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摘要

摘要

量子光学从量子化的角度出发研究物质和电磁场的相互作用。量子拉比模型（quantum
Rabi model, QRM）描述的是一个二能级系统和单个玻色模式的相互作用，是最简单的
量子光学系统之一。其哈密顿量为

HQRM = ω0a†a +
Ω

2 σz − λσx

(
a + a†) .

其中 λ反映了二能级和玻色模式的耦合强度。在弱耦合的条件 |ω0 −Ω| " |ω0 +Ω|下，
通过旋转波近似略去高频旋转项，就得到 Jaynes-Cummings模型（JCM）

HJCM = ω0a†a +
Ω

2 σz − λ
(
σ+a + σ−a†) .

该模型简洁深刻地体现了光和物质相互作用的本质，在 20世纪后半叶以来已经得到了
充分的研究，取得了不菲的成果。近年来，实验技术的进步使得在强耦合条件下模拟

QRM 也成为了可能。并且随着 Braak 在 2011 年首先证明了 QRM 的可积性，其解析
解得到了更多研究，产生了很多理论结果，这些理论结果又促使了我们对其进行实验

上的验证。根据 λ/ω0 的取值不同，通常将 QRM 的耦合情况分为三类：λ/ω0 " 1 的
Jaynes-Cummings区，0.1 ! λ/ω0 ! 1的超强耦合（ultrastrong coupling, USC）区，和
λ/ω0 " 1的深强耦合（deep strong coupling, DSC）区。2018年，我组的吕定顺前辈业
已成功根据 I. Lizuain的方案，使用离子阱系统模拟了 QRM，并观察到 DSC区旋转波
近似不成立的现象。我们感兴趣的从正常态到超辐射（superradiant）态的相变就发生
在 DSC区。

量子相变（quantum phase transition）近年来得到越来越多的关注。从数学的结构
上看，它和经典的热相变是相似的，量子相变的临界点指的是基态能量随着某个参数

发生改变时，不解析的点。从物理上看，热相变是热涨落同系统自身相互作用的竞争，

而量子相变发生在零温处，不存在热涨落，与相互作用竞争的是由 Heisenberg不确定
关系给出的量子涨落。

最早的量子相变研究使用的是晶格系统，容易理解，只有在晶格的尺度 L → ∞时，
相变才会发生。而 QRM 中的量子相变较为特殊，它仅仅由单个量子比特和单个玻色
模式组成，理论研究表明在这一系统中，频率比 Ω/ω0起到了类似 L 的作用。

我们的实验方案基于Ricardo Puebla,黄明重（Myung-Joong Hwang）, Martin B Plenio
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等近年来关于 QRM 相变的一系列研究结果。在论文中，我们对部分理论结果进行了
数值计算确认。

在Ω/ω0 → ∞的极限条件下，QRM的本征值和本征态可以求出解析解，据此不仅
可以找到临界点，还可以求出我们关心的观测量 A的临界指数 κA。定义无量纲的耦合

系数 g ≡ 2λ/
√
ω0Ω，结论如下：

gc = 1,

〈σx〉 ∼ |g − gc |1/2,
〈σz〉 + 1

2 ∼ |g − gc |1,

nc ≡
ω0

Ω

〈
a†a

〉
∼ |g − gc |1.

特别地，g < gc 时 〈σx〉和 nc，而在 g > gc 时取得了非 0值，体现了 Z2对称性的破缺。

然而，实验中 Ω/ω0 → ∞显然是无法操作的，在我们的实验中，这一比值的最大
可取值受到激光功率的限制。不过有限频率放缩（finite-frequency scaling, FFS）假设预
测，在 g = gc 处，测定观测量随 Ω/ω0的变化，也能得到幂次关系：

〈σz〉 + 1
2 ∼

(
Ω

ω0

)−2/3
,

nc ∼
(
Ω

ω0

)−2/3
.

这一关系可以用变分法获得，我们也进行了数值验证。同时 FFS假设还给出，各
观测量 A的 FFS函数 FA(x) ≡ 〈A〉 |g − gc |−κA作为 x ≡ Ω

ω0
|g − gc |3/2的函数时，只与 x有

关，和 Ω/ω0 和 g 没有直接关系。画出不同 Ω/ω0 情况下的 FA-x 曲线应该重合，这种

现象也得到了我们的数值确认。实验中要实现对量子相变的定量观测结果，基本要依

赖 FFS假设的这两条结论。

开放量子拉比模型（open quantum Rabi model）在 QRM的基础上加上了玻色模式
的耗散项，系统的演化将按照 Lindblad主方程进行：

dρ
dt
= L[ρ] = −i

[
HQRM, ρ

]
+ κD[a].

其中 ρ是系统的密度矩阵，κ 是代表耗散强度的系数，D[a] = 2aρa† − a†aρ − ρa†a是

Lindblad形式的坍缩算符。开放 QRM的理论推导无疑更加困难，但在实验上我们采取
的是和非耗散系统完全相同的方法对相变进行观测的，即利用 FFS的结论。理论指出，
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开放 QRM存在一个耗散性相变（dissipative phase transition, DPT），其临界点为

gc =

√
1 +

(
κ

ω0

)2

.

同时，FFS预言了有限频率比情况下，临界点处有

〈
a†a

〉
∼
(
Ω

ω0

)1/2
.

而且对于 x ≡ Ω
ω0
|g − gc |2和 Fx ≡

〈
a†a

〉
|g − gc |1，不同Ω/ω0情况测得的 Fx-x曲线重合。

论文中用数值计算确认了这些结果。

实验上，我们尝试用Yb+- Ba+混合离子系统来模拟开放 QRM。其中Yb+离子用于

模拟 QRM，Ba+ 离子作为耗散项。当使用激光冷却Ba+ 离子时，得到冷却的实际上是

两个离子的共同振动模式，因此Yb+离子也能得到冷却，这称为协同冷却过程。

我们在实验上通过冷却中声子数的测定，得到了冷却速率，从而确定了 κ 的大小

为0.195 kHz。并根据离子阱系统的实际情况，设计了模拟的参数为

ω0 = 2π × 1 kHz, Ω ∼ 20ω0, g ∼ 1.

然而，对完整离子哈密顿量的模拟显示，该条件下的离子哈密顿量和理想的 QRM
哈密顿量有明显偏差。通过进一步的计算机模拟我们发现，这是由于离子哈密顿量近似

步骤中的 Lamb-Dicke近似的近似条件不成立导致的。Yb+离子在我们的装置中 Lamb-
Dicke参数为 0.122，是一个偏大的值，使得声子数稍大一些的时候，近似的效果就不
好了。不论是 FFS的指数还是 F(x)-x曲线的重合，都受到了影响而不再有效。

受到非耗散 QRM相变实验的启发，我们讨论了寻找开放 QRM相变定性证据的可
能性。希望能够在实验中观察到因为对称性破缺而带来的在超辐射相情况下

〈
a†a

〉
! 0

现象。然而通过数值模拟的结果我们发现，我们的冷却速率太慢，要在 Ω/ω0的情况下

达到稳态，需要约40 ms。而受实验中所使用的355 nm激光器对Yb+ 离子操作时间的限

制，我们的操作时间不允许超过1 ms，一般在数百s的量级。
考虑到上述的困难，该实验目前并未实现。只是对实验的可行参数进行了充分的

探讨，对实验的设计进行了一定程度的分析和解释。

关键词：量子拉比模型，离子阱，量子模拟
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Experimental Study on Dissipative Phase Transition in the
Open Quantum Rabi Model

Zhou Zinan
Advisors: Kim Kihwan

ABSTRACT

This thesis reports an unsuccessful attempt to experimentally realize a dissipative phase
transition (DPT) of the open quantum Rabi model (QRM). Still, we present in the thesis our
investigation on the feasibility to observe such a phase transition.

We reviewed the QRM and its quantum phase transition (QPT) first. To experimentally
simulate the phase transition of a quantum object we must have some sensible way to observe
and distinguish it. For this purpose, we reviewed the finite-frequency scaling (FFS) hypothesis
for the QRM. Two methods turn out to be practicable. First, we can extract a scaling law at the
critical point by scanning frequency ratio, even it is finite. Second, the FFS function against a
scaled coupling factor is supposed to be independent of the frequency ratio. For open QRM,
which is the combination of an ordinary QRM and a dissipative term, these two methods are
still valid.

Trapped-ion system is a popular choice to study quantum information and quantum
simulation. By using a two-species ion trap, we can trap one 171Yb+ and one 138Ba+ ion in an
effective harmonic potential. Then we employ the Yb+ion as our QRM, which is cooled by
the Ba+ion through sympathetic cooling. The critical point of the DPT is dependent on the
dissipation term, so we experimentally determined the cooling rate first. Then we explored the
suitable parameter ranges to create an ion simulator. However, for our current experimental
setup, an unfavorable Lambe-Dicke parameter, a weak cooling power, and a short Raman
operation time become obstacles. It is even hardly possible to observe a qualitative evidence
of the DPT due to an operation time of order 10 ms – our typical operation time is only of
order 100 s, beyond which the Yb+ion gets dark for unclear reason.

KEYWORDS: quantum Rabi model, trapped-ion, quantum simulation
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Chapter 1 Introduction

Chapter 1 Introduction

Quantum optics aims to study the interaction of matters and electromagnetic fields in
a quantized aspect. The quantum Rabi model (QRM), which describes the interaction of a
two-level system with a single bosonic mode, is perhaps the simplest system that embodies the
substance of quantum optics.

For a magnetic moment in a uniform magnetic field B0, the net force is cancelled, yet
leaving a torque. The torque then elicits gyroscopic precession of the magnetic moment around
the field direction, known as Larmor precession (Fig. 1.1a). When another rotating magnetic
field is added, in its rotating frame, the magnetic moment will further precess around the
inclined effective magnetic field at what is now known as Rabi frequency. In Fig. 1.1b we
demonstrate the full cancellation case, where the fictitious field Bfict induced by transforming
into the ratating frame exactly cancels B0.

For atomic system, the electron spin is actually described by quantum angular momenta.
I. I. Rabi first studied this problem by treating the atom as quantized and the field as a classically
rotating one. We now name this series of model after him in respect of his pioneer work 85
years ago [1, 2]. However, it was later known that the electromagnetic field per se needs
to be formalized with quantum theory, so strictly we need what is now called the quantum
Rabi model (QRM) to investigate the atom-field interaction. The fully quantized model was
first studied by Jaynes and Cummings [3] in 1963, which is actually a simplified variation of
QRM by taking the rotating-wave approximation. Even on this simple model many meaningful
theoretical and experimental studies are done in the past decades [4], because it insightfully
captures the essence of matter-light interaction and is meanwhile easy to solve.

It is not until the recent years that the full QRM has aroused more and more attention.
As advances in quantum information comes rapidly, better experimental techniques have been
developed to perform qubit-oscillator coupling, which enables us to explore the strong coupling
regimes where the rotating-wave approximation is no longer valid.

In this thesis focus particularly on the trapped-ion system. In a trapped-ion system, an
ion is trapped in all three dimensions using time dependent electric fields. A qubit system is
constructed by the internal electronic states of the ion, and the ion’s harmonic motion inside
the trap can be quantized as a bosonic field. The coupling between both parts are induced
by lasers. In such a way we have a typical ‘light-matter’ interaction model. The trapped-ion

1
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B0

µ

Bx

(a)

B0

µ

B1

static frame

Bfict

B0

Bfict

µ

B1

rotating frame

(b)

图 1.1 (a) Larmor precession of a magnetic moment in an external magnetic field B0. (b) Rabi oscillation
of a magnetic moment. A rotating magnetic field B1 rotates apace with µ. In the rotating frame of µ, a
fictitious magnetic field is induced. If it cancels B0 exactly, the net field is B1 and µ will rotate around B1 at
the Rabi frequency in the rotating frame.

system is noted for its long coherence time and high fidelity, which makes it a popular platform
to perform quantum computation experiments. Quantum simulation, as a restricted form of
quantum computation, can also be carried out with trapped ions.

