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Abstract

The structure of intermetallics Sm(Fe,T)12 is analyzed via a quasi-ab initio pair potentials FFe2FeðrÞ, FSm2FeðrÞ,
FSm2SmðrÞ, FSm2TðrÞ, FFe2TðrÞ and FT2TðrÞ. The calculation results show that each of Cr, V, Mo and Ti significantly

decreases the cohesive energy of Sm(Fe,T)12, and thus stabilizes its structure of ThMn12. The calculated lattice
constants coincide quite well with experimental values. The sequence of site preference occupation is 8i, 8j and 8f, with
the 8i occupation corresponding to the greatest energy decrease. The calculated results also show that each of Co, Cu,

Ni and Sc does not stabilize the system with the structure of ThMn12. The calculated crystal structure can recover after
either an overall wide-range macro-deformation or atomic random motion, demonstrating that an Sm–Fe–T system has
the stable structure of ThMn12. The crystal space group remaining consistent at different temperatures is also shown in

this paper. All of the results verify that the first principle potentials based on the lattice inversion technique are effective.
r 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1981, Yang and his colleagues found that the
structure of intermetallics Y(Mn1@xFex)12 is of
ThMn12 [1]. In 1987, Mooij found that the
structure of the iron-based compound RFe10V2 is
also of ThMn12. Since then, many compounds
with the same structure have been found [2,3].
These compounds have high Curie temperatures
and high magnetic moments, valuable for practical
applications. Actually, the binary compound

RFe12 is metastable, but as a small amount of
ternary element T (T=Cr, Mo, V, Ti) is added,
Sm(Fe,T)12 is stable. The crystal cell of RFe12 is
shown in Fig. 1. Its space group is I4/mmm, with
two formula units (26 atoms) included. There are
four crystal sites: 2a, 8i, 8j and 8f. The rare-earth
atoms occupy the 2a site and the Fe atoms occupy
8i, 8j and 8f sites. According to the neutron
diffraction, most stabilizing element T (such as V
and Ti) atoms preferentially substitute Fe atoms
[4–8].
In this paper, the interatomic pair potentials

obtained by lattice inversion are used to analyze
the phase stability and site preference substitution
of Sm(Fe,T)12, where T is either a 3d or 4d

*Corresponding author. Tel.: +86-10-623-23577; fax: +86-

10-623-27283.

E-mail address: nanxian@hotmail.com (C. Nan-xian).

0304-8853/01/$ - see front matter r 2001 Elsevier Science B.V. All rights reserved.

PII: S 0 3 0 4 - 8 8 5 3 ( 0 1 ) 0 0 2 5 1 - 7



element. The calculated total energy is used as
the criterion for studying the stability and site
preference occupation. For the 3d elements,
the calculation results coincide quite well with
the experimental data. For the 4d elements, the
calculation results are considered as a prediction of
the stability and site preference occupation. In the
second part of this paper the calculation algorithm
is described. The comparison of the calculated
results with the experimental data is shown in
Section 3. A concise qualitative analysis for the
calculated results is demonstrated in the fourth
part, and the fifth part is the conclusion and
discussion.

2. Calculation algorithm

In general, any interatomic pair potential can be
obtained by a strict lattice inversion of cohesive
energy curves, and the cohesive energy curves can
be obtained either by a first principle calculation
or experimental data fitting. In this part, we focus
on the lattice inversion theorem.

2.1. Lattice inversion theorem

Here we take a single element crystal, for
example, to explain how to use Chen’s lattice
inversion theorem to obtain the interatomic pair
potential from a first principle cohesive energy
curve [9–14].
Suppose that the crystal cohesive energy ob-

tained by the first principle calculation can be
expressed as

E xð Þ ¼
1

2

XN
n¼1

r0 nð ÞF b0 nð Þxð Þ; ð1Þ

where x is the nearest-neighbor distance, r0ðnÞ is
the nth neighbor coordination number, b0ðnÞx is
the distance between the reference central atom
and its nth neighbor, and FðxÞ is the pair potential.
By a self-multiplicative process from fb0ðnÞg, the
fbðnÞg is formed, a multiplicative closed semi-
group. This implies that a lot of virtual lattice
points are involved, but the corresponding virtual
coordination number is zero. In the fbðnÞg, for any
two integers m and n, there is a sole integer k such
that bðkÞ ¼ bðmÞbðnÞ. Hence, Eq. (1) can be re-
written as

