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Atomistic analysis of the field-ion microscopy image of Fe3Al
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A unified lattice inversion method is applied to calculation of interatomic potentials and binding-energy
differences between various kinds of surface atoms. Based on these calculated interatomic potentials, the
field-ion microscopy images for Fe3Al are discussed in detail in order to develop the general concept and the
evaluation method of selective evaporation for binary ordered alloys.@S0163-1829~98!01022-4#
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I. INTRODUCTION

The study of the field-ion microscopy~FIM! shows per-
fect ring structures in FIM images for pure metals. The s
of concentric rings corresponds to the local curvature rad
of the specimen’s tip surface. Larger planar density of ato
corresponds to more prominent poles in the FIM images1,2

The clear ring structures also occur in the FIM images
binary ordered alloys.1–6 However, there exists an addition
phenomenon in experiment, which is called invisibility. Th
is, one of the species seems to have disappeared from
images for binary ordered alloys. For instance, Co atom
L10 PtCo and Ni atoms in D1a Ni 4Mo seem to be invisible
in the corresponding FIM image.3–6 Apparently, the invis-
ibility can be explained by selective evaporation assum
that the applied voltage can cause evaporation of sur
atoms from the tip sample. According to previous wor
atoms with lower sublimation energy value~in the pure
metal state! are invisible since they seem to be evapora
easily, and the remaining atoms, which have higher subli
tion energy~see Table I! in their pure metallic state, would
preferably remain at the tip surface and construct the st
FIM image. We denote the sublimation energy for pu
metal byEs, thenECo

s ,EPt
s , andENi

s ,EMo
s . Therefore, the

conception in previous works is apparently in good agr
ment with the experimental results.

II. PREVIOUS WORK ON FIM FOR Fe 3 Al

Recently, the FIM image of Fe3Al has been attracting
attentions8–10because of its potential applications.11 Figure 1
shows the unit cell of a Fe3Al superlattice. The DO3 super-
lattice can be considered as eight B2 structures stacked to
gether to allow maximum distance between aluminum
oms. By comparing the sublimation energy values of p
metals Fe and Al, we can assert that Al should be the in
ible species.8 However, in the experiment by Wenget al.,9

perfect rings, which correspond to a fcc structure, exist in
image of Fe3Al. Given that the Al sublattice has the fc
structure, Wenget al.asserted that Fe is the invisible spec
in the image of Fe3Al. Therefore, there is controversy o
which kind of atoms is invisible. Note that the first argume
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is based on two assumptions:~1! In a binary alloy one of the
species is invisible, and the other is visible;~2! The atom
with lower sublimation energy in its pure metallic state
invisible. Obviously, both assumptions are empirical rath
than theoretical. Both have been used to successfully exp
the FIM images of Ni4Mo, Ni 3Al, and PtCo with the asser
tion that parameters such as sublimation energies for p
bulk metals are transferable to alloy’s surfaces.

However, this explanation does not work for Fe3Al. First,
two types of Fe atoms exist in the DO3 type of Fe3Al, FeI

and FeII. The FeI atoms at the ‘‘corners’’ form a simple
cubic sublattice. The FeII atoms at the ‘‘centers’’ form a fcc
sublattice that is identical with the Al atoms in Fe3Al. There-
fore, we have no reason to conclude from the experiment
the fcc-related rings in the FIM images for Fe3Al are neces-
sarily attributed to the Al atoms, and not to the FeII atoms,
and likewise not to the Al and FeII atoms together. Second
since Al has a lower sublimation energy value compared
Fe, the Al atoms should be more easily evaporated than
Fe atoms. The visible atoms therefore should be FeII instead
of Al.

In order to resolve the above controversy, one has to g
up conventional premises. It is now necessary to consider
binding-energy difference between various kinds of surfa
atoms of Fe3Al, which include FeI, FeII, and Al, and perhaps
more. The evaluation of interatomic potentia
FAl-Al , FFe-Fe, and FAl-Fe becomes the key issue. In th
present work, a unified formula for inverse lattice problem12

will be applied to obtain the pair potentialsFAl-Al , FFe-Fe,
and FAl-Fe based onab initio calculated cohesive energ
curves. The unified solution of the inverse lattice problem
presented in Sec. III with examples of the fcc, bcc, and D3
structures. Section IV shows the cohesive energy cur
based on theab initio calculation and the universal Ros
equation13 for fcc Al, bcc Fe, and DO3 Fe3Al. In addition,

TABLE I. The sublimation energy values of various pure met
~Ref. 7!.