The topic of this thesis is the dissipative phase transition of the open quantum Rabi model.
Before starting formally we need some preliminary concepts about a quantum phase transition
(QPT). One should make analogy between QPT and thermal phase transition. In a thermal
phase transition the ‘state’ involved is an ensemble that minimizes the Gibbs free energy. A
continuous thermal phase transition happens at the point where the minimum of Gibbs free
energy has a discontinuity in its derivative. In a QPT the ground state energy is in place of
the minimum of Gibbs free energy, and the ground state is the counterpart of a minimization
ensemble.

1.1 Quantum Phase Transition

A quantum phase transition (QPT) is defined to be any point of non-analyticity in the
ground states energy of the lattice system [5], where the non-analyticity could be either the
limiting case of an avoided level-crossing or an actual level-crossing (Fig. 1.2).

A continuous phase transition, as the name suggests, means that the properties of the
system vary continuously as the critical point is traversed. Consider the Hamiltonian H(g) =
H0 + gH1, in which H0 is a time-independent part and g is a dimensionless coupling factor.

2
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(a) (b)

图 1.2 Ground and first-excited energy bands against the dimensionless coupling factor g. In (a) we
show an actual level-crossing and in (b) an avoided one. In the limiting case where the system size gets
infinitely large, the avoided crossing becomes a sharp non-analytical point and ergo indicates a quantum
phase transition.

H(1) = H0 + H1 characterizes a complex system which cannot be diagonalized, but H0 is
one that we already know its eigenvalues and eigenstates. To solve the eigenstates of H, we
can evolve H0 toward H(1) adiabatically, namely turn on the perturbation g(t) from 0 to 1
adiabatically. In such an evolution we can usually observe energy level repulsion, resulting an
avoided level-crossing like the one in Fig. 1.2b.

In some special situations, for example when H0 commutes with H1, it is possible to have
a level-crossing: H0 and H1 can be simultaneously diagonalized and we can find eigenstates
that is invariant with respect to g, but the energy is not and an actual crossing, say at g = gc,
is possible (Fig. 1.2a). When this happens, perturbation theory is no longer valid to solve H

from H0. The two sides of gc belong to distinct phases. For a system of infinite size, there is
another possibility to have a QPT: when the system size tends to infinity, an avoided-crossing
could become a sharp non-analytical point.

Quantum phase transitions occur only at zero temperature T = 0, where the thermal
fluctuations vanish and quantum fluctuations by the Heisenberg uncertainty principle dominate,
so what we have discussed above are all about ground states.

We mention here basic concepts pertaining to critical exponents, which are almost the
same as in a thermal phase transition and will be furnished when we review the QRM later.
Continuous QPT exhibits a diverging correlation at the critical point gc. Define a spatial
correlation function for certain order parameter m(r) at position r:

G(r1,r2) = 〈m(r1) · m(r2)〉 − 〈m(r1)〉 〈m(r2)〉
3
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G will decay according to G(r1,r2) ∼ e− |r1−r2 |/ξ and the correlation length ξ is given by

ξ2 =

∑
r |r|2G(r,0)∑

r G(r,0)

For a continuous QPT, ξ will diverge at the critical point

ξ ∼ |ε |−ν

where ε = g/gc − 1 so that εc = 0 and ν is a positive number - the critical exponent for
ξ. Similarly the critical exponents are difined for the order parameter m itself and for the
relaxation time τ

m ∼ |ε |β, τ ∼ |ε |−zν .

1.2 Thesis Organization
This thesis is divided into the following chapters.

• Chapter 2 is about the quantum Rabi model, including its Hamiltonian and superradiant
QPT. We have derived the critical exponents at the thermodynamic limit and their
behavior at finite frequency ratio. Finally we come to the more sophisticated open QRM
and its dissipative phase transition, which is the main research object of this thesis.

• In Chapter 3 we move to the simulation of the QRM by trapped ions. The principle and
setup about our two-species ion trap system are demonstrated briefly. The we talk about
the Yb+ion as the QRM and the Ba+ion as the heat bath. The procedure to experimentally
work out the maximium cooling rate is illustrated. Finally we show our effort to search
pragmatic experimental scheme and the constraint we face now.

• Chapter 4 contains discussions, conclusion and outlook.
• Appendices follow the main text. Detailed calculation steps and important simulation

source codes are included.

4
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Chapter 2 The Quantum Rabi Model

This chapter gives a brief introduction to the quantum Rabi model and its quantum
phase transition. The core problem here is to determine what we can practically observe in
experiments as phenomena of the phase transition. We derive the Hamiltonian for the QRM, as
well as for its simplified version called the Jaynes-Cummings model. We skim through its basic
properties about symmetry, observables and coupling regimes. Then we move to the theory
about quantum phase transitions. After introducing basic concepts, we exactly diagonalized
the QRM Hamiltonian in the infinite frequency ratio limit and computed the critical exponents.
The case of finite frequency ratio is subsequently discussed. Finally, we consider an open
QRM and its dissipative phase transition. We find that a similar methodology can be applied
to investigate the open QRM.

2.1 Quantum Rabi Model

The Hamiltonian of a single-mode free field is

HF = !ω0

(
a†a +

1
2

)
,

where a† and a is the bosonic creation and annihilation operator respectively, satisfying[
a,a†] = 1. ω0 is the frequency of the bosonic mode. The eigenstates of HF is number states

or Fock states |n〉, n = 0,1,2, . . . . The Hamiltonian of a two-level system, with the energy
reference point set at midway of the upper and the lower level, is

HA =
!Ω
2 σz,

where !Ω is the energy splitting, and σz is one of the Pauli matrices, which obey
[
σi,σj

]
=

2iεi jkσk , i, j, k = x, y, z. We will label the spin-up and spin-down eigenstates as |↑〉 and |↓〉
respectively. For simplicity we will drop the zero-point energy term in HF and set ! = 1. If
there is no coupling between the two systems, the non-interacting Hamiltonian is then

H0 = ω0a†a +
Ω

2 σz . (2.1)

5
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|n〉

ω0

|↓〉

|↑〉

Ω
λ

(a)

σ−a† σ+a

σ−a σ+a†

(b)

图 2.1 Schematic diagram of the quantum Rabi model. In (a) we show the components of HQRM. The left
side represents a single-mode bosonic field, namely a quantum harmonic oscillator. Its energy levels are
known as number states or Fock states |n〉. The right side represents a two-level system, or a qubit system,
whose levels are marked as |↑〉 and |↓〉. They are coupled through the interaction part H1 with a strength
λ. In (b) we show the four possible exchange processes contained in (σ+ + σ−)

(
a + a†) . The top two are

rotating terms that consist of the Jaynes-Cummings model, which conserve the total excitation number Ne.
In the upper right diagram for example, the qubit system gets excited from |↓〉 to |↑〉 by absorbing a boson
from the field. The bottom two are counter-rotating terms that are dropped in rotating-wave approximation,
which do not conserve Ne. They will have significant effect when λ/ω0 gets large and cannot be neglected.

Consider a dipole interaction H1 = −d · E . Because E ∝
(
a + a†) for quantized field and the

dipole moment is non-vanishing only between different parity, i.e. 〈↑|d |↑〉 = 〈↓|d |↓〉 = 0.
The interacting part is hence

λH1 = −λσx

(
a + a†), (2.2)

where λ characterizes the coupling strength. With the discussion above we establish the
Hamiltonian for the quantum Rabi model (Fig. 2.1a):

HQRM = ω0a†a +
Ω

2 σz − λσx

(
a + a†) . (2.3)

Here σx

(
a + a†) = (σ+ + σ−)

(
a + a†) contains 4 terms (Fig. 2.1b). In the interaction

picture of H0, we have

σ+a ∝ ei(Ω−ω0)t, σ−a† ∝ ei(ω0−Ω)t,

σ+a† ∝ ei(ω0+Ω)t, σ−a ∝ e−i(ω0+Ω)t .

Under the conditions of near-resonance and weak coupling, which means |ω0 −Ω| "
|ω0 +Ω| and λ " |ω0 +Ω|, we can neglect the last two counter-rotating terms, which vary
much rapidly than the first two has no average effect. After this rotating-wave approximation
(RWA) we obtain a simpler model known as Jaynes-Cummings model (JCM)

6
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图 2.2 Spin and boson observables of QRM in different coupling regimes. The case of exact resonance
ω0 = Ω is plotted here as an example. In the JC regime (mint green), 〈σ+σ−〉 and

〈
a†a

〉
show standard

Rabi oscillations, and the total excitation number Ne = 1 is conserved. In the USC regime (orange), the
oscillations are distorted and

〈
a†a

〉
can go larger than 1. In the DSC regime (cerulean) the QRM shows a

completely different behavior,
〈
a†a

〉
and thus 〈Ne〉 can reach very large values.

HJCM = ω0a†a +
Ω

2 σz − λ
(
σ+a + σ−a†) . (2.4)

We will simply introduce the JCM as well since it is closely related to sideband transitions,
which we use to perform single-qubit operation on ions. Define the excitation number operator
Ne = a†a+ |↑〉〈↑|, we will find out that HJCM conserves the total excitation number, [HJCM,Ne] =
0. With this conserved quantity we can decompose the Hilbert space into an infinite direct sum
of two-dimensional invariant subspaces, each labeled by an eigenvalue of Ne. The subspaces
are sometimes known as Jaynes-Cumming doublets. With this conserved quantity, the JCM
can be analytically solved in various ways, rendering it a paradigm in almost every quantum
optics textbook [6].

While the JCM has this nice U(1) continuous symmetry generated by Ne, in the QRM it
is broken down to only a Z2 discrete symmetry, due to counter-rotating terms which do not
conserve Ne. This mathematical complexity made the QRM once believed to be not analytically
solvable, but in 2011 Braak [7] concluded that the Z2 symmetry alone is sufficient to indicate
solvability. Since then, a series of study on the analytical solution to the QRM were conducted
[8, 9]. The parity operator, which generates the Z2 symmetry, is Π = eiπNe,

[
HQRM,Π

]
= 0.

When the coupling strength is comparable to the bosonic frequency, 0.1 ! λ/ω0 ! 1, it is
defined as the ultrastrong coupling (USC) regime, and when λ/ω0 " 1 it is the deep strong
coupling (DSC) regime. Simulation results of the QRM evolving in different regimes are
shown in Fig. 2.2 for an intuitive understanding.

7
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2.2 Superradiant Quantum Phase Transition

To study the QPT in a QRM, an exact solution to the ground state can be find by
perturbation theory and some transformations [10] in the limit of Ω/ω0 → ∞ and λ/ω0 → ∞,
while keeping g = 2λ/

√
ω0Ω, with g representing the dimensionless coupling. The parameter

hierarchy is therefore ω0 " λ " Ω. Recall that perturbation theory is valid only within one
phase, so we need to calculate for phases on the opposite sides of the critical point respectively.

For the non-interacting Hamiltonina H0 (eqn. 2.1), the boson part and the spin part is
uncoupled and the Hilbert space H can be partitioned according to spin eigenstates, H =

H↑ ⊕ H↓. When ω0 " Ω, the lowest eigenstates are confined in H↓. The inclusion of λH1

of course causes coupling between these two subspaces, altering the behavior of the ground
state energy. To fix this problem and make the matrix of H diagonal again with respect to the
spin basis {|↑〉 , |↓〉}, we can do the perturbative expansion as a unitary transformation S [11,
Chapter 6]. Assume S is of order λ and has zero diagonal. By Baker-Hausdorff formula

eiSHQRMe−iS = HQRM + i
[
S,HQRM

]
+

1
2
[
iS,

[
iS,HQRM

] ]
= H0 − λH1 + [iS,H0] + [iS,−λH1] +

1
2[iS, [iS,H0]] + O

(
λ3) (2.5)

The first term is of order λ0 and is diagonal; the second and third term is of order λ1 and is
off-diagonal. Our desirable S is the one that cancels the off-diagonal terms, namely

[iS,H0] = λH1,

which gives

S = − λ
Ω

(
a + a†)σy = −g2

√
ω0

Ω

(
a + a†)σy .