E xð Þ ¼
1

2

XN
n¼1

r nð ÞF b nð Þxð Þ; ð2Þ

where

r nð Þ ¼
r0 b

@1
0 b nð Þ½ �

� �
if b nð ÞA b0 nð Þf g;

0 if b nð Þe b0 nð Þf g:

(
ð3Þ

Then the general equation for the interatomic pair
potential obtained from the inversion can be
expressed as

F xð Þ ¼ 2
XN
n¼1

I nð ÞE b nð Þxð Þ; ð4Þ

where IðnÞ has the characteristics ofX
b dð Þ1b nð Þ

IðdÞr b@1 b nð Þ
b dð Þ

� �� �
¼ dn1: ð5Þ

IðnÞ is uniquely determined by a crystal geome-
trical structure, not related to the concrete element
category. Thus, the interatomic pair potentials can
be obtained from the known cohesive energy
function EðxÞ.

Fig. 1. The crystal cell of SmFe12 with two formula units.
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The interatomic pair potential between distinct
atoms can be obtained similarly by the same
inversion method, and they are used to study the
rare-earth intermetallics structures. Several rele-
vant interatomic pair potentials are shown in
Fig. 2.

2.2. Method for obtaining quasi-ab initio cohesive
energy curve

In the present work, the phase stability, site
preference, lattice parameter and space group for a
series Fe-based rare-earth compounds Sm(Fe,T)12
are evaluated by using quasi-ab initio interatomic
pair potentials.
With a conventional method, the ab initio

calculation of the cohesive energy curves for
Sm(Fe,T)12 is impossible or very difficult. The
reason is not only due to the structural complexity
of ternary alloys SmFe12@xTx, but also due to the
divergence occurring in the total energy calcula-
tion. In order to find some effective interatomic
potentials with the number-theoretic lattice inver-
sion technique, a practical method of performing
the ab initio calculation of cohesion curve is
needed. For this, the search and design of some
simple and virtual structures covering the neces-
sary interatomic potentials are important for us.
For example, in order to obtain potentials
FFe2FeðxÞ, FSm2SmðxÞ and FSm2FeðxÞ, we designed
three structures, respectively, as follows.
First, let us consider the structure of BCC Fe as

B2 or CsCl structure with two simple cubic sub-
lattices Fe1 and Fe2. Thus, we calculate

E xð Þ ¼ EBCC
Fe xð Þ@ESC

Fe1
xð Þ@ESC

Fe2
xð Þ

¼
XN
i;j;ka0

FFe2Fe

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3 i@1

2

� �2þ j@1
2

� �2þ k@1
2

� �2h ir
x

� �
;

where x is the nearest-neighbor distance in the
BCC structure, EFeðxÞ represents the total energy
curve with a BCC structure, EFe1ðxÞ or EFe2ðxÞ is
the total energy function with a simple cubic
structure. Now, EðxÞ automatically becomes the
cohesive energy function of one Fe1 atom with all

the Fe2 atoms. Here, the Fe2 atoms form a simple
cubic structure, and only one Fe1 atom is located
at the center of any one cube. Then the FFe2FeðxÞ
can be obtained directly by using Chen’s lattice
inversion technique.
Similarly let us consider the Sm with FCC

structure as L12 structure, it is given

E xð Þ ¼ EFCC
Sm xð Þ@ESC

Sm xð Þ@E0
Sm xð Þ;

where ESC
Sm xð Þ is attributed to the simple cubic

structure, in which all the atoms occupy the corner
sites and E0

Sm xð Þ is attributed to the atoms occupy-
ing the face center sites. Thus, the FSm2FeðxÞ can
also be obtained by Chen’s lattice inversion
technique.
The ab initio calculation of the total energy

curve related to FSm2FeðxÞ is very hard to perform.
We find that the calculation for Sm3Fe with L12
structure can be done in a nearly equilibrium
position, and this gives simply the three para-
meters for the cohesion function under Morse
approximation or Rose approximation.
From the above, all the quasi-ab initio intera-

tomic potentials are given and shown in Fig. 2.
Note that again in the above procedure, the total
energy has been reduced to the cohesive energy.
By using these quasi-ab initio interatomic

potentials from some simple virtual structures,
the cohesive energy for much complex structures
can be obtained directly even though some foreign
additions are involved.
By using the above quasi-ab initio interatomic

potentials, a large number of calculations for
phase stability, site preference, lattice parameters
and tolerance range have been performed with
unexpectedly good agreement with the experiment
for these structural properties.
This indicates that the pair potentials based on

some simple ab initio calculation and lattice
inverse formula can evaluate some structural
properties for quite complex Fe-based rare-earth
intermetallics.

