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Theoretical Investigation on the Inverse Black Body
Radiation Problem

NAN-XIAN CHEN anp GUANG-YIN LI

Abstract — After reviewing previous works on the inverse black body
radiation problem, a completely new approach is presented to solve the
problem not only theoretically but also numerically. The first exact and
concise expression for the solution is shown in this work based on the
Fourier transform theory. Its existence, uniqueness, and stability are
discussed in detail. The problem of convergence has been completely
eliminated.

I. INTRODUCTION

The inverse black body radiation problem has been given much
attention in recent literature [1]-[8]. The problem is to determine the
area temperature distribution a(7") from the measured total radiation
power spectrum W (») of a black body with temperature T, where »
is the frequency.

Bojarski proposed the first formulation for the problem in 1982
[1]. He presented a numerical solution by using the Laplace trans-
form and iterative process. Subsequently, various authors provided
different improvements based on his solution [2]-[8]. All these au-
thors used the inverse Laplace transform, but none of them discussed
the existence and uniqueness of the inverse Laplace transform. Also,
none of them solved the convergence of the iterative procedure or
of the series expansion. Lakhtakia and Lakhtakia had discussed the
algorithm-independent check about this inverse problem, but they did
not give any concrete examples [9].

Recently a numerical approach for obtaining stable solutions was
given by Sun and Jaggard [10] based on Tinkhonov regularization
[11], [12], but no general expression for the solution is shown di-
rectly and an unknown regularization parameter is to be chosen and
adjusted in the approach.

A completely new method for solving the problem has been pro-
posed [13]. In this work, a newly modified version with numerical
results is presented in detail. An exact and concise expression for the
general solution is given based on functional transforms and Fourier
convolutions. This method eliminated the difficulties not only of exis-
tence and uniqueness, but also of convergence. In specific examples,
this solution gives precise numerical results for a large range of tem-
perature distributions, because the author uses the widely known and
easily implemented fast Fourier transform (FFT) procedure.

II. ReviEw ofF Previous WORKS

The power spectrum P(v, T') radiated by unit area of a black body
with absolute temperature T is given by Planck’s law as

2hy? 1

P, T)= o T _ | M
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where A is Planck’s constant, & is Boltzmann’s constant, and ¢ is the
velocity of light.

If the area temperature distribution of the black body is a(T), then
total radiated power spectrum W(») is

_ 2hv* [ a(T)dT
W) = 62/0 P o)

The inverse black body radiation problem to determine the area-
temperature distribution @(T") based on the measured total power
spectrum W (») thus consists of solving the integral equation (2) for
a(T).

The solution of this problem was first presented by Bojarski. He
introduced new variables ‘‘absolute coldness” u and ‘‘area-coldness
distribution” a(u) [1]

u=nh/kT 3)
a(u)du = —a(T)dT 4)
then (2) can be written as
2k [Ca(u)du
W) =" / S ©)

where uv > 0. The integral equation (5) can be rewritten by using a
series expansion of the denominator of the integrand in (5) as

2h? [ Z“’ 1 (u
- - —uy — - 6
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Let
1 (u
S = 2,1 Pl (;) (N
and
W
gv) = Sh (8)

From (6)-(8), we see that f(u) is the inverse Laplace transform of
g(v), ie.,

Sy =L""[g®»)]. )

In fact, f(u) is the solution in Wien approximation.
Bojarski used an iterative procedure, choosing L~ '[g(»)] as the
first iterative value, thus

1
a0 =) =Y —m (%) (10)
n=2
a(u) = lim ap(u). (11)

Kim and Jaggard [2] eliminated the iterative procedure and pre-
sented an explicit series expression for the solution. The final result

is obtained as [15]
ay =S M0y (%) (12)
n=1
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where u(n) are Mobius functions in the theory of numbers.
Hunter [4], and Hamid and Ragheb [3] considered the situation
at microwave frequencies where the Rayleigh-Jeans approximation
hv < kT holds. Lakhtakia and Lakhtakia [6] discussed the case at
submillimeter wavelengths, and it is equivalent to another Bojarski
work [5].

All the methods mentioned above used the Laplace transform and
the inverse Laplace transform, but did not verify the existence and
uniqueness of the solution. The convergence of iteration or series
expansion for these ‘“‘universal solutions™ was not discussed either.
There exist some difficulties in both formulation and numerical com-
putation.

Recently, Sun and Jaggard [10] have presented a numerical ap-
proach based on Tinkhonov regularization [11], [12]. A stable nu-
merical solution was given if an unknown parameter was chosen
adequately.

