity. The
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frequencies we measured are significantly distinct from zero, which affirms the existence

of 2D ionic crystals.

4.4 Compensation and Quantification of Micromotion in 2D
Crystals

Ideally, the crystal, situated in the z-x plane, exhibits micromotion along the z-axis

and perpendicular to the y-axis, aligned with the net propagation direction of Raman

beams. In reality, two potential sources of imperfection could cause deviation from the

ideal micromotion condition: 1) Stray electric fields, resulting in displacement; 2) Im-

perfections in electrode fabrication, inducing a tilt around the z-axis. To mitigate mi-

cromotion from these sources, we initially offset the stray field using a single-ion, and

subsequently ameliorate tilt errors by gently rotating the crystal. With the single ion, we

accomplish micromotion compensation by aligning the ion’s position with the null point

of the RF electric field [60-61] . Initially, we offset the extra-field in the z-direction by

modulating the voltage of {DC2,DC3,DC4} or {DC1,DC5,DC6} concurrently with the
ratio {1,5.11,5.11}, an approach that preserves the principle axes direction while preclud-
ing the generation of displacement along the y-axis. We can also modify the voltage of

electrodes {DC1,DC3,DC4} or {DC2,DC5,DC6} with a ratio of {1,5.11,5.11} to offset

the extra-field in the y direction. For z-axis compensation, we minimize the change in

ion position based on RF power, whereas for y-axis compensation, we aim to reduce the

micromotion sideband transition of Raman beams. To address the error induced by fabri-

cation imperfections, we minutely adjust the voltage of electrodes {DC3,DC4,DC5,DC6}
with a ratio of {1,1,1,1} to rotate the crystal around the x-axis and a ratio of {1,-1,1,-1}
for rotation around the z-axis. Concurrently, we strive to minimize the Rabi-frequency of

the micromotion sideband transition with three ions.

We quantify the micromotion strength by gauging the ratio between two Rabi fre-

quencies of the carrier and the micromotion transition [60] . We perform this measurement

on a three-ion 2D crystal. Initially, we apply Doppler cooling and EIT cooling sequen-

tially [62] to cool the 2D crystal down to near the motional ground state. Then, we trigger

Rabi flopping and measure the Rabi frequencies of both the carrier and the micromotion

sideband transition. For each flopping, we tally the total counts of three ions using PMT

and fit the results with three Rabi frequencies. The fitting yields three carrier 𝜋-time
values: {5.96, 5.40, 5.19}𝜇s and three micromotion sideband 𝜋-time values: {474, 440,

49



CHAPTER 4 PREPARATION OF 2D CRYSTALS

317}𝜇s. The modulation index, expressed as 𝛽/2 = Ωmicro/Ωcarrier, possesses a maximum

possible value of 0.038 and a minimum possible value of 0.021, analogous to a single ion
situation.
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Figure 4.3 Direction and intensity of micromotion in the trap.
(a) A vector plot of the RF field is rendered by CPO. The simulation reveals that if the crystal is
situated in the z-x plane, the direction of micromotion aligns with the z-axis and is perpendicular
to the y-axis, which is the net propagation direction of Raman beams. (b) Carrier transition of

three ions in a triangular crystal. (c) Micromotion transition of the three-ion-crystal post
micromotion compensation. For (b) and (c), similar to Fig. 3(b), after 1000µs of Doppler

cooling and 3 𝜇s of optical pumping, we deploy Raman laser beams with frequency differences
of (a) carrier transition and (b) micro-motion sideband transition (distanced by 40 MHz from the
carrier) and aggregate the total fluorescence of all three ions using PMT. The beating signal
originates from the unbalanced Rabi-frequency of each ion. Error bars represent the standard

deviation of project measurements over 100 repetitions.

4.5 Coherent Operations on the Vibrational Sidebands of 2D
Crystals

Upon theminimization of micromotion strength, we carry out coherent manipulations

of collective motional modes along the y-axis in a 2D crystal comprising three ions. The

three vibrational mode frequencies are denoted as 𝜔y1/(2𝜋) = 1.33MHz, 𝜔y2/(2𝜋) =
1.27MHz, and 𝜔y3/(2𝜋) = 1.21MHz. The ions form an isosceles triangle with an apex

angle measuring 260.7 degrees. For a clearer visualization of the evolution, we collect

only the fluorescence from the ion at the apex angle using a PMT in this experiment.

The crystal is initially cooled to themotional ground-state through 1000µs of Doppler
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cooling and 200µs of EIT cooling. Following 3µs of optical pumping, we implement
Raman beams globally on all three ions, thus driving a blue-sideband transition for the

coherent manipulation. This blue-sideband transition inadvertently induces off-resonant

couplings to other motional modes.

The corresponding Hamiltonian is expressed as follows:

𝐻 = −𝑖𝜂
2

3

∑
𝑖=1

3

∑
𝑗=1

Ω(𝑗)𝑏(𝑗)
𝑖 𝜎(𝑗)

+ 𝑎𝑖𝑒−𝑖𝛿𝑖𝑡 + H.C., (4.4)

where 𝜂 signifies the Lamb-Dicke parameter for a single ion, Ω(𝑗) and 𝜎(𝑗)
+ represent the

carrier Rabi frequency and spin raising operator for the 𝑗th ion, respectively, and 𝑏(𝑗)
𝑖 (𝑗 =

1, 2, 3) embodies the 𝑖th normalized mode vector of the collective mode [63] .
The time evolution of the Hamiltonian as depicted in Eq. 4.4 is intricate, especially

considering the off-resonant couplings to the other two motional modes. Neglecting these

off-resonant couplings leads to a severe divergence between simulation and experimental

data, as indicated by the black-dashed line in Fig. 4.4(b). The good agreement between

red data points and the black line in Fig. 4.4(b) suggests that the coherent manipulation

is reliable and the micromotion effect is negligible during the coherent operation.

We further numerically study the time evolution in the basis of quantum states, re-

vealing a coherent evolution primarily involving states |000⟩ |𝑛 = 0⟩ and |101⟩ |𝑛 = 2⟩
(for detailed discussions, see Appendix F and Fig. 11).

We conducted an experimental study of vibrational mode heating in our trap that

contains a single ion. Initially, we prepared the ground-state of the radial vibrational

modes using Raman-sideband cooling. We then allowed a certain duration to pass before

measuring the average phonon-number ̄𝑛 for the mode of interest. We estimated ̄𝑛 through
Fourier transformation of the blue-sideband transitions [37] . Our findings indicate that the

heating rate for the y-axis mode, corresponding to the principal axes of the 2D crystal

(see Fig. 4.1(b)), is approximately 670 quanta per second. This rate is roughly 4.65 times

greater than the rate under the conditions depicted in Fig. 4.1(a). Such a disparity can be

justified considering that environmental electric field noise along the y-axis is likely more

intense than along other axes.

4.6 Calculation of Trap Frequency

In line with Ref. [37] , we formulate the time-dependent potential of the trap as follows:
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Figure 4.4 Coherent Dynamics in a Three-Ion 2D Crystal
(a) Carrier Rabi oscillation. (b) Rabi oscillation for the blue sideband transition on the zig-zag
mode. Here, all the data is obtained from a three-ion 2D crystal forming an isosceles triangle

with an apex angle of 260.7 degrees. We only collect fluorescence from the center ion located at
the apex angle, which is highlighted in the ion structure schematic. The crystal is first subjected
to a 1000µs Doppler cooling, followed by a 200µs EIT cooling to reach the ground state. After

a 3µs optical pumping, Raman beams are applied to the crystal to drive the blue-sideband
transition of the zig-zag mode. Red points represent the experimental data, and the error bars
denote the standard deviations. The solid black lines display the simulation results considering
all three motional modes, while the dashed black line shows the simulation result excluding the

off-resonant coupling to the other two motional modes. The mode frequencies are
𝜔y1/(2𝜋) = 1.33MHz, 𝜔y2/(2𝜋) = 1.27MHz, and 𝜔y3/(2𝜋) = 1.21MHz. For both carrier and

sideband oscillation, experimental sequences are repeated 100 times.
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𝜙(𝑥, 𝑦, 𝑧, 𝑡) = ∑E∈DC
1
2𝑉E(𝛼E𝑥2 + 𝛽E𝑦2 + 𝛾E𝑧2) (4.5)

𝑛𝑜𝑛𝑢𝑚𝑏𝑒𝑟 +𝑉RF cos(𝜔RF𝑡)(𝛼′𝑥2 + 𝛽′𝑦2 + 𝛾′𝑧2), (4.6)

where 𝑉E denotes the voltage applied to the DCE electrode. The geometric factors

𝛼E, 𝛽E, and 𝛾E are determined by the geometry of the DCE electrode. Similarly, 𝑉 RF

signifies the root mean square of the voltage applied to the RF electrode. The geometric

factors 𝛼′, 𝛽′, and 𝛾′ are determined by the geometry of the RF electrode. It should be

noted that the x, y, and z axes in Eq. (4.5) should represent the three principal axes of

the trap potential. As the rotation of the principal axes changes, all geometric factors also

change. The Laplace equation, ΔΦ = 0, imposes certain constraints on the potential:

𝛼 + 𝛽 + 𝛾 = 0, 𝛼′ + 𝛽′ + 𝛾′ = 0. (4.7)

Considering our symmetric RF electrodes in the axial direction, we can confidently

assert that 𝛼′ = 0, implying 𝛽′ = −𝛾′. By solving the Mathieu equation in three direc-

tions, we derive the following results:

𝜔x =
√√√
⎷

4𝑒 ∑E∈DC 𝑉E𝛼E
𝑚𝜔2

RF

+
2𝑒2𝑉 2

RF𝛼′2

𝑚2𝜔4
RF

𝜔RF
2 , (4.8)

𝜔y =
√√√
⎷

4𝑒 ∑E∈DC 𝑉E𝛽E
𝑚𝜔2

RF

+
2𝑒2𝑉 2

RF𝛽′2

𝑚2𝜔4
RF

𝜔RF
2 , (4.9)

𝜔z =
√√√
⎷

4𝑒 ∑E∈DC 𝑉E𝛾E
𝑚𝜔2

RF

+
2𝑒2𝑉 2

RF𝛾′2

𝑚2𝜔4
RF

𝜔RF
2 . (4.10)

From 𝛽′ = −𝛾′, we obtain

𝜔2
y − 𝜔2

z = 𝑒
𝑚[ ∑

E∈DC
(𝛽E − 𝛾E)𝑉E]. (4.11)

This equation elucidates Eq. (4.3) in the main text. As we havementioned previously,

all geometric factors are dictated by the rotation of the principal axes.
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4.7 Ion-Crystal Geometry and Mode Frequency Simulation

The dashed lines in Fig. 4.1(e) are computed using the equation 𝜔𝑦/(2.264𝑁)1/4 [50] ,

where 𝜔𝑦 is a function of the RF voltage. As 𝜔x and 𝜔z surpass 𝜔𝑦/(2.264𝑁)1/4, the ions

compose a 3D crystal. Conversely, as 𝜔x and 𝜔z fall below this threshold, the ions con-

figure into a 2D crystal. The phase transition from a 2D crystal to a 3D crystal lacks a

simple mathematical expression when the two frequencies do not concurrently exceed or

drop below the threshold. For instance, if one mode lies below the bounds and the other

above, a 2D crystal can still materialize. We can envision such a scenario with a homoge-

nous crystal where 𝜔x = 𝜔z > 𝜔y/(2.264𝑁)1/4. Initially, the ions form a 3D crystal rather

than a 2D one, but on lessening the 𝜔x confinement, the ions can create a 2D crystal at a

certain 𝜔x. This scenario is validated for 10, 19, and 25 ions through numerical simula-

tions of ion equilibrium positions and crystal structure studies in 2D, as illustrated in Fig.

4.5. The crystal geometries are simulated by minimizing the crystal’s pseudo-potential at

zero temperature. The pseudo-potential solution shifts the critical point compared to the

molecular dynamics simulation that includes oscillating fields, but the overall structure

resemblance remains [50,64-65] . The structural phase transition’s critical point can be cal-

culated more accurately by mapping it to the six-state clock model and including finite

temperature and quantum fluctuation effects [52] .

In the vicinity of the phase transition from 2D to 3D, the minimal frequency of the

transverse modes tends towards zero, as described in the main text. We also numerically

investigated this behavior on a 10-ion 2D crystal and displayed the result in Fig. 4.5 (d).

4.8 State Evolution in a 3-Ion 2D Crystal When Driving the Zig-
Zag Mode

We numerically simulate the coherent dynamics of the blue-sideband transition on

the zig-zag mode, as depicted in Fig. 4.4(b), using the Hamiltonian given in Eq. 4.4. Fig.

4.6(a) illustrates the time evolution simulation of three internal states after tracing out mo-

tional states. The evolution is complex, particularly due to the off-resonant coupling to the

other two motional modes. Nonetheless, the evolution remains coherent. The initial state

|000⟩ is primarily transferred to |101⟩ around 75 𝜇s and is reverted around 150 𝜇s. Even
after a longer evolution period of approximately 860 𝜇s, the |000⟩ state coherently returns,
which is strongly indicated in Fig. 4.4(b) experimental data. Fig. 4.6(b) illustrates the

time evolution simulation of the zig-zag mode’s motional states after tracing out internal
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Figure 4.5 Simulation of geometry and mode frequencies
(a-c) The relation between crystal size and the RF voltage for the cases of 10,19, and 25 ions.
Here we define the size of crystal as the maximal coordinate difference in the x, y, or z axes

among the ions. The zero value of the crystal size along the y-axis shows the crystal is confined
in 2D on the x-z plane. And when the size of z axis becomes zero, the ions form a linear chain.
The sudden jumps of the crystal size indicates a structure phase transition. (d) If we squeeze the
crystal formed by 10 ions along the x, z-axis, defined in Fig.3.4 (a), by increasing 𝜔x and 𝜔z, and
keep the ratio 𝜔z/𝜔x = 1.3 and 𝜔y = 1.5MHz, the frequency of the motional modes along the

y-axis will become broader. And once the minimal frequency meet zero, a phase transition from
2D to 3D happens.
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Figure 4.6 Simulations of time evolution for internal andmotional states in a three-ion 2D crystal
(a) The time evolution for eight internal states after tracing out motional states. Due to the

symmetric between two side ions, the evolution of states |001⟩ and |100⟩, |011⟩ and |110⟩ are
identical. (b) The time evolution for the zig-zag mode in phonon number basis after tracing out
internal states. The occupied phonon state is bounded to |𝑛 = 3⟩ as the characteristic of three-ion

blue-sideband transition.

states. Due to the three-ion blue-sideband transition characteristic, the occupied phonon

state is restricted to |𝑛 = 3⟩. Here we observe that the dominant motional dynamics oc-
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curs between |𝑛 = 0⟩ and |𝑛 = 2⟩ states. The |𝑛 = 2⟩ state is primarily associated with
the |101⟩ state, a notion that is validated from the motional mode vector of the zig-zag

mode.
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CHAPTER 5 GROUND STATE COOLING OF 2D
CRYSTALS

5.1 Double-EIT cooling

Double-EIT cooling of 171Yb+ ions is an intricate process involving four distinct

energy levels. This sets it apart from EIT cooling, which typically employs a three-level

Λ scheme. As depicted in Fig.6.1 (a), the excited state |𝑒⟩ ≡ |𝐹 = 0, 𝑚 = 0⟩ in the 𝑃 1
2

manifold is linked to the three states of |−⟩ ≡ |𝐹 = 1, 𝑚 = −1⟩, |0⟩ ≡ |𝐹 = 1, 𝑚 = 0⟩,
and |+⟩ ≡ |𝐹 = 1, 𝑚 = +1⟩ in the 𝑆1/2 manifold. This four-level system can be viewed

as comprising two Λ-schemes, resulting in a pair of Fano-like profiles in the absorption
spectrum. For instance, oneΛ scheme encompasses the |−⟩, |0⟩ (or |+⟩, |0⟩) states and the
excited state |𝑒⟩, which are coupled by a driving beam featuring 𝜎+ (or 𝜎−) polarization

and a probe beam with 𝜋 polarization, respectively.