3. Calculation results

In this paper, we take 14 (A as the cut-off radius.
Energy minimization is carried out using a
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Fig. 2. Some important interatomic potentials.
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conjugate gradient method. In order to reduce
statistical fluctuation, we take the periodical cell
containing 208 atoms, (RFe12@xTx)16, for simula-
tion.

3.1. Calculation of structural parameters

3.1.1. SmFe12 binary metastable structure
Despite the structure of SmFe12 being meta-

stable, it can be considered as the eigen-structure
of Sm(Fe,T)12. In the calculation procedure, the
initial lattice constants of SmFe12 are randomly
chosen in a certain range. Under the control of the
interatomic pair potentials, the energy minimiza-
tion is carried out. The results show that in the
range of 0.001–0.5 (A, the space group maintains
I4/mmm, the atomic site occupation is similar
to that of ThMn12, and the lattice constants
after stabilization are a ¼ 8:465 (A, c ¼ 4:809 (A,
a ¼ b ¼ g ¼901 (Table 1). A certain range ran-
domness of the initial structure and the stability of
the final structure illustrate that the SmFe12 has a
topological invariability with respect to the stably
existing Sm(Fe,T)12. It also furnishes convincing
evidence that the interatomic pair potentials are
reliable for the study of material structural
characteristics.

3.1.2. Ternary system Sm(Fe,T)12
Substitute the atoms of ternary element T

(T=Cr, Mo, Ti, and V) for the randomly chosen
Fe atoms at a certain lattice site, and then make

the lattice relaxation. From the dependence of the
lattice constant on the additional content of the
ternary element (Fig. 3), one can see that the
changes of lattice constant are relatively small if
the T atoms occupy 8i sites, and the changes of
lattice constant are relatively big if the T atoms
occupy 8j and 8f sites. It is noteworthy that we
neglect in the calculation the coexistence of two
phases. The calculated lattice constants are com-
pared with the experimental values, as shown in
Table 2.

3.2. Phase stability and site preference substitution

3.2.1. The phase stability of Sm(Fe,T)12
The substitution of T atoms for Fe atoms causes

a cohesive energy change, and different contents of
T cause different amounts of cohesive energy
change. The relation between the crystal cohesive
energy and the added ternary element content are
shown in Fig. 4. It can be seen that if T is Cr, Mo,
Ti or V, the cohesive energy decreases, illustrating
that each of these elements can stabilize the crystal
and that the stabilized phases exist. (The total
energies of the intermetallics shown in the figure
are the statistical average of 20 samples, the
symbol ‘I’ indicates the range of mean square root
error.) The total energy decline of the intermetal-
lics containing Mo is more evident than that of the
intermetallics containing Ti. This means that the
solubility of Mo is higher, in agreement with
experiments [4,5]. Additionally, the substitution

Table 1

Crystal constants of SmFe12

Initial state Final state

a ( (A) b ( (A) c ( (A) a b g a ( (A) b ( (A) c ( (A) a b g

2 2 2 901 901 901 8.464 8.464 4.81 901 901 901

2 2.5 3 951 851 901 8.465 8.465 4.809 901 901 901

12 12 12 901 901 901 8.465 8.465 4.809 901 901 901

8 8 5 601 601 601 8.465 8.465 4.809 901 901 901

16 16 10 901 901 901 8.465 8.465 4.809 901 901 901

2 2 2 801 801 801 8.465 8.465 4.809 901 901 901

10 10 10 881 881 881 8.465 8.465 4.809 901 901 901

2 2 2 501 501 501 4.810 8.465 8.465 90.011 901 901

20 20 10 701 801 601 9.736 9.736 4.810 60.41 60.391 75.871
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behaviors of other 3d and 4d elements are also
studied. For example, if T=Ni, Cu, Co, Sc or Zn,
the cohesive energy of Sm(Fe,T)12 increases, it
means that these elements cannot stabilize the
SmFe12 system with the structure of ThMn12.

