Negative differential resistance in \(\text{La}_{0.67}\text{Ca}_{0.33}\text{MnO}_{3-\delta}/\text{Nb–SrTiO}_3 \)
\(p-n \) junction

Y. S. Xiao, X. P. Zhang, and Y. G. Zhao

Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China

(Received 12 September 2006; accepted 2 December 2006; published online 5 January 2007)

\(\text{La}_{0.67}\text{Ca}_{0.33}\text{MnO}_{3-\delta}/\text{Nb–SrTiO}_3 \) \(p-n \) junction was fabricated by pulsed laser deposition. The \(I-V \) curves of this junction show rectifying behavior. Negative differential resistance (NDR) was observed at low temperatures under large bias voltages and NDR becomes more remarkable with decreasing temperature. In addition to NDR, the \(I-V \) curves also show remarkable hysteresis. The results were explained in terms of the effect of local Joule heating on the phase separation in the strained ultrathin \(\text{La}_{0.67}\text{Ca}_{0.33}\text{MnO}_{3-\delta} \) thin film. © 2007 American Institute of Physics.

[DOI: 10.1063/1.2430266]

Colossal magnetoresistive perovskite manganites have attracted much attention because of their rich physics and potential applications.\(^1\) It has been shown that phase separation together with concomitant percolation conductivity play an important role in manganites.\(^2-5\) Phase separation can be in the nanometer scale or micrometer scale. Recently, there are some reports that in the phase separated manganites, local Joule heating due to the lattice mismatch can result in a charge release of the strain in some regions make ferromagnetic metallic (FMM) state recover.\(^13\) Because the strain is not homogeneous in the films, FMM state exists in the regions with large strain, while FMM state exists in the regions with small or no strain. Therefore, below a certain temperature phase separation occurs with the coexistence of FMM state, and the FMM state in the ultrathin LCMO and the FMM domains are separated by the COI domains.\(^13\) Ultrathin LCMO is an interesting system to see whether NDR exists. The high resistance of the ultrathin LCMO is not favorable for the study of the electric current effect, so LCMO was grown on the conducting Nb doped SrTiO\(_3\) (NSTO) substrate. In this case, we can measure the current-voltage curves perpendicular to the surface of the ultrathin LCMO film. NDR was observed in LCMO/NSTO heterostructure.

LCMO/NSTO heterostructure was fabricated by growing \(\text{La}_{0.67}\text{Ca}_{0.33}\text{MnO}_{3-\delta} \) film on 0.1 wt % NSTO substrate. For comparison, LCMO film was also deposited on SrTiO\(_3\) substrate at the same time. The substrate temperature was kept at 650 °C and O\(_2\) pressure was 40 Pa during the deposition. The samples were cooled in a 40 Pa oxygen environment to control the oxygen content. The thickness of LCMO is about 15 nm, and the strain effect is expected to be strong for this thickness. The temperature dependence of magnetization was measured for LCMO/NSTO under a 100 Oe magnetic field by using Quantum Design magnetic property measurement system. The \(I-V \) curves of LCMO/NSTO heterostructure were measured at different temperatures by using a Keithley 2400 source meter with the two-point method, and the sketch is shown in the inset of Fig. 1. An increasing pulsed dc voltage with a width of 0.5 s and an interval of 3 s was applied to measure the \(I-V \) curves. Au was used for the electrodes, and they were annealed to make Ohmic contact.

Figure 1 shows the \(I-V \) curves of LCMO/NSTO heterostructure at different temperatures. It can be seen that the heterostructure shows good rectifying property which can be attributed to the \(p-n \) junction nature of the heterostructure.\(^14\) But \(p-n \) junction is not the topic of this letter. Instead we focus on the NDR shown in LCMO/NSTO heterostructure with forward bias voltage exceeding the threshold value. For large forward bias voltages, the depletion layer of a \(p-n \) jun-