And we can check:

[iS,H0] =
[
− iλ
Ω

(
a + a†)σy,ω0a†a +

Ω

2 σz

]
=

iω0λ

Ω

(
a† − a

)
σy + λ

(
a + a†)σx,

which equals λH1 since ω0/Ω tends to zero. Substitute S into (2.5) then

eiSHQRMe−iS = ω0a†a +
Ω

2 σz +
ω0g2

4
(
a + a†)2

σz +
ω0g3

6

√
ω0

Ω

(
a + a†)3

σx + O
(ω0

Ω

)
.

The term
(
a + a†)2

σz is of order (ω0/Ω) and is diagonal. Thus in the limit of Ω/ω0 → ∞, we

8
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have a transformed Hamiltonian that is diagonal up to order
√
ω0/Ω

H ′ = ωa†a +
Ω

2 σz +
ω0g2

4
(
a + a†)2

σz .

The lowest eigenstates in H↓ is now contained in

Hnp = 〈↓|H ′ |↓〉 = ω0a†a − ω0g2

4
(
a + a†)2 − Ω2 . (2.6)

Finally, we resort to the well-known Bogoliubov transformation to ‘diagonalize’ Hnp [12],
namely to clear out the non-particle-number-conserving terms a2 and

(
a†)2. Apply the squeeze

operator S(−r) = exp
[
− r

2
(
a2 − a†2) ] onto Hnp, we have (See A.2).

Hnp = ω0
√

1 − g2a†a + EG,np(g), (2.7)

where EG,np(g) = ω0

(√
1 − g2 − 1

)
/2 − Ω/2 is the ground state energy. For the expression

above it is evident that the effective Hamiltonian Hnp is valid only for 0 ≤ g ≤ 1. To calculate
the g > 1 case we first transform HQRM with a displacement operator D(α) = exp

(
αa† − α∗a

)
and a rotation in the spin subspace [13] (See A.3). The resulting superradiant phase effective
Hamiltonian is

Hsp = ω0
√

1 − g−4a†a + EG,sp(g),

EG,sp(g) = ω0

(√
1 − g−4 − 1

)
/2 −Ω(g2 + g−2)/4

As the transfromed Hamiltonians have number states as their eigenstates, we can derive the
eigenstates before transformation.

11ψn
np
〉
= S

(
−rnp

)
|n〉 |↓〉 ,11ψn

sp
〉
= D

(
±αg

)
S
(
−rsp

)
|n〉

11↓±〉 .
Explanation of parameters is shown below:

rnp = −1
4 ln

(
1 − g2), rsp = −1

4 ln
(
1 − g−4),

αg =

√
Ω(g4 − 1)

4g2ω0
,

11↓±〉 = ∓
√

1 − g−2

2 |↑〉 +
√

1 + g−2

2 |↓〉 .

Notice that
11ψn

sp
〉

is doubly degenerate in the spin subspace.

9
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2.2.1 Critical Phenomena

Once we have computed the ground states of Hnp and Hsp, we can study the behavior
of observables when varying g. Specifically we are interested in the spin expectation val-
ues 〈σx〉 , 〈σz〉 and the bosonic expectation value

〈
a†a

〉
, which are experimentally feasible

observables.

To compute 〈σz〉, the bosonic part turns to be completely irrelevant

〈
ψ0

np
11σz

11ψ0
np
〉
= 〈↓|σz |↓〉 = −1,

〈
ψ0

sp
11σz

11ψ0
sp
〉
=

〈
↓±
11σz

11↓±〉 = 1 − g−2

2 − 1 + g−2

2 = − 1
g2 .

The critical exponent of 〈σz 〉+1
2 is κσ(z) = 1, because

〈σz〉 + 1
2 =

(g − 1)(g + 1)
2g2 ∼ |g − 1|1.

Similarly,

〈
ψ0

np
11σx

11ψ0
np
〉
= 0,〈

ψ0
sp
11σx

11ψ0
sp
〉
= ∓

√
1 − g−4,

κσ(x) =
1
2 .

Especially, 〈σx〉 ! 0 for g > 1 indicates a break in Z2 symmetry, because any states with
Z2 symmetry should have vanishing 〈σx〉. For bosonic observable let’s explore nc =

ω0
Ω

〈
a†a

〉
,

which is the boson number with a normalization:

〈
ψ0

np
11a†a

11ψ0
np
〉
= 〈0|S† (−rnp

)
a†aS

(
−rnp

)
|0〉

= 〈0|S† (−rnp
)
a†S† (−rnp

)
S
(
−rnp

)
aS

(
−rnp

)
|0〉

= 〈0|
(
a† cosh rnp − a sinh rnp

) (
a cosh rnp − a† sinh rnp

)
|0〉

= 〈0|aa† sinh2 rnp |0〉

=
cosh

(
2rnp

)
− 1

2 ,

10
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图 2.3 Energy gap between neighboring energy levels and ground state expectation values 〈σx〉 , 〈σz〉 ,nc

near the critical point gc = 1. In the upper right plot the curve ‘+’ and ‘−’ correspond to |↓+〉 and |↓−〉
respectively; in the other plots curves for both degenerate states coincide.

where we have used (A.4) and (A.5). Conduct a similar calculation for
11ψ0

sp
〉
, the result is

ω0

Ω

〈
ψ0

sp
11a†a

11ψ0
sp
〉
=
g2 − g−2

4 +
ω0

Ω

cosh
(
2rsp

)
− 1

2 .

And it suggests that

nc ∼ g2 − g−2 =
1
g2

(
g2 + 1

)
(g + 1)(g − 1) ∼ |g − 1|1,

namely κnc = 1.

In Fig. 2.3 we plot the relationship between observables and g in the vicinity of its critical
value gc = 1. The energy gap ∆ between neighboring eigenstates are also plotte, which clearly
displays a QPT at gc as ∆ = 0.

2.2.2 Finite-Frequency Scaling

The discussion above regarding critical exponents is valid when Ω/ω0 tends to infinity,
but in experiments we of course cannot have an infinitive Ω, which is limited by the intensity
of the driving laser beam. (See Sec. 3.2.1) Luckily we still have the finite-frequency scaling
(FFS) hypothesis that allows us to study critical features with finite Ω [14, 10].

FFS hypothesis is a counterpart to the finite-size scaling theory for a lattice system.
Consider an L×L lattice with N = L2 sites, phase transitions occur only in the thermodynamic
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limite L,N → ∞. For a heuristic understanding we could consider the partition function
Z =

∑
S e−βH(S) of the system, S stands for states. As N → ∞ we must have an infinite number

of states, and for an infinite summation even if H is continuous, Z and thus the expectation
value of observables are not necessarily continuous, rendering non-analytical or critical points.
But for a finite summation, everything is intrinsically continuous and no phase transition can
ever occur (Fig. 2.4a).

Luckily finite-size scaling theory allows us to study critical behaviors as the system scale
increases, going as follows. Define a scaled length x = L/ξ, the the microscopic details of the
system is dropped within the range ξ. Suppose for an observable A, which show A = A0 |ε |κ in
the thermodynamic limit, there exists a finite-scaling function FA such that

A(L) = A0 |ε |κFA(x). (2.8)

F(x) is a function of x alone and is defined only with asymptotic conditions limx→∞ FA(x) = 1
and limx→0 FA(x) ∼ x−κ/ν. For an infinite lattice L → ∞, equation (2.8) reduces to A = A0 |ε |κ ;
for a finite L, at the critical point, since ξ diverges x → 0 and thus

A(L) ∼ |ε |κFA(x) ∼ L−κ/ν, (2.9)

where ξ ∼ |ε |ν is used. This implies the critical behavior of an infinite system can be inferred
by scaling up a corresponding finite system. Note that the FFS theory is based on the leading
order in 1/L, it is valid only for sufficiently large L. Basically we have two ways to demonstrate
the validity of finite-size scaling theory:

1. Plot L-A(L) on a logarithmic axis. A straight line with tangent −κ/ν is expected.
2. Plot x-A(L)/|ε |κ with different (ε, L) pairs. These curves are supposed to collapse into

a single one because FA(x) is independent from L and ε alone. It is only dependent on
their ratio x.

The good thing for our QRM is that, the ratio Ω/ω0 functions as the system size L in
the superradiant phase transition [13], which is much friendlier to experiments than making a
huge system. We can adapt equation (2.9) to

〈A〉 (Ω/ω0, gc) ∼
(
Ω

ω0

)δA

. (2.10)

δA is equivalent to −κA/ν. Surely for a system without spatial dimension it is hard to interpret

12
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(a) (b)

图 2.4 Expectation values of finite frequencies. (a) shows how the turning point of 〈σz 〉+1
2 flattens out

as Ω/ω0 becomes small. (b) shows the scaling of nc and 〈σz 〉+1
2 with respect to Ω/ω0 at the critical point

gc = 1. Deviation from the power law can be observed, especially for nc which is affected by correction
terms of order (Ω/ω)1.

the meaning of ξ and its critical exponent ν, but since we have calculated κA for σz and nc, we
can always obtain δσ(z) and δnc by fitting experimental data, and examine whether a common ν
exists. If that is true, we can again define x = |g − gc |νΩ/ω0. Similarly, we expect A/|g − gc |κ

is the same for all (g,Ω/ω0) pairs while keeping x.

In Fig. 2.4b we plot the relation (2.10) for nc and 〈σz 〉+1
2 obtained by numerical calculation

and fit their exponents δ. When Ω/ω0 goes large, an increasing number of Fock states |n〉 are
involved, so in this simulation we have to truncate the Fock space at a rather large n. Here we
have chosen n = 300 which is large enough for Ω/ω0 up to 105. The fitting is done within
the range 104 to 105 to avoid the impact from higher order terms. Despite a small distinction
between the two lines, it is strongly suggested that δσ(z) and δnc are both −2/3. Since their
critical exponents are both 1, a common ν does exist with value 3/2. The exponents here can
actually be verified by applying variational methods to the ground states and extract the leading
order terms of Ω/ω0 [13].

Then we can verify the FFS functions are invariant for different values of g and Ω/ω0.
By numerically solving HQRM for various Ω/ω0 and g it is easy to derive the FFS functions
from expectation values. In Fig. 2.5 we plot Fnc(x) and Fσ(z)(x) against x = Ω/ω0 |g − gc |3/2.
We could identify a F(x) on both sides of gc. It is clear that collections of points belonging to
four Ω/ω0 values collapse into a single curve, as the FFS hypothesis indicates.

13



北京大学本科生毕业论文

(a) (b)

图 2.5 Finite-frequency scaling functions for nc and 〈σz 〉+1
2 . The horizontal axis represents the scaled length

x = Ω
ω0
|g − gc |3/2 and the vertical axis represents FA(x) = 〈A〉 |g − gc |−κ for A = nc,

〈σz 〉+1
2 respectively.

2.3 Dissipative Phase Transition

Unlike electron systems in condensed matter physics, quantum optical systems have an
intrinsic open nature. In other words, there are losses everywhere when we manipulate such a
system. If the dissipation is controllable, it allows us to probe non-equilibrium phenomena.

Hwang et al. [15] have proved the existence of a dissipative phase transition (DPT) in an
open QRM. The open QRM is a QRM whose boson part is a damped harmonic oscillator. Its
time evolution is then depicted by the Lindblad master equation [16]

dρ
dt
= L[ρ] = −i

[
HQRM, ρ

]
+ κD[a]. (2.11)

where HQRM is the same as in equation (2.3), κ is the damping rate, and D[a] = 2aρa† −
a†aρ − ρa†a is the collapse operator a in the Lindblad form.