In Fig.6.1(b), we illustrate how the probe beam’s absorption spectrum for an ion at

rest presents two null points corresponding to two-dark states when the transition detuning

|0⟩ ↔ |𝑒⟩ aligns with the detuning of the transitions |±⟩ ↔ |𝑒⟩. Also noteworthy are
the two narrow peaks, which signify dressed states constituted by |±⟩ and |𝑒⟩. We can

ascertain the distances between these null points and the corresponding narrow peaks by

evaluating the ac Stark shift of the dressed states.

The double-EIT cooling process shares a similar principle with single-EIT cooling,

which leverages the asymmetric absorption profile to enhance red-sideband transitions

and suppress carrier/blue-sideband transitions. This concept is illustrated in Fig. 6.1(b).

The broad width of the peak allows for comprehensive cooling. Larger crystals’ motional

modes can be effectively cooled to near ground state due to the disparity in scattering

amplitude between red- and blue-sideband transitions. The probe beam’s detuning Δp

is set equal to Δ𝜎+ ≡ Δd + 𝛿B, and this action prompts the ion’s internal state to be

pumped to a dark state. Consequently, the ion will not absorb any photon unless the ion

motion induces a differential Doppler shift 𝑣 ⋅ (𝑘̂𝜋 − 𝑘̂𝜎+)/𝑐 = 𝛿+ between the 𝜋 and 𝜎+

transitions. As previously noted, double-EIT cooling is only capable of cooling down

motional modes that are not perpendicular to the difference in wave vector (𝑘̂𝜋 − 𝑘̂𝜎+).

Thus, the net 𝑘-vector should be properly aligned to the direction of the targeted motional
modes. In our experiment, we opted for the right peak for cooling. Nonetheless, either
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Figure 5.1 Setup for EIT cooling
(a) Pertinent energy levels of 171Yb+ applicable to EIT cooling. (b) Double-EIT’s Fano-like

profile. The spectrum’s calculation hinges on the steady-state solution of the master equation or
the scattering amplitude. The simulation parameters include Δd/(2𝜋) = 55.6MHz,

𝛿B/(2𝜋) = 4.6MHz, Ω𝜎,±/(2𝜋) = 17MHz, Ω𝜋/(2𝜋) = 4MHz, 𝜈/(2𝜋) = 1.5MHz, with 𝜈
representing the mode’s frequency that we aim to cool. The lower spectrum showcases a broad
range, with the red lines predicting the positions of dressed states. The upper one highlights the
peak used for cooling, with the blue (red) line indicating the position of the motional sideband,
and the dark line signifying the carrier transition. The red-sideband is lower energy, translating
to a higher detuning. (c) The optical configuration. The EIT beam is initially segregated from
the Doppler cooling beam with a 14 GHz sideband, then divided into the driving and probe
beams by a PBS. The relative detuning, Δd − Δp, is governed by two AOMs targeting the

driving beam. The first-order diffraction of the 270MHz AOM and the negative first-order of the
variable AOM are employed. The net propagating vectors Δ𝑘 of both the EIT and Raman beams
follow the direction of the transverse mode. A quarter-wave plate (QWP) is utilized to modify

the polarization of the driving beam.

peak in the absorption spectrum can be exploited with comparable cooling rates and limits.

Theoretically, it is feasible to make only one peak dominant, akin to the simple Λ-system,
by unbalancing the Rabi frequencies of the 𝜎+ and 𝜎− components of the driving beam.

However, in practice, we did not observe an enhancement in cooling efficiency when

utilizing an unbalanced driving beam.

We present an experimental demonstration of double-EIT cooling with 171Yb+ ions,

which boast a clock-state qubit with an impressive coherence time exceeding 10 min-

utes [66] . The qubit states |𝐹 = 1, 𝑚 = 0⟩ and |𝐹 = 0, 𝑚 = 0⟩ in the 𝑆 1
2
manifold exhibit

an energy splitting 𝜔0 of 12.642812 GHz. The 171Yb+ ions are confined in a pancake-

shaped potential generated by a radio-frequency Paul trap, as detailed in Ref. [67] . This

configuration allows the trapped ions to form a 2D crystal. We employ a horizontal B-

field of 3.32 Gauss to disrupt the dark state resonance in Doppler cooling, as depicted in

Fig.6.1 (c).

The EIT beams comprise two lasers that closely align with the 𝑆 1
2
|𝐹 = 1, 𝑚 = 0⟩ to
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𝑃 1
2
|𝐹 = 0, 𝑚 = 0⟩ transition. These EIT beams are arranged such that the difference in

wave vectors parallels the transverse direction of the motional modes. One beam serves to

drive the 𝜎± transitions between |±⟩ ↔ |𝑒⟩, while the other acts as a probe beam, coupling
the energy levels |0⟩ ↔ |𝑒⟩. The detuning Δp of the probe beam is fixed at (2𝜋)55.6
MHz, and the detuning Δd of the driving beam is adjusted by modifying the frequency

difference between twoAOMs, as shown in Fig. 6.1(c). We assess the Rabi frequency and

the polarization of the EIT beams by observing the differential ac Stark shift of the clock

state qubit and the Zeeman state qubits [68? -69] . The Rabi frequencies, Ω𝜎− , Ω𝜋 , Ω𝜎+/(2𝜋),
for the driving beam of 24𝜇W and the probe beam of 5.5𝜇W are 16.74,1.72, 18.03MHz

and 1.49, 6.67, 3.17MHZ, respectively.

Fig.5.2 (a) outlines the experimental sequence undertaken to investigate double-EIT

cooling with a single ion. For a single 171Yb+ ion, the secular trap frequencies amount

to 𝜔y/2𝜋 = 2.38 MHz in the transverse direction and 𝜔x, 𝜔z/2𝜋 = 0.42, 0.47 MHz in the

crystal plane. We initiate with Doppler cooling, resulting in Doppler-limit temperatures

around a phonon number of ̄𝑛 ≈ 7. Following Doppler cooling, 95% of the internal state

of ions populates the 𝑆 1
2
|𝐹 = 1⟩ manifold. Subsequently, we expose the system to the

EIT beams for a duration 𝜏EIT. To measure the final phonon number ̄𝑛, we perform a 3𝜇s
optical pumping to prepare the ground state 𝑆 1

2
|𝐹 = 0, 𝑚 = 0⟩. By driving the blue-

sideband transition and fitting time evolution [37] , we extract the average phonon number

̄𝑛.
Our experimental investigation of double-EIT cooling dynamics is conducted with

relative detuning Δp − Δd = 4.55MHz. We measure the mean occupation number ̄𝑛 at

various cooling durations 𝜏EIT, as indicated in Fig.5.2 (b). The mean vibrational num-
ber ̄𝑛 is ascertained by fitting the blue-sideband transitions, as displayed in Fig.5.2 (c)

prior to and (d) subsequent to EIT cooling. Absent EIT cooling, oscillations on the blue-

sideband transition decay quickly due to varying excitations on different vibrational num-

ber states with divergent Rabi frequencies. As shown in Fig.5.2 (d), the minimum value

of ̄𝑛min = 0.06(±0.059) achieved with EIT cooling is indicative of near ground-state cool-
ing, comparable to sideband cooling. The 1/𝑒 cooling time 𝜏cool = 1/𝛾cool, where 𝛾cool is
the cooling rate, is 30(±1.6)𝜇s. Thus, a duration of 200 𝜇s is sufficient to reach the ground
state.

In order to identify the optimal detuning and cooling range for double-EIT cooling, we

adjusted the frequency difference between the EIT beams. The efficiency of EIT cooling
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Figure 5.2 EIT cooling speed
(a) Experimental sequence for exploring EIT cooling of a single trapped ion. (b) Cooling

dynamics for the transverse mode along the y-axis. Red points are experimental data obtained by
fitting blue-sideband transitions shown in (c) and (d). Error bars denote fitting errors. The black
line is exponential fit. The horizontal dashed line indicates 1/e of initial phonon number. (c,d)
The blue-sideband transition after (c) Doppler cooling and (d) EIT cooling of 200𝜇s. (e)

Average phonon number ̄𝑛 at the end of double-EIT cooling versus the relative detuning between
the probe beam and the driving beam. The black line is numerical simulation result obtained by

solving the master equation .

in our experiment is largely determined by the absorption strength ratio between the red-

sideband and blue-sideband transitions, as shown in Fig. 6.1(b). This ratio is directly

controlled by the detuning of the driving beam, denoted as Δd. We found the optimal

detuning (Δp − Δd)/(2𝜋) for double-EIT cooling to be 4.55 MHz, which corresponds

closely to the predicted value of 4.57MHz. This value is derived from 𝛿B+𝛿DR−𝜈, where
𝛿DR= (2𝜋) 2.31 MHz refers to the dressed-state ac Stark shift. To verify our experimental

findings, we performed numerical simulations, accounting for a heating rate of 0.67ms−1

in the transverse direction. The simulated average phonon numbers, depicted by the solid

line in Fig.5.2 (e), demonstrated a satisfactory agreement with our experimental results.

The EIT cooling rate 𝛾cool and the minimum phonon number 𝑛min as functions of in-
tensities of the EIT beams are shown in Fig. 5.3. We characterize the cooling efficiency
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Figure 5.3 EIT power
The final mean phonon numbers (circular points) and the cooling rates (square points) are

plotted versus the power of (a) the driving beam and (b) the probe beam. Error bars denote the
fitting uncertainties of blue-sideband evolutions, similar to Fig. 5.2(c,d). Solid lines are

numerical simulation results obtained by solving the master equation .

as the power of the driving (probe) beam varies while the power of the probe (driving)

beam is fixed at 5.5𝜇W, Ωp/2𝜋 = 6.67 MHz (24𝜇W, Ωd/2𝜋 = 17.39 MHz). At each point

of laser powers, we search the optimal EIT detuning (Δp − Δd). As shown in Fig. 5.3,

numerical simulations match the experimental results fairly well, while the discrepancies

of cooling rates could origin from the overall power fluctuations. As the power of the

driving beam increases to the maximal possible value in our experiment, the cooling effi-

ciency is also enhanced, as shown in Fig.5.3(a). On the other hand, Fig.5.3(b) shows that

both cooling rate and limit have a local optimum. To balance the cooling rate and limit,

we determine the optimal power of the probe beam by minimizing the ratio between final

phonon number and cooling rate of the numerical curve in Fig. 5.3(b). Finally, we found

Ωp/(2𝜋) = 11 MHz is optimal for cooling.

To assess double-EIT cooling on a large ion crystal, we store a 2D crystal of 12 ions

in a pancake harmonic potentials with secular trap frequencies 𝜔y/(2𝜋) = 1.22MHz in the

transverse direction, and {𝜔x, 𝜔z}/(2𝜋) = {0.34, 0.42}MHz in the crystal plane. With this

smaller𝜔y, the heating rate is increased to 0.77ms−1. We suppress the micromotion of the

2D crystal in the transverse modes by adjusting the plane of the crystal to be in line with

the micromotion direction, which is the z-axis shown in Fig. 6.1(c). Then, the direction

of dominant micromotion is perpendicular to directions of the transverse modes and the

net-propagation direction of the EIT beams. In such a situation, the effect of micromotion

is eliminated in double-EIT cooling; therefore, we can perform efficient cooling. Indeed,
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we measure the strength of the micromotion sideband in the Raman spectroscopy and

observe it is at a similar level to a single ion [67] . Double-EIT cooling of a 12-ion crystal

is observed from Raman absorption spectrum. Fig. 5.4 (a) depicts the spectrum with only

Doppler cooling, where the peaks of blue-sideband (blue curve) and red-sideband (red

curve) transitions possess similar heights across all motional modes, which indicates the

phonon numbers aremuch larger than 1. Fig.5.4 (b) shows the spectrum after bothDoppler

and EIT cooling, where the reduction of red-sideband transitions indicates simultaneous

ground-state cooling of all transverse modes. The small peak in the spectrum of red-

sideband transitions originates from imperfect ground-state cooling of the center of mass

(COM) mode with linearly scaled heating rate. We numerically simulate the red-sideband

absorption spectrum of the crystal in the vicinity of each mode for the parameters of our

experiment [70] . The estimated phonon numbers of COM mode is 1.04 (±0.26) .
We also employ optical-dipole-force (ODF) thermometry [71] to measure the final

phonon number of the center-of-mass (COM) mode. The ODF is generated by simulta-

neously driving red-sideband and blue-sideband transitions, resulting in the emergence of

the 𝜎x𝜎x interaction. With ion-phonon coupling, this interaction can induce decoherence

in the x basis. To probe this decoherence, we adopt Ramsey measurements, as shown

in Fig. 5.4(c). Initially, all qubits are prepared in their ground state in the 𝜎z basis, de-
noted as |↓⟩ z. Then, the ODF is applied for two fixed durations, 𝜏ODF, with a spin-echo
pulse sandwiched in between. Fig. 5.4(d) presents the spectrum near the COM mode of

the crystal with different phonon numbers. The crystal’s temperature is measured by fit-

ting the spectrum to the formula given in Equation (35), where the ̄𝑛 values for Doppler

cooling and EIT cooling are 10.72 (±4.23) and 1.04 (±0.61), respectively. We calibrate

the strength of the ODF beams by measuring the Lamb-Dicke parameter and the Rabi

frequency of the carrier transition.

To investigate the cooling dynamics for the COM mode of a crystal with 12 ions,

we develop a simple method to estimate ̄𝑛 instead of using the entire ODF spectrum in

Fig. 5.4(d). By fixing the detuning at the position with the largest decoherence, we con-

vert the heights of the ODF signal to the mean phonon number, ̄𝑛. We observe a cooling

rate and a cooling limit consistent with those of a single ion. In the case of 12 ions, the

measured cooling rate and limit for a single ion are 22.1 (±0.1)ms−1 and 0.34(±0.25),
respectively, as shown in Fig. 5.4(e). With 12 ions, the rate and limit are 15.9(±0.1)ms−1

and 1.04(±0.61), respectively. The cooling rate is reduced, and the cooling limit is in-
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Figure 5.4 EIT cooling for 2D ion crystal
(a,b) Blue-sideband (blue curve) and red-sideband (red curve) spectrum after (a) Doppler

cooling and (b) EIT cooling. The vertical axis represents the count globally collected by PMT.
The horizontal axis 𝜇R = 𝜔R − 𝜔0 is the detuning of the Raman transition from the qubit
transition. Vertical lines indicate the locations of 12 motional modes perpendicular to the

2D-crystal plane. (c) Pulse sequence for the ODF thermometry. (d) ODF spectrum with different
average phonon number. The dashed black line indicates the position we choose for the cooling
rate measurement. (e) Cooling dynamics for a single ion (green) and a 2D crystal with 12 ions
(red). The dots are experimental data. The error bars represent the standard deviation induced by
the quantum projection noise. Solid lines are fitting curves by exponential decay functions.

creased for 12 ions due to heating rates proportional to the number of ions, which amount

to 0.61(±0.08) ms−1 per ion. In our experiment, we do not observe the more efficient

EIT cooling reported in Refs. [72-73] within our error bars, indicating the need for further

experimental or theoretical investigation.
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5.2 The dark states

Considering the semi-classical treatment for the system of Fig. 6.1(a) in the rotating

frame, we have the Hamiltonian

𝐻̂ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 Ω𝜎−
2 −Ω𝜋

2
Ω𝜎+

2
Ω𝜎−

2 Δd + 𝛿B 0 0
−Ω𝜋

2 0 Δp 0
Ω𝜎+

2 0 0 Δd − 𝛿B

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(5.1)

where the basis is {|𝑒⟩, |+⟩ , |0⟩, |−⟩}, Δd is the detuning between the driving laser and

the |0⟩ ↔ |𝑒⟩ transition, Δp is the detuning between the probe laser and the |0⟩ ↔ |𝑒⟩
transition, and 𝛿B is the Zeeman splitting. Here we denote ℏ = 1.