3.2.2. Site preference substitution
It is shown in Fig. 4 that the calculated cohesive

energy decreases most significantly while T atoms

preferentially occupy 8i sites, the energy decreases
less significantly if T atoms occupy 8j sites, and
even less corresponding to 8f sites. Therefore, the
T atoms preferentially occupy 8i sites, in good
agreement with experiments [4–8]. Some of the
experiments assert that Ti atoms occupy not only
8i but also 8j sites. But from the calculation results,
we find that the cohesive energy difference is not
negligible comparing the cases of Ti atoms

Fig. 3. Dependence of the lattice constant on the content of ternary additions.

Table 2

Comparison of calculated and experimental lattice constants

Calcul. a ( (A) Exp. a ( (A) Calcul. c ( (A) Exp. c ( (A)

SmFe12 8.465 F 4.809 F
SmFe10Cr2 8.504 8.496 4.821 4.7599 [4]

SmFe10V2 8.6 8.5368 4.838 4.7722 [4]

SmFe11Ti 8.658 8.576 4.872 4.800 [15]

SmFe10Mo2 8.647 8.59 4.866 4.804 [6]
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occupying 8i sites and occupying 8j sites. The
statement that Ti atoms occupy 8i and 8j sites
simultaneously could not be explained.
When T=Mn, the energy changes with

increasing content x, forming a convex curve.
That means as the content is small, the energy
increases with the increasing content, but as the
content is big enough, the total energy decreases
significantly with the increasing content, illustrat-
ing that as the content x increases SmFe12@xMnx
becomes more stable and accordingly there should
be a stable SmMn12. In other words, the structure
of RMn12 is more stable than that of RFe12
(Fig. 5).

3.3. The relationship between the tolerance and
the Sm(Fe,V)12 structure

3.3.1. The stability of Sm(Fe,V)12 structure with
respect to the atomic random motion
Let T=V and substitute the V atoms for a

randomly selected part of Fe atoms at the 8i sites,
thus forming the (SmFe10V2)16. Then make use of
the conjugate gradient method to minimize the
system energy, as an approximation of a practical
relaxation process. The results show that the space
group is I4/mmm within the range of 0.15–1.00 (A.
If the atoms in the (SmFe10V2)16 crystal cell

move randomly in a certain range, then using the

Fig. 4. Site preference of T=Cr, V, Mo and Ti, in SmFe12 and phase stability.
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conjugate gradient for relaxation, the result shows
that the lattice constants are in good agreement
with the experimental data, still retaing
a ¼ 8:465 (A, b ¼ 8:465 (A, c ¼ 4:809 (A, a ¼
b ¼ g ¼ 901. If the atomic random motion is
within the range of 0.6 (A, the space group can
stay in I4/mmm with the tolerance properly
increased. If the atomic motion exceeds that range,
the space symmetry of the system will drop (Table
3). Thus, the stability of the lattice and the
effectiveness of the interatomic pair potentials are
verified by the overall wide-range macro-deforma-
tion and the atomic random micro-motion.
The structure of Sm(Fe,V)12 can recover after

either overall wide-range macro-deformation or
atomic random micro-motion, demonstrating that
the structure is stable. Yet the calculated results
show that the allowable macro-structural alterna-
tion is greater than the allowable micro-structural
alternation. This is because the former is con-
ducted only in a few dimensions in the phase space
and the latter in numerous dimensions.
It is worth noting that Table 3 is the statistical

results of a few samples.

