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1 热力学平衡

迄今为止，我们讨论的都是如何详细描述每个粒子的运动。而当粒子数很多
时，系统可能会出现一些新奇的行为。这就是我们将面对的问题。

1.1 层展现象

物理开始于经验。物理学是可测量量的科学，它告诉人们哪些是可测量量、
怎样测量这些量、这些量之间有怎样的关系。物理学家通过实验，利用想像
力和理性思辨，给出针对可测量量的描述。在物理学中人们经常发现在忽视
很多细节的情况下仍然可以对被研究对象的某些行为做出不错的描述。这大
大简化了我们看待这个世界的方式，为我们研究这个世界带来了方便。因此
我们可以对自然界分层次地研究，如微观和宏观，低能和高能等等。例如，
在考虑行星围绕恒星的运动时，很多时候只需将行星和恒星看作质点，无需
考虑更多的细节。在热力学中，很多粒子由于之间较强的相互作用或约束边
界的存在而构成一个体系。一个体系在宏观的意义上有明确的边界。在宏观
尺度上发生的事件可看作体系与体系间的相互作用，而不必过多地关心内部
细节（这不等于说细节不重要，我们将引入诸如热、熵这样一些概念来体现
这种细节，只不过我们不再具体关心每个自由度，而是集总地考虑）。以这
样的方式看待世界有两个主要原因：其一，人们缺乏考虑很多细节的能力，
在某个尺度上只能关心那些我们还能说些什么的行为并留下很多不确定性；
其二，更重要的是在一定的尺度上才会有所谓的层展（emergent）现象，这
种现象必须在一定的尺度上才能表现出来。

不同的学科研究的是不同尺度上的问题。到十九世纪末期科学研究还主要
集中在宏观尺度上。二十世纪开始，研究的重点转移到更微观的尺度上。开
始的时候，微观上的研究主要是在Å的尺度上，如原子、分子。这些研究很
快导致了量子力学的发展。紧接着人们开始关注原子核内部的结构，尺度
在10−15 m上，并发现了强相互作用和弱相互作用，以及大量的基本粒子，
发展了量子场论。人们期望还能够在更小的尺度上发展新的物理模型来描述
自然。不同尺度上的物理原理（模型）相互联结，例如原子核的性质可以在
中子和质子，甚至夸克的层次上解释。

每个层次的有效理论描述的是这一层次上的现象，是这个层次上可测量量之
间的关系。层次决定了测量的性质。层次间有耦合，一个层次上的规律可以
由更深入的层次的物理给出，称为解释。但这个层次上的规律也可以自成体
系。这些新的规律构成了有效理论的基本假设。我们会看到热力学描述的是
宏观尺度上的层展现象，即宏观尺度上的新现象，正如P. W. Anderson所说
的“More is different”。所谓新的规律，更准确地讲应该是新的可测量量
的规律，而规律本身是可以从更深入的层次的物理得到。热力学应该关心的
就是这些由大量粒子导致的新现象，这些新现象在微观上不存在，例如平衡
态、熵等。我们仅需要去关心那些宏观上的层展现象。
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热力学是宏观理论，它唯象地描述多粒子系统的宏观行为。宏观是以人的尺
度为依据。由于绝大部分微观自由度没有被充分照顾到，热力学只能描述系
统的一小部分宏观行为。同时这些行为都是上面提到的层展现象，这些现象
只出现在宏观层次上，不存在于单个的组成粒子中。热力学作为层展现象的
一种有效理论出现，描述的是宏观层次上的层展现象，并且不依赖于具体的
微观动力学（经典还是量子）。

正如牛顿力学的基本问题是在相互作用下粒子的运动，热力学讨论的是宏
观系统间的相互作用导致的结果。我们每天都会看到各种宏观系统间的相
互作用，并熟悉这样一个现象，即相互作用后经过一段时间，系统会达到一
个稳定的状态，不再随时间变化，而这个过程往往是不可逆的。这个稳定的
态不依赖于历史，只与几个状态量有关，宏观上有时间反演不变性。例如，
两个温度不同的系统，接触一段时间后会达到稳定。两系统热接触的程度可
以不同，但这只会改变达到稳定的时间，不会改变最终的状态。我们把这个
稳定的态称为平衡态。平衡态是一个宏观系统的理想化状态。处于平衡态的
体系，它的各种宏观性质，如压强、比热、热膨胀系数等，在测量时间范围
内没有可观察的变化。宏观性质发生变化的特征时间称为弛豫时间。如果弛
豫时间远长于我们所关心的时间尺度，则认为系统处于平衡态。平衡态没有
流。一个有流的系统，如通电的导线，破坏时间反演不变性，是稳态，但不
是平衡态。平衡态的存在和不可逆性就是宏观上的层展现象。

作为一个唯象有效理论体系的平衡态热力学（以下简称热力学）关心的是这
个最终的平衡态是什么。最常见到的一类现象是当两个分别处于平衡状态
的系统接触后它们会最终达到一个新的共同的平衡态。如果我们主要讨论
平衡热力学，那么怎样达到新的平衡态不是我们准备关心的事情，我们只关
心对新的平衡态能说些什么，预言这个新的平衡态就是平衡热力学的基本问
题。为此，热力学发展了一个一般的理论框架，熵是其核心，熵给出了基本
问题的一种解决方案。这个框架不包括一个具体系统的性质。一个具体系统
的性质（如熵的大小、物态方程等）需要从实验得到。这个框架也不包括如
何达到平衡的具体过程，这个过程由非平衡热力学研究。这个框架告诉我
们的是如果已知参与相互作用的系统的宏观性质（这往往需要通过实验来
确定），并且知道接触的方式，那么相互作用后的平衡态将会是怎样。这些
体系在相互作用前都是孤立地处于平衡态。相互作用使参与作用的体系达
到新的平衡态。热力学告诉我们，新的平衡态是什么，而不管怎样达到平衡
态。正如Martin Goldstein 和 Inge F. Goldstein 在 "The Refrigerator and the
Universe" 一书中所说的那样 "Thermodynamics has something to say about
everything but does not tell us everything about anything"。