\(^{a}\)Electronic mail: ygzhao@tsinghua.edu.cn

FIG. 1. \(I-V \) curves measured at different temperatures. The inset is the sketch of the two-point method.
behavior of the junction is determined by the microstructure of the COI domains. Since COI regions are insulating, the junction is not in contact with NSTO. As a result, many microdomains form between LCMO and NSTO, there are FMM and COI domains according to the phase separation at low temperatures. In the lower inset, some open ovals change to black ovals indicating randomly oriented magnetic domains with high resistance. In the upper inset of Fig. 3, in this inset, the open ovals stand for the FMM phases and the black squares are the COI domains. Since COI regions are insulating, the behavior of the junction is determined by the micro p-n junctions of FMM p layers. For the in-plane (parallel to the film surface) electronic transport in LCMO film, no FMM percolation path is formed, i.e., the FMM domains are separated by the COI regions, so the in-plane electronic transport is dominated by the COI regions, and the temperature dependence of resistivity shows the insulating behavior, as shown in the inset of Fig. 2, which is the temperature dependence of the resistance for LCMO film grown on SrTiO$_3$ substrate. But in the vertical direction, some FMM percolation paths may be formed and the current can transport in these filamentary paths. Electric current with moderate value can expand the FMM regions due to the spin polarized current effect, and increases the number of conducting paths. For large forward bias voltages, however, the value of the current is very large, so the heating power determined by VI is very large, resulting in strong Joule heating, which can change the FMM domains into nonferromagnetic insulating (NFI) domains because of the abrupt temperature increase since the sample is in the NFI state at high temperatures. So the resistance of the junction increases dramatically, leading to NDR. The initial state of the interface is very important for the observation of NDR. If the FMM domains are connected to form the transport paths, NDR occurs at higher voltages with the MFM domains changing into NFI domains to form an open circuit. This picture has been shown in the sketch in the lower inset of Fig. 3. In this inset, some open ovals change to black ovals (black means insulating) due to the local Joule heating, leading to the decrease of the conducting path number and the resultant dramatic increase of the junction resistance. This is the key point to understand the NDR phenomenon. It is also expected that Joule heating induced variation of the phase separation at low temperatures may not recover quickly when the current decreases quickly. This should be reflected in the hysteresis of I-V curves for the up sweeping and down sweeping measurements.

Figure 3 shows the I-V curve of the LCMO/NSTO p-n junction measured at 80 K with the up sweeping and down sweeping measurements. Interestingly, NDR does not appear in the down sweeping curve, and the breakdown voltage for the reverse bias increases remarkably. This can be understood based on the above model that some electronic transport chains have been broken to form open circuits due to the local Joule heating, and these broken chains cannot recover quickly, so LCMO/NSTO heterostructure remains in the high resistance state. This also leads to the increase of the breakdown voltage from -2 V (up sweeping) to -7 V (down sweeping).

From the temperature dependence of the junction resistance (R_{Junction}) with different bias voltages, defined as V/I, one can get some information on the temperature dependence of the different contributions of resistance. The main contributions to R_{Junction} are the contact resistances between Au and LCMO and between Au and NSTO, the resistances of LCMO and NSTO, and the resistance of the depletion layer at the interface of LCMO/NSTO. Among them, the contact resistances between Au and LCMO, and between Au and NSTO, and the resistance of NSTO can be neglected compared to R_{Junction}. So only the resistances of LCMO and the resistance of the depletion layer at the interface of LCMO/NSTO need to be considered. Figure 4 shows the temperature dependence of R_{Junction} at different forward bias voltages. R_{Junction} increases with decreasing temperature for small bias voltages (inset of Fig. 4), showing the semiconducting behavior of LCMO film, no FMM percolation path is formed, i.e., the FMM domains are separated by the COI regions, so the in-plane electronic transport is dominated by the COI regions, and the temperature dependence of resistivity shows the insulating behavior, as shown in the inset of Fig. 2, which is the temperature dependence of the resistance for LCMO film grown on SrTiO$_3$ substrate. But in the vertical direction, some FMM percolation paths may be formed and the current can transport in these filamentary paths. Electric current with moderate value can expand the FMM regions due to the spin polarized current effect, and increases the number of conducting paths. For large forward bias voltages, however, the value of the current is very large, so the heating power determined by VI is very large, resulting in strong Joule heating, which can change the FMM domains into nonferromagnetic insulating (NFI) domains because of the abrupt temperature increase since the sample is in the NFI state at high temperatures. So the resistance of the junction increases dramatically, leading to NDR. The initial state of the interface is very important for the observation of NDR. If the FMM domains are connected to form the transport paths, NDR occurs at higher voltages with the FMM domains changing into NFI domains to form an open circuit. This picture has been shown in the sketch in the lower inset of Fig. 3. In this inset, some open ovals change to black ovals (black means insulating) due to the local Joule heating, leading to the decrease of the conducting path number and the resultant dramatic increase of the junction resistance. This is the key point to understand the NDR phenomenon. It is also expected that Joule heating induced variation of the phase separation at low temperatures may not recover quickly when the current decreases quickly. This should be reflected in the hysteresis of I-V curves for the up sweeping and down sweeping measurements.