Once the detuning of the probe beam matches to one of the Zeeman level Δp = Δd +
𝛿B ≡ Δ, the Hamiltonian can be written as

𝐻̂ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 Ω𝜎−
2 −Ω𝜋

2
Ω𝜎+

2
Ω𝜎−

2 Δ 0 0
−Ω𝜋

2 0 Δ 0
Ω𝜎+

2 0 0 Δ − 2𝛿B

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(5.2)

This Hamiltonian gives us one dark state

|𝐷1⟩ = 1

√Ω2
𝜋 + Ω2

𝜎−

(Ω𝜋 |+⟩ + Ω𝜎−|0⟩) (5.3)

And the coincidence with the other Zeeman level gives us the second dark state

|𝐷2⟩ = 1

√Ω2
𝜋 + Ω2

𝜎+

(Ω𝜎+|0⟩ + Ω𝜋 |−⟩) (5.4)
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5.3 The scattering amplitude interpretation for the bright Reso-
nance

To gain a more precise understanding of the interaction between laser beams and this

four-level atomic system, we can quantize the laser field. This allows us to express the

Hamiltonian as follows:

𝐻 = 𝐻0 + 𝑉𝜎+ + 𝑉𝜎− + 𝑉𝜋 + ∑𝑣
𝑉𝑣, (5.5)

where

𝐻0 = 𝐸𝜎+ |−⟩ ⟨−| + 𝐸𝜋|0⟩⟨0| + 𝐸𝜎− |+⟩ ⟨+| + 𝐸𝑒|𝑒⟩⟨𝑒| + 𝜔𝜎−𝑎†
𝜎−𝑎𝜎−

+ 𝜔𝜋𝑎†
𝜋𝑎𝜋 + 𝜔𝜎+𝑎†

𝜎+𝑎𝜎+ + ∑𝑣
𝜔𝑣𝑎†

𝑣𝑎𝑣

𝑉𝜎+ =
𝑑𝜎+

2 (𝑎𝜎+|𝑒⟩ ⟨−| + 𝑎†
𝜎+ |−⟩ ⟨𝑒|)

𝑉𝜋 = 𝑑𝜋
2 (𝑎𝜋|𝑒⟩⟨0| + 𝑎†

𝜋|0⟩⟨𝑒|)

𝑉𝜎− = 𝑑𝜎−
2 (𝑎𝜎−|𝑒⟩ ⟨+| + 𝑎†

𝜎− |+⟩ ⟨𝑒|)

𝑉𝑣 = 𝑑𝑣
2 (𝑎𝑣|𝑒⟩ ⟨−| + 𝑎†

𝑣 |−⟩ ⟨𝑒| + 𝑎𝑣|𝑒⟩⟨0| + 𝑎†
𝑣|0⟩⟨𝑒| + 𝑎𝑣|𝑒⟩ ⟨+| + 𝑎†

𝑣 |+⟩ ⟨𝑒|).

(5.6)

Here, the last term represent the interaction with the vacuum field. Basically, the absorp-

tion spectra is proportional to the squared scattering amplitude of the transition

|𝑖⟩ ≡ |0, 1, 𝑁1, 𝑁2, 0⟩ → |𝑓⟩ ≡ |0, 0, 𝑁1, 𝑁2, 1⟩, (5.7)

where the first index represent the atom‘s internal state, the second index represents the

Fock state of the probe field, and the last three terms represent the Fock states of the 𝜎−

field, 𝜎+ field, and the vacuum field, respectively. It is important to note that the absorp-

tion spectrum refers to the process in which the atom absorbs one photon and subsequently

emits it into the vacuum, with a portion of it being detectable by a photomultiplier tube

(PMT).

The scattering amplitude of such a process can be calculated by the 𝑇 matrix

𝑇 = ⟨𝑓|𝑉 |𝔦⟩ + lim
𝜂→0+ ⟨𝑓 |𝑉

1
𝐸𝔦 − 𝐻 + 𝑖𝜂 𝑉 | 𝑖⟩ (5.8)

and due to 𝑉 = 𝑉𝜎+ + 𝑉𝜎− + 𝑉𝜋 + ∑𝑣 𝑉𝑣, 𝑉 |𝑖⟩ and 𝑉 |𝑓⟩ can be written by
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𝑉 |𝑖⟩ = Ω𝜋
2 |𝜑𝑒⟩, 𝑉 |𝑓⟩ = Ω𝑣

2 |𝜑𝑒⟩. (5.9)

where we denote |𝜑𝑒⟩ ≡ |𝑒, 0, 𝑁1, 𝑁2, 0⟩. There are two states strongly coupled to |𝜑𝑒⟩,
which are

|−, 0, 𝑁1 + 1, 𝑁2, 0⟩, |+, 0, 𝑁1, 𝑁2 + 1, 0⟩, (5.10)

since

𝑉 |+, 0, 𝑁1 + 1, 𝑁2, 0⟩ = Ω𝜎−
2 |𝜑𝑒⟩, 𝑉 |−, 0, 𝑁1, 𝑁2 + 1, 0⟩ =

Ω𝜎+
2 |𝜑𝑒⟩, (5.11)

respectively. We note that the subspace is closed. We can calculate the 𝑇 matrix by pro-

jecting the Hamiltonian to the subspace spanned by {|+, 0, 𝑁1 +1, 𝑁2, 0⟩, |−, 0, 𝑁1, 𝑁2 +
1, 0⟩, |𝜑𝑒⟩}.

In the second order perturbation theory [74] , the effective Hamiltonian in this subspace

can be calculated by

𝑃 𝐻eff𝑃 = 𝑃 𝐻0𝑃 + 𝑃 𝑉 𝑃 + 𝑃 𝑉 𝑄 1
𝐸0 − 𝑄𝐻0𝑄𝑄𝑉 𝑃 , (5.12)

where 𝑃 is the projection operator to the subspace and 𝑄 = 1 − 𝑃 . After calculating all
the terms, the effective Hamiltonian can be simplified by

𝐻̂eff =
⎛
⎜
⎜
⎜
⎝

Δ𝜋 + 𝑖Γ
2 −Ω𝜎−

2 −Ω𝜎+
2

−Ω𝜎−
2 Δ𝜋 − Δ𝜎− 0

−Ω𝜎+
2 0 Δ𝜋 − Δ𝜎+.

⎞
⎟
⎟
⎟
⎠

(5.13)

Therefore the fluorescence, 𝑊 (Δ) = |𝑇 (Δ)|2, which is proportional to the square of

the scattering amplitude is

𝑊 (Δ𝜋) =
16(Δ𝜋 − Δ𝜎−)2(Δ𝜋 − Δ𝜎+)2

𝑍 (5.14)

where

𝑍 =4Γ2(Δ𝜋 − Δ𝜎−)2(Δ𝜋 − Δ𝜎+)2+

[4Δ𝜋(Δ𝜋 − Δ𝜎+)(Δ𝜋 − Δ𝜎−) − (Δ𝜋 − Δ𝜎+)Ω2
𝜎− − (Δ𝜋 − Δ𝜎−)Ω2

𝜎+]
2

And Γ is the total decay rate of the excited state. The bright resonance will appear

when

4Δ𝜋(Δ𝜋 − Δ𝜎−)(Δ𝜋 − Δ𝜎+) − (Δ𝜋 − Δ𝜎+)Ω2
𝜎− − (Δ𝜋 − Δ𝜎−)Ω2

𝜎+ = 0 (5.15)
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In the experiment, we control Δ𝜋 by changing the detuning of the probe beam that has

only the 𝜋-polarization. The three roots independently correspond to the big Doppler peak
and two narrow Fano peaks.
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Figure 5.5 The spectrum calculated by the master equation and the analytical solution.
Here we set Γ/(2𝜋) = 21 MHz, Δ𝜎+/(2𝜋) = 50.4 MHz, Δ𝜎−/(2𝜋) = 59.6 MHz,

Ω𝜎−/(2𝜋) = Ω𝜎+/(2𝜋) = 17 MHz, and Ω𝜋/(2𝜋) = 0.5 MHz. The dot represent the result
calculated from the master equation and the curve is calculated by the Eq.(5.14).
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5.4 The dressed-states interpretation for the bright resonance

With only two driving beams and no probe beam, we have the Hamiltonian

𝐻̂ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 Ω𝜎−
2 0 Ω𝜎+

2
Ω𝜎−

2 Δ𝜎− 0 0
0 0 0 0

Ω𝜎+
2 0 0 Δ𝜎+

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(5.16)

The energy of the dressed states can be calculated by diagonalizing the above Hamil-

tonian, which results in solving the following equation

1
4𝜆 [4𝜆(𝜆 − Δ𝜎+)(𝜆 − Δ𝜎−) − (𝜆 − Δ𝜎+)Ω2

𝜎− − (𝜆 − Δ𝜎−)Ω2
𝜎+] = 0. (5.17)

The energies of the dressed states can be observed by applying a probe beam with 𝜋-
polarization, as shown in Fig. 5.6. This observation is consistent with the result obtained

from Equation (5.15).

mF = − 1
mF = 0

mF = + 1

mF = 0

σ−σ+
Probe

Probe

|g, n⟩

Δp

|g, n + 1⟩

|g, n − 1⟩

|d1, n⟩
|d2, n⟩

Figure 5.6 Dressed states
The dressed states. The gray dotted lines are the energy levels without the interaction with the
Ω𝜎,± fields. The gray solid lines are the dressed states formed by the laser field and the atomic
levels. |𝑑1, 𝑛⟩ and |𝑑2, 𝑛⟩ represent the dressed states with phonon number 𝑛. |𝑔, 𝑛⟩ represent the
𝑚F = 0 state with phonon number 𝑛. The dashed colored lines represent the virtual excited state
of |𝑔⟩ with different phonon number, and blue- and red-sideband transitions, as shown in the

spectrum. When the red dashed line matches |𝑑2, 𝑛⟩, the transition |𝑔, 𝑛 + 1⟩ ↔ |𝑑2, 𝑛⟩ is driven,
which is a red-sideband transition.
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5.5 The master equation treatment for the double-EIT cooling

The Hamiltonian that describes the interaction between the four-level system and the

laser fields shown in Fig. 1(a) can be written as

𝐻̂ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜔|𝑒⟩
Ω𝜎−

2 𝑒−𝑖(𝑘⃗d⋅𝑟−𝜔d𝑡) −Ω𝜋
2 𝑒−𝑖(𝑘⃗p⋅𝑟−𝜔p𝑡) Ω𝜎+

2 𝑒−𝑖(𝑘⃗d⋅𝑟−𝜔d𝑡)

Ω𝜎−
2 𝑒𝑖(𝑘⃗d⋅𝑟−𝜔d𝑡) 𝜔|+⟩ 0 0

−Ω𝜋
2 𝑒𝑖(𝑘⃗p⋅𝑟−𝜔p𝑡) 0 𝜔|0⟩ 0

Ω𝜎+
2 𝑒𝑖(𝑘⃗d⋅𝑟−𝜔d𝑡) 0 0 𝜔|−⟩,

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(5.18)

where 𝑘⃗p(d) and 𝜔p(d) are the k-vector and the frequency of the probe (driving) beam and

𝜔|𝑒⟩, (𝜔|−⟩𝜔|0⟩, 𝜔|+⟩) are the energies of the corresponding levels. For a rest ion, in the
rotating frame the Hamiltonian can be simplified to

𝐻̂s =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 Ω𝜎−
2 −Ω𝜋

2
Ω𝜎+

2
Ω𝜎−

2 Δd + 𝛿B 0 0
−Ω𝜋

2 0 Δp 0
Ω𝜎+

2 0 0 Δd − 𝛿B

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(5.19)

The absorption spectrum can be obtained by numerical solving the steady state solu-

tion of the master equation corresponding to the Hamiltonian Eq.(5.19)

𝑑 ̂𝜌
𝑑𝑡 = −𝑖[𝐻̂s, ̂𝜌] + ℒ𝜌, (5.20)

where ℒ is the Lindblad operator corresponding to the three spontaneous decay chan-

nel ℒ𝜌 = ∑3
𝑖=1 𝑐𝑖𝜌𝑐†

𝑖 − 1
2{𝑐†

𝑖 𝑐𝑖, 𝜌} and 𝑐1 = √Γ/3 |+⟩ ⟨𝑒|, 𝑐2 = √Γ/3 |0⟩ ⟨𝑒|, 𝑐1 =
√Γ/3 |−⟩ ⟨𝑒|.

For a moving ion, the Hamiltonian in rotating frame can be written as

𝐻̂m =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 Ω𝜎−
2 𝑒−𝑖𝑘⃗d⋅𝑟 −Ω𝜋

2 𝑒−𝑖𝑘⃗p⋅𝑟 Ω𝜎+
2 𝑒−𝑖𝑘⃗d⋅𝑟

Ω𝜎−
2 𝑒𝑖𝑘⃗d⋅𝑟 Δd + 𝛿B 0 0

−Ω𝜋
2 𝑒𝑖𝑘⃗p⋅𝑟 0 Δp 0

Ω𝜎+
2 𝑒𝑖𝑘⃗d⋅𝑟 0 0 Δd − 𝛿B.

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(5.21)

In the simulation of the cooling effect, we set 𝑘⃗d = −𝑘⃗p = ̂𝑦 to selectively address

the relevant motional mode using the laser beams. Considering the quantized motion of

ions trapped in a harmonic potential, the position operator can be decomposed into the
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creation and annihilation operators of the phonon as ̂𝑦 = √
1

2𝑀𝜔COM
( ̂𝑎+ ̂𝑎†), where 𝜔COM

is the frequency of the harmonic potential. The cooling rate can be calculated by solving

the time evolution of the master equation corresponding to 𝐻̂m, and the cooling limit can

be determined by the average phonon number of the steady-state solution of the master

equation.

The heating is represented by an additional Lindblad operator 𝑐h = 𝛼𝑎†, where 𝛼
describes the strength of heating and 𝑎† is the creation operator of the COM mode. In the

numerical simulation presented in the main text, we use the parameter values 𝛼 = 0.0259,
corresponding to a heating rate of 0.67 quanta/ms, Δd/(2𝜋) = 55.6 MHz, Δp/(2𝜋) =
59.82 MHz, Ω𝜋/(2𝜋) = 6.67 MHz, Ω𝜎,+/(2𝜋) = 19.91 MHz, Ω𝜎,−/(2𝜋) = 19.52 MHz,

𝛿B/(2𝜋) = 4.6 MHz, and the trap frequency 𝜈/(2𝜋) = 2.38 MHz.
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5.6 Measurements of Rabi frequencies of the probe and driving
beams

We measure the Rabi frequencies of the probe and driving laser beams by observing

Ramsey oscillations from the differential AC-stark shift of the beams. We use the clock

qubit and the Zeeman qubits to measure all the three components of polarization, as shown

in the Fig.5.7.
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Figure 5.7 Energy levels
Energy levels of the 171Yb+ . The AC stark shift originated from different transitions are labelled
by different colors. The blue and red lines corresponding to the transitions contribute to the
differential AC stark shift of the Zeeman qubits and the orange lines corresponding to the

transitions for the clock qubit.

For the clock state qubit 2𝑆1/2|𝐹 = 0, 𝑚𝐹 = 0⟩ to 2𝑆1/2|𝐹 = 1, 𝑚𝐹 = 0⟩, the AC-
stark is given by the following formula

Δclock
AC (Ω+, Ω−, Ω𝜋 , Δ) = Ω2

𝜋 (
1
Δ + 1

ΔP + ΔS − Δ)

+ (Ω2
− + Ω2

+) (
1

ΔP + ΔS − Δ − 1
ΔP − Δ) ,

(5.22)

where the first term comes from the transition 2𝑆1/2|𝐹 = 1, 𝑚𝐹 = 0⟩ to 2𝑃1/2|𝐹 = 0, 𝑚𝐹 =
0⟩ and 2𝑆1/2|𝐹 = 0, 𝑚𝐹 = 0⟩ to 2𝑃1/2|𝐹 = 1, 𝑚𝐹 = 0⟩ while the second term comes from

the transition 2𝑆1/2|𝐹 = 1, 𝑚𝐹 = 0⟩ to 2𝑃1/2|𝐹 = 1, 𝑚𝐹 = ±1⟩ and 2𝑆1/2|𝐹 = 0, 𝑚𝐹 = 0⟩
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to 2𝑃1/2|𝐹 = 1, 𝑚𝐹 = ±1⟩. Including the dephasing due to the spontaneous emission
whose strength is proportional to the 1/Δ2, the Ramsey oscillation can be described by

sin2[Δclock
AC (Ω+, Ω−, Ω𝜋 , Δ)𝑡] × 𝑒−Γ∗Ω2

𝜋 𝑡/Δ2𝑒−Γ∗(Ω2
−+Ω2

+)𝑡/(ΔP−Δ)2 . (5.23)

In a similar way, Ramsey oscillations of the two Zeeman qubits can be described by

sin2[Δ±1
AC(Ω+, Ω−, Ω𝜋 , Δ)𝑡] × 𝑒−𝛾∗Ω2

∓𝑡/(Δ±𝛿B)2𝑒−𝛾∗Ω2
𝜋 𝑡/(ΔP−Δ)2 , (5.24)

where Δ±1
AC are the differential AC-stark shifts of the Zeeman qubits which are given by

Δ±1
AC(Ω+, Ω−, Ω𝜋 , Δ) = Ω2

∓ (
1

Δ ± 𝛿B
− 1

ΔP − Δ ∓ 𝛿B
+ 1

ΔP + ΔS − Δ) +

Ω2
𝜋 (− 1

ΔP − Δ + 1
ΔP + ΔS − Δ) +

Ω2
±

ΔP + ΔS − Δ.
(5.25)

To measure the Ramsey oscillation, we begin by preparing the ion in its ground state
2𝑆1/2|𝐹 = 1, 𝑚𝐹 = 0⟩ through optical pumping. Subsequently, we apply a Ramsey

sequence [68] . To measure the Rabi frequencies of the three components, we execute the

Ramsey sequence on all three qubits. The measurement results and fitting outcomes are

depicted in Fig. 5.8.
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Figure 5.8 Ramsey measurement
Results of the Ramsey measurements (a-c) for the driving beam and (d-f) for the probe beam.