作为热力学基本问题的一个例子，我们考虑两个宏观系统。可以观察到，一
般地两个系统接触后将通过热的形式进行的能量交换，最终达到平衡。再设
想有一个比较小的宏观体系，例如水银柱，其高度依赖于热力学状态。这个
系统比较小，与前两个系统接触时不会影响它们的状态。现在将这个小的系
统与前两个系统分别接触，达到热平衡。我们会看到两次接触使得水银柱都
达到同样的高度。如果换一个小的体系，仍然有同样的现象。这是一个非常
令人吃惊的现象。第二个观察到的现象是无论两个系统通过什么方式接触，
热平衡后水银柱的高度都一样，即不依赖于过程。第三个观察到的现象是，
如果水银柱与两个不接触的系统分别接触后都达到同样的高度，那么将两个
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系统接触后发现它们已经达到了平衡。两个处于热平衡的系统可以非常不
同，但是似乎平衡后有某种东西一定相同。这些观察启示我们存在一个热平
衡的条件，将其称为温度。热平衡时温度相同。历史上热力学基本问题最早
的解决方案是利用温度，而不是熵。上面的现象也意味着存在温度这样一个
宏观可测量。

历史上，热力学曾以温度为核心。温度非常接近人的经验，而之后引入的熵
与人的直觉相去甚远。热力学以温度为核心概念，用温度来解决基本问题。
它的缺陷是其深层次的逻辑体系不清晰，熵的中心地位没有得到充分体现。
我们将以熵为基础学习热力学。我们会看到，温度是通过对熵取一次微分得
到的量。这就说明了为什么温度作为基本概念的传统热力学的结构不清晰：
熵更为基本而温度只是导出量。

更广泛地，热力学是热物理（Thermal Physics）的一部分。热物理的另一
主要部分是统计力学。统计力学是微观和宏观的桥梁，考虑了各种微观自由
度，是热力学的微观基础。另外，统计力学还给出了计算一个具体体系性质
（如比热、热膨胀系数等）的方法，这些性质由热力学本身并不能给出。

在我们的统计力学中，我们主要关心如何从Å的尺度上的物理（微观物理）
过渡到宏观尺度的物理。表面上看微观与宏观尺度上的物理完全没有关联。
微观上的规律总是量子化的、几率性的，只需要几条基本的原理。但是宏观
上的规律总是连续的、决定性的和多样的。微观上的规律总是对时间反演不
变的，但宏观上我们每天都在看到的是不可逆过程。很多宏观上的量，如温
度、电阻，以及很多现象，如相和相变，在微观上都没有对应物。那么微观
物理和宏观物理是否有联系，应如何联系呢？为此目的发展了统计力学。统
计力学早期的重要工作是Maxwell和Boltzmann的分子运动论，认为气体由
大量分子组成，分子之间不断地发生碰撞。之后Boltzmann引入了几率的概
念，在微观上解释了熵。熵是热力学的基本函数，也是微观理论和宏观理论
的桥梁。与此同时，Gibbs发展了完整的统计力学的理论体系。

即使在原子物理已经被完全确立之后，统计力学仍然面临很多困难。原因是
微观现象远离我们的日常经验。我们在宏观尺度上观察的现象都包含了大量
的粒子，大量微观粒子的集体行为和微观粒子自己的性质没有任何的共同
点。即使理论上讲可以计算每个微观粒子的运动从而得到宏观的性质，但是
实际上往往不可能。但最为惊奇的是宏观上各种各样的性质，确实可以由微
观一个简单的Schrödinger方程和库仑定律所决定。到目前，看上去所有的
宏观尺度的科学都可以建立在原子尺度现象的基础之上。由于统计物理处理
的都是大量粒子的现象，所以有时又称作多体物理。

我们并以熵作为核心的概念讲述热力学。在热力学发展过程中，人们并不是
从一开始就知道熵和熵的中心地位，甚至不知道能量守恒。人们从诸如热这
样一些宏观的现象出发建立了能量守恒。能量守恒表明热也是一种能量的
形式，并作为基本假设进入到热力学的框架中来。通常人们讲述热力学时会
按照历史上的发展，以能量守恒为第一定律，以讨论热机的效率或等价的说
法，通过引入一个具体的过程来给出第二定律。但事实上这个答案并不完
整，第二定律只关心热平衡，而没有关于力学平衡、化学平衡等的说法。对
于力学平衡、化学平衡等还需要引入更多的假设，产生更多的对应于温度的
量，如压强、化学势等。这也是以温度为基础的热力学的一个缺陷，对每种
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新的相互作用都需要引入一个新的假设。这个情形在以熵为基础的热力学
中会避免。而我们将采用完全不同的处理手段。优点在于：1、突出热力学
作为一种描述层展现象的规律的地位；2、突出熵作为热力学和统计力学核
心概念的地位；3、热力学中各种可测量量之间的逻辑关系明确。如以熵作
为核心，温度就成为了一个导出的物理量。与温度地位相同的导出物理量还
包括压强、化学势等等。事实上，从温度出发讨论热现象的理论应该称为热
学，这时压强、化学势等都通常由其他方式引入。

1.2 热力学坐标

想象我们可以知道自然界中的所有基本定律，识别所有的基本粒子，我们是
否可以用这些知识解释所有的物理现象？对于一个有1023个粒子的体系，我
们几乎没有希望得到每个粒子运动的解。更进一步，即使有了这样的解，也
不会有用。我们不可能观察1023个粒子中每个粒子的运动。我们可以观察的
是宏观的变量，如粒子数、动量、能量、磁化强度等。正是这些宏观量刻画
和区别了物质的不同的热力学状态。热力学提供了一个描述多粒子系统的框
架。自然界为我们提供了无限多种多体系统，从稀薄气体和量子固体到活细
胞和夸克-胶子等离子体。即使是最简单的原子组成的多粒子系也呈现出一
系列不同的状态，例如，氦，可以有气态、液态和固态，也可以在低温下有
无粘滞性的超流态。热力学研究所有这些多体系统，它作为一个范例可以为
诸如生物学到粒子物理学提供深刻的洞察力。

与所有物理学领域一样，热力学描述的是某一类测量得到的结果。测量的特
征决定了正确的物理变量。热力学宏观描述关键在于物理量的选择基于以
下两个特征：宏观测量与原子尺度相比都是极端缓慢（时间意义上）和粗糙
（空间意义上）的。宏观测量无法得到微观状态的详细信息。宏观测量的特
征决定了由哪些量来表征宏观状态。宏观测量总是相对缓慢，总是对微观状
态在时间上的平均。例如，在微观上原子的运动极其快速，10−12秒是一个典
型的时间尺度。宏观测量也总是在大的空间尺度下进行的，因此也是空间平
均的结果。热力学的可测量量都是宏观量。一个确定的宏观状态对应大量的
微观状态，系统在这些微观状态之间随时间演化。仅仅知道宏观状态，仍然
有大量有关系统的信息不知道。这种信息的缺乏称为不确定性。