Element Pt Co Ni Mo Fe Al

Sublimation energy~ev/atom! 5.84 4.39 4.44 6.82 4.28 3.39
14 203 © 1998 The American Physical Society
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14 204 57CHEN NAN-XIAN et al.
the converted pair potential curvesFAl-Al , FFe-Fe, and
FAl-Fe based on the unified lattice inversion formula are
troduced. The above results will be used to evaluate the b
ing energies of various kinds of atoms on different surfa
of Fe3Al. In true, the outcome of the evaluation will b
compared to experimental data. The conclusion and dis
sion are in Sec. V.

III. THE INVERSE LATTICE PROBLEMS

The total energy of a Fe3Al system containing N atoms
includes three partial energies

FIG. 1. The unit cell of Fe3Al ~Ref. 9!.
io

h
s

-
d-
s

s-

U tot
Fe3Al

~x!5UAl-Al
Fe3Al

~x!1UFe-Fe
Fe3Al

~x!1UFe-Al
Fe3Al

~x!, ~1!

wherex is the lattice constant of Fe3Al. The first term in the
right-hand side corresponds to the interactions among Al
oms, the second one corresponds to the iron-iron interati
and the last represents the contribution from the Fe-Al in
actions.

A. Expression of inverse lattice problems

Now let us write down the expressions forUAl-Al
Fe3Al(x),

UFe-Fe
Fe3Al(x), and UFe-Al

Fe3Al(x) in terms of pairwise potentials

UAl-Al
Fe3Al(x) is composed of the interatomic interactions b

tween the Al atoms in the Al sublattice in Fe3Al, that is

UAl-Al
Fe3Al

~x!5
N

4

1

2 (
~m,n,l !5” ~0,0,0!

FAl-Al ~Am21n21 l 2x!

1
N

4

3

2 (
m,n,l

FAl-Al

3@A~m21/2!21~n21/2!21 l 2x#, ~2!

andUFe-Fe
Fe3Al(x) is composed of the interatomic potentials b

tween the Fe atoms, including FeI and FeII. This can be
expressed as
UFe-Fe
Fe3Al

~x!5
N

4

1

2 (
~m,n,l !5” ~0,0,0!

FFe-Fe~Am21n21 l 2x!1
N

4

3

2 (
m,n,l

FFe-Fe@A~m21/2!21~n21/2!21 l 2x#

1
N

2

1

2 (
~m,n,l !5” ~0,0,0!

FFe-FeSAm21n21 l 2
x

2D1
N

4 (
m,n,l

FFe-FeSA~m21/2!21~n21/2!21~ l 21/2!2
x

2D . ~3!

The last partial energy is composed of the interactions between the Al atoms and the Fe atoms, that is,

UFe-Al
Fe3Al

~x!5
N

4 (
m,n,l

FFe-AlSA~m21/2!21~n21/2!21~ l 21/2!2
x

2D1
N

4 (
m,n,l

FFe-Al@A~m21/2!21~n21/2!21~ l 21/2!2x#

1
3N

4 (
m,n,l

fFe-Al@Am21n21~ l 21/2!2x#. ~4!
is
itu-
der
-

The cohesive energy can be obtained by eitherab initio cal-
culation or experimental data combined with the applicat
of universal Rose equation.13 In the next step, in order to
determine the pairwise potentialsFAl-Al (x),FFe-Fe(x), and
FFe-Al(x) based on the cohesive energy or the partial co
sive energy, we need to solve the inverse lattice problem
n

e-
.

B. Carlsson-Gelatt-Ehrenreich technique„Ref. 16…

For most applications the pair potential approximation
considered to have spherical symmetry. And in various s
ations either the Lennard-Jones form is used for Van
Waals solids,14 or the different modified Morse-type poten
tials are used for metals15 extensively. The simplicity of pair
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57 14 205ATOMISTIC ANALYSIS OF THE FIELD-ION . . .
potentials has made it possible to study the mechanical
defect properties of metals, on the other hand, to study
phase diagram of binary alloys, and the para- to antife
magnetic transition problem. Most previous works only tre
the nearest-neighbor interactions. Carlssonet al.16 usedab
initio band-structure calculation to obtain a pair poten
with long-range interactions.

Band-structure calculation can produce the total ene
Etot(r ), as a function of lattice constantr . In general, the
cohesive energyE(r )5Etot(r )2Etot(`) for each atom in a
three-dimensional crystal lattice can be expressed as a
of interatomic pair potentialsF(x) such that

E~r !5
1

2 (
R5” 0

F~R!, ~5!

where r is the lattice constant,R is the lattice vector. For
concrete deduction, let us assume that each term at a
value ofSpr occurs with a given weightWp in the sum~5!.
These pairs of values$Sp ,Wp% are specific to a given lattice
structure, and can be easily generalized for different latti
by computer. Thus we may rewrite Eq.~5! as

E~r !5 (
p51

`

WpF~Spr !. ~6!

