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Chen’s lattice inversion method is expended to calculate the interatomic potentials of
zinc-blend-type binary compounds with the virtual lattice technique, which proposes a
scheme to obtain the non-empirical interatomic potentials based on the first principle
calculation.
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The interatomic potentials are widely used in the simulation of the structures,

defects, dynamical properties, etc. for various materials. A number of empirical in-

teratomic pair-potential forms have been developed such as the rigid-sphere model,

the Buckingham potential, the Lennard–Jones potential, the Morse potential and

the Born–Mayer potential [1], which are widely used in many simulations. In the

early 1980s, Carlsson et al. developed a non-empirical pair potential with an itera-

tive form2:
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where r is the lattice constant, E(r) is the cohesive energy, np and dpr are the num-

ber and the distance of the nth set of lattice points, respectively, and ϕ(r) is the pair

potential function. This is an initial investigation to obtain exactly the interatomic

potentials from the cohesive energy curves. In 1990, a number-theoretic Möbius

inversion method3,4 was applied creatively to a few physical inversion problems,

which resulted in the solution of a series of problems such as the capacity inverse

problem,5 the lattice inverse problem6 and the inverse problems in astrophysics,7

etc. Particularly, in the application for lattice inverse,6 the modified Möbius inverse

formula was obtained:

U(x) =
1

2

∞∑
n=1

r0(n)Φ(b0(n)x) , (3)

Φ(x) = 2
∞∑
n=1

I(n)U(b(n)x) , (4)

where x is the nearest-neighbor distance, I(n) is determined by∑
b(d)|b(n)

I(d)r

(
b−1

[
b(n)

b(d)

])
= δn1 . (5)

The series {b(n)} is a multiplicatively closed semi-group extended from {b0(n)},
and

r(n) =

{
r0(b−1

0 [b(n)]), b(n) ∈ {b0(n)} ,
0, b(n) /∈ {b0(n)} .

(6)

This is a concisely analytic method to obtain the interatomic potentials from the ab

initio cohesive energy curves, and has been applied to the solutions of some physical

problems.7–9

Obtaining the interatomic potentials of the binary alloys and compounds has

been an intractable problem. Generally, the interatomic potentials of the element

crystal are directly transferred to the alloys, which are verified in a feasible, approx-

imate way by calculations.8,9 However, for the covalent and ionic crystals, the same

transfer is not appropriate due to the large difference between the bond-types. The

investigation of interatomic potentials for ionic crystals is limited in the empirical

scheme. For example, a common model is the Buckingham potential or Lennard–

Jones potential attached Coulomb potential.10,11

In the present work, Chen’s lattice inversion method is extended to calculate

the interatomic potentials of the AB zinc-blend-type binary compounds with vir-

tual lattice technique based on ab initio calculation. We suppose the potentials are

transferable in the crystals with space groups F 4̄3m and P42/mmc (see Fig. 1)

according to the similarity of the relative positions of the atoms in these two struc-

tures. Then, the cohesive energy difference at the same lattice constant between

model 1 and model 2 depends only on the interatomic interaction ΦA–A. Accord-

ing to the cohesive energy differences at different lattice constants, the interatomic
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model 1 (F 4̄3m) model 2 (P42/mmc) model 3 (P42/mmc)

Fig. 1. The zinc-blend-type crystal cell (model 1 with space group F 4̄3m) and the virtual crystal
cell (model 2 and model 3 with space groups P42/mmc) used in the calculations.

potential ΦA–A is obtained using Chen’s lattice inversion method. Similarly ΦB–B

can be obtained from the cohesive energy difference between model 1 and model 3.

The potential ΦA–B can be directly calculated based on the dependence of cohesive

energy of model 1 on the lattice constants.

Following the above procedure, we calculate the interatomic pair-potentials of

GaSb and GaAs based on ab initio cohesive energy curves. In the calculations the

first principle norm-conserving pseudopotential in the LDA is used. The crystal

wave-function is expanded by the plane-wave basis set, the cut-off energy for the

plane-wave is 890 eV GaAs. The electronic minimization scheme is the density

mixing with the conjugate gradient (CG) method for eigenvalues minimization.

The calculations of the total energy and charge density are based on the density

functional theory, a uniform mesh of k points in the irreducible Brillouin zone is

produced by the Monkhorst–Pack scheme.12 The quality of this representation can

be verified by increasing the density of k points in the mesh. The self-consistent

iteration of the total energy is converged to 2× 10−6 eV/atom in our calculations.

The total energy at the infinite lattice constant, i.e. the extrapolated value by

fitting the curve of the calculated total energy with lattice constants, is set as

zero of the cohesive energy. Given that an accurate calculation method is still in

expectation and the experimental cohesive energy data for III–V compounds are so

scarce up to now,13 the cohesive energy based on the LDA is rationally adopted in

our calculations. The graphs of interatomic pair-potentials are shown in Fig. 2.

In our calculations, the Born stable conditions of the cubic crystal — i.e. the

values of the nonzero elastic constants being positive and c11 − c12 > 0 — are not

satisfied for the zinc-blend-type crystal only under the pair potential interaction,

which results in structural unsteadiness with the small vibration of the atoms. So,

the three-body term, a supplement to the isotropic two-body potentials, is necessary

for describing accurately the interatomic interactions in the zinc-blend structure.