可测量量起源于经验。为了描述一个系统，我们需要找到一些独立的可测量
量。这些可测量量称为热力学坐标。热力学坐标的选取需要通过实验确定，
而没有先验的方法获知。宏观的直观经验告诉人们描述一个系统通常需要知
道其大小和物质的多少，称为体积和摩尔数。这两个量可以直接用宏观的工
具测量得到。热力学坐标都需要是广延量，即把两个全同的系统放在一起时
这些量加倍。广延量具有可加性。

除体积和摩尔数外，实验发现还有一个量需要进入到热力学坐标中，即内
能。需要指出内能不包括宏观运动的能量，只是内部微观运动的能量。为了
刻画内能，就有了热力学的第一个假设。

假设I 一个封闭系统的内能不随时间变化，是个守恒量。系统内两个子系统
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间通过做功和转热两个方式进行内能的交换。如果只有做功，那么子系统对
外做的功等于其内能的减少。

封闭系统是指系统与世界中的其他部分没有相互作用。如果系统距离其他部
分足够远，就可以认为系统封闭。一个系统内的两个子系统间可以有相互作
用。这种相互作用可以使子系统发生变化。假设I认为可以找到一个守恒量
叫内能。改变内能的两种方式中做功可以用宏观的手段进行计量。例如，如
果一个子系统体积膨胀挤压另一个子系统时，两边都是宏观的自由度，功可
以测量。又如，电流在电压驱动下流过一个电阻或置于流体中的涡轮在重物
作用下转动（焦耳实验），至少一边是宏观自由度，也可以计量。但传热是
在两个子系统的微观自由度间进行的，没有宏观的方法直接测量。内能守恒
提供了一种间接测量热的方法。守恒意味着一个子系统失去的将由另一个子
系统完全得到。于是如果我们能够对一个子系统的内能变化进行计量，那么
就有可能测量热。我们将在后面展开讨论内能和热的可测性。

对于一个简单流体系统我们现在有了三个宏观、大时间尺度下的可测量量：
内能U，体积V，和摩尔数N。这些量都是广延量。只有对这些广延量。更
复杂的系统还需要引入更多的坐标，如电极化强度P、磁化强度M等。

1.3 热力学平衡

热力学不打算回答所有的宏观物理问题，而只是关注这样一种情形：两个宏
观子系统相互作用后的结果是什么。从我们的经验得知，两个系统经过足够
长的时间后会达到一个稳定的、不再变化的状态，称为达到平衡。在实际实
验中，两个子系统达到平衡的过程有一个特征时间，称为弛豫时间。如果观
测时间远长于弛豫时间，我们就认为两个子系统间已经达到平衡。一个系统
可以以任意方式分为多个子系统。如果子系统间都处于平衡，我们称这个系
统处于平衡态。热力学的研究对象是平衡态，也称平衡热力学。

假设II 宏观系统存在一个特殊的态，叫平衡态。平衡态的宏观行为能够用热
力学坐标完全刻画。

这是一个关于存在性的表述，并不提供一个系统是否处于平衡态判据。但是
如果是平衡态，那么热力学就会为其建立一套方法进行描述，用热力学坐标
完全刻画是能够建立这样一个框架的第一步。如果所研究的系统与热力学的
描述不符，那么有三种可能性：系统不处于平衡态；热力学坐标不够完备；
热力学需要修改。我们更倾向于前两种。

有了假设II，我们就可以进一步讨论内能的可测性。对于简单流体的三个热
力学坐标只有内能还缺乏测量手段。平衡态能够被热力学坐标完全刻画。只
有实现了全部热力学坐标的测量，我们才能测量其他热力学量。

不失一般性，考虑两个各自处于平衡态的系统，它们在相互作用时产生内能
的交换。每个系统都有内能的变化，但由于内能守恒，总内能不变。相互作
用后两个系统各自都达到新的平衡态。我们需要测量出任一个系统的内能
变化。热力学是宏观理论，任何测量必须是宏观的。内量交换的方式中有一
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种可以进行宏观测量，那就是功。可以将多粒子系统的自由度分为宏观自由
度（如体积）和微观自由度（如粒子的坐标）。宏观自由度代表系统的集体
运动。通过宏观自由度进行的内能交换称为功，功是可以进行宏观测量的。
例如，气缸中活塞的缓慢压缩或膨胀过程中做的功。气体的内能变化只涉及
到微观自由度，我们还不知如何测量。但活塞的运动是宏观的，我们可以测
量。因此由内能守恒就可以得知气体的内能变化。还例如，图1.1是一个宏
观自由度与微观自由度之间传递能量的过程。这个实验中叶轮可以用下落
的重物驱动导致把重物的势能传递给液体。与上面气缸的例子不同，这时液
体有宏观的流动，这将导致一种叫耗散的过程。由于重物的能量变化可以测
量，我们就可以知道液体的内能变化。如果能量交换只能通过微观自由度
进行，这种交换方式就称为传热。例如两个系统的直接热接触（如用火加热
水）。至此我们还不知道如何用宏观的手段测量传热。

图 1.1: 焦耳实验

功的意义在于我们需要的有用能量都是宏观意义上的。微观自由度上的能量
交换没有办法直接为人服务。散布在平衡态的微观自由度上的能量不能直接
成为宏观有用的功，因为平衡态各微观状态有相同的出现几率，无法形成定
向移动。只有使系统的微观自由度在一定程度上协调起来作集体运动，才能
做功。这种集体运动我们可以称之为流。不考虑外场的作用，一个均匀的系
统不会自发地产生流，没有能力做功。产生流需要有不均匀性。风车、电池
等都是利用不均匀性产生的流来做功。热机之所以能做功是因为有两个温度
不同的热源。事实上，流已经是宏观的运动了。

热力学关心宏观的现象，但并不是微观自由度不重要，只是不去考虑每一个
具体的微观自由度。所谓热现象是指微观自由度在宏观上的体现。在热力学
中，微观自由度以特有的方式（如热、熵）进入到理论框架中。

与此相关的问题是，功是宏观的行为，可以测量，但热仍然无法测量，因此
内能仍然无法测量。反过来，如果我们可以以宏观的手段测量内能，则由于
内能守恒，去掉功的部分后也就得到了热。因此我们需要发展一个测量内能
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的方法。在微观上，内能是系统内全部粒子动能和势能之和。但热力学是宏
观的理论，因此要求内能可以用宏观的方法测量。如果不是宏观可测量量，
则不能形成一个封闭的模型。