Despite the complexity of DPT theories, our focus regarding experimental observation is
similar as that of a QPT: the scaling with Ω/ω0 at gc and the x-dependency of FA(x). The
theoretical derivation of the DPT, its critical behavior, the scaling exponents, is far beyond the
scope of this thesis and here we simply cite the results from Hwang et al. [15]. Also, since our
simulation discovers that n = a†a is the only good observable within experimentally feasible
parameter ranges, so within this section we will only present results regarding it.

Due to the dissipation, the critical point is shifted from 1 to

gc =

√
1 + κ2

ω2
0
.
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(a) (b)

图 2.6 Finite-frequency relations of
〈
a†a

〉
for the DPT of the QRM. In (a) we show the scaling at gc in

respect of Ω/ω0. A straight line of slope 0.504 is fitted for Ω/ω0 from 102 to 105, validating the theoretical
result 1/2. In (b) the FFS function for four different frequencies are plotted. In computation the Fock space
is truncated at n = 200 and n = 100 respectively for (a) and (b).

Still, we have the system in the normal phase for g < gc and in the superradiant phase for
g > gc. In the limit of Ω/ω0 → ∞, we have

〈
a†a

〉
∼ |g − gc |−1,

where the expectation is now calculated in respect of the steady state, which is analogous to
the ground state in a QPT. For finite frequencies, we have

〈
a†a

〉
∼
(
Ω

ω0

) 1
2

at g = gc. Notice again this scaling is only valid for rather large Ω/ω0 values. In Fig. 2.6a we
demonstrate the numerical simulation result for this scaling and fit the exponent from within
the range 102 to 104. In Fig. 2.6b we see Fa†a(x) indeed collapse into a single curve for distinct
frequencies.
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Chapter 3 Experiments with Trapped-Ions

In this chapter we introduce our experimental setup: how the ions get trapped and how they
are generally used as qubits. To simulate an open QRM, we employ a Yb+ion as the simulator
and a Ba+ion as the dissipation term. We experimentally determined the cooling parameter
κ, and considered parameters that are suitable to conduct the experiment. Although an actual
experiment cannot be achieved yet due to limitation on hardware, we search for possibilities
to have further experimental study in this direction. When we quote angular frequency values
like ω0, we will often write explicitly ω = 2π×1 MHz rather than ω0 = 6.28 × 106 Hz to avoid
ambiguity. It should not be confused with laboratory frequencies f0 = ω0/(2π). And we will
express decay rates as inverse times in angular frequency units: e−γt where γ = 104 s−1 for
instance, meaning τ = 1/γ = 100 s.

3.1 Paul Trap

We know from Gauss’s law that for a static electric field ∇ · E = 0 in a charge-free
space. In other words, Laplace’s equation ∇2V = 0 does not allow any local extremum inside
the boundary. Consequently we cannot trap a charged particle in all three dimensions solely
with static electric fields. A typical solution for trapped-ion system is to apply an oscillating
electric field, which takes advantage of the inertia of ions and creates an effective trapping in
all dimensions.

Consider a general potential which is quadrapolar at the center

V(x, y, z, t) = U
2
(
αx2 + βy2 + γz2) + Ũ

2 cos(ωrft)
(
α′x2 + β′y2 + γ ′z2) . (3.1)

The first term is static and the second is sinusoidal at radiofrequency (rf) drive frequency ωrf.
Gauss’s law then tells

α + β + γ = 0,

α′ + β′ + γ ′ = 0.
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The choice used in linear traps, also known as Paul traps, is

γ = −(α + β) > 0,

α′ = −β′, γ ′ = 0.

This configuration leads to a dynamical confinement in the x-y plane and a static one in the z

direction. A particle with charge Z |e| and mass m in such a potential will have its equation of
motion, say along the x-axis.

d2x
dt2 = −Z |e|

m
[
Uα + Ũ cos(ωrft)α′] x.

Equations of motion for other degrees of freedom all have a similar form. With substitu-
tions

ξ =
ωrft
2 , ax =

4Z |e|Uα
mω2

rf
, qx =

2Z |e|Ũα′

mωrf

we get the standard form of the Mathieu equation

d2x
dξ2 + [ax − 2qx cos(2ξ)]x = 0. (3.2)

In the case |ax |,q2
x " 1, we have an approximate solution [17]

x = x0 cos
(
βx
2 ωrft

) [
1 − qx

2 cos(ωrft)
]
, βx =

√
ax +

q2
x

2 . (3.3)

This solution is a superposition of two oscillating terms at distinct frequencies. The major
part of x is a slowly oscillating term at frequency ν = βxωrf/2, which is called the secular
motion. The small but fast oscillating term at rf frequency is called the micromotion. If the
micromotion can be neglected, the motion of the particle is no more than a harmonic oscillator
at frequency ν.

We know that a harmonic oscillator can be described in a quantum-mechanical picture.
Suppose x is now the position operator of the ion, then the motional energy is given by

Hmotion = ν

(
a†a +

1
2

)
, x =

√
1

2mν
(
a + a†)

which contributes to the second term in (3.4). If n ions are in the trap, there will be in total 3n
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图 3.1 Schematic drawing of the linear trap. Rods labelled with ‘RF’ applies the rf potential Ũ cos(ωrft),
and all other rods are connected to rf ground. Rod ‘DC1’ applies the DC potential U. Rods ‘DC2’ and
‘DC3’ are for compensation of micromotion. Rod diameters and distances are shown in unit mm and are
not-to-scale in the drawing above.

distinct motional modes. We can couple one particular mode out of them to the internal states
by tuning laser frequencies. This motional mode is sometimes called the ‘bus mode’ since it
transports information between ion qubits.

In our experiments, we use a traditional 4-rod trap (Fig. 3.1) made of stainless steel.
The four parallel rods locate at the corners of a square, generating the rf field. Two needle
DC electrodes are placed along the axis through the center, imposing trapping along the axial
direction. Two auxiliary DC electrodes are employed to compensate micromotion. Typical
electric field parameters in experiments are: Ũ =700–800V, |U | =0–10V, ωrf = 2π×(10–
30)MHz.

3.2 Ytterbium Ion: the QRM
It is very natural that a Paul trap can restrain multiple species of ions. They are all charged

particles, after all. To become a genuine ‘hybrid ion trap’, it means our system contains lasers
that can drive transitions needed for both species of ions: single qubit rotation, coupling to the
shared motional mode, etc. In our DPT experiment we employ the Yb+ion as the QRM and
the Ba+ion as a heat bath. Therefore, only the quantum nature of Yb+ion is pertinent.

171Yb+ ion is a popular choice to perform quantum computation. It has a 1/2 nuclear spin
which generates hyperfine splittings. We use the ground state hyperfine levels |F = 0,mF = 0〉
and |F = 1,mF = 0〉, known as ‘clock’ states, to encode |↓〉 and |↑〉 respectively. The energy
gap between them is 12.642 812 118 466 GHz at zero magnetic field. They have extremely
long lifetime and are first-order insensitive to magnetic field at B = 0. While these features
make 171Yb+ a favored candidate to serve as a qubit, the price we need to pay is its complex
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2S1/2

2P1/2
F = 1
F = 0

F = 1
F = 0

|↑〉
|↓〉

(a)

|↑〉
|↓〉

2.105 GHz

(b)

|↓〉
|↑〉

|e〉
∆

ωI

ω2
ω1

(c)

图 3.2 (a) Detection of the spin states. |↑〉 is excited by a near resonant detection beam at 369.5 nm, and
soon decays spontaneously to 2S1/2 Zeeman states, emitting fluorescence. (b) Optical pumping to the |↓〉
state. The state |↑〉 gets exited to one of 2P1/2 |F = 1,mF = 0,±1〉 states, and then spontaneously decays
to both |↑〉 (not shown) and |↓〉. |↓〉 cannot be excited and the ion gets trapped there. In (a) and (b) the
bold arrows represent stimulated absorption; the snake arrows represent spontaneous emission. (c) Λ-type
stimulated Raman transition. |↑〉 and |↓〉 are coupled by two beams via a virtual state |e〉. Energy levels
shown are not-to-scale.

level structure: a lot of lasers are involved in our system to manipulate it.

3.2.1 Standard Experimental Procedure
Before manipulation on qubit states, we need to prepare an initial state. The initialization

process includes cooling and optical pumping.
First, Doppler cooling is performed between 2S1/2 and 2P1/2 manifolds with a beam at a

wavelength λ = 369.5 nm. The laser beam is slightly red detuned from resonance, so an ion
moving towards the light source has a higher absorption probability. On the other hand, when
the excited ion emits the photon back by spontaneous emission, the direction of the photon
is random. After many repetition the cooling cycle, the average momentum of the ion gets
reduced. The final average phonon number after Doppler cooling is around 10. To further
reduce this value a resolved sideband cooling is performed subsequently. It is a combination
of red sideband transition and optical pumping, which we will introduce later.

The cooling process brings the ion to its motional ground state |0〉. To initialize the
qubit state we resort to the optical pumping technique. The 369.5 nm beam which cou-
ples 2S1/2 |F = 1,mF = 0〉 to 2P1/2 |F = 0,mF = 0〉 is now modulated by 2.105 GHz using an
electro-optic modulator (EOM), so that it can couple the 2S1/2 |F = 1,mF = 0〉 state to the
2P1/2 |F = 1,mF = 0,±1〉 states, which can then decay to |↓〉 (Fig. 3.2b). Despite the undesired
possibility of decaying to the |↑〉 state, because the |↓〉 state cannot be excited due to the
12.6 GHz detuning, eventually all the population is removed to |↓〉.

We couple |↑〉 and |↓〉 (and also spin states and motional states, as discussed later) with a
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stimulated Raman transition. The ground states |↑〉 and |↓〉 are coupled to another short-lived
excited state |e〉 by two lasers detuned from each other by the qubit splitting and both detuned
from |e〉 (Fig. 3.2c). When detuning from |e〉 is sufficiently large, the population of |e〉 can
be adiabatically removed and an effective two-level coupling can be realized. The effective
frequency, wave vector, and Rabi frequency of the stimulated Raman transition is given by
[17, 18]

ω = ω1 − ω2, k = k1 − k2, ΩR =
|ΩR1ΩR2 |

2∆ .

In experiments, we can control the frequency difference precisely using acousto-optical modu-
lators, and can change k by adjusting the angle between two Raman beams. In later calculation
we will mostly use the effective two-level model for simplicity.

Finally we need to detect the spin states after finishing an experiment. It is carried out by
a spin dependent fluorescent technique. We use a near resonant detection beam at 396.5 nm
to couple |↑〉 and 2P1/2 |F = 0,mF = 0〉. The latter state then spontaneously decays to one of
the three 2S1/2 |F = 1,mF = 0,±1〉 Zeeman states after about 10 ns (Fig. 3.2b). The emitted
fluorescent photons will be collected by a photomultiplier tube (PMT) or a charge-coupled
device (CCD). The detection beam contains all polarization components in order to excite the
Zeeman states again. Since the |↓〉 state, which we call the dark state is neither excited nor
populated by decaying, the amount of fluorescent photons reflects the population in |↑〉, which
we call the bright state.

3.2.2 Trapped-Ion Hamiltonian and Everyday Operations

The trapped-ion Hamiltonian has components that are very similar to that of a QRM (2.3),
except that the bosonic field is now made up of motional exitation quanta, i.e. phonons. Thus
we can write down the non-interacting part easily

H0 =
ωI

2 σz + νa†a,

in which ωI is the frequency separation between |↑〉 and |↓〉 and ν is the motional mode
frequency. What is different lies in the interaction part. Note that although we use lasers
to couple the internal part and the motional part, our boson field is the quantized harmonic
motion rather than the electromagnetic field. In all cases we treat the electromagnetic fields as
classical plane waves:

E(r, t) = E0
[
ei(k·r−ωF t−φ) + c.c.