In the present work, the Modified Stillinger–Weber (MSW)14 three-body potential

is applied to modify the pair potentials:
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Fig. 2. The calculated interatomic pair potentials for GaAs and GaSb.

Φ3(rij , rik, θjik)

=

λi exp

[
γi

(rij − rci )
+

γi

(rik − rci )

]
(cos θjik − cos θcjik)2, rij < rci and rik < rci ,

0, otherwise , (7)

where λi, r
c
i and θcjik are constants and θcjik is the angle subtended by rij and

rik with the vertex at i. The function Φ3(rij , rik, θjik) determines the three-body

contribution to atom i that comes from the three atoms i, j and k, with i as the

central atom and j and k as two of its covalently bonded neighbors, the value

of rci being within the nearest and next-nearest distance. The MSW three-body

potential is applied widely to the surface, interface, defect, mechanical property

and melting, etc.14,15 Define θcjik = arccos(−1/3). Obviously, the MSW three-body

potential has no contribution to the cohesive energy either for model 1, model 2 or

model 3. It operates only when the atom deviates from the lattice points or has the
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Table 1. The MSW parameters for GaAs and GaSb.

As–Ga–As Ga–As–Ga Sb–Ga–Sb Sb–Ga–Sb

D1 (eV) 1290.05 1276.19 1249.713 1247.103

γ1 (Å) 2.728 2.728 3.0013 3.0013

RC1 (Å) 3.299 3.299 3.5254 3.5254

Table 2. The structure and mechanical properties of GaAs and GaSb.

Experimental data16 by ab initio by potentials

GaAs GaSb GaAs GaSb GaAs GaSb

Lattice constant (Å) 5.653 6.096 5.646 5.983 5.646 5.982

Cohesive energy (eV/atom) — — 4.290 3.906 4.309 3.905

Bulk modulus (1011N/m2) 0.754 — 0.747 0.620 0.747 0.618

C11 1.181 0.884 1.060 1.052 1.060 0.884

Elastic constants C12 0.532 0.403 0.501 — 0.590 0.486

(1011N/m2) C44 0.594 0.432 0.687 0.734 0.431 0.352

trend to deviate. So, the adoption of the MSW three-body potential can logically

be self-consistent with previous pair potential calculation methods.

Based on the pair potential parameters, the contribution of the pair-potentials

to the elastic constants is calculated. Furthermore, the component of the elastic

constants contributed by three-body potentials cij,three-body = cij − cij,pair is eval-

uated, in which cij is obtained from ab initio calculations except for c12 of GaSb.

The latter is an experimental value because its ab initio calculation is not a suitable

result. Then, the MSW three-body potential parameters are determined by fitting

the cij,three-body. The results are listed in Table 1. The lattice constants, bulk mod-

ulus and the elastic constants of GaAs and GaSb are evaluated according to the

calculated interatomic potentials. The results are listed in Table 2.

In the present work, based on the interatomic potentials without disposable pa-

rameters, the phonon dispersion curves of GaAs and GaSb are calculated using the

Born–von Karman model (see Fig. 3). It is in good agreement with the neutron

scattering experimental results.16 In our calculation, the absence of the Coulomb

potential results in degeneration of phonon LO and TO at q = 0, while the ex-

perimental results show that the LO and TO have a little split. The deviation of

the calculations from experiment will be eliminated when the effective charges are

increased and the electrostatic interaction is summed with the Ewald method.17

However, the use of the adjustable effective charge will not preserve the character-

istics of the interatomic potentials obtained from ab initio calculations without any

disposable parameters in this work.

The interatomic potentials are a powerful tool to investigate the structure and

the mechanical properties. Figure 4 is one of the applications of these interatomic

potentials. It represents the atom arrangement when there exists a Ga vacancy
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Fig. 3. The calculated phonon dispersion curves of GaAs and GaSb (circles represent the exper-

imental data in Ref. 16).

in a 4 × 4 × 4 GaSb supercell. The structure and elastic parameters change to

a0 = 23.89464 Å, c11 = 0.872 × 1011 N/m2, c12 = 0.492 × 1011 N/m2 and c44 =

0.348× 1011 N/m2, respectively.

We do not intend to provide detailed analyses of the structure, the mechanical

properties or lattice dynamics for GaAs and GaSb, but test the potentials obtained

with the method in this paper. This proposes an approach to evaluate more accu-
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Fig. 4. The atom arrangement when a Ga vacancy exists in a 4 × 4 × 4 GaSb supercell (units
are in Å).

rately the optoelectronic properties of the point defect in semiconductor materials

by first principle calculations.

In summary, this paper has proposed a scheme to obtain the ab initio inter-

atomic potentials for the zinc-blend structure crystal based on first principle cal-

culations. The introduction of virtual lattice structures provides a feasible method

of obtaining the interatomic potentials from the calculated cohesive energy by first

principle calculations with Chen’s inversion method. It may open a door to explor-

ing the structural and mechanical properties of these materials based on ab initio

calculations, which excludes any experimental and adjustable parameters.
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