It is worth mentioning that the signal in Fig. 5.8 (b) is utilized to align the direction

of the B-field. Once the B-field is aligned parallel to the driving beam, the 𝜋 compo-

nent of the driving beam is eliminated, resulting in a reduction of dephasing caused by

spontaneous emission.
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5.7 Extraction of the phonon number from the sideband transi-
tions

In our experiment, we define the states |𝐹 = 0, 𝑚𝐹 = 0⟩ and |𝐹 = 1, 𝑚𝐹 = 0⟩ in the
2𝑆1/2 manifold, with an energy difference of 𝜔0, as the |↓⟩ and |↑⟩ states of the qubit,
respectively. To drive the qubit through the Raman transition [75] , a pair of 355 nm laser

beams, as shown in Fig. 1(c), with a frequency difference of 𝜔R is employed. As men-

tioned in the main text, we define 𝜇R ≡ 𝜔R − 𝜔0 as the detuning of the Raman transition

relative to the qubit transition.

When the detuning of the transition, 𝜇R, matches the frequency of a motional mode,
the Hamiltonians 𝐻̂r,m and 𝐻̂b,m, representing the cases of 𝜇R = −𝜔𝑚 and 𝜇R = 𝜔𝑚,

respectively, can be expressed as:

𝐻̂r,𝑚 = ̂𝑎𝑚√
1

2𝑀𝜔𝑚 ∑
𝑗

𝑏𝑚
𝑗 𝜎̂+

𝑗 + h.c. (5.26)

𝐻̂b,𝑚 = ̂𝑎†
𝑚√

1
2𝑀𝜔𝑚 ∑

𝑗
𝑏𝑚

𝑗 𝜎̂+
𝑗 + h.c., (5.27)

where 𝑀 represents the mass of a single 171Yb+ ion, ̂𝑎†
𝑚, ̂𝑎𝑚, and 𝜔𝑚 denote the creation,

annihilation operator, and angular frequency of the 𝑚-th motional mode, respectively.

Furthermore, 𝑏𝑚
𝑗 corresponds to the normal mode transformation matrix of the 𝑗-th ion

with respect to the 𝑚-th mode. After the time evolution 𝑈̂r(b),𝑚(𝑡) of the Hamiltonian with
an initial state |↓↓↓ ⋯ ↓⟩ |𝑛⟩𝑚 (where |𝑛⟩𝑚 is a Fock state of the 𝑚-th mode), we obtain
the time dependence of the normalized average population in the upstate as follows:

𝑃 r(b),𝑚
↑ (𝑡, 𝑛) = Tr

[(∑
𝑗

𝜎̂z𝑗 + ̂𝐼s
2 ⊗ ̂𝐼𝑚)

𝜌r(b),𝑚(𝑡, 𝑛)
]

(5.28)

where ̂𝐼s and ̂𝐼𝑚 are the identity operators of spins and the 𝑚-th mode and 𝜌r(b),𝑚(𝑡, 𝑛) =
𝑈̂(𝑡)r(b),𝑚 |↓↓↓ ⋯ ↓⟩ ⟨↓↓↓ ⋯ ↓| ⊗ |𝑛⟩𝑚 ⟨𝑛|𝑚 𝑈̂ (𝑡)†

r(b),𝑚 is the density matrix after the time

evolution of duration 𝑡. If we start from a thermal state which is described by the density

matrix

𝜌th,m( ̄𝑛) = ∑
𝑖

̄𝑛𝑖

( ̄𝑛 + 1)𝑖+1 |𝑖⟩𝑚 ⟨𝑖|𝑚 . (5.29)

Instead of simulating the master equation with this density matrix as the ini-
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tial state, we numerically solve the time evolution starting from a Fock state with

different phonon numbers. This allows us to obtain the probabilities of a set

𝑃 r(b),𝑚
↑ (𝑡, 0), 𝑃 r(b),𝑚

↑ (𝑡, 1), ⋯ 𝑃 r(b),𝑚
↑ (𝑡, 𝑛). The average upper-state probability after the time

evolution from a thermal state can then be calculated by a weighted superposition of each

evolution of a Fock state, as shown below the equation.

𝑃 r(b),𝑚
↑ (𝑡) = Tr

[(∑
𝑗

𝜎̂z𝑗 + ̂𝐼s
2 ⊗ ̂𝐼𝑚)

𝜌r(b),th,m(𝑡, ̄𝑛)
]

= ∑
𝑖

̄𝑛𝑖

( ̄𝑛 + 1)𝑖+1 𝑃 r(b),𝑚
↑ (𝑡, 𝑖)

(5.30)

At the 𝜋 duration of COM mode, we compare the ratio between blue-sideband and

red-sideband transition for the 𝑚-th mode, 𝑃 r,𝑚
↑ (𝑡)/𝑃 b,𝑚

↑ (𝑡) to the Eq. (5.30). Then we

deduce the ̄𝑛 for the 𝑚-th mode.
With this method we fit the peaks in Fig.4(b) and estimate the final temperature after

the double-EIT cooling. The fitted results are {0.101 (zig-zag mode), 0.0460, 0.0283,

0.0817, 0.0996, 0.0181, 0.0759, 0.0337, 0.0388, 0.0495, 0.0274, 1.04 (COM mode)}.

It is interesting to discuss this method further. For a single ion, we can extract the

phonon number by calculating 𝑃 r/𝑃 b

1−𝑃 r/𝑃 b
[37] . However, this method is not valid when

we globally drive the COM mode of the crystal. For example, in a two-ion crystal in

the Fock state |𝑛 = 2⟩, the global red-sideband transition can only pump 50% popula-

tion of each ion to the up state. Since the Hamiltonian of the red-sideband transition is

𝐻̂ = 𝜂Ω0 [(𝜎̂−(1) + 𝜎̂−(2)) ̂𝑎† + (𝜎̂+(1) + 𝜎̂+(2)) ̂𝑎], we can consider the red-sideband tran-
sition as an exchange between phonon and spin. Therefore, we can only excite one of

the spins by eliminating the phonon. The following figure, Fig. 5.9, provides an intuitive

explanation.

Based on this understanding, we can also calculate the mean phonon number of the

COM mode for 12 ions by introducing an additional parameter 𝛼 into the formula ̄𝑛 =
𝛼𝑃 r/𝑃 b

1−𝛼𝑃 r/𝑃 b . Fig. X illustrates the relationship between the ratio 𝑃 r/𝑃 b and ̄𝑛, indicating that
𝛼 ≈ 2.7 for ̄𝑛 < 2. In our simulation, we consider the sideband transitions of the COM
mode with 12 ions, spanning from the initial phonon number up to |𝑛 = 10⟩ as discussed
in Equation (5.30). The Rabi frequency on the carrier transition is Ω/(2𝜋) = 12 kHz, and
the Lamb-Dicke parameter is 0.11/√12. The transitions evolve for 206𝜇s to obtain the
spectrum. We truncate the Fock space by excluding phonon numbers larger than 22.
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Figure 5.9 Sideband transition
Global red-sideband transition. Here, the red line represents the red-sideband transition, and the
blue line represents the blue-sideband transition. Since the Fock state is bounded on |𝑛 = 0⟩, we
can only reach | ↑↓⟩ or | ↓↑⟩ by globally driving the red-sideband transition of | ↓↓⟩|𝑛 = 1⟩. On

the other hand, we can reach | ↑↑⟩ for the global blue-sideband transitions.
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Figure 5.10 Peak fit
Comparison between numerical simulation result and the formula 𝑃 r

𝑃 b = ̄𝑛
𝛼(1+ ̄𝑛) . Red curve

represents the formula, and black curve represents the simulation result. Here 𝛼 is 2.7, and
determined by fitting the simulation result.

5.8 Thermometry based on the optical-dipole-force

Fig. 5.11 shows the laser setup for generating the optical-dipole-force(ODF).

ω0 + μ

ω0 − μ

Figure 5.11 Laser setting for the ODF measurement.

For the pair of Raman beam, the effective Hamiltonian can be written as
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𝐻 (eff)
𝐼 = ∑

𝑗

Ω𝑗
2 𝑒−𝑖[Δ𝑘⋅𝑟𝑗 (𝑡)−𝛿𝑡−Δ𝜑]𝜎̂+

𝑗 + H.c., (5.31)

where 𝛿 = 𝜔R − 𝜔0, Ω𝑗 and Δ𝑘 are the Rabi frequency and net wave-vector of Raman

laser beams, respectively. If we use two pair of Raman beam to generate two effective

coupling simultaneously with opposite detuning 𝜇R for the ODF, the whole Hamiltonian
can be written as

𝐻 (eff)
𝐼,ODF = ∑

𝑗

Ω𝑗
2 𝑒−𝑖[Δ𝑘1⋅𝑟𝑗 (𝑡)−𝜇R𝑡−𝜑1]𝜎̂+

𝑗 +
Ω𝑗
2 𝑒−𝑖[Δ𝑘2⋅𝑟𝑗 (𝑡)+𝜇R𝑡−𝜑2]𝜎̂+

𝑗 + H.c. (5.32)

Although we have four transitions and two Raman transitions, we typically use only

two laser beams. One laser beam has a single frequency component, while the other

laser beam has two frequency components. In this situation, we have Δ𝑘1 = Δ𝑘2. We

can rewrite the two phase terms as 𝜑𝑠 = 𝜑1+𝜑2
2 and 𝜑𝑚 = 𝜑1−𝜑2

2 . Consequently, the

Hamiltonian can be expressed as follows:

𝐻 (eff)
𝐼,ODF =

Ω𝑗
2 (cos(Δ𝑘⋅𝑟𝑗)+𝑖 sin(Δ𝑘⋅𝑟𝑗)) cos(𝜇R𝑡+𝜑𝑚)(𝜎̂(𝑗)

𝑥 cos𝜑𝑠 −𝜎̂(𝑗)
𝑦 sin𝜑𝑠). (5.33)

In experiment, we calibrate the phase of two different frequency components to be

the same, 𝜑𝑠 = 𝜑𝑚 = 0, and the Δ𝑘 along the y direction. Then we have

𝐻 (eff)
𝐼 =

Ω𝑗
2 [cos(Δ𝑘 ⋅ 𝑦𝑗) cos𝜇R𝑡 + 𝑖 sin(Δ𝑘 ⋅ 𝑦𝑗) cos𝜇R𝑡] 𝜎̂(𝑗)

𝑥 , (5.34)

where the first term gives us the dephasing dependent on the motional state along the

x-axis in the Bloch sphere [71] :

𝑃 𝑗
↑ = 1

2 [
1 − 𝑒−2ΓD𝜏 exp

(
−2 ∑𝑚

|𝛼𝑗𝑚|
2

(2 ̄𝑛𝑚 + 1))]
, (5.35)

where ΓD describes the decoherence in the experiment and

𝛼𝑗𝑚 =𝜂𝑚Ω𝑗
𝑏𝑗𝑚

(𝜇2
R − 𝜔2

𝑚)
(𝜔𝑚(1 − cos𝜙) + 𝑖𝜇R sin𝜙 − 𝑒𝑖𝜔𝑚𝜏 {𝜔𝑚 [cos (𝜇R𝜏) − cos (𝜇R𝜏 + 𝜙)]

−𝑖𝜇R [sin (𝜇R𝜏) − sin (𝜇R𝜏 + 𝜙)]}) ,
(5.36)

where 𝜙 = (𝜏 + 𝜏𝜋) (𝜇R − 𝜔𝑚), 𝜂𝑚 = Δ𝑘√
1

2𝑀𝜔𝑚
is the Lamb-Dicke parameter of m-th

mode, and 𝜏𝜋 is the duration for the 𝜋-pulse during the ODFmeasurement. For the relative
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long duration of the ODF pulse we have 𝜙 ≈ 𝜏 (𝜇R − 𝜔𝑚). When the detuning 𝜇R is near
the COM mode, we can approximate the Eq. (5.38) by

𝑃 𝑗
↑ = 1

2 [1 − 𝑒−2ΓD𝜏 exp(−2 |𝛼𝑗|
2 (2 ̄𝑛 + 1))] , (5.37)

where

𝛼𝑗 =
𝜂Ω𝑗

√𝑁
1

(𝜇2
R − 𝜔2

COM)
(𝜔COM(1 − cos𝜙) + 𝑖𝜇R sin𝜙 − 𝑒𝑖𝜔COM𝜏 {𝜔COM [cos (𝜇R𝜏) − cos (𝜇R𝜏 + 𝜙)]

−𝑖𝜇R [sin (𝜇R𝜏) − sin (𝜇R𝜏 + 𝜙)]}) ,
(5.38)

where 𝜂 = Δ𝑘√
1

2𝑀𝜔COM
represents the Lamb-Dicke parameter for the COM mode,

and 𝑁 denotes the number of ions. The spectrum resulting from Equation (5.38) with

different phonon numbers is depicted in Fig. 5.12(a). The null point corresponds to

𝜏 (𝜇R − 𝜔𝑚) = 2𝑛𝜋. In the experiment, we individually detect the fluorescence of ions in
the crystal to obtain the downstate population and measure the strength of the ODF using

the Rabi oscillation of the carrier transition.

To study the cooling dynamics conveniently without acquiring the spectroscopy sig-

nal shown in Fig. 5.12(a) at each cooling step, we fix the detuning of the ODF beams

at the highest peak of the spectrum indicated by the dashed line in Fig. 5.12(a). In our

experiment, this detuning is (𝜇R − 𝜔COM)𝜏ODF/(2𝜋) = 0.37, and we record the up-state
probability during the cooling process. As demonstrated in Fig. 5.12(a), for the same

strength and duration of the ODF beams, a decrease in temperature leads to a reduction

in the height of the spectrum.

The relationship between the up-state probability at the selected detuning and the

temperature is illustrated in Fig. 5.12(b). By fitting the experimentally measured 𝑃↑ to

the corresponding function, we can quickly determine the temperature of the mode using

a method referred to as the ODF height method. To verify the reliability of this method,

we compare its results with those obtained from the blue-sideband measurement for the

heating of a single ion. Firstly, we measure the heating rate of a single ion using both

the blue-sideband method and the ODF height method. The comparison of their results,

0.83 (±0.19) ms−1 for the blue-sideband method and 0.77 (±0.15) ms−1 for the ODF

method, demonstrates consistency within the error bars, as shown in Fig. 5.12(c). Subse-

quently, we apply the ODF height method to measure the heating rate for the COM mode
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Figure 5.12 ODF spectrum
ODF spectrum and the heating measurement. (a) The ODF spectrum of average up-state

population with different phonon number for the COM mode. The dashed black line indicates
the chosen detuning to measure the average phonon number. (b) The relation between the
average phonon number and the average downstate population at the detuning of ODF pulse
indicated in (a). Here the blue (red) area represents error bars for the heating rate measured by
sideband (ODF) method. (c) Comparison of the results of heating measurements between

blue-sideband (blue line) and ODF height method (red line). (d) The heating measurement of
multiple ions by the ODF height method. The measured heating rates are 0.77 ± 0.19 quanta/ms
(sideband method) and 0.83 ± 0.15 quanta/ms (ODF method). (e) Linearly scaled heating rate.
In this figure, the black line denotes 𝑛 ⋅ 𝛾heating, where 𝑛 is the number of ions and 𝛾heating is the

heating rate of a single ion.

of 2D crystals consisting of 1, 2, 4, and 6 ions. As depicted in Figures 5.12(d) and 5.12(e),

the heating rate for the COMmode increases linearly with the number of ions as expected,

amounting to 0.61 (±0.08) ms−1 per ion. For an ion trapped by electric fields, the heating

rate can be calculated using the formula proposed by [76] .