3.3.2. The structural stability of Sm(Fe,V)12 at
different temperatures
The relation between the tolerance and the space

group is further studied at higher temperatures.
The molecular dynamics NPT ensemble is used,
with P ¼ 1 atm, t ¼ 0:001 ps. The dynamic simula-
tion for (SmFe10V2)16 is carried out at tempera-
tures of 300, 500, 700, 900 and 1200K. After
reaching equilibrium, the symmetry can also
remain I4/mmm in a certain range, and the lattice
constants change very little with respect to the
change in temperature. Thus, the structural
stability is again verified. The minimum value of
the tolerance for retaining the space group
I4/mmm is 0.152 (A. This is the average value of
4 random samples at 300K. The corresponding
mean square root displacement is 0.1414 (A,
approximately equal to the tolerance value. The
other temperatures calculated results (Table 4)
show that each minimum tolerance value all
approximately equals to the corresponding mean
square root displacement (MSRD). These results
further verify that the above calculations are self-
consistent and reasonable. The comparisons of

Fig. 5. The cohesive energy curve of SmFe12@xMnx.
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potential energy, kinetic energy and the fluctuation
at different temperatures are shown in Table 5.
It can be seen that the potential energy, kinetic

energy and total energy as well as the fluctuations
all increase with the increasing temperature, yet
the fluctuations are small compared to the
absolute potential energy values; therefore, the
crystal structure at different temperatures is
basically determined by the interatomic pair
potentials, rarely related to the temperature.

4. Analysis

4.1. Phase stability

The following is the analysis from the point of
view of interatomic pair potential. When a small
amount of ternary element atoms substitute the Fe
atoms, the ternary element atom is surrounded
mostly by Fe atoms, and none of the nearest
neighbor of Sm are Sm atoms, and none of the
nearest neighbors of T are T atoms. Thereby, the
pair potentials of FSm2SmðrÞ and FT2TðrÞ have
little influence on the substitution behavior and the
structural stability. The energy difference caused
by the substitution is mainly determined by the
difference between FFe2TðrÞ and FFe2FeðrÞ. If
FFe2TðrÞoFFe2FeðrÞ, the T element can stabilize
the structure. On the contrary, if
FFe2TðrÞ > FFe2FeðrÞ, then the T element cannot
stabilize the structure. Therefore, V, Ti, Cr, Mo,

Table 3

After the atomic random motion, the relation between the

tolerance and the space group of Sm(Fe,V)12

Range of motion Tolerance range Space group

0.1 (A (0.001–0.124) P1

(0.125–0.135) P4/mmm

(0.136–0.5) I4/mmm

0.2 (A (0.001–0.12) P1

0.13 P4/mmm

(0.14–0.5) I4/mmm

0.3 (A (0.001–0.12) P1

0.13 Cmmm

(0.14–0.5) I4/mmm

0.4 (A (0.001–0.11) P1

(0.111–0.118) Pm

(0.119–0.125) P2/m

(0.14–0.142) C2/m

(0.143–0.5) I4/mmm

0.5 (A (0.001–0.138) P1

0.139 Cmmm

(0.14–0.142) P2/m

(0.143–0.5) I4/mmm

0.6 (A (0.001–0.124) P1

0.125 Pma2

(0.127–0.128) P2/m

(0.129–0.131) P222

(0.132–0.161) Pmmm

(0.162–0.164) P21/m

(0.165–0.5) I4/mmm

0.61 (A (0.001–0.5) P1

Table 4

The relationship between tolerance and the space group of Sm(Fe,V)12 and MSD at difference temperature

T (K) Crystal constants Tolerance range ( (A) Space group MSD ( (A2/atom) MSRD ( (A/atom)

300 8.465 (A 8.464 (A 4.81 (A (0.16–0.5) I4/mmm 0.02 0.1414

89.991 89.991 901

500 8.466 (A 8.465 (A 4.809 (A (0.2–0.5) I4/mmm 0.03 0.1732

901 901 89.991

700 8.466 (A 8.465 (A 4.81 (A (0.225–0.5) I4/mmm 0.04 0.2

89.991 89.991 901

900 8.465 (A 8.463 (A 4.809 (A (0.273–0.5) I4/mmm 0.06 0.245

89.991 901 90.011

1200 8.463 (A 8.465 (A 4.81 (A (0.326–0.5) I4/mmm 0.07 0.265

89.991 89.991 901
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Zr and Nb play the role of stabilization, but Ni,
Co, Zn and Sc do not play the role of stabilization.
When the amount of the ternary element