]
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The dipole interaction is therefore

H1 =
Ω

2 σx

[
ei(k·r−ωF t−φ) + c.c.

]

Here Ω is the (resonance) Rabi frequency, which is dependent on the intensity of the driving
laser. Suppose there are multiple beams acting simultaneously, the interaction term should be
a summation of them all. We reach the full Hamiltonian of a trapped-ion:

Hion =
ωI

2 σz + νa†a +
∑
j

Ωj

2 σx

[
ei(k j ·r−ω j t−φ j) + h.c.

]
(3.4)

The full Hamiltonian is rather complicated and we need to introduce some routine approx-
imations for Hion. From now on we will only consider the vibration along x direction for sim-
plicity, kj · r = k j x. Define the Lamb-Dicke parameter ηj = k j/

√
2mν, then k j x = ηj

(
a + a†) .

The interaction picture Hamiltonian is given by

H I
ion = e−iH0tH1eiH0t =

∑
j

Ωj

2
(
σ+eiωI t + σ−e−iωI t

) [
eiη j(ae−iνt+a†eiνt)e−iω j te−iφ j + h.c.

]

This can be simply done by substitution σ− → σ−e−iωI t , a → ae−iνt . We will only apply lasers
whose frequencies are near resonance, namely

11ωI − ωj

11 " 11ωI + ωj

11, so we can drop the
counter rotating terms with frequency ωI +ωj safely. This step is called optical RWA. Further,

for most practical cases we have η
√〈

(a + a†)2
〉
" 1, which is known as the Lamb-Dicke

regime, we can preserve only the first order term in ηj . To a very good approximation H I
ion

becomes
H I

ion ≈
∑
j

Ωj

2

[
σ+

(
I + iηjae−iνt + iηja†eiνt )ei(ωI−ω j)te−iφ j + h.c.

]
(3.5)

For a single resonant driving beam ω = ωI , we have terms rotating at frequency 0 and ±ν.
The latter two can again be neglected, which is known as vibrational RWA. The resulting
Hamiltonian

Hcar =
Ω

2
(
σ+e−iφ + σ−eiφ) (3.6)

is called the carrier transition. The carrier transition happens between |↑〉 |n〉 and |↓〉 |n〉 with
Rabi frequency Ω and does not affect the motional state. Similarly if ω = ωI − ν we have

Hrsb =
iηΩ
2

(
σ+ae−iφ + σ−a†eiφ), (3.7)
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called the (first) red sideband transition. This is exactly the JCM that we have derived in
(2.4). The red sideband transition happens between a Jaynes-Cumming doublet |n〉 |↓〉 and
|n − 1〉 |↑〉, which we already knew since the JCM conserves excitation number. Its Rabi
frequency is given by

Ωn,n−1 =
√

nηΩ.

Starting from |n〉 |↓〉, after a π-pulse of red sideband cooling the phonon number is removed
by 1. Combine this process with optical pumping we can realize the resolved sideband cooling
(Fig. 3.3a). Finally, we also have the (first) blue sideband transition at ω = ωI + ν.

Hbsb =
iηΩ
2

(
σ+a†e−iφ + σ−aeiφ) (3.8)

This Hamiltonian is sometimes called anti-JCM. It happens between |n〉 |↓〉 and |n + 1〉 |↑〉
with Rabi frequency

Ωn,n+1 =
√

n + 1ηΩ.

While an anti-JCM cannot be realized with a direct photon-atom coupling because it violates
energy conservation, here we made it successfully because the driving beam is serving extra
energy.

The three kinds of transitions mentioned above are of crucial importance in experiments.
The carrier transition performs single qubit rotations. A carrier π-pulse induces full popula-
tion inversion between |↓〉 and |↑〉; a π/2-pulse makes equally-superposed states from qubit
eigenstates. The sideband transitions couple ion’s motional state to its internal state, which
allows information stored in one ion qubit to shuttle to the others by the bus mode. There
are also higher order sideband transitions, but the coupling strength is much weaker than first
order ones.

3.2.3 Trapped-Ion realization of the QRM

While it is easy to realize the JCM with a single red sideband laser, it is not straightforward
to simulate a genuine QRM in USC or DSC regime. Consider a red and a blue sideband
transition, both detuned, as interacting terms of the trapped-ion Hamiltonian (Fig. 3.3b).
Suppose detunings are small enough to perform the vibrational RWA, namely

ωr,b = ωI ∓ ν + δr,b, |δr,b | " ν.
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图 3.3 (a) Resolved sideband cooling. The red arrows show a red sideband π-pulse, which remove one
phonon number; the black arrows show optical pumping pulse, which flip the spin back. (b) Driving beams
used in the effective QRM. The red and blue arrows show a red and a blue sideband transition detuned by
δr ,b " ν respectively. Energy levels shown are not to scale.

Take Ωr = Ωb = ΩR, ηr = ηb = η, φr = φb = 3π/2, by (3.5) we have

H I =
ηΩR

2 σ+
(
ae−iδr t + a†e−iδb t ) + h.c.

Move into the interaction picture of Ht =
1
2(δb − δr )a†a + 1

4(δb + δr )σz , we have exactly the
QRM Hamiltonian [19, 20]

HQRM = ω0a†a +
Ω

2 σz − λσx

(
a + a†)

with effective parameters

ω0 =
δb − δr

2 , Ω =
δb + δr

2 , λ =
ηΩR

2 . (3.9)

Notice that Ht commutes with both a†a and σz , so their expectation values are not affected by
the interaction picture transformation. We can measure them conveniently in the lab frame.
By proper choice of δb,r and ΩR, we can in principle simulate the QRM in any regimes. Yet
we still need to ensure that the Lamb-Dicke approximation is still valid when

〈
a†a

〉
is large.

3.3 Barium Ion: the Heat Bath
As we stated earlier, for 138Ba+ ion we can also perform a full set of quantum operations:

Doppler and sideband cooling, optical pumping, single qubit rotation, detection of internal
state, etc. Nevertheless, in the DPT experiment we simply employ the Ba+ion as a heat bath.
During an evolution we keep cooling it using electromagnetically induced transparency (EIT).
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Yb+ Ba+

(a)

2S1/2

2P1/2

∆
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图 3.4 (a) Schematic representation of an open QRM realized by two ions. The red and blue arrow
represent the detuned red and blue sideband laser respectively. The green arrow represent the lasers used
in EIT cooling. The gray parabola schematically represents the trapping potential. (b) Energy levels of the
Ba+ion that is related to the EIT cooling. Energy levels shown are not-to-scale.

Because two ions share motional modes, even without explicit involvement of a cooling laser,
the Yb+ion gets cooled down simultaneously. This process is called sympathetic cooling and
it is an advantage of the hybrid trap. In our DPT experiment, we use the breathing mode along
axial direction of the linear trap as the quantized bosonic field, so a always designates the
annihilation operator of the axial breathing mode from now on.

3.3.1 EIT Cooling

Laser cooling with electromegnetically induced transparency, usually known as EIT
cooling, is an alternative sub-Doppler cooling scheme besides resolved sideband cooling
[21, 22]. It utilizes two lasers coupling two ground states to a single excited states. Both
lasers are set above resonance to the same detuning ∆. One is coupling laser and the other is
cooling laser. Adjust the intensity of the coupling laser so that the excited states gets shifted
by trap frequency. This fulfills the EIT condition so that the carrier transition is suppressed.
There is a maximum absorption probability at the frequency of the red sideband transition
|n〉 → |n − 1〉, while the blue sideband transition probability is kept small. The asymmetry
in sideband transition begets an overall cooling effect. For the Ba+ion we use the S1/2 and
P1/2 Zeeman substates (Fig. 3.4b). The configuration is exactly the same as Doppler cooling,
bringing about experimental convenience.

3.3.2 Detection of Motional-State Populations

As we have mentioned, the fluorescent technique is applied to detect ion’s spin state. To
measure the expectation value of phonon number 〈n〉, we map the information of motional
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state to the internal state of the ion with sideband excitation. Pump the internal state to |↓〉 and
suppose the motional state is

∑
n cn |n〉, the initial state of the ion is thus

|Ψ(0)〉 = |↓〉
∞∑
n=0

cn |n〉 .

Drive the 1st blue sideband excitation by duration t, the probability that the ion is in the excited
state |↑〉 is given by

pbsb
↑ (t) =

∞∑
n=0

Pn

1 − cos
(
Ωn,n+1t

)
2 , (3.10)

where Pn = |cn |2. This is evidently the sum of 1
2
(
1 − cosΩn,n+1t

)
for each component |↓〉 |n〉.

Similarly, we have for the 1st red sideband excitation

prsb
↑ (t) =

∞∑
n=1

Pn

1 − cos
(
Ωn−1,nt

)
2 =

∞∑
n=0

Pn+1
1 − cos

(
Ωn,n+1t

)
2 . (3.11)

Notice that there is no red sideband excitation for the ground state |↓〉 |0〉, so the summation
begin with n = 1.

Equation (3.10) and (3.11) suggest a mathematically direct way to determined Pn –
measure the excited population at a series of time t, and perform Fourier transform to obtain
the coefficients Pn. Especially, a perfect sine curve of pbsb

↑ suggests that the ion is cooled down
to the ground state |↓〉 |0〉 pretty well.

3.3.3 Determination of Cooling Rate

It is necessary to determine κ before performing the DPT experiment, upon which the
critical point gc is dependent. Luckily there is a pretty simple way to measure the average
phonon number during the cooling process by driving sideband excitation.[17, 23]

Assume that the motional states after cooling is still a thermal ensemble, then we should
have a population distribution like

Pn =
n̄n

(1 + n̄)n+1 , (3.12)

where n̄ is the ensemble average of phonon number for the thermal ensemble (See A.1). This
indicates

Pn+1

Pn
=

n̄
n̄ + 1
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(a) (b)

图 3.5 Measurement of the EIT cooling rate of the Ba ion, with a Yb ion also in the hybrid trap. (a) shows
the population of spin-up ion during the cooling process. We can observe after sufficient cooling time the
red sideband transition is suppressed, while the blue is strengthened. (b) shows the average n̄ using (3.13).
An exponential decay is fitted using the experimental data: n̄ = 14.8 exp(−2.47t).

is a constant. Take the ratio of equation (3.11) and (3.10), then

R =
prsb
↑ (t)

pbsb
↑ (t)

=
n̄

n̄ + 1 .

Accordingly what we need to do is drive a red and a blue sideband excitation of equal
duration and equal intensity after cooling for a certain time, detect the spin state, take the ratio,
and then calculate n̄ using

n̄ =
R

1 − R
. (3.13)

Here we show the testing result of EIT cooling of a Ba+ion when a Yb+ion is cooled
sympathetically, namely cooling of the shared axial breathing mode. The Ba+ion is initialized
as |0〉 |↑〉. Turn off the cooling laser and shortly the ion gets heated again and becomes a
thermal ensemble. Note that in (3.13) n̄ is independent of the pulse duration t of sideband
driving laser, because the oscillation cosine terms in (3.10) and (3.11) already cancel each
other, so we only need to choose a fixed time for both processes. For the sake of reducing
errors we prefer a large p↑ on both the numerator and the denominator, so we chose t to be the
π-pulse of the blue sideband transition. The result is shown in Fig. 3.5, in which we fitted an
exponential decay for n̄

n̄ = 14.8 × exp(−2.47t)
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for t in ms. Compare this with simulation results, we have

κ = 0.195 kHz. (3.14)

Suppose we have w0 = 1 kHz for the boson field, then κ = 0.195ω0. This κ value already
corresponds to the maximum power of the cooling laser. However, it is not a fulfilling value
because the cooling rate is rather small, which can only bring about a small shift of gc from 1
to around 1.0189. Such a tiny shift is hard to observe in experiments, which will be examined
in the next section.