In fact, denoting thatE(x)5U(x)/N, all the Eqs.~2!–~4!
will take the same form as Eq.~6!. Now define an operatorR
such that

E~r !5RF~r !5F (
p51

`

RpGF~r !, ~7!

where the operatorRp is defined by

Rpf ~r !5Wpf ~Spr !, ~8!

in which f (r ) is an arbitrary function. The formal inversio
is then

F~r !5R21E~r !. ~9!

Carlssonet al. defineR21 as

R215S 11R1
21(

p52

`

RpD 21

R1
21 , ~10!

so that it is given as

F~r !5S 1

W1
DES r

S1
D2 (

p52

` S Wp

W1
2D ES Spr

S1
2 D

1 (
p52

`

(
q52

` S WpWq

W1
3 D ES SpSqr

S1
3 D 2•••. ~11!

The right-hand side of Eq.~11! consists of infinite sums
each of them has infinite terms. The convergence of
series is slow, and is analyzeed with difficulty. Thus we sh
illustrate an alternative method based on a generalized¨-
bius transform as follows.
nd
e
-
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C. Generalized Chen-Möbius inversion formula „Ref. 12…

For convenience, we replace the lattice constantr by the
nearest-neighbor distancex, correspondingly, $Sp% by
$b0(n)%, and$Wp% by $r 0(n)%, such that

E~x!5
1

2(
n51

`

r 0~n!F„b0~n!x…, ~12!

whereb0(n) in a monotonically increasing series represe
the distance between the origin on which the reference a
is located and thenth set of lattice points,r 0(n) is the num-
ber of thenth set of lattice points. For example,b0(1)51
corresponds to the nearest-neighbor distance. The invers
tice problem is to determineF(x) from the fitting curve of
E(x), which can be obtained from theab initio calculation.
The trick here is to extend the series$b0(n)% to $b(n)% to
achieve multiplicative closedness. Thus, for anym and n,
there existk such that

b~k!5b~m!b~n!. ~13!

In other words,$b0(n)% can always be replaced by a mult
plicative semigroup$b(n)%. Therefore, Eq.~12! is equivalent
to the following:

E~x!5
1

2(
n51

`

r ~n!F„b~n!x…, ~14!

in which

r ~n!5H r 0~b0
21@b~n!# !, if b~n!P$b0~n!%,

0, if b~n!¹$b0~n!%.
~15!

The lattice point shell is called virtual whenr (n)50.
Then the solution to Eq.~14! is given by

F~x!52(
n51

`

I ~n!E„b~n!x…, ~16!

in which the inversion coefficient or the generalized Mo¨bius
function I (n) is given by

(
b~n!ub~k!

I ~n!r S b21Fb~k!

b~n!G D5dk1 . ~17!

This indicates thatI (n) and r (n) are the modified Dirichlet
inverse of each other, which is a generalization of comm
Dirichlet inverse in number theory. The following prove
that Eq. ~16! is the solution to Eq.~14!, as well as to Eq.
~12!:

2(
n51

`

I ~n!E„b~n!x…

5 (
k51

` H (
b~n!ub~k!

I ~n!r S b21Fb~k!

b~n!G D J F„b~k!x…

5 (
k51

`

dk1F„b~k!x…5F~b~1!x!5F~x!.

In the case of@b(n)#2 not being integers, the least commo
multiple of all the denominators can be used in the recurs
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procedure. The solution~16! with Eq. ~17! can be applied to
any lattice structure of interest in condensed-matter phy
or statistical physics. Several examples relevent to this w
are provided as follows.

From a mathematical point of view, the general expr
sion r 0(n) of the number of the crystallographic lattic
points on a spherical surface is unsolved, but this can
obtained regirously by a very simple computer program up
the shell as large as required. After this step, a general
Dirichlet inverse can be introduced. And it is shown th
once the technique in number theory is applied, the prob
can be solved in an unexpectedly concise manner.

D. Inversion formula for a fcc structure „Ref. 12…

The inverse problem can be expressed as

E~x!5
1

2 (
$ i , j ,k%5” 0

F@A2~ i 21 j 21k2!x#

1
3

2(
i , j ,k

FHA2F S i 2
1

2D 2

1S j 2
1

2D 2

1k2GxJ
5 (

n51

`

r ~n!F„b0~n!x…. ~18!