increases, the possibility of the T atoms
getting close to T atoms or rare-earth atoms
increases. Then the comparison between
FSm2FeðrÞ@FSm2TðrÞ½ � and FFe2FeðrÞ@FT2TðrÞ½ �
has to be made. We found from Fig. 2 that when
T=Cr, V or Ti, FFe2FeðrÞ and FT2TðrÞ are
equivalent in the sense of decreasing the total
energy, but FSm2FeðrÞoFSm2TðrÞ. That means a
big amount of the ternary element substitution will
cause the total energy to increase, and thereby
cause a structural instability. Hence, the solubility
of the ternary element is limited.
When T=Mn, although FSm2FeðrÞoFSm2TðrÞ,

but in the range of 2.3 (Aoro5.5 (A, not only
FMn2FeðrÞoFFe2FeðrÞ but the FMn2MnðrÞo½
FFe2FeðrÞ� is more significant. Thus, FSm2FeðrÞo½
FSm2TðrÞ� no longer plays the deciding role.
That means even if there are a lot of Mn atoms,
the total energy after the substitution is still lower
than that before the substitution. Thus, for
(SmFe12@xMnx)16 the convex shape of the energy
vs. ternary element content curve in Fig. 5 can be
explained. Compared to SmFe12, the structure of is
are much more stable.
The above analysis explains why some element

can stabilize the binary structure and some do not
have such kind of function. Yet in the prac-
tical calculation, the results are determined by
the relaxation while all of the interatomic
pair potentials FFe2FeðrÞ, FSm2FeðrÞ, FSm2SmðrÞ,
FSm2TðrÞ,FFe2TðrÞ, FT2TðrÞ are considered simul-
taneously.

4.2. Site preference substitution

The substitution behavior of the stabilizing
atoms can also be explained by the analysis and
comparison of interatomic pair potentials. Focus-
ing on the range of 2.3 (Aoro4.4 (A, note that
FFe2TðrÞ, (T=Cr, Ti, V, and Mo) intercepts with
FFe2FeðrÞ at about r ¼ 2:7 (A. When the intera-
tomic distance ro2:7 (A, FFe2TðrÞ > FFe2FeðrÞ, so
that it is unfavorable for the substitution of T
atoms for the Fe atoms, and when the distance
r > 2:7 (A, FFe2TðrÞoFFe2FeðrÞ, it is favorable for
the substitution.
In the range of 2.3 (Aoro4.4 (A, FSm2TðrÞ is

higher than other pair potentials, if the T (T=Cr,
Ti, V, etc.) atoms occupy 8i sites which are more
distant from the Sm atom, then it is energy
favorable. If the T atoms occupy 8j or 8f sites,
the FSm2TðrÞ is greater, energy unfavorable.
The site preference occupation of the ternary

atoms may also be analyzed by the affecting
factors as shown in Table 6.
The first column in the Table includes the sites

occupied by the T atom, the second column shows
the number of Fe atoms within the sphere centered
at the T atom and with radius of 2.7 (A. Note that
FFe2TðrÞ > FFe2FeðrÞ in this range, more the Fe
atoms in this range the more it is energy
unfavorable, so there is a negative sign. The third
column shows the number of Fe atoms within the
range of 2.7–4.4 (A. Here FFe2TðrÞoFFe2FeðrÞ,
more Fe atoms in this range the more it is energy
favorable, so there is a positive sign. The fourth
column shows the number of Sm atoms. Because
FSm2TðrÞ > FSm2FeðrÞ, it is unfavorable for energy

Table 5

The potential and kinetic energies and their fluctuationsa

Energy T 300K 500K 700K 900K 1200K

EP (eV/atom) @6.2711 @6.254 @6.2176 @6.1874 @6.1474

(0.0004) (0.0009) (0.0016) (0.0025) (0.003)

EK (eV/atom) 0.0387 0.0646 0.0907 0.1152 0.1530

(0.0006) (0.001) (0.0015) (0.0023) (0.003)

ET (eV/atom) @6.2321 @6.1809 @6.1268 @6.0743 @5.9948

(0.00008) (0.0003) (0.0008) (0.0007) (0.001)

aValues in brackets corresponding to energy fluctuations at difference temperature.
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decrease, so a negative sign. From Table 6, it is
easy to obtain the preferential occupation se-
quence, 8i>8j>8f.