3.4 Experiment Scheme
The experimental realization of the QRM with trapped ions has been done since the birth

of the theoretical proposal described in Sec. 3.2.3. The DSC regime of the QRM has been
explored by our group members earlier [24], in which they adiabatically generated the ground
states of QRM and observed the breakdown of RWA for a large coupling. Recently Cai et al.
[25] has obtained strong evidence of the QPT in the QRM from some qualitative behavior of
spin and bosonic observables.

The goal of my graduation project is to scrutinize the possibility to realize an open QRM
in our two-species ion trap and to look for evidence of the DPT. Although I did not manage
to perform an actual experiment, I would like to present some of my thoughts pertaining to
experimental realization. Compared with a QPT, it is no doubt more challenging to observe a
DPT. The critical point gc is no longer fixed but modulated by the cooling parameter κ, which
means gc per se is an experimentally determined value and suffers from errors. Also, it is
more time-consuming to perform numerical simulation once the dissipative term is added. The
DPT does offered some convenience, though. For a DPT we are concerned with steady states
in place of ground states, which are independent form the initial state. We can in principle
initialize an ion to |0〉 |↓〉 normally and turn on all ad rem lasers, rather than adiabatically
prepare a specified initial state.

We would like to determine the values of all effective parameters. Our experimental
setup will lay constraint on parameter ranges, and we also need to fulfill the condition of all
the approximations. For trapped-ion related parameters, ωI ≈ 2π × 12.96 GHz is fixed. ν is
typically 2π×1.8 MHz for our linear trap, which can be tuned within 1 MHz–3 MHz. We have
an η of typical value 0.122. The maximum (carrier) Rabi frequency ΩR ≈ 2π × 100 kHz is
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图 3.6 Deviation of full trapped ion Hamiltonian from HQRM for different coupling g without dissipation.
The result for Hamiltonian with Lamb-Dicke expansion to the first order coincide completely with that for
HQRM and it is not shown in the plot. The critical point is gc = 1.

limited by the power of the 355 nm Raman laser, giving an upper bound of the coupling strength
λ. For effective frequencies ω0 and Ω in (3.9), they are related to the sum and difference of
detunings and generally can vary within a broad range. Yet we must guarantee δr ,b " ν so that
the vibrational RWA can be assumed safely. κ measured as in (3.14) is already the maximum,
corresponding to the maximum power of the EIT cooling beams.

With the consideration above we pick up a set of parameters

ω0 = 2π × 1 kHz, Ω = 20ω0, g ∼ 1.

To precisely capture the behavior of the ion simulator, we performed simulations based
on the full Hamiltonian of a trapped-ion (3.4) with only optical RWA (HRWA here after), and
compared the results with that of the Hamiltonian after Lambe-Dicke expansion (3.5) and the
effective QRM Hamiltonian (2.3). It is reasonable to perform the optical RWA here. Since our
detunings are comparable to ν, which is much smaller than ωI , the approximation condition
can always get satisfied. Technically our computation speed is limited by the largest frequency
involved: with a huge number it needs smaller step lengths to solve a differential equation.
The optical RWA reduce the largest frequency from ∼ ωI to ∼ ν, which is 104 times smaller.

In Fig. 3.6 and Fig. 3.7 we show the non-dissipative and dissipative cases for g below,
close to, and above the critical point gc respectively. As simulation of the full ion Hamiltonian
is a heavy computational task and in experiments we will restrict ourselves to small phonon
numbers, the Fock space is truncated at N = 20 in our simulation unless mentioned otherwise.

Evident deviation of the ion Hamiltonian from the ideal QRM Hamiltonian can be ob-
served in all the cases. Specifically, a stronger coupling brings about a larger deviation. We
have also tested the Hamiltonian after Lamb-Dicke expansion, whose expectation value

〈
a†a

〉
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图 3.7 Deviation of full trapped ion Hamiltonian from HQRM for different coupling g with the dissipation
κ = 0.195ω0. The result for Hamiltonian with Lamb-Dicke expansion to the first order coincide completely
with that for HQRM and it is not shown in the plot. The critical point is gc = 1.02.

图 3.8 Carrier, red sideband, and blue sideband transition at the carrier Rabi frequency Ω = 36.657 kHz
given by the full ion Hamiltonian. The simulation starts from the state |1〉 |↓〉.

turns out to completely coincide with HQRM. This leads to the conclusion: the Lamb-Dicke
expansion is not good in the context of our system.

It seems that the effective QRM Hamiltonian is more susceptible to the higher order
expansion terms than simple coherent manipulation on the ion. Using the same parameter,
carrier, red sideband, and blue sideband transition are not deteriorated by the Lamb-Dicke
expansion. In Fig. 3.8 we discover both spin and phonon observables experience perfect
oscillation at the expected Rabi frequency

Ω = 36.66 kHz, Ω1,0 = 4.47 kHz, Ω1,2 = 6.32 kHz,

respectively.

Despite the apparent deviation, in the dissipative case two curves show similar fluctuation
trends. For this reason we can rely on the simpler QRM Hamiltonian, which consumes much
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图 3.9 Finite-frequency relations of
〈
a†a

〉
. A comparison is made between HQRM and the full ion

Hamiltonian at η = 0.122, 0.07. Fitted scaling exponents are shown in the figure. A dissipative term
of κ = 1.5ω0 is taken in simulation. The inset demonstrates time evolution of

〈
a†a

〉
at Ω/ω0 = 100, a

relaxation time of ∼ 20 ms can be discovered.

less computation power, to estimate relaxation time to reach steady state. We try to investigate
the FFS properties of the ion simulator, as in Sec. 2.3. The scaling relation with respect to
Ω/ω0 is shown in Fig. 3.9. In the simulation we have taken an extremely large κ = 1.5ω0 in
order to accelerate relaxation and hence to save calculation time (See the inset of Fig. 3.9).
For this κ value it exacts around 20 ms for the slowest one to reach the steady state, and it
already takes 2.5 hours to finish computation. Meanwhile, A smaller κ will not affect the
result qualitatively. Obviously the exponent given by the full ion Hamiltonian is no longer
valid, though the scaling law itself is. In other words, the ion Hamiltonian cannot be used to
approximate the QRM Hamiltonian, but itself show a scaling relationship at the QRM critical
point.

We checked the FFS function of HRWA, which turns out to still collapse in to a single curve
(Fig. 3.10). It also deviates from that of a QRM apparently, as plotted in the inset. Therefore,
we conclude that a DPT possibly happens for a more complex model represented by HRWA, but
it differs from our desired QRM.

To ensure that we can work in the Lamb-Dicke regime, let’s rewrite the condition as
η
√

2n̄ + 1 " 1, where n̄ is the average phonon number. Suppose η = 0.122 and n̄ = 5, which
corresponds to g ∼ 1.3, then η

√
2n̄ + 1 ∼ 0.4 is rather large. The second order term is about

0.4 times the first order term and thus has a non-negligible influence. A smaller η value, like
0.07 [25], is then preferred. η is dependent on the effective wavevector k and the motional
mode frequency ν. From an experimental point of view, it is difficult to change the angle
between two Raman lasers to adjust k, but ν can be controlled by the rf frequency of the trap.
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图 3.10 FFS function obtained from the full ion Hamiltonian under various frequency ratios. It can be
seen that data points corresponding to different ratios still collapse into a single curve. The inset shows
absolute deviation from the FFS of an ideal QRM. The relative deviation is roughly 10%.

For our system, we can have at most ν = 2.6 MHz, giving η = 0.102.
The technical difficulties mentioned above hindered our plan to observe the FFS relation

of the DPT. Instead of pursuing quantitative results pertaining to critical exponents, it seems
more realistic to search some qualitative evidences of the DPT first, as Cai et al. [25] have
done for the QPT. In Fig. 2.3 we have seen the zero to non-zero transition of nc and 〈σz〉 as
a result of breaking the Z2 symmetry. For our DPT, the open QRM behaves in a similar way,
except that the critical point gets slightly shifted (Fig. 3.11). In the simulation we have applied
κ = 0.195ω0. For this simpler phenomenon what matters happen only near the critical point.
If we choose a tender ratio likeΩ/ω0 = 20,

〈
a†a

〉
will stay small there, and we are not affected

by higher order terms in Lamb-Dicke expansion.
We investigated the relaxation time to achieve steady state as well. Some of the time

evolution results are plotted in the insets of Fig. 3.11. Typically as Ω/ω0 increases it takes
more time to reach equilibrium. For a fixed frequency ratio, it is largest near the critical point
than anywhere else. We have tested Ω/ω0 =10, 20 and 40, whose relaxation times turn out to
be 10 ms, 50 ms and 100 ms respectively, which is far beyond our typical operation duration
∼ 100 s.

Our operation time is limited by the largest allowed duration of the single qubit rotation
of Yb+by stimulated Raman transition. In experiments we found that once the operation time
of the Raman lasers reach ∼ 1 ms, the Yb+ion gets dark. It is yet not clear what happens;
possibly the ion goes to some unknown states or becomes other ion forms.

Is it possible to shorten the required relaxation time? It may seem that we can do it by
altering ω0, which defines the time scale of the QRM. For non-dissipative case this is indeed
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图 3.11 Phonon number expectation value near the critical point, at frequency ratio Ω/ω0 = 20, of HQRM.
The result of the non-dissipative case is also drawn for comparison. A small shift of the critical point can
be seen, but limited by finite frequency ratio, it is hard to say where the critical point exactly lies. The
insets exhibit time evolution of three selected points, from which a relaxation time around 50 ms can be
determined.

true: double ω0 and accordingly Ω,λ, we can finish the simulation within half its original
duration. The only thing we need to pay attention is that, as λ is doubled, we need a larger
Rabi frequency ΩR. However, for the DPT, the trick is not useful since the absolute value of
κ cannot be enlarged beyond 0.195 kHz: if we take ω0 = 2 kHz, then we can have at most
κ = 0.098ω0. The net effect is an almost unchanged relaxation time.

A very effective way to optimize is of course to enlarge the cooling rate, although it is
not possible for our currrent system setup. A larger shift of gc will be induced by a larger κ,
showing clearly the difference between the ordinary QPT and the DPT. The range in which gc
belongs to can be observed directly form

〈
a†a

〉
plot. In contrast, with our current setup we

can only claim there is a turning point, but cannot say it is shifted remarkably form the QPT
critical point gc = 1.
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Chapter 4 Discussions and Conclusion

The thesis presented an experimental scheme to realize a dissipative phase transition
of the quantum Rabi model in a hybrid trapped-ion system. A Yb+ion is employed as the
simulator and it is damped by a Ba+ion through sympathetic cooling. The last section explains
reasons that account for the failure of experimental realization of the DPT. An unfavorable
Lambe-Dicke parameter, a weak cooling power, and a short Raman operation time form our
main obstacles.

Even with these shortages fixed, our investigation suggests that it is very challenging to
observe the finite-frequency scaling behavior, like that in Fig. 2.6 of the DPT as we have
first proposed. Scaling relation at the critical point requires a range of Ω/ω0, especially large
values. But for a large frequency ratio, the Lamb-Dicke expansion is deteriorated because of
the influence of the carrier term. If we examine the collapse property of the FFS function,
it is still hard since we suffer from experimental noises like heating of the motional mode,
dephasing noise of the qubit, etc. Because g actually varies within a very small range near the
critical point, the data points are extremely susceptible to those noises. Generally we cannot
expect the FFS functions to still collapse into a single curve with experimental noises.

In spite of the difficulties to find out quantitative results. We are still optimistic that
proposals like the one presented in Fig. 3.11 is highly possible to be fulfilled. After adequate
optimization it is possible to observe the zero to non-zero transition of such kinds.
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Appendix A Quantum Optics

A.1 Thermal Fields

Consider a single-mode field in thermal equilibrium with temperature T . Its density
matrix can be computed directly using canonical ensemble.