̇̄𝑛 = 𝑒2

4𝑚ℏ𝜔𝑆𝐸 (𝜔) (5.39)

where, ̇̄𝑛 represents the heating rate, 𝜔 is the mode frequency, Ω𝑇 is the frequency

of the rf field, 𝑚 denotes the mass of the ion, 𝑒 is the elementary charge, and 𝑆𝐸(𝜔) ≡
2 ∫∞

−∞ 𝑑𝜏𝑒𝑖𝜔𝜏⟨𝐸(𝑡)𝐸(𝑡 + 𝜏)⟩ represents the spectral density of electric-field fluctuations.
In the case of the COM mode of a large crystal with 𝑁 ions, it can be approximated as a

single ion with mass 𝑁𝑚 and charge 𝑁𝑒. Consequently, the coefficient 𝑒2/(4𝑚ℏ𝜔) will
increase by a factor of 𝑁 , indicating a linear dependence on the number of ions.

However, for other modes of a large ion crystal, the above argument requires some

modifications. The Hamiltonian in the presence of uniform electric noise is given by:
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𝐻(𝑡) = ∑
𝑖

ℏ𝜔𝑖𝑎
†
𝑖 𝑎𝑖 + 𝑒𝐸(𝑡) ∑

𝑖
𝑥𝑖

The ion’s position operator can be decomposed into the normal coordinates 𝑥𝑖 = 𝑏𝑖𝑗𝑢𝑗

and the normal coordinates 𝑢𝑖 = √
ℏ

2𝑚𝜔𝑖
(𝑎𝑖 +𝑎†

𝑖 ). Then the Hamiltonian can be simplified
to

𝐻(𝑡) = ∑
𝑖 [

ℏ𝜔𝑖𝑎
†
𝑖 𝑎𝑖 + 𝑢𝑖𝑒𝐸(𝑡) ∑

𝑗
𝑏𝑗𝑖]

Based on the first-order perturbation theory [76] , the heating rate on the i-th mode is

̇̄𝑛𝑖 = 𝑒2

4𝑚ℏ𝜔𝑖
2

(∑
𝑗

𝑏𝑗𝑖)

2

∫
∞

−∞
𝑑𝜏𝑒𝑖𝜔𝑖𝜏⟨𝐸(𝑡)𝐸(𝑡 + 𝜏)⟩ =

(∑
𝑗

𝑏𝑗𝑖)

2
̇̄𝑛single

Once again, for the COM mode, the heating rate of a large ion crystal will increase by

a factor of (∑𝑁
𝑖=1

1
√𝑁

)2 = 𝑁 . The linear relationship between the heating rate and the

number of ions confirms the reliability of the ODF height measurement. We utilize this

method to investigate the cooling dynamics in crystals with different numbers of ions.

Fig. 5.13 illustrates the cooling dynamics for the 2D crystal with varying numbers of ions

using the ODF height method. It should be noted that the trapping conditions remain

the same as those for the 12-ion crystal. The transverse mode’s trap frequency is nearly

two times lower than that for cooling a single ion, resulting in a higher cooling limit

of ̄𝑛 = 0.34 ± 0.25. For the twelve ions, we average the experimental results over the
time interval of 390𝜇s to 500𝜇s, obtaining a mean phonon number of 1.04 ± 0.61. The
experimental data for the single-ion crystal, twelve-ion crystal, and two-, four-, six-ion

crystals were obtained under different experimental conditions, mainly varying the overall

laser power of the Doppler and EIT cooling beams. This discrepancy beyond statistical

errors introduces inconsistency between the datasets. Nonetheless, we can confidently

conclude that there is no significant speed-up observed in EIT cooling due to many-body

interactions.
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Figure 5.13 ODF cooling
Multi-ion crystal cooling measurement by the ODF height method for 2, 4, 6 and 12 ions.
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CHAPTER 6 QUANTUM SIMULATION WITH 2D ION
CRYSTALS

Realizing a controllable quantum system that can be described by a quantum spin

model is central to the development of quantum simulation and quantum computation in

various experimental platforms [77-82] . Quantum spin models provide simplified Hamilto-

nians to understand exotic phenomena in quantum magnetic materials, including geomet-

ric spin frustration [77-80] , topological or spin-liquid phases [83-84] , and topological phase

transitions [85] , primarily arising in two or higher dimensions. In general, solving two-

dimensional (2D) Ising models with transverse fields is challenging [81] . Furthermore,

if the model is frustrated by competing interactions, mean-field theory fails to explain

the exotic features, and the quantum Monte Carlo method cannot be applied due to the

sign problem. Interactions in the spin model are classified into ferromagnetic and anti-

ferromagnetic types, which, together with the lattice geometry, determine the properties

of magnetic materials. Such Ising models can also encode combinatorial optimization

problems, such as maximum independent sets, which fall under NP-hard problems. To

fully map such problems [82] , it is necessary to arbitrarily adjust the type, strength, and

connectivity of the interactions. Thus, an ideal quantum simulator for quantum spin mod-

els, surpassing classical computational capabilities, should enable control over the sign,

strength, and connectivity of spin-spin interactions. Furthermore, the solution can be ob-

tained through site-resolving detection after coherently preparing the ground state of the

encoded Hamiltonian. Therefore, a desirable quantum simulator for quantum spin mod-

els, exceeding classical computational capabilities, should encompass the control of sign,

strength, and connectivity of spin-spin interactions, as well as coherent manipulation and

individual detection.

Recently, various physical platforms have been developed for quantum simulators

with 2D geometries. Superconducting annealers [86] have demonstrated the realization of

2D spin ices; however, limited coherence prevents the probing of quantum properties.

Neutral atoms in 2D optical tweezers have simulated large-scale quantum magnets [87-88] ;

however, generating ferromagnetic or arbitrary range interactions using Rydberg blockade

interactions is challenging [89] .

Trapped atomic ions, as a leading platform for quantum simulation, exhibit excep-
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Figure 6.1 Quantum simulation of frustrated quantum magnets with a 2D ion crystal.
a One-dimensional (1D) antiferromagnetic quantum magnets exhibit Néel-like ground states,
illustrated here with an example of seven spins. b Two-dimensional (2D) antiferromagnetic
quantum magnets display geometric frustration in the ground state. c Atomic ions are trapped
using a monolithic trap and controlled by globally illustrated Raman lasers. d Systematic

diagram of adiabatic quantum simulation for the case of geometrically frustrated 2D spins. The
experiment starts from the ground state of the transverse magnetic field, 𝐵 ∑𝑖 𝜎(𝑖)

𝑥 , and
adiabatically evolves into the ground state of the Ising Hamiltonian, ∑𝑖,𝑗 𝐽𝑖,𝑗𝜎(𝑖)

𝑦 𝜎(𝑗)
𝑦 , as depicted

in Fig. b. In the energy-level diagram, the vertical axis represents the energy difference from the
ground state. Solid lines represent excited states coupled to the ground state, while dashed lines

represent other excited states. The red lines correspond to the ground state and the lowest
excited energy level coupled to the ground state. The energy level is scaled with the spin-spin
interaction, 𝐽0. We ramp down the strength of the transverse magnetic field using a profile of

1/(1 + 𝛼𝑡), where 𝛼 is a tuning parameter, while the spin-spin interaction remains constant during
the ramping process. Ultimately, the system reaches the ground state of the frustrated magnet,

which is a superposition of four degenerate states due to competing interactions.

tional coherence times [38,90] and can realize both ferromagnetic and antiferromagnetic

interactions [91-94] . However, previous studies on simulating quantum spin models were

limited to 1D ion chains, making it difficult to directly simulate 2D spin models [95-96] .

There have been decades of efforts to extend the dimension of trapped-ion simula-

tors while retaining the advantages of 1D chains [50,97-101] . Controllable spin-spin interac-

tions have been demonstrated using fast-rotating 2D ion crystals in a Penning trap [100,102] .

However, the simulation of quantum spin models and site-resolved detection in the Pen-

ning trap have not yet been realized. Stationary 2D ion crystals can be achieved in Paul

traps, but they are susceptible to micromotion synchronized with the RF field, which com-

promises the quality of quantum simulations. Traps without excess micromotion can be

constructed in arrays of micro Paul traps [103-105] . Alternatively, it has been proposed that

the detrimental effects of micromotion on quantum simulation can be mitigated by using
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an oblate Paul trap [50,101] . Similarly, we have developed a monolithic trap that suppresses

the influence of micromotion by aligning the net propagation direction of the operating

lasers perpendicular to the micromotion [106] .
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Figure 6.2 Verification of quantum simulation with 2D crystal with four ions.
a, Vibrational spectrum of the four-ion 2D crystal. The blue and green curves come from

fluorescence of blue and green ions, respectively, where the mode frequencies are indicated by
the black lines. b,d depict the time evolution of different Ising models at the detunings of Raman
laser beams shown in a. Insets present the interaction diagrams, where the red and blue lines
represent the anti-ferromagnetic and ferromagnetic interactions, respectively. The filled circles,
solid curves, and dashed curves represent the experimental data, theoretical evolution expected
from the actual ramp, and populations in the exact ground state, respectively. c,e, depict the
experimentally measured populations of the state in binary order at the end of the ramp, which
indicates the ground states of the Hamiltonians with the corresponding interaction diagrams.

Insets represent reconstructed images based on the binary detection of spin states. b,c are for the
all-to-all ferromagnetic interaction. d,e are for the nearest anti-ferromagnetic interaction and

next-nearest ferromagnetic interaction. The error bars represent standard deviation.

For the first time, we have successfully simulated quantum Ising models using 2D

ion crystals confined in a monolithic Paul trap. Our quantum simulation involves gen-

erating various Ising interactions with different signs and strengths, and preparing and

observing their ground states through adiabatic evolution and site-resolving detection, as

summarized in Fig. 6.1. In our experiment, we utilize 171Yb+ ions in the monolithic Paul

trap to realize the spin models. The states |𝐹 = 1, 𝑚 = 0⟩ and |𝐹 = 0, 𝑚 = 0⟩ in the 𝑆1/2
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manifold, with an energy splitting of 𝜔HF = 12.642 812GHz, represent the |↑⟩ and |↓⟩
states of a spin-1/2 system. As shown in Fig. 6.1(c), a 2D ion crystal is confined in the

monolithic Paul trap [106] , where spin-spin interactions are mediated by collective phonon

modes through Raman excitations. The trap’s electrodes are designed to rotate the crystal

plane along the direction of micromotion, thereby mitigating the detrimental effect of mi-

cromotion on quantum simulation. This is achieved by ensuring that the net propagation

vector of the Raman laser beams is perpendicular to the plane of the crystal.

By coupling ions to Raman laser beams, we realize the Hamiltonian of the transverse

field Ising model,

𝐻̂ = ∑
𝑖,𝑗

𝐽𝑖,𝑗 𝜎̂(𝑖)
𝑦 𝜎̂(𝑗)

𝑦 + 𝐵(𝑡) ∑
𝑖

𝜎̂(𝑖)
𝑥 , (6.1)

where 𝐽𝑖𝑗 represents the interaction strength between the 𝑖-th and the 𝑗-th spins, and 𝐵(𝑡)
represents the strength of the transverse 𝐵-field. We generate the transverse 𝐵-field using
Raman laser beams with a frequency difference of 𝜔HF. To generate the spin-spin inter-

actions, we use bichromatic Raman beams with frequency differences of 𝜔HF ± (𝜈 − 𝛿).
The effective Ising interaction is expressed as [107-109] :

𝐽𝑖𝑗 = Ω𝑖Ω𝑗
ℏ(𝛿𝑘)2

2𝑀 ∑𝑚

𝑏𝑖,𝑚𝑏𝑗,𝑚

𝜇2 − 𝜔2
𝑚

(6.2)

where 𝑀 is the mass of the 171Yb+ ion, Ω𝑖 is the laser Rabi frequency on 𝑖-th ion, 𝛿𝑘
is the net-propagation vector of the Raman beams, 𝑏𝑖,𝑚 is the normal mode vector, 𝜔𝑚 is

the 𝑚-th mode frequency, and 𝜇 is the Raman detuning from the 𝜔HF. As shown in Eq.

(6.2), the spin-spin couplings 𝐽𝑖𝑗 can be engineered by adjusting the Raman detuning 𝜇.
If the detuning 𝜇 is close to a certain vibrational mode, the characteristics of the spin-spin

couplings reflect the vibrational mode vector [91] . We can further engineer 𝐽𝑖𝑗 to any types

of spin models by applying multiple detunings together [110-111] . It has been shown that

in the limit 𝜇 ≫ 𝜔com, the strength of 𝐽𝑖𝑗 decays with inter-ion distance 𝑟 as 𝑟−3 and in

the limit 𝜇 ≈ 𝜔com, it scales as 𝑟0 [100,112] . We note that as illustrated in Fig. 6.1a,b, the

different dimension and geometry of spins results in fundamentally different spin models

though the scale of the spin-spin coupling depending on the distance is similar.

Our protocol of adiabatic quantum simulation is shown in Fig. 6.1d [91,94] . In experi-

ment, we perform ground state cooling of vibrational modes before starting the adiabatic

quantum simulation, which consists of Doppler cooling, EIT cooling [113-114] , and five

cycles of sideband cooling. Then, we initialize all spins to the |↓⟩ state using the standard
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optical pumping technique [115] . The adiabatic quantum simulation begins with a global

𝜋/2 pulse, which simultaneously rotates the spins into the eigenstate of the transverse 𝐵-
field. The strength of the 𝐵-field is chosen to be sufficiently strong to dominate over the
Ising interactions. As shown in Fig. 6.1(d), we gradually decrease the strength of the 𝐵-
field while keeping the Ising interaction strength constant. To achieve this, we employ a

ramping profile of 1/(1+𝛼𝑡), inspired by local adiabatic evolution [116] , where the speed of
the ramping is proportional to the instantaneous energy gap. This specific ramping profile

allows us to prepare the ground state with a much shorter duration compared to exponen-

tial ramping profiles [91,93] . Finally, we perform individual spin state measurements of the

final spin configuration using standard site-resolved fluorescence detection [117] with an

electron-multiplying charge coupled device (EMCCD) camera.

6.1 Engineering of interaction diagram

First, we verify the feasibility of quantum simulation in a 2D-ion crystal using a sim-

ple example of a four-ion crystal arranged in a rhombus geometry. In Fig. 6.2(a), we dis-

play the vibrational spectrum of the crystal and the Raman detunings used to generate dif-

ferent spin-spin interactions. Fig. 6.2(b) shows the time evolution of four spins with ferro-

magnetic interactions, while Fig. 6.2(c) presents the dominant populations in the expected

ground states |↑↑↑↑⟩ and |↓↓↓↓⟩ with a probability of 73.34%. We effectively generate

ferromagnetic interactions for each ion pair by setting the detuning 𝜇 = 𝜔com + (2𝜋)10
kHz, resulting in an average 𝐽𝑖𝑗 = 2 kHz. The𝐵-field is initially set at 29 kHz and ramped
down to 2 kHz in 200 𝜇s using a time constant 𝛼 = 0.06, which maximizes the probabil-
ity of ground states and is consistent with other experiments in the paper (see Method).