5. Conclusion and discussion

The present work gives a series of interatomic
pair potentials by using a number-theoretic lattice
inversion formula based on ab initio cohesive
energy calculation for selected simple virtual
lattices. These quasi-ab initio interatomic poten-
tials are used for the calculation of cohesive energy
for a series of complex real Fe-based rare-earth
compounds including the metastable phase
SmFe12, then phase stability, site preference,
lattice parameters, possible space group and so
on are evaluated at an atomistic level. In this work,
a variety of samples for certain compositions with
relaxed structures is taken into account. The
interaction between distinct atoms A and B is
calculated by an A–B system, not by combination
of two pure element systems. All of these are
different from Girt and Aitounian’s successful
method [16–18]. The calculated results in the
present work are in unexpectedly good agreement
with the experiment.

(1) The calculation results show that when a small
amount of ternary element T (T=Cr, Mo, Ti
and V) is added, the cohesive energy of
Sm(Fe,T)12 decreases, and its space group
keeps I4/mmm unchanged, demonstrating
that these elements can stabilize the structure
of ThMn12.

(2) When the ternary element is Mn, FFe2TðrÞ
oFFe2FeðrÞ and FT2TðrÞoFFe2FeðrÞ, in a wide
range, the convex shape of the energyBcon-
tent curve shows that the energy decreases

drastically as the Mn content is great. There-
fore, different from SmFe12, the SmMn12 is a
stable binary phase with the structure of
ThMn12.

(3) As the T (T=Cr, Mo, Ti and V) atoms
substitute Fe atoms at 8i sites, the crystal
cohesive energy decreases most significantly,
as the T atoms substitute Fe atoms at 8j sites
the energy decrease is weak, as the T atoms
substitute Fe atoms at 8f sites the energy
decrease is the least. Therefore, the T atoms
preferentially occupy 8i sites.

(4) The crystal structure obtained from the
calculation maintains I4/mmm space group
to a certain extent through overall deforma-
tion, a random atomic motion in the range of
0.6 (A and relaxation under the control of
interatomic pair potentials. The initial struc-
ture has a randomness to a certain extent but
the final structure is stable. All of these verify
that the interatomic pair potentials based on
the lattice inversion is effective to a certain
extent.

(5) Through molecular dynamic simulation at
different temperatures or sample random
selection from numerous equilibrium samples
at a certain temperature, the crystal structure
maintains I4/mmm space group to a certain
extent and the lattice constants approximately
coincide with the experimental data. Addi-
tionally, the space group tolerances at differ-
ent temperatures are approximately equal to
the corresponding mean square root displace-
ments. These facts further verify that the
interatomic pair potentials based on the lattice
inversion are effective, fully demonstrating
that the pair potentials obtained from the
inversion of first principle cohesive energy
curve not only reflect the characteristics of

Table 6

Affecting factors vs. T atoms occupation sites

Site Fe (ro2:7 (A) Fe (2.7 (A oro4.4 (A) Sm Total amount

8i @7 +24 @1 @7+24@1=16

8j @10 +19 @2 @10+19@2=7

8f @11 +16 @2 @11+16@2=3
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ideal equilibrium crystals but also partly
reflect the characteristics of non-equilibrium
crystals.

(6) How does the ternary element stabilize the
crystal structure? To study this problem, more
factors should be considered, such as solubi-
lity. Fig. 4 shows that as the substitution
ternary element content exceeds a certain
value, the energy rises again, that means the
solubility is limited. Actually, as T=Ti, the
limited solubility x ¼ 1, as T=Cr or Mn, the
limited solubility is x ¼ 2, as T=V the limited
solubility range is 1.4oxo3.5 [4]. These
phenomena cannot be explained self-consis-
tently and perfectly only by the energy curves
The entropy and the three-body potentials
have to be studied, that will be our next
objectives.

(7) All of these positive results have been ex-
tended to evaluate the structural properties for
the emerging Fe-based rare-earth compounds
such as R(Fe,T)12, R2(Fe,T)17 and R3(Fe,T)29
[19], the systematic researches encourage us to
predict some new materials with new struc-
tures in further study. Also, it might provide
some new challenges for calculating the
solubility of additional atoms. A further
improvement of interatomic potentials might
be necessary for extensive applications.
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