The corresponding solution is

F~x!5
1

12
E~x!2

1

24
E~A2x!2

1

6
E~A3x!2

1

16
E~2x!

2
1

6
E~A5x!1•••. ~19!

In the present work, we use this fcc lattice inversion form
to obtain the pairwise potentialFAl-Al (x) based on the cohe
sive energy curve for the fcc metal Al.

E. Inversion formula for a bcc structure „Ref. 12…

For obtaining the pair potentialFFe -Fe(x) from the cohe-
sive energy curve for iron with bcc structure, we need
solve the equation of the inversion problem of a bcc latti
which can be expressed as

E~x!5
1

2(
n51

`

F„b~n!x…

5
1

2 (
~ l ,m,n!5” ~0,0,0!

FFSA4

3
$ i 21 j 21k2%xD

1FSA4

3H S i 2
1

2D 2

1S j 2
1

2D 2

1S k2
1

2D 2J xD G .
~20!

The corresponding solution is given as follows:

F~x!5
1

4
E~x!2

3

16
ESA4

3
xD 1

9

64
ES 4

3
xD

2
27

256
ESA64

27
xD 1•••. ~21!
cs
rk

-

e
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F. Inversion formula for a DO 3 structure

The inverse lattice problem for a DO3 structure or the
relation between the total energy and partial energies ca
expressed as

EAl-Fe~x!5
1

N
@U total

Fe3Al
~x!2UAl-Al

Fe3Al
~x!2UFe-Fe

Fe3Al
~x!#. ~22!

The relation between the partially cohesive energyEAl-Fe(x)
and pairwise potentialFAl-Fe(x) is

EAl-Fe~x!58FAl-Fe~x!16FAl-FeSA4

3
xD

124FAl-FeSA11

3
xD 18FAl-FeSA19

3
xD

124FAl-FeSA20

3
xD 124FAl-Fe~3x!1•••.

~23!

The corresponding solution is given as

FAl-Fe~x!5
1

8
EAl-Fe~x!2

3

32
EAl-FeSA4

3
xD

1
9

128
EAl-FeS 4

3
xD2

27

512
EAl-FeS 8

3A3
xD

1
81

2048
EAl-FeS 16

9
xD •••. ~24!

IV. CALCULATION AND EXPLANATION
OF FIM IMAGE OF Fe 3Al

A. Energy analysis

Let us consider a system of Fe3Al, which consists of N
atoms. The total energy of this system can be expresse
the sum of three parts:

U tot
Fe3Al

5UFe-Fe1UAl-Al 1UAl-Fe .

Step 1: To evaluateUFe-Fe
Fe3Al(x) based onFFe-Fe(x). The

latter can be converted fromEcoh
bcc Fe(x) in terms of the unified

lattice inversion formula for a body-centered cubic structu
Step 2: To evaluateUAl-Al

Fe3Al(x) based onFAl-Al (x). The
latter can be converted fromEcoh

fcc Al(x) in terms of the unified
lattice inversion formula for a face-centered-cubic structu

Step 3: To evaluateUAl-Fe from UFe3Al
tot (x)2UFe-Fe(x)

2UAl -Al ;
Step 4: To convertUAl-Fe into FAl-Fe based on the unified

lattice inversion formula for a shifted simple cubic structu
Step 5: To evaluate the cohesive energiesEAl

sur andEFe
sur of

surface atoms for surfaces with different indices.

B. The cohesive energy curves of Al, Fe, and Fe3 Al

A few parameters are needed to establish the cohe
energy curves based on Rose’s universal equation of stat
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TABLE II. The ab initio calculated parameters for related metals.

Sublimation Lattice constant Bulk modulus
Metal Structure energy~eV! a0 ~A! (1012 dyn/cm2)

Al fcc 3.39 ~exp! 4.05 ~exp! 0.722~exp!
Fe bcc 4.87~exp! 2.87 ~exp! 1.683~exp!
Fe3Al DO3 4.40(cal)

4.22(exp)
5.57(cal)

5.792(exp)
2.29 ~exp!
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E0~a8!5E0~11a8!e2a8, ~25!

where a85b(x2x0), E0 is the sublimation energy,x0 is
the equilibrium nearest-neighbor distance, andb
5(9BV0 /x0

2E0)1/2, in which B is the bulk modulus andV0

is the equibrium atomic volume. Therefore, for each co
sive energy curve three parametersx0 , E0, and B are re-
quired. For most pure metals, the experimental data can
found easily, which are taken for the present work. For
ordered alloys, part of experimental data are hardly obtain
which will be calculated fromab initio linear-argumented
plane-wave calculation. For example, the bulk modulus
Fe3Al is difficult to measure due to its brittleness, thus t
calculated data is taken. These equilibrium parameters
listed in Table II.