根据假设II，U, V,N完全刻画了状态，不同的U代表不同的状态，一个状态
对应唯一的U。从一个初态出发，只要将相应的能量传递给系统，系统就会
处于一个唯一的末态，而无论能量是以怎样的方式传递给系统。这给予我们
选择能量传递方式的自由。显然选择做功这种能够测量的方式最方便。对于
绝热系统，任意两个状态能够由一个机械过程连接，通过连续改变做功的
量，就能够得到任意的状态，而得到的状态不依赖于做功的方式。无论是对
宏观还是对微观自由度做功，只要达到同样的末态热力学坐标，就没有区
别。因此我们说由绝热壁包围的一个系统的两个平衡态间可以通过一个机械
的过程连结。这里之所以采用绝热的办法是因为到现在我们还不知怎样测量
热。绝热就避免了这个困难。不存在这样一个态：它只能通过热的办法才能
达到。任何两个态都能够利用绝热功连接起来。连结两个平衡态的绝热功仅
由初末态决定，不依赖于路径。

Uf − Ui =W (adiabatic) (1.1)

绝热功给出了制备具有一定内能的系统的办法。我们现在还不能定义绝热
壁，这个问题将在后面解决。

这里只是完成了测量的第一步。测量一个量的第一步是建立测量工具，例
如尺子用于长度测量。有工具后，需要将被测量的系统与工具比较并读数，
从而完成测量，例如尺子测量长度时需要用眼睛将尺子上的刻度与被测物
比较，给出长度。对于一个系统的内能，我们首先也要制备一套刻度。热力
学的第二个假设认为宏观状态完全有U、V、N确定。假定用同样的物质已
经制备了一个初始的宏观态，内能为U0，并置于绝热壁中。为方便起见，保
持V和N不变，即要求内能“尺子”的体积和摩尔数与被测系统相同。根据
上面的讨论，任何一个具有内能U的态都可以达到，只要对系统做U − U0的
功。一旦做了U − U0的功，那么系统的内能就变为U，从而将系统的状态完
全确定下来，而不论做的功是通过何种方式实现。这样就可以制备一系列具
有不同U的系统，形成测量内能的刻度尺。假设II保证了从U0到U总是可以通
过一条使用绝热功的路径达到，从而完成了测量的第一步。

假如用同样方式制备的一个系统，经过一系列的过程后，我们要测量它的内
能。那么如同尺子测量长度一样，我们需要将该系统的内能与已经制备好的
内能“尺子”进行比较，找出相同的内能，使得内能可测。这一步需要借助
于热力学第三假设来完成这种比较。后面讨论时会回到这个问题上来。

前面曾提到能量可以用两种方式传递：机械的与宏观坐标有关的方式叫功，
或“隐藏”模式之间的能量传递叫热。由于内能守恒，热量的测量可以通过
初态和末态内能差减去功而完成。前面已经讨论过内能的测量，因而热可以
测量。从A到B两个平衡态间的过程有无数种，因而功与热都是与过程相联
系。不同过程对应的功和热不同，尽管初态和末态间的内能差不变。

有些量是系统状态的函数，确定的状态对应确定的量，例如N，V，U。这
些量在两个无限临近的状态间的变化可以写做微分的形式，如dN，dV，dU。
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但另一些量如功和热量，对于同样的dU，它们依赖于路径，有各种可能的
值，因此不能写做微分，而记为d−W和d−Q。由于能量守恒，dU = d−W +
d−Q。

如果做功只改变系统的体积而没有产生任何的物质、能量流动时，功可表示
为d−W = −PAdx = −PdV，P为流体的压强，是个纯宏观力学量。总的来
说，dU = d−Q + d−W成立。d−W表示功不是状态的函数，而是依赖于过程，
所以不能是一个函数的微分，叫做不完全微分。热通过d−Q = dU − d−W来测
量。Q和W都是过程量。虽然dU = d−Q+ d−W，但是不能认为U是W和Q两部
分组成。对于绝热的过程则有d−Q = 0，dU = d−W。

热通过系统与环境的边界进行传递。热是通过微观自由度进行能量交换的方
式。而热力学是宏观的描述。微观自由度可以有各种各样，但对于热力学来
讲，它们都没有区别。这种能量传递方式都统称为热，而不会区分是通过诸
如平动自由度还是振动自由度来传递。但做功可以有多种方式，如机械、电
磁等等。每种方式都有各自的描述方法。



2 热力学过程

平衡态是系统的一种特殊的宏观状态。热力学的基本问题就是确定两个子系
统在解除之间的约束后最终达到的平衡态满足什么样的条件。

一个子系统有一个确定的边界（或称为约束）。外界与系统通过边界而相互
作用。一个坚固的约束能够保证系统的体积和形状不变；一个不可穿透的边
界，没有物质在系统与环境间流动；还有一种约束叫绝热壁，由绝热壁约束
的系统，如果没有外界的做功，则内能保持不变。绝热壁意味着没有热量和
物质可以穿过。导热壁是指热量可以穿过的约束。注意我们现在还没用用一
个可以操作的方法定义绝热。一个封闭系统可以是由坚固的、绝热的不可穿
透的壁作为约束的系统，没有与外界的能量、物质和体积的交换。解除子系
统间的一个或几个约束后，系统会达到一个新的平衡。

达到平衡态需要经历热力学过程。热力学基本问题的答案需要通过研究热力
学过程来回答。

一个过程连接初态和末态。对于同样的初末态可以有各种过程将其连接。例
如后面会提到的封闭理想气体的自由膨胀过程也可以用等温做功的过程达
到。一个封闭体系（与环境无能量、物质和体积等的交换）中的发生的过程
称为自发过程。自发即没有外界驱动。一个自发过程的发生一定来源于系统
内部约束的改变。比如，绝热壁变为导热壁。按照后面会提到的不可逆的说
法，自发过程不可逆，恢复约束后系统无法复原。一般地达到新平衡态的过
程是自发的、不可逆的。

通过改变内部约束，一个封闭的体系自发地从一个态变到另一个态。例如左
右两边盛有体积相同温度不同的理想气体的封闭体系，中间由绝热壁相隔。
现在让中间的墙壁导热，我们会发现无论导热壁的热导率如何，最终达到的
平衡态都是相同的，即两边气体的温度相同且都是初始时两边气体温度的
平均值。这种不依赖于具体过程的现象普遍存在，只要末态的某些参数定下
来，不同的过程都只能达到同样的末态。这意味着这些参数唯一地决定了末
态，末态不依赖于过程。这才使热力学基本问题变得有意义。这些参数可以
选为我们前面提到的热力学坐标。例如，只要知道热力学坐标，那么两个系
统间的传热可以有各种方式和速度，但不会改变末态。封闭体系的问题解决
后，只要将环境也加进来就可以解决非封闭体系的问题。