It is worth noting that we effectively reverse the sign of the Hamiltonian by preparing

the highest excited states [91] . Fig. 6.2(d) and (e) illustrate the time evolution and ground

states of the Ising model with nearest anti-ferromagnetic and next-nearest ferromagnetic

interactions, respectively. We generate these interactions using the red side of the third

mode shown in Fig. 6.2(a). The expected ground state, a superposition of alternating

N’eel spin orders, is prepared with a probability of 64.97%. While the experimental data

for time evolution shown in Fig. 6.2(b) and (d) deviate from the exact ground states, they

are in agreement with the expected time evolution. This deviation is primarily caused by

a faster ramping speed employed, which is larger than what a perfect adiabatic condition

requires, mainly due to the large heating rates of the COM mode.
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Figure 6.3 Quantum simulation and quantum coherence of various spin models with seven-ion
2D crystal.
a, Vibrational spectrum of the crystal. The red and green curves represent the fluorescence of
red and green ions, respectively. The vertical red lines indicate the mode frequencies, while the
solid line represents the detuning used in the experiment. b,d,f depict the time evolution of

different Ising interactions, which are tuned by detunings of the Raman laser beams shown in a.
The insets represent the interaction diagrams. The points, solid curves, and dashed curves

represent the experimental data, theoretical evolution expected from the actual ramp, and the
populations in the exact ground state, respectively. c,e,g depict the experimentally measured

populations of all states in binary order at the end of the ramp, which presents the ground states
of the Hamiltonians with the given interaction diagrams. Insets depict reconstructed images

based on the binary detection of spin states. b,c, is performed with a detuning of 1.328MHz; d,e
is performed with a detuning of 1.231MHz; f,g is performed with a detuning of 1.416MHz to
the left of the 7th vibrational mode from the COM mode. The error bars represent standard
deviation. h, Quantum coherence probed by time reversal of adiabatic evolution. Population

distributions of each spin-x component in the initial state (red), at the end of adiabatic evolution
(black), and after the reversal of adiabatic evolution (green). The initial state is recovered after
reversal with fidelity of 80% which strongly indicates the quantum coherence in the simulation.
The inset presents the ramping trajectory corresponding to the transverse B field (green curve)
and the averaged Ising couplings (black curve). The experimental conditions are the same as in

b,c.

Next, we increase the number of ions to seven in a centered-hexagonal crystal, as

shown in Fig. 6.3(a), which displays the geometrical configuration and vibrational mode

spectrum. We benchmark the seven-ion 2D crystal with three different types of Isingmod-
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els, where the strengths and signs of the spin-spin interactions are engineered by tuning

the detuning of the bichromatic Raman laser beams, as illustrated in Fig. 6.3(a). In the first

case, with a detuning of 1.328MHz (red side of the 6th vibrational mode), the outer spins

exhibit anti-ferromagnetic nearest-neighbor interaction and ferromagnetic next-nearest-

neighbor interaction, while the center spin experiences four ferromagnetic interactions

and two anti-ferromagnetic interactions, as depicted in Fig. 6.3(b). The average strength

of 𝐽𝑖𝑗 is 566 Hz, and the 𝐵-field is changed from 29 kHz to 1.5 kHz in 300 𝜇s. This inter-
action diagram exhibits a similar frustration as in Fig. 6.1(b), where the outer spins show

an alternating order, and the center spin experiences competing interactions between the

|↑⟩ and |↓⟩ spins. Thus, the ground state for this interaction diagram contains a super-

position of |↑⟩ and |↓⟩ states for the center spin. Including the equal superpositions of
different alternating orders of the outer ions, there are four different spin configurations

in the ground state. We observe the ground state after the adiabatic evolution. Fig. 6.3(b)

compares experimental and theoretical results during the adiabatic evolution. Consistent

with theoretical expectations, the four spin configurations are dominantly populated with

a probability of 58.5% at the end of the evolution, as shown in Fig. 6.3(c), clearly indicat-

ing the presence of frustrated spin states of the Hamiltonian.

In the second case, illustrated in Fig. 6.3(d) and (e), with a detuning of 1.231MHz,

the crystal splits into two sub-lattices: one consisting of spins 1-4-7 and the other consist-

ing of spins 2-3-5-6. The average strength of 𝐽𝑖𝑗 is 849 Hz, and the 𝐵-field is changed
from 29 kHz to 1.5 kHz in 300 𝜇s. Within each sub-lattice, the interactions are ferromag-

netic, while the interactions between different sub-lattices are anti-ferromagnetic. This

interaction diagram does not exhibit frustration, and the resulting ground state consists of

the same spins within each sub-lattice and opposite spins between the two sub-lattices.

As shown in Fig. 6.3(d) and (e), the ground state comprises two configurations with a

probability of 46.3%. In these ground states, one of the sub-lattices has all spins down,
while the other has all spins up, which is in agreement with theoretical expectations.

In the third case, at the detuning of 1.416MHz, the crystal experiences frustration

from different types of interactions, as shown in Fig. 6.3(f) and (g). The crystal can be

divided into three parts: a left sub-lattice with spins 2-6-7, a right sub-lattice with spins 3-

4-5, and the center spin. The average strength of 𝐽𝑖𝑗 is 917 Hz, and the 𝐵-field is changed
from 29 kHz to 1.5 kHz in 300 𝜇s. Within each sub-lattice, the spins have ferromagnetic

interactions, while spins between different sub-lattices interact antiferromagnetically. If
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Figure 6.4 Benchmarking of quantum simulation with increasing number of spins in 2D ion
crystal.
a, b show the population of ferromagnetic (FM) order and scaled magnetization 𝑚̄ depending on

𝐵/𝑁𝐽 , respectively, for four, seven, and ten ions, which are obtained from the experimental
ramping down of transverse field. As the strength of the magnetic field decreases, the spins
experience a crossover from a paramagnetic phase to a ferromagnetic phase. The solid lines
represent theoretical curves obtained by numerical simulation given ramping profiles, where

scaling factors are used to capture the decay induced by decoherence. c, Population of FM order,
scaled magnetization, scaled Binder cumulant and scaled structure factor at the end of the

experimental ramping profiles on the number of spins. d,h,k, for four ions, e,i,l, for seven ions,
f,j,m, for ten ions, with the corresponding geometries of crystals shown above d,e,f. d,e,f, show

both theoretical and experimental structure factors at the end of the experimental ramping
profiles for long-range ferromagnetic interactions. The experimental values at (0,0) are used for
c, which are scaled with theoretical values. h,i,j, show the theoretical state population after

adiabatic evolution for a long-range anti-ferromagnetic interaction. The black bars represent the
final state population, and the gray bars represent the population of a paramagnetic state. k,l,m,
show the structure factors after adiabatic evolution for a long-range anti-ferromagnetic (AFM)
interaction. The experimental values at (𝜋, 0) are used for c, which are scaled with theoretical

values.

there were no center spin, the spins in the left sub-lattice would have the same orientation,

and the spins in the right sub-lattice would have the opposite orientation without frustra-

tion. However, frustration arises from the ferromagnetic interactions between the center

spin and all the other spins. Due to the competing interactions on the center spin, the
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ground state becomes degenerate with four-spin configurations, as shown in Fig. 6.3(f)

and (g). The adiabatic evolution prepares the ground state with a probability of 61.45%.
To probe the coherence of the adiabatic evolution, we apply a verification scheme

using the time-reversed analog simulation, which can sensitively detect incoherent

noise [93,118] . The basic experimental protocol involves performing adiabatic evolution

by ramping down the 𝐵-field and then reversing the adiabatic evolution by ramping it
back up. Fig. 6.3(h) shows the measured distribution of the x-component of the total

spin operator ̂𝑆𝑥 = ∑𝑖 𝜎̂𝑥(𝑖). Initially, 90% of the population is prepared in the state

|𝑆𝑥 = −7/2⟩. The total magnetization at the end of the adiabatic evolution is approxi-
mately zero since the spins are aligned along the y-direction, which is the direction of the

spin-spin interaction. After the time-reversal ramping, 80% of the population returns to

the initial state |𝑆𝑥 = −7/2⟩, indicating the coherence of the process. Here, the exper-
imental conditions are the same as those in Fig. 6.3(b) and (c), where the ground state

is frustrated. We note that the time-reversal analog verification protocol is insensitive to

shot-to-shot parameter fluctuations, parameter miscalibration, and crosstalk [118] , which

have insignificant effects on the adiabatic quantum simulation [118] .

We evaluate the performance of quantum simulation with the 2D crystal using differ-

ent numbers of ions. When the Raman detuning is close to the COM mode frequency, all

spin-spin interactions can be either ferromagnetic or antiferromagnetic. For four, seven,

and ten ions, we set the Raman detuning to be 10, 12, and 30 kHz larger than the COM

mode frequency, respectively, and generate a long-range antiferromagnetic interaction

𝐽𝑖𝑗 ∝ 1/𝑟𝛾
𝑖𝑗
[100] , where 𝛾 = 0.24, 0.27, 0.57 correspondingly. Initially, we start from

the highest excited state of the transverse 𝐵-field, which generates effective ferromag-
netic interactions, and use them to benchmark the performance of the 2D ion crystals.

In Fig. 6.4(a), we use the population of the ferromagnetic order, and in Fig. 6.4(b), we

use the scaled magnetization [92] as order parameters to investigate the crossover from the

paramagnetic phase to the ferromagnetic phase as the number of spins increases for four,

seven, and ten ions.

In Fig. 6.4(c), we introduce four different order parameters: the population of the

ferromagnetic order, magnetization, Binder cumulant [92] , and structure factor (see also

Methods). The state populations of the ferromagnetic order at the end of the quantum

simulation decay faster as the number of spins increases. This behavior may arise from the

heating of the COM vibrational mode (see Methods). However, other order parameters
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such as scaled magnetization and Binder cumulant are not significantly affected by the

number of spins. The structure factors shown in Figs.6.4(d), (e), and (f) confirm that the

prepared states at the end of the simulation closely resemble the ideal ground states of

the long-range ferromagnetic Ising models. The experimental values in Figs.6.4(d), (e),

and (f), compared to the theoretical ones, are depicted in Fig. 6.4(c), revealing a similar

dependence on the magnetization and Binder cumulant with respect to the number of

spins.

By starting from the ground state of the transverse field, we perform quantum simu-

lation with long-range AFM interaction. The ground state of a long-range AFM model in

a triangular lattice is typically frustrated and exhibits a large degeneracy [77] , as shown in

Figs.6.4(h), (i), and (j). Due to the extensive degeneracy of the ground states, it becomes

challenging to use magnetization and Binder cumulant as order parameters to assess the

reliability of the experiments. Instead, we compare the measured state populations to

those from time evolution simulations using the population distribution distance. In our

quantum simulation, the Bhattacharyya distance of the final ground states is 89%, 92%,

and 30% for four, seven, and ten ions, respectively. We note that distinguishing frustrated

phases from paramagnetic phases is difficult. To probe the emergence of the frustrated

phase, we utilize structure factors, which clearly distinguish the frustrated phase from the

uniform structure factor of the paramagnetic phase. The ideal structure factors and the

experimentally measured structure factors shown in Fig. 6.4(h), (i), and (j) are consistent

with each other. In Fig. 6.4(c), the experimental values at (𝜋, 0) scaled with the theoretical
ones do not exhibit significant degradation as the number of ions increases.

The frustrated ground states can be related to solutions of optimization problems with

challenging instances. It has been extensively discussed that adiabatic quantum simula-

tion may not find the exact solution to the optimization problem due to the exponentially

closing minimum energy gap at the end of the evolution. However, adiabatic quantum

simulation can provide approximate solutions that are significantly better than classical

computation [119] . We consider states with an approximation ratio larger than 95%, which

corresponds to 5% of the minimum energy level, as belonging to the optimization solu-

tions. In the experiment, we find that 56%, 52%, and 16% of our measured states are

approximate solutions for four, seven, and ten ions, respectively.

In our experiment, imperfections mainly arise from errors during the preparation of

the initial states, heating of the vibrational modes, and non-adiabatic transitions (seeMeth-

90



CHAPTER 6 QUANTUM SIMULATION WITH 2D ION CRYSTALS

ods). The imperfections from initial state preparation are below 5% for the ten-ion crystal

and can be further improved by using Raman laser beams with larger beam widths. The

influence of heating may be limited in precisely preparing ground states as the number

of ions increases, especially when the COM mode is involved in the quantum simula-

tion. This limitation can be addressed by utilizing modes other than the COM mode or

by enclosing the trap at cryogenic temperatures, which can significantly reduce heating

rates [120] . With lower heating, adiabatic evolution can be performed for longer durations,

thereby further suppressing non-adiabatic transitions.

This work presents an experimental demonstration of quantum simulation using 2D-

ion crystals. The 2D-ion crystal showcases the ability to engineer the signs and strengths

of spin-spin interactions and perform coherent quantum evolution with site-resolving de-

tection, making it an ideal platform for simulating Ising models. The 2D-ion crystal is

particularly well-suited for addressing classically intractable problems, such as combi-

natorial optimization problems. The general mapping of optimization problems to Ising

models requires all-to-all connectivity, which naturally arises in the 2D-ion crystal [121] .

Without such connectivity, the mapping would require an overhead of the order of 𝑁2

spins [121-122] . In comparison to 1D-ion chains, the 2D-ion crystal offers improved con-

nectivity. The spin-spin interactions typically decay as a power law 1/𝑑𝛾 with the dis-

tance 𝑑 between ions [100] . For an N-ion system, the largest distance between ions scales

as 1/√𝑁 in 2D, whereas it scales as 1/𝑁 in 1D. It is worth noting that arbitrary pro-

grammable interactions can be realized through modulation of laser pulses [110,123-124] .

Our experimental demonstration can also be extended to the study of 2D quantum

spin systems with controllable polynomial-decaying interactions [125-129] . By scaling up

the system, we can explore the properties of ground states in frustrated Hamiltonians

with large degeneracy [77] , utilizing appropriate order parameters like the structure factor

that are insensitive to microscopic details of the states. This platform holds promise for

investigating the dynamics of quantum materials, topological phase transitions [85] , and

thermalization of 2D systems [130] . We anticipate that the 2D-ion crystal will emerge as

a powerful tool for solving classically intractable problems and as a fertile ground for

exploring exotic phenomena in 2D quantum systems.

91



CHAPTER 6 QUANTUM SIMULATION WITH 2D ION CRYSTALS

6.2 Trap conditions

To generate 2D ion crystal, we squeeze crystal along y-direction by setting the voltage

of electrodes 𝑉0 = 𝑉1, 𝑉2 = 𝑉3 = 𝑉4 = 𝑉5, and with ratio of 𝑉0/𝑉2 = 1/5.41. The ratio of
voltages is calculated based on numerical simulation given the trap geometry [106] .

For 4-ion and 10-ion experiment, the trap frequencies are {𝜔𝑥, 𝜔𝑦, 𝜔𝑧} =
{0.626, 0.404, 1.503} MHz. For 7-ion experiment, the trap frequencies are

{𝜔𝑥, 𝜔𝑦, 𝜔𝑧} = {0.486, 0.407, 1.482} MHz. The axes of the trap frequencies are

shown in Fig. 1. The 2D crystal is in the xy plane, where the x-axis is confined by RF

power and the y-axis is controlled by DC-voltage [106] . The trap frequencies are the

same for 4-ion and 10-ion cases, but for 7-ion case the trap frequencies along the x- and

y-direction are closer. With 7 ions, we release the confinement along x-direction to make

a hexagonal geometry that 6 ions form a hexagon and 1 ion locates at the center of the

hexagon. If we use the setting of the 4-ion case with 7 ions, ions will form a shape of a

ladder as shown in Fig S1, which is different from the centered hexagonal geometry. For

4-ion and 10-ion cases, we increase the z-direction trap frequency as high as possible to

reduce heating from environment noise meanwhile maintain crystal are 2D and inter-ion

distance is around 5 µm.
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Figure 6.5 Trap geometry.
Here black texts represent voltage labels on the front side of the trap, and white texts represent
voltage labels on the back side electrodes. The GND electrodes are connected to the ground.

6.3 Compensation of micromotion

Different from the 1D ion chain, the excess micromotion [131] of the 2D ion crystal

cannot be perfectly compensated. Micromotion refers to the synchronous motion of ions

92



CHAPTER 6 QUANTUM SIMULATION WITH 2D ION CRYSTALS

with the oscillating RF field, which degrades precise control over the ions. In a Paul

trap, a line exists where the RF field is zero, allowing us to overlap the chain of ions and

minimize the effects of micromotion. However, this is not possible for 2D ion crystals

since there is no plane in which the RF electric field strength is zero.