III. New SoLuTiON OF THE INVERSE PROBLEM

To solve the difficulties in the above-mentioned solutions for an
inverse black body radiation problem, a completely new method was
presented by Chen [13]. Here the modified version with specific
calculated results is presented. Introducing the new variables as

e* = hv/kT(),

e’ =TT, (13)

where T is an appropriate reference temperature, then (2) can be
rewritten as

34 o0 Yo
WKToe* /) = 2K To gox / aToe)e” 4y (14
hc —oc €° -1
Let
h%c? kTe*
G(x) = w Taman, 15
&) = T ( )¢ 13
A(y) = ePTAq(Toe). (16)
Hence
o0
G(x) =/ o(x — AW dy a7

where the integral kernel (with A = 0.5, 1.0, 1.5, 2.0 in Fig. 1) is

e(l+A)u

¢(u) =

— (18)
et —1
The reference temperature Ty can be estimated as centroid of area-
temperature distribution in general. Therefore, the distribution of
variable y is near to zero, which is convenient for the computation.
Since
lim &(u) =0, 0<A <3 (19)
u—+oo
and the energy of a real system is finite, ¢(u) should be an integrable
function for all the range of variable u € (—oc, +00). Obviously,
A(y) and G(x) are also integrable. Therefore, for all the ¢(u), A(y)
and G(x), one can carry out Fourier transforms. From (17), G is
the convolution of ¢ and A4, i.c.,

G(x) = d(x)*A(x) (20)
Therefore
F[A] = F[G1/F[¢].
Finally the temperature distribution is given by
A =F '{FIG]/F|®]}. (V2]
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Fig. 2. Radiated power spectra related to the black bodies with temperature
distributions of rectangle (solid line), Gaussian (dotted line), and triangle
(dashed line).

Thus, the concise and exact form of the unknown temperature
distribution can be obtained from the measurable power spectra.

On the other hand, to do a specific calculation for A or a(T)
based on (21), it is required that the nonzero spectrum of ¢, i.e.,
F[¢], include the range of the nonzero part of F[G]. It is obvious
that F[G] is broadest when A(x) is a delta-function. In this case,
the width of F[G] is the same as F[¢]. This is why the range of
nonzero; spectrum of G(x) is always narrower than that of ¢(x). In
addition, A(x) is of finite broadness since the temperature can never
be either zero or infinity; thus the existence and uniqueness of this
inverse problem is shown.

¢(u) is dependent on the parameter A. It is noticed that the smaller
the A is, the wider the distribution of ¢(u) is, and the narrower
the F'[¢(u)]. Therefore, ¢(u) with small A is convenient for the
calculations shown later, where A is chosen as A =1,

IV. CaLcuLaTep REsuLTs

Three kinds of power spectra W(») shown in Fig. 2 have been
considered at first in our calculations. The corresponding tempera-
ture distributions are mainly in the range from 300K to 600K with
the shapes of rectangle, Gaussian, and triangle, respectively. The
frequency range of the spectra is about 5 x 10 in to 2 x 10" in
our calculations. The task of solving the inverse problem is to re-
construct the quite different area-temperature distributions a(7") from
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Fig. 3. The calculated temperature distributions along with ideal curve

(rectangle, solid line). The corresponding noise levels are 1.0%(x), 0.1%
(A), 0.01% ( o ), respectively.
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Fig. 4. Calculated temperature distributions along with ideal Gaussian
curve.

these very similar power spectra W (»). The calculations in this paper
are based on (21), (15), and (16) introduced in Section III. Consid-
ering the error in a practical situation, a random noise with different
levels was applied to the power spectrum W (»). Fig. 3 shows the
comparison of the ideal a(7T') values indicated by the solid lines and
the calculated results for a(7T) with noise/signal ratio of 1% (x),
0.1% (A) and 0.01% (O) in W(»). In the case of the calculated
a(T) value exceeding the frame of the diagram, the corresponding
point has been moved to the boundary of the figure. Obviously the
overall agreement between calculated and ideal values is excellent
for the cases of noise level below 0.1%. The apparent oscillations
in the low temperature region indicate the intrinsic instability of the
physical problem. In fact, the radiated power from a low temperature
surface is low (shown in Fig. 9), thus it is very difficult to distinguish
the power spectra from different low temperature sources. Figs. 3
and 4 show the calculated results for the cases of Gaussian and tri-
angular distributions along with the ideal curves. All the marks used
are the same as in Fig. 2, and the agreement is satisfactory again. In
the above mentioned cases, the kernel parameter A and the reference
temperature T are chosen as 1.0 and 450K, respectively.
Comparing with most of the previous works [1]-[10], the calcu-
lation in this work is adequate for all wave bands instead of only
for long wave or short wave limit. Since the calculation involved is
mainly the FFT operation, the procedure is carried out only in a very
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Fig. 5. Calculated temperature distributions along with ideal triangular
curve.
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Fig. 6. Calculated temperature distributions along with ideal curve of double
rectangles.
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Fig. 7. Calculated temperature distributions along with ideal curve of double

Gaussian.

short time by using an IBM PC/XT machine with double precision.

Figs. 6-8 show the results for temperature distributions with dou-
ble peaks. The calculated results, again, agree with the ideal values
very well provided that the error in W (») is small. When one uses
the power spectra W (») without noise, the error of the resultant a(7T")
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Fig. 8. Calculated temperature distributions along with ideal curve of double
triangles.
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Fig_‘ 9. ) Power spectra W (v) corresponding to the case shown in Fig. 8. Solid
line is from the total temperature distribution, dotted line from the low
temperature triangle, and dashed line from the high temperature triangle.

is less than 10~'!. There are no limitations to the temperature range
and to the shape of temperature distribution in our calculations.