为简单起见，我们先讨论理想气体的各种过程。至此我们实际上还没有真正
讨论温度等热力学量的意义和测量方法，我们将暂时不加定义地使用温度、
状态方程等。因此只是利用理想气体得到一些感觉。

2.1 理想气体

理想气体是真实气体的理想模型。这个模型忽略了气体分子间的长程相互作
用和气体分子的体积。理想气体为热力学提供了一个简单的范例，是最简单

11
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的热力学系统之一。对于这样一个简单的流体系统，我们可以用三个宏观可
测量量U，V，N来完备地表征它的宏观状态。这样的状态量称为热力学坐
标。对于比简单流体更复杂的体系常常需要引入新的热力学坐标。作为热力
学坐标的量都有如下特点：当系统加倍时，这些量也加倍，称为广延量。

单原子理想气体的第一个状态方程是

T =
2

3

U

NR
(2.1)

T称为温度。R = NAkB = 8.314 J · K−1 · mol−1叫气体常数。NA = 6.02 ×
10−23是Avogadro常数。系统加倍时温度不变，称为强度量。

一般理想气体（不限于单原子）的这个状态方程是

T =
U

cNR
(2.2)

c决定于分子运动自由度的个数，依赖于气体种类和温度。对于单原子分子
理想气体，c = 3/2。对于双原子分子理想气体，在室温附近，c ≈ 5/2。

理想气体的另一个状态方程是

PV = NRT (2.3)

后面我们将说明为什么需要两个状态方程。事实上，后面会看到描述理想气
体还需要第三个状态方程，只不过第三个方程与前两个方程并不完全独立。

现在只考虑这样一种过程：在每一时刻系统都处于平衡态，这样我们就可以
用状态方程来描述理想气体。这时一个微小变化过程的功为d−W = −PdV，
一个有限过程的功是P-V曲线下的面积。

对于理想气体的等温过程，状态方程给出

d(PV ) = 0 (2.4)
dU = 0 (2.5)

做功与传热是
d−Q = −d−W = PdV (2.6)

从而

W = −
∫ V2

V1

PdV = NRT ln
V1
V2

(2.7)

Q = −W = NRT ln
V2
V1

(2.8)

功热相抵。

对于等压过程，状态方程给出

d
(
T

V

)
= 0 (2.9)
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dU = cNRdT (2.10)

做功与传热是

d−W = −PdV = −NRdT (2.11)
d−Q = dU − d−W = (c+ 1)NRdT (2.12)

从而

W = −
∫ V2

V1

PdV = −P (V2 − V1) = −NR(T2 − T1) (2.13)

Q =

∫ T2

T1

(c+ 1)NRdT = (c+ 1)NR(T2 − T1) (2.14)

∆U = NcR(T2 − T1) (2.15)

对于等容过程，状态方程给出

d
(
T

P

)
= 0 (2.16)

dU = cNRdT (2.17)

做功与传热是

d−W = 0 (2.18)
d−Q = dU = cNRdT (2.19)

从而
∆U = NcR(T2 − T1) (2.20)

还有一个常见的过程，称为绝热过程，系统仅通过功的方式与外界交换能
量。状态方程给出

dU = cNRdT (2.21)
NRdT = PdV + V dP (2.22)

做功与传热是
dU = d−W = −PdV (2.23)

从而

PV γ = const (2.24)
TV γ−1 = const (2.25)

P γ−1T−γ = const (2.26)

其中
γ =

c+ 1

c
(2.27)
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图 2.1: 理想气体作为工作物质的热机

理想气体可以作为热机的工作物质。历史上，热机作为一种典型的热力学系
统对热力学的发展起到过重要作用，它的作用是实现热和功之间的转换。这
里我们考虑一种由理想气体作为工作物质的理想的热机。该热机的工作物质
工作于一个高温热库和一个低温热库之间，无摩擦等耗散。如图2.1所示。

低温和高温热库的温度分别是TL和TH。这样整个过程中只需确定某一个体
积，比如VB，其他量即完全确定。起始时气体与温度为TH高温热库接触，
然后从A到B等温膨胀，由高温热源吸热QH，

QH = NRTH ln
VB
VA

(2.28)

然后气体与高温热库脱离，从B到C绝热膨胀，温度降低到TL，对外做功。
从C到D，气体与低温热库接触，等温压缩，外界对气体做功。气体向低温
热源放热QL

QL = NRTL ln
VC
VD

(2.29)

然后气体与低温热库脱离，从D到A绝热压缩，外界对气体做功。

完成一个循环后，气体对外做功：

W = QH −QL = NRTH ln
VB
VA

−NRTL ln
VC
VD

(2.30)

B和C及A和D分别在两条绝热线上，因此(
VC
VB

)γ−1

=
TH
TL

(2.31)(
VD
VA

)γ−1

=
TH
TL

(2.32)

于是
VB
VA

=
VC
VD

(2.33)

而
TH
TL

=
QH

QL

(2.34)
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热机的效率为

η =
W

QH

= 1− TL
TH

(2.35)

将热机的运转反过来得到制冷机。

需要注意的是上述的热机有两个特点：所有的传热都在等温的系统间进行，
没有摩擦等耗散过程。

2.2 不可逆性

先回顾一下热力学的基本问题：确定两个分别处于平衡状态的系统在解除
它们之间的某个（些）约束后达到的新的平衡态。约束解除后，两个系统构
成的复合系统不再处于平衡态。经过一系列过程后，复合系统最终会达到一
个新的平衡态。我们总是发现上述过程不可逆。最简单的例子，两个温度不
同的物体接触后经过传热达到热平衡，但从来没有见过一个物体它内部自
发地出现温度不均匀。事实上，我们的世界有这样一个趋势：如果没有外界
影响，一个系统总是尽可能地消除内部宏观上的结构、秩序、组织、差异，
而不是相反。这样的过程是不可逆的。在宏观上从有结构到没有结构（同时
从定向运动变为无规运动）需要在出现宏观的流，这种流可以是物质的、能
量的等等。流由各种差异性的结构驱动，最终消除差异、消除结构、消除秩
序、消除组织。恢复平衡后，系统中不再能自发地产生流，因此不能做功。
做功来源于宏观的流。作为集体运动的宏观的流才对人有用。不均匀的系统
才有做功的能力。宏观的流（这里不讨论超导、超流现象）意味着耗散，是
不可逆过程的标志。自然界有自发地消除差异而变得更均匀的趋势。不可逆
性是我们这个世界的普遍特征。热力学将定量地描述不可逆性，并从而给出
基本问题的解决方案。