Although perfect micromotion compensation is impossible, we can still eliminate the

effects of micromotion on quantum operations. When the 2D ion crystal is formed in a

plane with only an in-plane electric field, the micromotion exists only within the plane.

Therefore, we minimize the effects of micromotion on the Raman laser beams by aligning

the plane of the 2D ion crystal with the plane containing only the in-plane electric field

and ensuring that the net propagation vector of the Raman beams is perpendicular to the

plane. In our case, the trap electrode geometry includes three symmetric planes: the x-

y plane, the y-z plane, and the z-x plane. The RF field also exhibits mirror symmetry in

relation to these planes, guaranteeing that within each of the three planes, the electric field

has only in-plane components. By rotating the principal axis of the electric field [106] , we

align the crystal with the x-y plane.

In the experiment, we align the plane of the 2D-ion crystal with that of an in-plane

electric field through the following three steps: single ion positioning, linear chain for-

mation, and 2D crystal recovery. Firstly, we bring a single ion to the RF null position

using the traditional method [131] . Secondly, we determine the required electric voltages

for the 2D ion crystal and then increase the RF power to transform the 2D crystal into a

linear chain, ensuring its overlap with the RF null line. The mismatch between the ion

chain and the null line of the RF field can be detected by observing the strengths of micro-

motion sideband transitions of individual ions. By simultaneously adjusting the voltages

Δ𝑉2 = −Δ𝑉3 = Δ𝑉4 = −Δ𝑉5, as shown in Fig. 6.5, we minimize the mismatch. Fi-

nally, we reduce the power of the RF field to restore the 2D ion crystal. After completing

the first two steps, we only need to rotate the plane of the 2D ion crystal around the null

line. By simultaneously adjusting the voltages of electrodes Δ𝑉0 = Δ𝑉1, we minimize

the micromotion sidebands of individual ions. Fig. 6.6 illustrates the strengths of mi-

cromotion sidebands for 16 individual ions in the 2D-ion crystal after minimizing their

magnitudes. On average, the strengths of the micromotion sidebands are approximately

200 times smaller than those of the carrier transitions.
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Unit: × 𝟏𝟏𝟏𝟏−𝟑𝟑

10 × 10−3

0 × 10−3

Figure 6.6 The relative strengths of micromotion sidebands with respect to those of carrier
transitions for 16 ions.

6.4 Detection of multi-ion states

To detect the multi-ion states, we spatially resolve the photons emitted by ions during

the application of a detection laser. The 2D crystals are imaged using an objective lens

positioned perpendicular to the crystals, and we utilize an electron-multiplying charge-

coupled device (EMCCD) camera (Andor iXon 897) for photon detection. To enhance

the signal-to-noise ratio, we fit the distribution of photon counts across pixels using a

Gaussian function and extract the fitted amplitude as the effective photon count for single-

shot measurements.

In experiment, we use a 1.0ms detection pulse, and we collect 34.7 photons on PMT

with a 0.37 NA objective lens for the bright state of a single ion. In our case, the average

detection fidelities for a 4-ion, 7-ion, and 10-ion 2D crystal are 98.2%, 97.8%, and 98.0%.

6.5 Generating transverse-field Ising interaction

We generate the Ising interaction by globally driving the ions with two pulsed laser

beams at a wavelength of 355 nm. These beams have beatnote frequencies 𝜈Qubit ± 𝜇,
which induce a spin-dependent dipole force (SDF). The wavevector difference Δ𝑘 =
2𝜋√2/𝜆 is aligned along the transverse direction of the 2D ion crystal. By varying the

beatnote frequencies near different modes, similar to the linear chain [94,112] , we can en-

gineer the interaction diagram.

The transverse magnetic field (B field) is effectively generated by addressing Raman

transitions that are resonant with the hyperfine splitting, which corresponds to the carrier
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transition. The phase of the Raman beams determines the direction of the B field on the

Bloch sphere. Since the SDF has a phase difference of 𝜋/2 with respect to the laser field,
we use the same laser phase for both the carrier transition and the SDF to ensure that the

direction of the transverse B field is perpendicular to the direction of the SDF.

The Hamiltonian of a single ion interacting with the laser field can be expressed as

follows:

𝐻̂ = ∑
𝑖,𝑗,𝑘

Ω𝑖 {𝜎̂(𝑗)
+ [ ̂𝐼 − 𝑖𝜂𝑘( ̂𝑎𝑘𝑒−𝑖𝜈𝑘𝑡 + ̂𝑎†

𝑘𝑒𝑖𝜈𝑘𝑡)] 𝑒−𝑖𝜔𝑖𝑡+𝑖𝜙𝑖

+𝜎̂(𝑗)
− [ ̂𝐼 + 𝑖𝜂𝑘( ̂𝑎𝑘𝑒−𝑖𝜈𝑘𝑡 + ̂𝑎†

𝑘𝑒𝑖𝜈𝑘𝑡)] 𝑒𝑖𝜔𝑖𝑡−𝑖𝜙𝑖} ,

, where only the first-order of Lamb-Dicke parameter are reserved. For carrier transition,

we drive only one transition, and the Raman detuning matches the hyperfine splitting of

qubit. the Hamiltonian reduce to

𝐻̂ = ∑
𝑗

Ω0 (𝜎̂(𝑗)
+ 𝑒𝑖𝜙 + 𝜎̂(𝑗)

− 𝑒−𝑖𝜙
) = ∑

𝑗
Ω0𝜎̂(𝑗)

𝜙 , (6.3)

which is a spin rotation along 𝜙-axis. 𝜙 is the phase of laser field, and Ω0 is the Rabi

frequency which represents laser field strength.

For SDF, we use beatnote Raman beams, and the Hamiltonian becomes

𝐻̂ = ∑
𝑗,𝑘

Ω0 [−𝑖𝜂𝑘𝜎̂(𝑗)
+ 𝑒𝑖𝜙( ̂𝑎𝑘𝑒−𝑖(𝜈𝑘−𝜔)𝑡 + ̂𝑎†

𝑘𝑒𝑖(𝜈𝑘−𝜔)𝑡)

+𝑖𝜂𝑘𝜎̂(𝑗)
− 𝑒−𝑖𝜙( ̂𝑎𝑘𝑒−𝑖(𝜈𝑘−𝜔)𝑡 + ̂𝑎†

𝑘𝑒𝑖(𝜈𝑘−𝜔)𝑡)]
= ∑

𝑗,𝑘
𝜂𝑘Ω0( ̂𝑎𝑘𝑒−𝑖(𝜈𝑘−𝜔)𝑡 + ̂𝑎†

𝑘𝑒𝑖(𝜈𝑘−𝜔)𝑡)

× [𝜎̂(𝑗)
+ 𝑒𝑖(𝜙−𝜋/2) + 𝜎̂(𝑗)

− 𝑒−𝑖(𝜙−𝜋/2)
] ,

where the last term in the above equation is a spin operator along 𝜙 − 𝜋/2 direction, and
the Hamiltonian can be written as

𝐻̂ = ∑
𝑗,𝑘

𝜂𝑘Ω0( ̂𝑎𝑘𝑒−𝑖(𝜈𝑘−𝜔)𝑡 + ̂𝑎†
𝑘𝑒𝑖(𝜈𝑘−𝜔)𝑡)𝜎̂(𝑗)

𝜙−𝜋/2. (6.4)

By comparing Eq. (6.3) and Eq. (6.4), we can conclude that driving the SDF and the

carrier transition naturally results in a phase difference of −𝜋/2 when the laser fields have
the same phase.

To investigate the ferromagnetic order and the antiferromagnetic order, we utilize

different order parameters such as scaled magnetization, scaled Binder cumulant, and

structure factor.
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The scaled magnetization is defined as

𝑚̄𝑦 = (𝑚0
𝑦,𝑁 − 𝑚𝑦)/(𝑚0

𝑦,𝑁 − 1)

, where 𝑚𝑦 = ∑𝑁
𝑛=0 𝐶𝑛

𝑁 |𝑁 − 2𝑛|𝑃 (𝑛), and 𝑚9
𝑦,𝑁 = 1

𝑁2𝑁 ∑𝑁
𝑛=0 𝐶𝑛

𝑁 |𝑁 − 2𝑛|.
The scaled Binder cumulant is defined as

̄𝑔 =
𝑔0

𝑁 − 𝑔
𝑔0

𝑁 − 1

, where 𝑔0
𝑁 = 3 − 2/𝑁 , and 𝑔 = ∑𝑁

𝑛=0(𝑁−2𝑛)4𝑃 (𝑛)
(∑𝑁

𝑛=0(𝑁−2𝑛)2𝑃 (𝑛))2

The structure factor is defined as

𝒮(q) = 1
𝑁 ∑

𝑖,𝑗
𝑒−𝑖q⋅r𝑖𝑗 𝐶𝑍

𝑖𝑗

, where 𝐶𝑍
𝑖𝑗 = ⟨𝜎̂(𝑖)

𝑧 𝜎̂(𝑗)
𝑧 ⟩ − ⟨𝜎̂(𝑖)

𝑧 ⟩ ⟨𝜎̂(𝑗)
𝑧 ⟩ is the spin correlator between i-th and j-th ions.

6.6 Experimental methods of finding optimal Ising interactions

Experimentally, we perform a scan of the detuning of the spin-dependent dipole force

(SDF) while keeping the duration of the adiabatic evolution fixed. We identify the de-

tuning value that yields the maximum ground population after the adiabatic evolution.

Specifically, we choose a detuning of 10 kHz based on the mode that exhibits the highest
population among all up and down states. Since the detuning of the SDF determines the

strength of the Ising interactions, this detuning scan enables us to assess the performance

of the adiabatic evolution by measuring the ground state population after the adiabatic

evolution. The maximum ground-state population signifies an optimal Ising interaction

achieved through adiabatic passage of the transverse field, with fixed initial and final

strengths of the transverse field and a fixed duration.

6.7 Error Budget

6.7.1 Imperfection of initial state preparations

Due to the constrained ion-electrode distance, we employ Raman beams with a diam-

eter of 25 µm. However, as we increased the power and beam size of the Raman beam,

we encountered a significant charging effect. The relatively narrow width of the Raman

beams introduces non-uniform Rabi frequencies across the ions, resulting in errors in the

global 𝜋/2 rotation. The dependence of individual Rabi frequencies on the total number
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of ions is illustrated in Fig. 6.7.

(a) (b)

(c)

Unit: 10 kHz

6 × 10kHz

4 × 10kHz

Figure 6.7 Rabi frequencies (in the unit of 10 kHz) of ions for the 2D crystal.
(a) 4, (b) 7, and (c) 10 ions. The deeper color indicates higher Rabi frequency.

The non-uniformRabi frequencies introduce imperfections in initial state preparation.

Given experimentally measured Rabi frequencies, we theoretically estimate the fidelities

of initial states for 4-ion, 7-ion, and 10-ion crystals as 99.5%, 98.7%, and 95.2%, respec-
tively. In the experiment, we estimate the fidelities by using Bhattacharyya distances [132]

between the measured and ideal populations of initial states, which is equal to state fi-

delity in our case. For 4, 7, and 10-ion crystals, Bhattacharyya distances are 99.2 ± 0.7%,
96.3 ± 0.6%, and 83% ± 2% respectively, which are consistent to those of theoretical es-

timations except 10-ion case. The large deviation for 10-ion crystal mainly comes from

the insufficient number of measurements for the multi-ion states. Therefore, we use the

product of all Bhattacharyya distances of single-ion distribution, which should be also

same to the state fidelities for our initial states. The formula is written as
𝑁

∏
𝑖=1 (√

1
2√𝑝𝑖,1 + √

1
2√1 − 𝑝𝑖,1)

,

where 𝑝𝑖,1 is the upper state population of the i-th ion, and 𝑁 is the number of ion. For

4, 7-ion, and 10-ion crystals, the experimentally measured Bhattacharyya distances of

single-ion distribution are 99.7% ± 0.2%, and 99.6% ± 0.7%, and 95% ± 5%, respectively.

Errors from heating of the center of mass modes

We investigate the impact of center of mass modes heating through numerical simu-

lations, specifically using four ions. We employ a detuning of Raman beams of 10 kHz,

which induces all-to-all ferromagnetic interaction, as depicted in Fig. 2(b) of the main
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Figure 6.8 Effect of vibrational heating. The final ground states are the ferromagnetic states
|↑↑↑↑⟩ and |↓↓↓↓⟩. The blue curves represent adiabatic evolution without heating, while the red
curves represent adiabatic evolution with heating of 3200 quanta/s. The green dots represent the
experimental results. When heating is applied, the adiabatic evolution leads to a lower population
of the ground state compared to the adiabatic evolution without heating. We extend the simulation
duration to 400 𝜇s, which clearly reveals the limitations of heating.

n our experiment, the heating rate of a single ion in the center of mass mode is ap-

proximately 800 quanta/s [113-114] , and this rate increases linearly with the number of ions.
As for the other modes, it is well-known that their heating rates are significantly smaller

compared to the center of mass mode [113-114] . To assess the imperfections in the final

ground state resulting from heating in the center of mass mode, we employ numerical

simulations.

To account for heating, we introduce two Lindblad operators, 𝛼 ̂𝑎† and 𝛼 ̂𝑎, into the
master equation.

𝑑 ̂𝜌
𝑑𝑡 = − 𝑖

ℏ[𝐻̂, ̂𝜌] + ℒ(𝛼 ̂𝑎) + ℒ(𝛼 ̂𝑎†), (6.5)

where ℒ(𝐴) = ̂𝐴 ̂𝜌 ̂𝐴† − 1
2

̂𝐴† ̂𝐴 ̂𝜌 − 1
2 ̂𝜌 ̂𝐴† ̂𝐴.

To get the value of 𝛼 consistent with experiment, we can first let 𝐻̂ = ℏ ̂𝑎† ̂𝑎 and

̂𝜌 = ∑∞
𝑛=0 𝑐𝑛 |𝑛⟩ ⟨𝑛|. We can get a system of differential equations

⎧⎪
⎨
⎪⎩

̇𝑐𝑛 = 𝛼2 [(𝑛 + 1)𝑐𝑛+1 − (2𝑛 + 1)𝑐𝑛 + 𝑛𝑐𝑛−1] , for 𝑛 > 0

̇𝑐0 = 𝛼2(𝑐1 − 𝑐0)
(6.6)

Substituting Eq.(4) into the time derivative of average phonon number ̇̄𝑛 = ∑∞
𝑛=0 𝑛 ̇𝑐𝑛, we

can get
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̇̄𝑛 = 𝛼2 → ̄𝑛 = 𝑛0 + 𝛼2𝑡, (6.7)

which indicates a linearly increasing average phonon number. Eq.(6.7) shows that the

value of 𝛼 is related to the time unit used in simulation. In simulation, we use µs as time

unit, and expect the average phonon number increase 0.8 quanta after 1000 µs evolution.
Since Δ ̄𝑛 = ̇̄𝑛Δ𝑡, we can calculate the value of 𝛼 should be 0.028 for a heating rate of

8 × 10−4 quanta/µs.

In simulation of adiabatic evolution, we use a Hamiltonian with one mode and several

spins.

𝐻̂ = ∑
𝑖

Ω𝑖𝜎
(𝑖)
𝑥 ( ̂𝑎𝑒−𝑖𝜈𝑡 + ̂𝑎†𝑒𝑖𝜈𝑡) (6.8)

Our numerical simulations demonstrate that heating has a detrimental effect on the

population of the ground state during adiabatic evolution. In the absence of heating, at the

optimized detuning, the adiabatic evolution is estimated to result in a population of 96% in

the ferromagnetic states. However, when considering a heating rate of 3200 quanta/s on

the center-of-mass mode (for four ions), the population of ferromagnetic states decreases

to 80%. This reduction can account for the experimental result of 73% ± 5%, as illustrated
in Fig. 6.8. Additional discrepancies may arise from other experimental imperfections,

such as vibrational mode dephasing, laser intensity fluctuations, and so on.

To further investigate the impact of heating on the quality of adiabatic evolution, we

conduct numerical simulations of a two-ion crystal under various heating rates.