C. The interatomic potentials FAl-Al , FFe-Fe, and FFe-Al

Now the lattice inversion formulas are used in order
obtain the interatomic potentialsFAl-Al ,FFe-Fe, andFFe-Al ,
the results are shown in Figs. 2 and 3.

D. The calculation of evaporating energies

Based on the interatomic potentialsFAl-Al , FFe-Fe, and
FFe-Al , we can evaluate the binding energies or evapora
energies of various surface atoms of Fe3Al ~see Table III!.
The calculated evaporating energies are listed in eV. O
surfaces with indices~100!, ~110! or ~111! have two or three
kinds of Fe atoms. For different surfaces the invisible ato

FIG. 2. The binding-energy curves for fcc Al, bcc Fe, and DO3

Fe3Al based onab initio calculation and Rose formula.
-

be
e
d,

f

re

g
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s

are different. For instance, FeI and FeII are invisible on sur-
faces~100! and ~111!, and FeI on surface~110!. Therefore,
FeI atoms are always invisible and FeII are sometimes invis-
ible. The condition is that the applied voltage arrives a
certain value such that evaporation occurs, and the FIM
ages are attributed to the remaining atoms. The probabil
for competitive evaporation of different kinds of surface a
oms can be evaluated by the Boltzmann distribution, wh
is temperature dependent. The smaller the probability
evaporation, the longer the duration of the stationary F
image obtained in experiment. Note that there are two ki
of surfaces that consist of the FeI atoms with indentical in-
dex ~111! as shown in Fig. 4. This is why the binding energ
of surface atoms FeI takes two values as in Table III.

V. CONCLUSION AND DISCUSSION

As long as selective evaporation dominates, the exp
mental results agree well with the atomistic simulation of t
FIM image formation based on the approximately univer
Rose cohesive energy curve withab initio calculated or ex-
perimental parameters and the universal lattice invers
method within the pair-potential approximation. In fact, t
present method has been proven to work well not only
Fe3Al,9,10 but also for Ni4Mo, PtCo, PtCo3, Ni 3Fe, and
Ni 3Al. According to the conventional selective evaporati
rule, we will obtain the wrong conclusion for most of the
ordered alloys.17

According to convention, both selective ionization~elec-

FIG. 3. The pair potentialsFAl-Al , FFe-Fe, andFAl-Fe converted
from binding-energy curvesEAl-Al , EFe-Fe, andEAl-Fe .
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tronic charge transfer! and selective evaporation are possib
methods to explain the selective invisibility for differe
kinds of atoms in the stable FIM images of a binary orde
alloy. When the applied voltage is not high enough to ca
selective evaporation, the electron transfer between diffe
kinds of atoms will dominate the FIM images. Wenget al.9

compare the work function values of component atoms
Fe3Al in its pure metallic state. In fact, the work function
a characteristic of metal such as iron or aluminum, not t
for atoms. In our case, the experiment was done in the c
dition that the applied voltage was high eneough to ca
selective evaporation at first, then we decreased the vol
for a stable FIM image. If we use the conventional rule
selective evaporation, the Al atoms would evaporate ea
and it would be invisible, and this is contrary to experime
~see Table I!.

From a theoretical point of view, the many-body effe
should be considered for a general situation. Also, the
face relaxation might be important. These will be for furth
study.

Finally we like to discuss the uncertainties in the appro
mations we used. First, the pair potential model is only
popular and very simple approximation of interatomic a
proximation, especially for the surrface atoms. Second, e
the inversion procedure is suitable for any kind of cohes
energy curves, the curve can be obtained in different wa

~a! direct ab initio calculation,
~b! Rose approximation based onab initio calculated

E0 ,a0, and B,

TABLE III. Binding energy of various surface atoms of Fe3Al.

Binding energy~eV! ~100! ~110! ~111!

FeI 5.319 5.381 4.317/4.648
FeII 5.322 5.618 4.595
Al 5.822 5.723 5.145
, J
d
e
nt

f

t
n-
e
ge
f
ly
t

t
r-
r

-
a
-
n

e
:

~c! Morse approximation based onab initio calculated
E0 ,a0, and B,

~d! Rose approximation based on experimentalE0 ,a0,
and B,

~e! Morse approximation based on experimentalE0 ,a0,
and B,

~f! others.
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FIG. 4. When~111! surface is occupied by FeI atoms, there are
two different cases: the next layer consists of~1! only Al atoms,~2!
only FeII atoms.
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