如果仔细划分，不可逆过程又分为两类，分别对应传热和做功。下面看几个
例子。

传热过程有能量的宏观定向流动。例如，两个全同的系统，热容均为C，C不
随温度变化。初始温度分别为T 0

H和T 0
L，T 0

H > T 0
L。两个系统热接触后会达到

热平衡，此时两系统温度相同，都为(T 0
H + T 0

L)/2。两个系统间的热传递可以
很快也可以很慢。只要它们之间的热接触足够地差就可以使传热过程缓慢地
进行。但无论如何，我们的经验表明不可能使两个系统再恢复到各自的初始
温度而又不产生其他变化。这个过程存在不等温系统间的传热，有温度的不
均匀性和能量流。最终温度不均匀性被擦除，过程不可逆。

以下过程都是不可逆做功的例子：摩擦、粘滞、电阻、磁化等。不可逆做功
统称耗散。在有耗散的过程中，宏观的运动产生流，而流将能量散布到微观
自由度上。这时这些能量就不再能为宏观尺度上的人所利用。通常意义下，
摩擦发生在两个固体的界面上。界面上有很多小的、但仍然是宏观的粗糙结
构。两固体的相对运动会造成分别位于两个表面上的粗糙结构之间的相互作
用，产生在这个尺度上的各种复杂运动（流），并最终将能量散布到微观的
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热运动上。粘滞现象通常发生在流体中。例如当一个固体在流体中运动时，
流体的分子与固体有相互作用，这种作用直接发生于宏观与微观之间，与
摩擦不同（这里只考虑低速极限）。这时流体中会出现不均匀的流，出现耗
散。耗散现象还经常发生在诸如电学现象等之中，如电阻。一个均匀导体内
的电势差会导致电流，电势能最终转化为焦耳热。

当涉及物质的量发生变化时会有不可逆的化学功，例如气体自由膨胀、水
与酒精的混合等。 看一个理想气体的例子。如图2.3，理想气体占据绝热容
器左半边，右边是真空，中间由隔板分开。突然将隔板抽开，气体会自由膨
胀，最终均匀地充满整个容器。由于内能不变，气体的温度在自由膨胀后也
不变。由我们的经验知道，气体不会自发地回到左边。自由膨胀过程存在粒
子密度的不均匀，从而产生流，过程不可逆。为了使气体恢复到初态，需要
如图2.3的右图所示，对气体做功、进行压缩。同时为了保持温度不变，容
器还需要与一个同温度的热库接触。外界对系统做的功为NRT ln 2，相同的
能量再以热的形式转移到热库。这样尽管系统恢复到初态，但环境没有，过
程不可逆。

可逆与不可逆是针对系统的整体而言，仅仅是部分系统复原还不是可逆。例
如，焦耳的实验中液体的温度可以通过降温复原，但此时热库和重物都不能
复原。趋于平衡的过程不可逆。热现象的核心就是不可逆性。 可逆过程是
不可逆过程的一种极限。自然界的普遍趋势是：在约束允许的条件下消除结
构、消除差异。不可逆过程中系统内存在差异。而可逆过程需要让每一步系
统内不存在有限的差异。下面再看几个例子来体会可逆过程是不可逆过程的
极限的情形。

我们也可以设计一些方案使两个系统达到相同温度的过程可逆。下面就是一
个。我们需要借助第三个系统，即前面一个例子中的汽缸，然后利用理想气
体热机完成热交换，如图2.2。

图 2.2: 可逆的热交换过程

假设每个循环两个系统的温度变化很小。作为零级近似，先假设在一个循环
中两个系统的温度不变。这样循环的第一和第三步都是等温过程。由此得到

d−QH

TH
=

d−QL

TL
(2.36)
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然后再考虑两个系统温度的变化，有dTH = −d−QH/C和dTL = d−QL/C。于
是，

dTH
TH

= −dTL
TL

(2.37)

即
d ln(THTL) = 0 (2.38)

因此当两系统温度相同达到平衡后，其温度为
√
T 0
HT

0
L。两个系统的部分内

能以势能的形式存储起来，这部分能量是C(T 0
H + T 0

L − 2
√
T 0
HT

0
L)。如果将上

述过程反过来进行，则两个系统的温度又可以恢复到T 0
H和T 0

L，而不会引起
其他变化。这个过程无耗散、无不等温传热，是可逆的。通过直接热接触不
可逆达到热平衡的过程没有第三方参与，而可逆地达到平衡的过程有第三方
参与。

另一个例子，为了使气体可逆地膨胀，可以将隔板缓慢地移到右边，系统对
外界做功。如再将隔板缓慢地移回到中间的位置，则系统和环境都恢复到初
态。如果要求保持等温，需要在移动隔板时系统与一热库接触。膨胀时，热
转化为功流出热库。逆过程中热流回到热库。完成一个循环后，系统、热库
和其他环境都无变化。

图 2.3: 自由膨胀

对于一个过程A，如果存在另一个过程B使得过程A的热力学效应完全擦除使
系统复原，则过程A称为可逆的。如果找不到这样一个过程B，则A称为不可
逆的。复原是指系统和环境都复原。显然，证明一个过程是可逆的要比证明
是不可逆的容易得多，因为证明可逆只要找到一个逆过程即可，而证明不可
逆需要检查所有的可能过程。但热力学会根据熵的变化对此给出一个方便的
判据。

不确定性来源于我们对系统初始微观状态缺乏了解和系统复杂的随时间演
化的动力学（尤其是与环境相互作用时）。试想一个不知道初始微观状态的
系统，在复杂的动力学的指引下，我们对其微观状态的了解只会变得越来越
少。