6.8 Approximate solutions to optimization problems

Theminimum energy state can be regarded as the solution to an optimization problem

that can be mapped to a spin-model Hamiltonian. Instead of obtaining exact solutions

to the optimization problem, we employ our quantum simulator to obtain approximate

solutions. We specifically focus on solutions with an approximation ratio 𝑟 greater than
95%. The approximation ratio 𝑟(𝑠) is defined as:

𝑟(𝑠) = 𝐸h−𝐸(𝑠)
𝐸h−𝐸g

,
where 𝐸(𝑠) represents the energy of state 𝑠, 𝐸h corresponds to the energy of the high-

est excited states, and 𝐸g represents the energy of the ground states.

Fig. 6.9 depicts the energy level spectrum corresponding to different state configura-

tions in the experiment. The solutions with an approximation ratio greater than 95% are
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indicated by red data points.

4 ions
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Figure 6.9 Energy level spectrum for 4, 7, and 10 ions crystal. The red points represent the
solutions with an approximation ratio larger than 95%.
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CHAPTER 7 CION: A PYTHON-BASED MIDDLEWARE

7.1 Current architecture

Cion is a Python-based middleware used for controlling trapped-ion systems. While

there are already several controlling ecosystems available, such as ARTIQ, that provide

both software and hardware for trapped-ion experiments, relying solely on the hardware

components within these ecosystems is insufficient for conducting experiments in real-

world scenarios. There may be a need to replace certain components, such as an arbitrary

waveform generator, with a more cost-effective alternative. Similarly, individual direct

digital synthesizers (DDS) might need to be replaced with integrated versions, and there

may even be a requirement to update the field-programmable gate array (FPGA) to en-

able on-chip arithmetic operations or waveform generation. Additionally, in urgent ex-

perimental situations, there may be a need to procure products with short delivery times,

which may not be readily available within the ecosystem.

As quantum hardware developers, it is necessary to continuously upgrade the classi-

cal hardware to meet the evolving demands of experiments. In contrast to the dynamic

nature of classical hardware, the software component remains relatively fixed. Every ex-

periment requires the definition of sequences for ion loading, SPAM (state preparation

and measurement) error measurement, Raman operations, and high-level circuit execu-

tion. We believe that a middleware is essential to support these unified requirements

across a variety of underlying classical hardware platforms.

The architecture of Cion comprises four layers. The first layer is the experiment layer,

which contains all the necessary information for conducting experiments. It can be viewed

as a central hub that organizes the flow of information. When initiating an experiment, the

first step is to create an experiment layer, followed by activating the hardware components.
1 ion_number = 1
2 exp = Experiment(ion_number=ion_number)

Listing 7.1 Define an experiment layer

The experiment layer has the capability to dynamically adjust its internal functions

based on the desired number of ions to be used. Additionally, it automatically generates

a folder to store all the data generated during subsequent experiments.

Building upon the experiment layer, we can create a sequence layer where a collec-
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Experiment

Sequence 1 Sequence 2

Gate 1

Hardware 1

Gate 2

Hardware 2

Gate 1

Hardware 1

Gate 2

Hardware 2

Layer 1

Layer 2

Layer 3

Layer 4

Figure 7.1 Architecture of cion
The four layers of cion. The first layer is experiment layer. The second layer is sequence layer.

The third layer is gate layer. And the fourth layer is hardware layer.

tion of sequences can be defined. In atomic, molecular, and optical (AMO) experiments,

sequences are established to perform specific operations. For instance, when loading ions,

a common approach is to utilize a Doppler sequence, in which the Doppler cooling beam

and ionization beam are continuously active.
1 doppler_cooling = exp.new_sequence()
2 doppler_cooling.set_sequence(
3 Zero(1).on(all),
4 Doppler_Only(1000, label='Doppler').on(all),
5 Zero(1).on(all))

Listing 7.2 Define a Doppler cooling sequence

Listing 7.2 demonstrates a method to define a Doppler cooling sequence. In Line 1,

a new sequence is created from the experiment layer and named ”doppler_cooling”. The

content of the sequence is defined in Lines 2 to 5, where a 1000µs Doppler cooling beam
is activated for all ions, with 1µs waiting periods before and after the cooling. The gates
”Zero” and ”Doppler_Only” are further explained later, and the ”.on” method of gates

determines the ions affected by the gate.
1 detection_time = 60
2 pumping_time = 30
3 Micro_pitime = 10
4 MRamsey = exp.new_sequence()
5 MRamsey.set_sequence(
6 Doppler(1000).on(all),
7 Pumping(pumping_time).on(all),
8 Microwave(Micro_pitime/2).on(all),
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9 Zero(1,label="Wait").on(all),
10 Microwave(Micro_pitime/2).on(all),
11 Detection(detection_time).on(all),
12 Zero(1).on(all))

Listing 7.3 Define a Doppler cooling sequence

Listing 7.3 presents an example of a Ramsey measurement. In comparison to List-

ing 7.2, the Ramsey sequence employs the gate ”Doppler” instead of ”Doppler_Only”

because in the ”Doppler” gate, photon collection is not necessary.

Within the sequence layer, we can define multiple sequences using a similar approach

to accomplish our experimental objectives. This layer serves as the primary interface for

user interactions and each sequence comprises fundamental elements from the gate layer.

The gate layer encompasses three types of essential information.

• Bit string: used to define when the gate is running which signal should be turned

on

• Waveform: the amplitude, frequency, phase or an arbitrary waveform of the pulse

used inside a gate

• Hardware: used to specify if we want to update the waveform of a gate where we

should send the data to.

The bit string is stored inside a variable called dictionary,
1 Exp_chapter_dict = {
2 'Doppler':'00000000 00000000 00000000',
3 'Doppler_Only':'00000000 00000000 00001111,[10000000 00000000 00000000, 1],[10000000

00000000 00010000,1]',
4 'Pumping': '01100000 11000000 00000000',
5 'Detection':'01010000 10000000 00001111,[11000000 00000000 00000000, 1],[11000000 00000000

00010000,1]',
6 'Microwave': '11000000 10100000 00000000',
7 'Raman': '11000000 10010000 00000000',
8 'Rx': '11000000 10010000 00000000',
9 'Zero': '11000000 10000000 00000000',
10 'Strong': '11111111 11111111 11111111'
11 }

Listing 7.4 Define a Doppler cooling sequence

Listing 7.4 provides an example of a dictionary used in experiments. In our current se-

quencer [133] , to instruct the FPGA to start collecting photomultiplier tube (PMT) counts,

the last four bits of the bit string are set to 1. Conversely, to stop collecting, the fifth-to-

last bit is set to 1, as indicated by the bit strings ”Doppler_Only” and ”Detection”. These

strings serve as labels to establish connections with the corresponding gates. Within the

gate definition, the same label is used. When executing a user-defined sequence, Cion

generates a list of bit strings with their respective durations.
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The other fundamental information is waveform. In the current version of Cion, two

types of pulses are utilized. The first type does not require phase coherence, such as

Doppler cooling, pumping, and detection. The hardware and waveform for these pulses

can be fully independent. The second type, on the other hand, necessitates phase coher-

ence, such as single qubit rotations and entangling gates. For these pulses, the hardware

must be synchronized. Looking at individual pulses, their waveforms can be defined inde-

pendently of other pulses. These waveforms can take the form of simple sine functions or

composite functions with multiple frequency components and time-varying amplitudes.

We store these waveforms directly within the gates, but we store the formulas rather than

the actual data. When running a specific sequence, Cion automatically combines these

formulas with continuous durations, ensuring phase coherence of the pulses, and calcu-

lates the data points to be sent to the arbitrary waveform generator (AWG).
1 class Doppler(BaseGate):
2 def __init__(self, duration, latency = 0, awg_flag = None, amp = None, freq = None, phase =

None, label = "Doppler"):
3 super().__init__(duration, latency, awg_flag, 'Doppler', amp, freq, phase, label)
4

5 def update_hardware(self):
6 #print("Update Doppler with ", "amp:", self.amp, "freq:", self.freq, "duration: ", self

.duration,str(time()))
7 labbrick_370_lock_EOM.freq_update(self.freq)
8

9 def reset_hardware(self):
10 labbrick_370_lock_EOM.freq_update(165)

Listing 7.5 Define a Doppler gate

Listing 7.5 provides an example of gate definition. The definition inherits from the

BaseGate class, which is defined in the source code of Cion. Within the Doppler gate

definition, there are certain parameters that are not crucial to define, such as the latency

that specifies whether the beam needs to wait after it is called. However, it is essential to

define the label used for connecting with the dictionary and the hardware responsible for

updating the parameters of the Doppler beam. Two methods related to the hardware are

present: one for parameter updates and the other for resetting the hardware parameters to

their original values. This hardware component also falls under layer 4.

The hardware layer is not explicitly defined within Cion but rather exists in a

separate code space that is invoked by Cion. For example, in Listing 7.5, ”lab-

brick_370_lock_EOM” represents a hardware component used for signal generation.

Its definition is not included in the source code of Cion but resides in another Python

file that is imported by the file where the Doppler gate is defined. If there is a desire
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to switch to a different type of hardware, it can be easily achieved by replacing ”lab-

brick_370_lock_EOM” with a function compatible with the new hardware.

For gates involving amplitude modulation, frequency modulation, and phase modu-

lation, it is necessary to define piecewise waveforms. In Cion, piecewise waveforms are

facilitated through the AdvancedGate class. Listing 7.6 illustrates how to define a piece-

wise waveform for an AdvancedGate. As creating a piecewise waveform for multiple

ions can be complex, we utilize a parameter table to define it and subsequently transfer it

to the gate using the ”set_parameter_table()” method.
1 dict0 = {
2 'ion_number' : 3,
3 'segment_number' : 3,
4 'time_intervals' : [(0,17.33),(17.33, 45.66),(45.66, 87.99)],
5 'data_per_ion' : {
6 #first ion's parameter
7 0 : {
8 'amp': [(0.45,0.45), (0.42,0.42),(0.23,0.23)],
9 'freq': [(4+2.03,4-2.03),(4+2.03,4-2.03),(4+2.03,4-2.03)],
10 'phase': [(0.48,-0.48),(0.308,-0.308),(0.086,-0.086)]
11 },
12 #second ion's parameter
13 1 : {
14 'amp': [(0.42,0.42),(0.23,0.23),(0.45,0.45,0.10)],
15 'freq': [(4+2.03,4-2.03),(4+2.03,4-2.03),(4+2.03,4-2.03,2.03)],
16 'phase': [(0.308,-0.308),(0.086,-0.086),(-0.086,0.086,0.086)]
17 },
18 #third ion's parameter
19 2 : {
20 'amp': [(0.45,0.45), (0.42,0.42),(0.23,0.23)],
21 'freq': [(4+2.03,4-2.03),(4+2.03,4-2.03),(4+2.03,4-2.03)],
22 'phase': [(0.308,-0.308),(0.086,-0.086),(-0.086,0.086)]
23 }
24 }
25

26 }
27

28 MSGate().set_parameter_table(dict0)
29 two_qubit_gate = exp.new_sequence()
30 two_qubit_gate.set_seuqnce(
31 Doppler(1000).on(all),
32 Pumping(10).on(all),
33 MSGate(87.99).on([0,2]),
34 Raman(5/2, amp=0.4, freq=car, phase=phi).on([0,2]),
35 Detection(60).on(all)
36 )

Listing 7.6 Define a piecewise waveform

7.2 Future update

While our goal is for Cion to be a middleware that users can deploy on their own

systems as easily as Kubernetes, currently, if one intends to deploy Cion on hardware
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with vastly different FPGA communication protocols and arbitrary waveform generators,

a bridge must be established between the output of Cion and the input of the hardware.

Certain sequencers support our current format of placing bit strings into a list, but there

are also more advanced sequencers with high-level programming features that the current

version of Cion cannot fully leverage. On-chip arithmetic operations typically serve real-

time feedback purposes, which the current version of Cion does not support. Additionally,

Cion is primarily designed for trapped ion systems that employ individual addressing,

where tightly focused beams can be selectively turned on and off. This individual ad-

dressing technology is Markovian, meaning the waveform for entangling a particular pair

of ions remains the same. However, there are non-Markovian addressing technologies,

such as QCCD [134] , where the waveform for entangling a specific pair of ions depends

on previous operations. QCCD achieves qubit addressing by moving ions together, and

the ions’ positions are dependent on previous movements, resulting in non-Markovian

operations. The current version of Cion has not yet accounted for these non-Markovian

operations. Presently, when executing a sequence, Cion directly generates the data points.

However, there are several technologies, such as RFSoC or real-time controlled DDS, that

only require receiving formulas to generate arbitrary waveforms.
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8.1 Conclusion

In my whole Ph.D career, we focused on how to make two-dimensional ion crystal

being useful for quantum information processing. We started from negotiating with the

company about how to fabricate the trap, how to make laser cutting precise, and how to

isolate electrodes without desctroy the coating on the side wall of the trap. Then we build

a useful vacuum system to hold the trap. We developed a systematic method to compen-

sate the micromotion of 2D ion crystals, and used Raman beam to measure the residual

micromotion strength. We also developed a double-EIT cooling method for 171Yb+ , and

used this method to prepare the motional ground states of 2D ion crystals. Finally, we per-

formed a quantum simulation experiment with 2D ion crystals that prepare ground states

of different Ising model.

8.2 Outlook: the future of trapped ion quantum information pro-
cessor

Quantum information processing with trapped ions has been pursued for almost three

decades. As the earliest system proposed for quantum computation, trapped ions show

extremely high gate fidelities, long coherence time, and full connectivity. However, the

charge of the ion makes it hard to scale up the size of the trapped ion quantum processor.

Thirty years ago, the interaction between charged ions was considered a bus for transfer-

ring information stored in ions’ internal state. However, nowadays, people found that it

very challenging to perform high-fidelity entangling gates under complexmotional modes

as the number of ions increases. Several ideas were proposed to solve these problems, like

using modulated pulse and QCCD. Modulated pulses use modulation to simultaneously

close all the phonon trajectories at the end of the entangling gate. At the same time, QCCD

makes only two ions entangled during the gate by moving the ions’ position. The charge

of ions also makes a single crystal fragile to background collisions. When a background

particle collides with a single ion, the collision energy could transfer to collective mo-

tional modes formed by strong Column interaction between charged ions and make the

whole crystal melt. As a comparison, if a collision happens for natural atoms, only the
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atom being collided would be ejected from the optical trap, and the other atoms would

remain at their original positions. The problem of background collision could be solved

by putting it trapped into a cryogenic system, and people already show hundreds of ions

stably confined in it. Another limitation on the scalability of ion crystals is the weak axial

confinement. As the number of ions increases, the axial trap frequency must be contin-

uously reduced. However, a too-small axial trap frequency would make the axial modes

hard to be cooled down to near ground state, and hot axial modes could induce amplitude

noise into quantum operations. Can we increase the number meanwhile have a high axial

trap frequency? A two-dimensional ion crystal is one of the possible solutions. If we keep

the axial trap frequency, the number of ions could increase from 𝑁 to 𝑁2. Nowadays,

the largest trapped ion system has around 60 ions. If we change it to a 2D crystal, the

number of ions could increase to 3600, which is an unbelievable number for the current
trapped ion community. However, we admit that 2D ion crystal is not the final solution

for a fault-tolerant quantum computer with millions, even trillions of ions. Assuming an

ion-ion distance of 5µm, a trapped ion system with millions of qubit could have a size of

5m for a 1D chain or size of 5mm for a 2D crystal. The size of the 2D ion crystal looks

acceptable. However, it is still unknown whether the axial micromotion would introduce

a fatal influence on the quality of quantum operations on 2D ion crystals with such a size,

which could be a future research direction. If there is an upper bound𝑁𝑢 on the number of

ions inside a single crystal, how can we pursue Moore’s law for quantum computers? Ion-

photon interface could be a solution. A single ion could emit tens of millions of photons

in one second, corresponding to a single photon emission time of tens of nanoseconds.

Suppose we scale up trapped ion quantum processors by adding more modules with 𝑁𝑢

ions and connecting them by an ion-photon interface. In that case, the maximal number

of a trapped ion quantum processor is 𝑁2
𝑢 for the ion-photon interface between any pair

of modules since the maximal number of modules can be connected to a single module

is the number of ions inside that module. Even with 2D ion crystal, we can only increase

this limitation to 𝑁2
𝑢 , which cannot guarantee exponential scalability. One possible solu-

tion is using a switchable ion-photon interface, and we can only connect modules when

information exchange is required, sacrificing the ion-photon connection’s speed.
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