ρ =
e−βH

Z
, Z = tr

[
e−βH

]

where β = 1/(kBT) is the inverse of the temperature. For H = !ω
(
n + 1

2
)

Z =
∞∑
n=0

〈n|e−βH |n〉 =
∞∑
n=0

e−β!ω(n+ 1
2) = e−β!ω/2

1 − e−β!ω .

And the diagonal elements of the density matrix, which is the population of n-photon compo-
nent, is given by

Pn = 〈n|ρth |n〉 =
1
Z

e−β!ω(n+ 1
2)

The ensemble average of the phonon number n̄ is thus given by

n̄ = tr[nρth] =
1
Z

∞∑
n=0

ne−β!ω(n+ 1
2) =

(
1 − e−β!ω

) (
− 1
!ω

)
d

dβ

∞∑
n=0

e−β!ωn =
1

eβ!ω − 1 .

With this we can express e−β!ω as well as the probability Pn by average phonon number n̄ as
follows:

ρth =
1

1 + n̄

∞∑
n=0

(
n̄

n̄ + 1

)n
|n〉〈n| , (A.1)

Pn =
n̄n

(1 + n̄)n+1 . (A.2)

A.2 Bogoliubov Transformation

For a pair of boson annihilation and creation operators b, b†, we have the canonical
commutation relation

[
b, b†] = 1. Make a linear combination of them and define a new pair
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of operators

a = ub + vb†,

a† = v∗b + u∗b†.

Because [
a,a†] = [

ub + vb†, v∗b + u∗b†] = |u|2 − |v |2,

under the condition |u|2 − |v |2 = 1 the canonical commutation relation is preserved by the

transformation. This transformation is similar to a unitary transformation
[

u v

−v∗ u∗

]
up to a

minus sign. While we can parametrize a unitary transformation with sinusoidal functions, we
can do for the Bogoliubov transformation with hyperbolic functions:

u = eiθ1 cosh r,

v = eiθ2 sinh r .

Consider for example
Hq = c1a†a + c2

(
a + a†)2

+ c0. (A.3)

We have

Hq = c1
(
v∗b + u∗b†) (ub + vb†) + c2

(
ub + vb† + v∗b + u∗b†)2

+ c0

=
[
(c1 + 2c2)

(
|u|2 + |v |2

)
+ 2c2(uv + u∗v∗)

]
b†b

+
[
c1u∗v + c2(v + u∗)2

] (
b†)2

+
[
c1v

∗u + c2(u + v∗)2
]
b2

+
[
c0 + c1 |v |2 + c2(u + v∗)(v + u∗)

]
.

By setting c1u∗v + c2(v + u∗)2 = 0 we can clear the off-diagonal terms. Take θ1 = θ2 = 0:

c1 cosh r sinh r + c2(cosh r + sinh r)2 = 0,

c1

2 sinh 2r + c2(cosh 2r + sinh 2r) = 0,

r = −1
4 ln

(
4c2

c1
+ 1

)
.

38



Appendix A Quantum Optics

By the way,
Hq = [(c1 + 2c2) cosh 2r + 2c2 sinh 2r]b†b + c(g),

with c(g) a constant term dependent on g.

For the normal phase Hamiltonian Hnp in (2.6), c1 = ω0, c2 = −ω0g2/4, c0 = −Ω/2, thus

rnp = −1
4 ln

(
1 − g2),

Hnp = ω0
√

1 − g2a†a + EG,np(g)

The Bogoliubov transformation can also be represented by a squeeze operator

S(ξ) = exp
[
1
2
(
ξa2 − ξa†2) ],

where ξ = reiθ is a complex number. From the commutation relations
[
1
2
(
ξa†2 − ξ∗a2),a

]
= −ξa†,

[
1
2
(
ξa†2 − ξ∗a2),a†

]
= −ξ∗a

and Baker-Hausdorff formula, it follows that

S†(ξ)aS(ξ) = a − ξa† +
1
2! |ξ |

2a − 1
3! |ξ |

2ξa† + . . .

= a
∞∑
n=0

1
(2n)! |ξ |

2n − ξa†
∞∑
n=0

1
(2n + 1)! |ξ |

2n

= a
∞∑
n=0

r2n

(2n)! − eiθa†
∞∑
n=0

r2n+1

(2n + 1)!

= a cosh r − a†eiθ sinh r .

(A.4)

and thus
S†(ξ)a†S(ξ) = a† cosh r − ae−iθ sinh r . (A.5)

With the identification θ = π our desired transformation can be performed by (A.4) and
(A.5) with S(−r). So if the eigenstates in the transformed Fock basis are |n〉, then before
transformation we have in the tensor product space

11ψn
np
〉
= S

(
−rnp

)
|n〉 |↓〉 .
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A.3 Superradiant Phase Effective Hamiltonian

In quantum optics, the displacement operator D(α) is defined as

D(α) = exp
(
αa† − α∗a

)
,

where α is a complex number. It generates a displacement in phase space, using operator
formalism that is

D†(α)aD(α) = a + α. (A.6)

Therefore, a transformation on HQRM gives rise to

D†(α)HQRMD(α) = ω0
(
a† + α

)
(a + α) + Ω2 σz − λ

(
a + a†)σx − 2λασx .

Then we transform the spin part by [13]

U =

[
cos θ − sin θ
sin θ cos θ

]

with respect to the basis |↑〉 =
[
1
0

]
, |↓〉 =

[
0
1

]
so that |⇑〉 = U |↑〉 , |⇓〉 = U |↓〉. Denote the Pauli

matrices with respect to the new basis by τx,y,z , the previous Pauli matrices are transformed
into

U†σzU =

[
cos 2θ − sin 2θ
− sin 2θ − cos 2θ

]
= cos 2θτz − sin 2θτx,

U†σxU =

[
sin 2θ cos 2θ
cos 2θ − sin 2θ

]
= sin 2θτz + cos 2θτx .

So in respect of the new basis

D†(α)HQRMD(α) = w0a†a + ω0α
2 + (ω0α − λ sin 2θτz)

(
a + a†) − λ cos 2θ

(
a + a†)τx

+

(
Ω

2 cos 2θ − 2λα sin 2θ
)
τz −

(
Ω

2 sin 2θ + 2λα cos 2θ
)
τx .
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Choose θ such that tan 2θ = −4λα/Ω, then

D†(α)HQRMD(α) = w0a†a+ω0α
2+(ω0α − λ sin 2θτz)

(
a + a†)−λ cos 2θ

(
a + a†)τx+Ω2

1
cos 2θ τz .

Denote Ω/cos 2θ as Ω̃ =
√
Ω2 + 16λ2α2, and choose α so that ω0α + λ sin 2θ = 0, the solution

is given by ±αg and

αg =

√
Ω(g4 − 1)

4g2ω0
, g =

2λ√
Ωω0
.

In this case, we can further simplify the Hamiltonian

D† (±αg

)
HQRMD

(
±αg

)
= w0a†a +

Ω̃

2 τz + ω0α
2 − λ cos 2θ

(
a + a†)τx ± 2ω0αg |⇑〉〈⇑|

(
a + a†) .

In the limit of Ω/ω0 → ∞ and fixed g, the last term which is of order (Ω/ω0)1/2 and hence can
be neglected. So the Hamiltonian goes back to the form of HQRM with effective parameters

Ω̃ =
√
Ω2 + 16λ2α2

g = g
2Ω, λ̃ = λ cos 2θ =

√
ω0Ω

2g .

That is
H̃QRM

(
±αg

)
= ω0a†a +

Ω̃

2 τz − λ̃
(
a + a†)τx + ω0α

2
g.

Conduct a unitary transformation to diagonalize the spin part of H̃QRM, just as what we have
done in (2.5), then project the spin part onto |⇓〉, we obtain

Hsp = 〈⇓|H ′ |⇓〉 = ω0a†a − ω0

4g4
(
a + a†)2 − Ω4

(
g2 + g−2) .

Finally, we perform a Bogoliubov transformation with identification that c1 = ω0, c2 =

−ω0/
(
4g4) and c0 = −Ω

(
g2 + g−2)/4 in (A.3).

rsp = −1
4 ln

(
1 − 1
g4

)
,

Hsp = ω0

√
1 − 1
g4 a†a + EG,sp(g).

And we can identify the eigenstates

11ψn
sp
〉
= D

(
±αg

)
S
(
−rsp

)
|n〉

11↓±〉 ,
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with |↓±〉 denoting the transformed spin basis corresponding to ±αg respectively.

11↓±〉 = ∓
√

1 − g−2

2 |↑〉 +
√

1 + g−2

2 |↓〉 .

42



Appendix B Source Code

Appendix B Source Code

All the scripts are programmed using python, and our customary environment is python
3.6. The simulations are largely based on the Quantum Toolbox in Python (QuTiP) package
[26] (version 4.6.2). The simulation of HRWA, with the Lamb-Dicke expansion or not, will
consume much more computation power than that of HQRM, so I have take advantage of the free
cluster Teaching II of Peking University to do multiprocessing. Some most important scripts
are pasted and explained below.

B.1 bedrock.py
This file is a collection of commonly used objects. Each function has a docstring that

describes its usage. We will frequently import functions from this file and you can use it to
perform your own simulation if you are interested in our topic.

The Laser class, as a subclass of namedtuple, is merely a tuple to pack a laser’s
frequency, Lamb-Dicke parameter, and Rabi frequency together. Then the information of a
laser is stored in a single object and can be passed into H_RWA conveniently. You can pass a
list of Laser objects to H_RWA if you want multiple lasers to act on the ion simultaneously.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4 from collections import namedtuple
5 from qutip import *
6
7 Laser = namedtuple('Laser', 'freq, eta, Rabi')
8 omegaI = 12.64281211846 * 10 ** 9 * 2 * np.pi
9

10 def pauli_matrices(dim):
11 '''
12 pauli matrices in the tensor product space
13
14 param:
15 dim: dimension of the Fock space
16 return:
17 (sm, sx, sy, sz) as a tuple, with pauli_matrices(dim)[0] pointing to sigma_minus
18 '''
19 sx = tensor(sigmax(), qeye(dim))
20 sy = tensor(sigmay(), qeye(dim))
21 sz = tensor(sigmaz(), qeye(dim))
22 sm = tensor(sigmam(), qeye(dim))
23 return sm, sx, sy, sz
24
25 def destroy_a(dim):
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26 '''
27 bosonic annihilation operator in the tensor product space
28 '''
29 return tensor(qeye(2), destroy(dim))
30
31 def H_QRM(w0, W, l, dim):
32 '''
33 Quantum Rabi Model Hamiltonian
34
35 expression: 1/2 * W * sz + w0 * a.dag() * a + l * sx * (a + a.dag())
36 '''
37 _, sx, _, sz = pauli_matrices(dim)
38 a = destroy_a(dim)
39 return 1/2 * W * sz + w0 * a.dag() * a + l * sx * (a + a.dag())
40
41 def g2l(g, w0, W):
42 '''
43 transform dimensionless coupling factor g to lambda with freqency unit
44
45 param: g, w0, W
46 '''
47 return g / 2 * np.sqrt(w0 * W)
48
49 def l2g(l, w0, W):
50 '''
51 transform frequency-unit coupling factor lambda to dimensionless g
52
53 param: l, w0, W
54 '''
55 return 2 * l / np.sqrt(w0 * W)
56
57 def H_RWA(dim, omegaI, nu, lasers, LD=False):
58 '''
59 Trapped ion Hamiltonian with only optical RWA. Multiple interaction terms are applied
60 if there are more than 1 item in 'lasers' list.
61 param:
62 dim: dimension of the Fock space
63 omegaI: internal state energy gap (qubit gap)
64 nu: motional state energy gap (motional mode freq.)
65 lasers: a list of class Laser object.
66 LD: bool value, if True, then apply the first order Lamb-Dicke approximation.
67
68 return:
69 pack: time-dependent Hamiltonian defined in QuTiP
70 '''
71 sm = pauli_matrices(dim)[0]
72 a = destroy_a(dim)
73 H0 = nu * a.dag() * a
74 pack = [H0] # store final Hamiltonian in time-dependent form
75 for laser in lasers:
76 b = 1j * laser.eta * (a + a.dag())
77 if not LD: # default case
78 H1 = sm.dag() * b.expm()
79 H2 = sm * b.dag().expm()
80 else: # LD case
81 H1 = sm.dag() * (1 + b)
82 H2 = sm * (1 - b)
83 c1 = f'{laser.Rabi} / 2 * exp(1j * ({omegaI} - {laser.freq}) * t)'
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84 c2 = f'{laser.Rabi} / 2 * exp(-1j * ({omegaI} - {laser.freq}) * t)'
85 pack.append([H1, c1])
86 pack.append([H2, c2])
87 return pack

B.2 ion_scaling.py
This piece generates Fig. 3.9. While the simulation with H_QRM usually takes several

minutes, it is time-consuming to simulate with H_RWA, which takes about an hour for each
evolution process. We ran the time-evolution code in parallel on a server. parallel_map is a
handy built-in function of QuTiP to run multiprocessing.