我们的世界一个引人注目的性质是趋于平衡态是自发的、不可逆转的，而平
衡态在相空间中看不确定度达到最大。换一个说法也可以表述为自发的过程
消除了差异和结构，而无差异和结构也意味着不确定度最大。差异意味着结
构的存在和不确定性的降低，均匀意味着大的不确定性。人们还并不完全了
解这背后的机制。最大的不确定度通常意味着每个微观状态以相同的几率出
现。趋于平衡是自然界自发的趋势，即自然界倾向于不确定度最大化。热力
学中不确定度用熵来定量表示。
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总之，自然界中有各种宏观过程，它们一般地都不可逆。这些过程的结果是
达到平衡态。约束取消后，系统出现不均匀，将趋向平衡态这种缺乏结构的
状态。这个观察定性给出我们热力学基本问题的答案，即末态是一个不确定
度尽可能大的态。这是一个不可逆的过程。可逆过程是一种极限的情形。之
所以考虑可逆过程，还是因为可以用它来定义温度。通常两个状态间无法找
到一个可逆过程连接。

2.3 准静态过程

自然界中各种过程的趋势是自发地消除不平衡、趋于平衡，如热平衡、力学
平衡、化学平衡。这个过程常伴随流的存在。封闭系统内达到平衡后，各种
对宏观有意义的过程就不再会发生，因为过程都是不平衡驱动的。不平衡意
味着差异和有一定确定的信息。消除不平衡的各种过程是从有一定的确定度
到不确定度最大化，是不可逆的。可逆过程是极限的情形，过程进行中的每
一时刻系统都无限趋近于平衡。我们把这种进行非常缓慢、时刻都无限接近
于平衡态的过程称为准静态过程。可逆过程一定是准静态的。非准静态过程
一定不可逆，因为非准静态过程一定包括非平衡态。但是还不能说明准静态
一定可逆，尽管这似乎是对的。

需要注意的是，缓慢进行的过程不等于是准静态的。缓慢是指过程，平衡是
指状态。另外，与可逆性类似，准静态针对的是系统和环境放在一起构成的
一个封闭系统。两个系统间缓慢传热就是这样一个例子，缓慢传热使得两
个系统各自都处于平衡态，但是二者之间不平衡，仍然不是准静态过程。又
如，焦耳实验中，叶轮可以缓慢地转，液体也因此始终处于平衡状态。但不
平衡的地方不是液体，而是处于力学非平衡的下落中的重物。再如，在汽缸
壁上缓慢摩擦，汽缸内的气体温度缓慢上升但可以始终保持平衡态。将摩擦
这种耗散过程加进来后，过程不可逆，不是准静态。在这些非准静态的情形
中，作为一个封闭系统中的某些子系统经历的过程无限接近平衡态，因此可
以方便地用描述平衡态的方法描述这些子系统，这是热力学过程中很重要的
一类情形。发生准静态过程的系统中每个子系统一定都无限接近平衡态，但
每个子系统都无限接近平衡态的过程不一定是准静态的。

摩擦现象中有大量亚稳态出现，无论速度如何，都不会是平衡态，因此不是
准静态。这与粘滞现象不同，粘滞现象中粘滞力正比于速度。

准静态过程是一个理想化的过程，但很有用。只有对准静态过程，它的每一
瞬间才能用热力学描述。其他过程很难描述。如能找到一个准静态过程连接
初末态则会方便处理问题。
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平衡条件是热力学的基本问题。第一个为解决热力学基本问题作出重要贡献
的是法国人Nicolas Carnot，他因此被称作第一个热力学家。热力学的集大
成者是Rudolf Clausius，他在1865年写下了熵的定义。我们现在常见的热
力学第一、第二定律的形式都来源于他的工作。我们将基于熵解决热力学的
基本问题。尽管热力学是宏观理论，但是热力学基本问题的答案在于微观上
的不确定性。为此，热力学需要一个在给定热力学坐标下描述微观不确定度
的量。热力学状态可以用热力学坐标（如U、V、N）来完全描述。热力学
坐标是描述热力学状态的完备集，热力学坐标一样，则宏观状态全同。但是
对应于这样一个宏观态，有无数的微观态。这些“隐蔽”起来的自由度不能
被忘记，尽管在进行平均后，似乎看不到它们。这些微观的自由度决定了热
力学基本问题的解。但我们不必再为此引入一个或几个独立的热力学坐标。
我们需要的是引入热力学坐标的一个函数，用于刻画在给定热力学坐标的条
件下，微观自由度及其不确定性所起的作用。这个量就是熵S。全部的热力
学信息都包括在作为热力学坐标的函数S中。我们需要发展测量熵的方法。
熵本身不方便直接测量，但我们会发现熵的一阶和二阶导数更容易测量。熵
是以热力学坐标为自变量并对平衡态有定义的一个函数，是广延量。除去
内部约束达到新的平衡后，系统的熵增加。这种过程自发地进行，是不可逆
的。不可逆过程意味着熵增加。

3.1 热力学基本方程

为了解决热力学基本问题，我们引入第三个假设。

假设 IIIa对于一个系统的宏观状态存在一个函数熵。

熵通常记为S。熵有一个新的单位：J · K−1，K叫Kelvin。此处的状态不限
于平衡态。尽管我们讨论的是平衡态热力学，但是当谈到熵的极值问题时说
的是平衡态的熵与任何非平衡态相比最大。因此如果不能针对所有的宏观态
存在熵就无法谈论极值。这个假设是以下论述的前提。

假设 IIIb处于非平衡态的封闭系统会自发地通过不可逆过程达到平衡态。平
衡态使熵达到最大。一个使系统始终处于平衡态的过程为可逆过程，其熵不
变。

于是平衡条件成为了使熵最大。但是熵是多少？在热力学范畴内熵能够通过
测量得到，这才使得这个量变得有意义。我们将发展测量熵的方法。一个方
便的做法是只针对平衡态讨论熵，因为这时熵只是热力学坐标的函数。统计
力学是热力学的微观理论。在统计力学中，原则上熵可以由微观理论用统计
的方法得到。

假设 IIIc对于平衡态，熵是热力学坐标的单值连续可微函数，并且是内能的
单调增加函数。复合系统的熵是各个子系统的熵之和。

19
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熵作为热力学坐标的函数称为热力学基本方程。如前所述，平衡态是指系统
一个没有宏观能流的状态。它可以是一个封闭的系统，也可以是一个系统的
子系统。例如，假想这样一个理想气体的复合系统，它的左边和右边分别各
自处于平衡态，但压强不同。作为一个整体的系统，它不处于平衡态。但在
这一瞬间其左右两边均处于平衡态。平衡态的优点在于其熵是热力学坐标的
函数。