V. ConcrusioN AND DiscussioN

The method for solving the inverse problem in this paper is differ-
ent in essence from previous methods. The problems of existence,
uniqueness, and convergence are solved completely. The stability is
checked by addition of noise and the instability in low temperature
region is explained. Also, the quite simple FFT only is used in the
numerical calculation. Not surprisingly, it is very convenient, and
can be used without frequency limitation. Our method is suitable not
only for the inverse black body radiation problem, but also for a large
number of Fredholm integral equations of the first kind in physics
[14].

It is still necessary to consider the correction caused by a real
body, and to determine the local temperature all over the surface.
Also, one can measure W (») only for some [v;, »,] and W (») could
be nonzero for a wide range. These problems remain for further
consideration.

ACKNOWLEDGMENT

The authors are pleased to thank A. Lakhtakia, M. N. Lakhtakia,
D. L. Jaggard, and X. G. Sun for their helpful suggestions.

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 38, NO. 8, AUGUST 1990

REFERENCES

[11 N. N. Bojarski, “‘Inverse black body radiation,” IEEE Trans. Anten-
nas Propagat., vol. AP-30, pp. 778-780, July 1982.

[2]1 Y. Kim and D. L. Jaggard, “‘Inverse black body radiation: An exact
closed-form solution,”” IEEE Trans. Antennas Propagat., vol. AP-
33, pp. 797-800, July 1985.

[3]1 M. Hamid and H. A. Ragheb, “Inverse black body radiation at mi-
crowave frequencies,”” JEEE Trans. Antennas Propagat., vol. AP-
31, pp. 810-812, Sept. 1983.

{4] J. D. Hunter, ““An improved closed-form approximation to the inverse
black body radiation problem at microwave frequencies,”” IEEE Trans.
Antennas Propagat., vol. AP-34, pp. 261-262, Feb. 1986.

[5] N.N. Bojarski, “‘Closed form approximations to the inverse black body
radiation problem,” IEEE Trans. Antennas Propagat., vol. AP-32,
pp. 415-418, Apr. 1984.

[6] M.N. Lakhtakia and A. Lakhtakia, “Inverse black body radiation at
submillimeter wavelengths,” IEEE Trans. Antennas Propagat., vol.
AP-32, pp. 872-873, Aug. 1984.

[7]1 N. N. Bojarski, M. N. Lakhtakia, and A. Lakhtakia, ‘““Comments on
‘Inverse black body radiation at submillimeter wavelengths,”” IEEE
Trans. Antennas Propagat., vol. AP-33, p. 226, Feb. 1985.

[8] H. A. Ragheb and M. Hamid, *"An approximation of Planck’s formula
for the inverse black body radiation problem,”” /EEE Trans. Antennas
Propagat., vol. AP-35, pp. 739-742, June 1987.

[9] M.N. Lahktakia and A. Lakhtakia, **On some relations for the inverse

blackbody radiation problem,” Appl. Phys., vol. B39, p. 191, 1986.

X. G. Sun and D. L. Jaggard, ‘“The inverse blackbody radiation prob-

lem: A regularization solution,” J. Appl. Phys., vol. 62, no. 11, pp.

4382-4386, 1987.

A. N. Tinkhonov and V. Y. Arsenin, Solution of Ill-Posed Prob-

lems. New York: Wiley, 1977.

C. W. Groetsch, The Theory of Tinkhonov Regularization for Fred-

holm Equations of the First Kind. Boston, MA: Pitman, 1984.

N. X. Chen, “A new method for inverse blackbody radiation prob-

lem,”” Chinese Phys. Lett., vol. 4, pp. 337-340, 1987.

N. X. Chen and G. Y. Li, “Theoretical investigation on inversion of

specific heat for phonon density of states,” to be submitted.

N. X. Chen, ‘A modified Mobius inverse formula and its applications

in physics,” Phys. Rev. Lett., vol. 64, p. 1193, 1990.

[10]

(1
(12)
13
[14]

[15]

The Surface Impedance of Metallic Objects: Rigorous
Calculations for Imperfectly Conducting
Diffraction Gratings

RICARDO A. DEPINE anp VERA L. BRUDNY

Abstract— An accurate computation of the surface impedance of
highly conducting metallic gratings is presented. A rigorous electro-
magnetic formalism is used for solving for the fields at the grating
boundary. The influence of the local curvature of the grating profile,
the refractive index of the metal, and the angle of incidence are studied.
Particular attention is given to the comparison between the efficiencies
obtained using the rigorous method and those obtained assuming that
the surface impedance is a constant.

INTRODUCTION

We shall consider the problem of the diffraction of a plane wave at
a periodic boundary S separating two media. Usually the scattering
problem is solved by using the pair of Maxwell boundary conditions
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