1 from bedrock import *
2 from numpy import pi, sqrt, log
3 sns.set_palette('Set2')
4
5 N = 20 # Fock space truncation
6 a = destroy_a(N)
7 sz = pauli_matrices(N)[3]
8
9 nu = 1e6 * 2 * pi

10 eta = 0.122
11 w0 = 1000 * (2 * np.pi) # Rabi omega_0
12 kappa = 1.5 * w0
13 gc = sqrt(1 + (kappa / w0) ** 2)
14
15
16 def func(ratio):
17 '''
18 A packed function aiming to be called in a parallel map.
19 '''
20 W = ratio * w0
21 lc = g2l(gc, w0, W)
22 f_Rabi = 2 * lc /eta
23 delta_r = W - w0
24 delta_b = w0 + W
25 init = tensor(basis(2, 1), basis(N, 0))
26
27 H1 = H_QRM(w0, W, lc, N) # ideal QRM
28 laser1 = Laser(omegaI - nu + delta_r, eta, f_Rabi)
29 laser2 = Laser(omegaI + nu + delta_b, eta, f_Rabi)
30 H2 = H_RWA(N, omegaI, nu, [laser1, laser2]) # full ion H
31 H3 = H_RWA(N, omegaI, nu, [laser1, laser2], LD=True) # full ion H with LD
32
33 tlist = np.linspace(0, 0.02, 1000)
34 result1 = mesolve(H1, init, tlist, [sqrt(2 * kappa) * a], [a.dag() * a])
35 result2 = mesolve(H2, init, tlist, [sqrt(2 * kappa) * a], [a.dag() * a],
36 options=Options(nsteps=8000))
37 result3 = mesolve(H3, init, tlist, [sqrt(2 * kappa) * a], [a.dag() * a],
38 options=Options(nsteps=8000))
39 result = [result1, result2, result3]
40
41 qsave(result, f'ratio_{ratio}') # save result as a pickle
42 return result
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43
44
45 # Run on server in parallel(~1h for each)
46 ratiolist = [20, 40, 60, 80, 100, 120]
47 result = parallel_map(func, ratiolist, progress_bar=True)
48 qsave(result, 'ion_scaling_result') # save altogether result
49 # change eta to 0.07 and repeat
50 eta = 0.07
51 re_small_eta = parallel_map(func, ratiolist, progress_bar=True)
52 qsave(result_small_eta, 'ion_scaling_result_eta0.07')
53
54
55 # Plot can be done locally
56 # If saved file is used, run the following 2 lines to load pickles.
57 # result = qload('./ion_scaling_result')
58 # re_small_eta = qload('./ion_scaling_result_eta0.07')
59
60 # curve fit
61 ffs_qrm = [re[0].expect[0][-1] for re in result]
62 ffs_ion = [re[1].expect[0][-1] for re in result]
63 ffs_small_eta = [re[1].expect[0][-1] for re in re_small_eta]
64 fit1 = np.polyfit(log(ratiolist), log(ffs_qrm), 1)
65 fit2 = np.polyfit(log(ratiolist), log(ffs_ion), 1)
66 fit3 = np.polyfit(log(ratiolist), log(ffs_small_eta), 1)
67 y1 = ratiolist ** fit1[0] * np.e ** fit1[1]
68 y2 = ratiolist ** fit2[0] * np.e ** fit2[1]
69 y3 = ratiolist ** fit3[0] * np.e ** fit3[1]
70
71 # plot
72 from mpl_toolkits.axes_grid1.inset_locator import inset_axes
73
74 fig, ax = plt.subplots(figsize=(5, 3), constrained_layout=True)
75 ax.plot(ratiolist, ffs_qrm, '^', c=sns.color_palette()[-1], markersize=4)
76 ax.plot(ratiolist, ffs_ion, 'o', c=sns.color_palette()[-1], markersize=4)
77 ax.plot(ratiolist, ffs_small_eta, 's', c=sns.color_palette()[-1], markersize=4)
78
79 ax.plot(ratiolist, y1, label=r'$H_\mathrm{QRM}$')
80 ax.plot(ratiolist, y2, label=r'full $H,\ \eta = 0.122$')
81 ax.plot(ratiolist, y3, label=r'full $H,\ \eta = 0.07$')
82
83 ax.set_xscale('log')
84 ax.set_yscale('log')
85 ax.set_xlabel(r'$\Omega/\omega_0$', fontsize=11)
86 ax.set_ylabel(r'$\langle a^\dagger a\rangle$', fontsize=11)
87 ax.legend()
88
89 ax.text(45, 0.97, f'{fit1[0]:.3}', c=sns.color_palette()[0], rotation=30)
90 ax.text(45, 0.72, f'{fit2[0]:.3}', c=sns.color_palette()[1], rotation=26)
91 ax.text(45, 0.81, f'{fit3[0]:.3}', c=sns.color_palette()[2], rotation=28)
92
93 # inset
94 inset_ax = inset_axes(ax, 1, 0.8, bbox_to_anchor=(0.96, 0.46), bbox_transform=ax.transAxes)
95 inset_ax.plot(result[4][0].times * 1000, result[4][0].expect[0])
96 inset_ax.plot(result[4][1].times * 1000, result[4][1].expect[0])
97 inset_ax.plot(re_small_eta[4][1].times * 1000, re_small_eta[4][1].expect[0])
98 inset_ax.text(6, -0.5, r'$t$ (ms)')
99

100 # inset marker
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101 ax.plot([95, 106], [1.02, 1.02], linewidth=0.5, c=sns.color_palette()[3])
102 ax.plot([95, 106], [1.42, 1.42], linewidth=0.5, c=sns.color_palette()[3])
103 ax.plot([106, 106], [1.02, 1.42], linewidth=0.5, c=sns.color_palette()[3])
104 ax.plot([95, 95], [1.02, 1.42], linewidth=0.5, c=sns.color_palette()[3])
105 ax.plot([95, 72], [1.02, 0.845], linewidth=0.5, c=sns.color_palette()[3])
106 ax.plot([106, 117.5], [1.02, 0.845], linewidth=0.5, c=sns.color_palette()[3])
107
108 plt.savefig('./ion_scaling.pdf')

B.3 ion_ffs.py
This piece generates Fig. 3.10. Caution: this script takes around half a day to run because

there are 4 ratios and lots of x values to compute.
1 from bedrock import *
2 from numpy import pi, sqrt, log
3 sns.set_palette('Set2')
4
5 N = 20 # Fock space truncation
6 a = destroy_a(N)
7 sz = pauli_matrices(N)[3]
8
9 nu = 1e6 * 2 * pi

10 eta = 0.122
11 w0 = 1000 * (2 * np.pi) # Rabi omega_0
12 kappa = 1.5 * w0
13 gc = sqrt(1 + (kappa / w0) ** 2)
14
15 ratiolist = [30, 40, 50, 100]
16 xlist = {ratiolist[i]:np.logspace(-4.5 + 0.13 * i, -2 + 0.13 * i, 12) for i in range(4)}
17 ylist = {30:[], 40:[], 50:[], 100:[]} # store result
18
19
20 def func(x):
21 '''
22 A packed function aiming to be called in a parallel map.
23 '''
24 g = gc - (x / ratio) ** (1 / 2) # x -> g -> l for substitution into H_RWA
25 l = g2l(g, w0, W)
26 f_Rabi = 2 * l /eta
27 delta_r = W - w0
28 delta_b = w0 + W
29
30 init = tensor(basis(2, 1), basis(N, 0))
31 tlist = np.linspace(0, 0.02, 1000)
32 laser1 = Laser(omegaI - nu + delta_r, eta, f_Rabi)
33 laser2 = Laser(omegaI + nu + delta_b, eta, f_Rabi)
34 H = H_RWA(N, omegaI, nu, [laser1, laser2])
35
36 result = mesolve(H, init, tlist, [sqrt(2 * kappa) * a], [a.dag() * a],
37 options=Options(nsteps=6000))
38 return result
39
40
41 # Run on server (~2h for each ratio, very laborous)
42 for ratio in ratiolist:
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43 W = ratio * w0
44 print('ratio=', ratio)
45 result = parallel_map(func, xlist[ratio], progress_bar=True)
46 qsave(result, f'ratio_{ratio}') # save result for each ratio for safety
47 ylist[ratio] = [re.expect[0][-1] for re in result]
48 qsave(ylist, 'ion_ffs_result') # save altogether result
49
50
51 # Run the following line if loading from a pickled file.
52 # ylist = qload('./ion_ffs_result')
53
54
55 # QRM FFS function as comparison
56 N = 100 # very fast for QRM Hamiltonian, ~10s for each ratio
57 a = destroy_a(N)
58 etalist = [30, 40, 50, 100]
59 xlist = {etalist[i]:np.logspace(-4.5 + 0.13 * i, -2 + 0.13 * i, 12) for i in range(4)}
60 ylist2 = {30:[], 40:[], 50:[], 100:[]}
61 for eta in etalist:
62 W = eta * w0
63 for x in xlist[eta]:
64 g = gc - (x / eta) ** (1 / 2)
65 l = g2l(g, w0, W)
66 steady = steadystate(H_QRM(w0, W, l, N), [np.sqrt(2 * kappa) * a])
67 aa = expect(a.dag() * a, steady)
68 y = np.abs(g - gc) ** 1 * aa
69 ylist2[eta].append(y)
70
71
72 # Plot
73 from mpl_toolkits.axes_grid1.inset_locator import inset_axes
74 symblist = {30:'o', 40:'*', 50:'^', 100:'X'}
75
76 # main axis
77 plt.figure(figsize=(5, 3))
78 fig, ax = plt.subplots(figsize=(5, 3), constrained_layout=True)
79 for ratio in ratiolist:
80 ax.plot(xlist[ratio], ylist[ratio], f'{symblist[ratio]}', label=ratio, markersize=5)
81 ax.set_xlabel(r'$\left(\Omega/\omega_0\right)\left|g-g_c\right|^2$', fontsize=11)
82 ax.set_ylabel(r'$\left|g-g_c\right|^1\langle a^\dagger a\rangle$', fontsize=11)
83 ax.set_xscale('log')
84 ax.set_yscale('log')
85 ax.legend(title=r'$\Omega / \omega_0$')
86
87 # inset
88 inset_ax = inset_axes(ax, 1.6, 0.96, bbox_to_anchor=(0.96, 0.54), bbox_transform=ax.transAxes)
89 for ratio in ratiolist:
90 inset_ax.plot(xlist[ratio], ylist2[ratio]-ylist[ratio], f'{symblist[ratio]}', markersize=4)
91 inset_ax.set_xscale('log')
92 inset_ax.set_yscale('log')
93 inset_ax.text(0.26 * 10**(-4), 2.5 * 10**(-4), 'deviation', rotation=90, fontsize=9)
94
95 plt.savefig('./plots/ion_ffs.pdf')
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