Figure 3 shows the I-V curve of the LCMO/NSTO p-n junction measured at 80 K with the up sweeping and down sweeping measurements. Interestingly, NDR does not appear in the down sweeping curve, and the breakdown voltage for the reverse bias increases remarkably. This can be understood based on the above model that some electronic transport chains have been broken to form open circuits due to the local Joule heating, and these broken chains cannot recover quickly, so LCMO/NSTO heterostructure remains in the high resistance state. This also leads to the increase of the breakdown voltage from -2 V (up sweeping) to -7 V (down sweeping).

From the temperature dependence of the junction resistance (R_{Junction}) with different bias voltages, defined as V/I, one can get some information on the temperature dependence of the different contributions of resistance. The main contributions to R_{Junction} are the contact resistances between Au and LCMO and between Au and NSTO, the resistances of LCMO and NSTO, and the resistance of the depletion layer at the interface of LCMO/NSTO. Among them, the contact resistances between Au and LCMO, and between Au and NSTO, and the resistance of NSTO can be neglected compared to R_{Junction}. So only the resistances of LCMO and the resistance of the depletion layer at the interface of LCMO/NSTO need to be considered. Figure 4 shows the temperature dependence of R_{Junction} at different forward bias voltages. R_{Junction} increases with decreasing temperature for small bias voltages (inset of Fig. 4), showing the semiconducting behavior of LCMO film, no FMM percolation path is formed, i.e., the FMM domains are separated by the COI regions, so the in-plane electronic transport is dominated by the COI regions, and the temperature dependence of resistivity shows the insulating behavior, as shown in the inset of Fig. 2, which is the temperature dependence of the resistance for LCMO film grown on SrTiO$_3$ substrate. But in the vertical direction, some FMM percolation paths may be formed and the current can transport in these filamentary paths. Electric current with moderate value can expand the FMM regions due to the spin polarized current effect, and increases the number of conducting paths. For large forward bias voltages, however, the value of the current is very large, so the heating power determined by VI is very large, resulting in strong Joule heating, which can change the FMM domains into nonferromagnetic insulating (NFI) domains because of the abrupt temperature increase since the sample is in the NFI state at high temperatures. So the resistance of the junction increases dramatically, leading to NDR. The initial state of the interface is very important for the observation of NDR. If the FMM domains are connected to form the transport paths, NDR occurs at higher voltages with the FMM domains changing into NFI domains to form an open circuit. This picture has been shown in the sketch in the lower inset of Fig. 3. In this inset, some open ovals change to black ovals (black means insulating) due to the local Joule heating, leading to the decrease of the conducting path number and the resultant dramatic increase of the junction resistance. This is the key point to understand the NDR phenomenon. It is also expected that Joule heating induced variation of the phase separation at low temperatures may not recover quickly when the current decreases quickly. This should be reflected in the hysteresis of I-V curves for the up sweeping and down sweeping measurements.

FIG. 2. Temperature dependence of magnetization measured under a 100 Oe magnetic field. The inset is the temperature dependence of resistance of LCMO thin film grown on SrTiO$_3$ substrate.
ducting behavior. This reflects the characteristic of the depletion layer of the junction. With increasing bias voltage, R_{junction} decreases because the thickness of the depletion layer of the junction decreases with the forward bias voltage. When the forward voltage exceeds the diffusion voltage V_D (at this voltage, the depletion layer of the junction vanishes) at about 1 V (see Fig. 1), R_{junction} shows a metallic behavior. The small resistance upturn at low temperatures for the 1 V curve is related to the increase of V_D at low temperatures. For $V>V_D$, R_{junction} reflects the electronic transport of LCMO perpendicular to the film, and the percolation of FMM domains determines R_{junction}. Moderate voltage (current) can reduce R_{junction} by the spin polarized current effect.\(^{15}\) When voltage (current) is large, local Joule heating effect will dominate, leading to the high resistance state and NDR. It is interesting that Tang and Wang reported the NDR in the cluster superlattice of tellurium in zeolite, and they showed that the NDR is related to the electric field induced structure change. This phenomenon is similar in nature with NDR in manganites induced by local Joule heating.

In summary, NDR was observed in LCMO/NSTO heterojunction at low temperatures. Hysteresis was also observed for the I-V curves of up sweeping and down sweeping. The results can be attributed to the local Joule heating effect on the phase separated ultrathin LCMO. This work demonstrates that local Joule heating can result in some interesting phenomena in the phase separated manganites, which may have potential applications.

This work was supported by the NSF of China (Grant Nos. 50425205, 10674079, 50628202, and 50272031), the Specialized Research for the Doctoral Program of Higher Education (No. 20030003088), the National Center for Nanoscience and Technology of China, and the Excellent Young Teacher Program of MOE.