假设我们可以通过测量得到平衡态的熵，那么如果我们可以设计出一个达到
熵最大（即达到平衡态）的路径，使得路径上每一个点虽然是非平衡态但是
都可以分解为若干各自瞬间处于平衡态的子系统，那么沿这条路径就找到平
衡态。这里已经利用了假设三中的可加性。另外，这条路径并不一定代表一
个真实的按时间进行的演化。事实上，我们只是需要这样一个数学上的穿过
极值点的路径而已，因为我们只是希望求极值，这个路径是否是真实发生的
演化无关紧要。例如，一个通过导热壁相连的两个系统，可以设想出这样一
系列状态，其左右两边分别各自处于平衡，但之间有能流。如果我们知道了
平衡态的熵，那么这条路径上的每个状态的熵就已知。通过使其最大化，就
可以找到平衡态。一般地，对于一个复杂的多变量极值问题，如果我们可以
设计一个会穿过极值点的路径，并且路径上一点的变量可以约化为少数的几
个，那么显然会大大简化问题，因为只要沿着这条很简化的路径就可以找到
极值点。

以简单流体为例，热力学基本方程是S = S(U, V,N)。如果知道了熵作
为U、V、N的函数，那么我们就知道了一个系统的所有热力学性质。作
为一个解决热力学基本问题的例子，如图3.1，如果将绝热壁变为导热壁，
则两个子系统可以用热的方式传递能量，从而达到平衡。S是U1和U2的函
数， S = S(U1, U2)。S的曲面与U1 +U2 = U的平面相交于一条曲线，曲线的
最大值点给出热交换后达到平衡的内能。

图 3.1:

熵完全是一种层展现象，在微观中不存在。热力学就是建立在几个简单的
假设基础之上，但具有极大的普遍性。熵在热力学中具有中心地位，因为
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引入熵的概念能够解决热力学的基本问题。后面的热力学内容都是为了建
立S = S(U, V,N)。熵与内能、体积和粒子数同样是广延量。内能、体积和
粒子数这三个量都有明确的物理解释，它们描述了系统的宏观自由度。但
除此之外还有很多“隐藏”起来的微观自由度。这部分自由度仍是一个系统
的重要组成部分，因而引入了熵来描述微观自由度在热力学中起的作用。
但是第二个假设说热力学状态完全由U, V,N来描述。所以微观自由度只能通
过U, V,N的一个函数来体现，而不是引入一个新的坐标。这个函数就是熵。
不同的系统，即使宏观状态一样，一般地也会有不同的微观态，熵会有不同
的形式。如果我们知道了S(U, V,N)，就知道了系统热力学的一切。

为具体起见，以简单流体为例，S = S(U, V,N)。S的可加性意味着S是U、V、N的
齐次函数，S(λU, λV, λN) = λS(U, V,N)。S是U的单调增加函数意味着( ∂S

∂U
)V,N >

0。S的单值连续可微性意味着S有反函数，如U = U(S, V,N)。

3.2 强度量和状态方程

下面只考虑平衡态。S的微分

dS =

(
∂S

∂U

)
V,N

dU +

(
∂S

∂V

)
U,N

dV +

(
∂S

∂N

)
U,V

dN (3.1)

三个偏微分同样也是U，V，N的函数，作如下定义：

T−1 =

(
∂S

∂U

)
V,N

(3.2)

P = T

(
∂S

∂V

)
U,N

(3.3)

µ = −T
(
∂S

∂N

)
U,V

(3.4)

T、P、µ三个量分别叫做温度、压强和化学势。温度的单位是Kelvin，压强
的单位是N·m−2，化学势的单位是Joule·mol−1。由于历史的原因，这三个量
不是直接等于相应的偏微分。T 和P我们马上会详细解释它们如何测量。注
意，这里我们只是借用温度和压强两个名字，到目前为止还并不知道这两个
量如何与我们日常使用的温度和压强对应。µ不是一个大家熟悉的量，原因
是很多情况下讨论的都是N固定的体系。但在诸如化学反应等情形下，粒子
数会发生变化，这时化学势µ将是一个重要的量，地位与T和P等同。

T，P，µ三个量叫强度量，例如

T−1(λU, λV, λN) =
∂S(λU, λV, λN)

∂(λU)

∣∣∣∣
V,N
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=
λ∂S(U, V,N)

λ∂U

∣∣∣∣
V,N

=
∂S(U, V,N)

∂U

∣∣∣∣
V,N

(3.5)

这意味着系统的总量发生变化后，T，P，µ均不变，这与U，V，N这些广
延量不同。强度量T与直觉中的 温度概念一致，因为系统中一部分的T应
与整个系统的T相等。 需要注意的是热力学系统独立的坐标是U，V，N，
而T，P，µ都是导出量。这三个导出量的物理意义和测量方法以后会提到。

T，P和µ都是U，V，N的函数：

T =T (U, V,N) (3.6)
P =P (U, V,N) (3.7)
µ =µ(U, V,N) (3.8)

这三个方程叫状态方程

先看一个单原子经典理想气体的例子。统计力学可以给出

S(U, V,N) = kBNAN ln

[(
4πm

3h2

)3/2(
e

NA

)5/2

V U3/2N−5/2

]
(3.9)

h是Planck常数。于是 (
∂S

∂U

)
V,N

=
3

2

RN

U
=

1

T
(3.10)

⇒ U =
3

2
NRT (3.11)

(
∂S

∂V

)
U,N

=
RN

V
=
P

T
(3.12)

⇒ PV = NRT (3.13)

(
∂S

∂N

)
U,V

= R ln

[(
4πm

3h2

)3/2(
1

NA

)5/2

V U3/2N−5/2

]
= −µ

T
(3.14)

⇒ µ = RT ln

[
N

5/2
A

(
3h2

4πm

)3/2

V −1U−3/2N5/2

]
(3.15)

式3.11、3.13和3.15是三个状态方程。
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定义了T，P，µ后，S的微分可以写为

dS =
1

T
dU +

P

T
dV − µ

T
dN (3.16)

由于S具有连续可微、单值的性质，所以可以将热力学的基本方程写为U =
U(S, V,N)，它包括的信息与S = S(U, V,N)完全相同。但我们会看到前者往
往会更方便一些。考虑U的微分：

dU =

(
∂U

∂S

)
V,N

dS +

(
∂U

∂V

)
S,N

dV +

(
∂U

∂V

)
S,V

dN (3.17)

将dS代入有

dU =

(
∂U

∂S

)
V,N

(
1

T
dU +

P

T
dV − µ

T
dN
)
+

(
∂U

∂V

)
S,N

dV +

(
∂U

∂V

)
S,V

dN

(3.18)
比较上两式可以得到

1 =
1

T

(
∂U

∂S

)
V,N

(3.19)

0 =
P

T

(
∂U

∂S

)
V,N

+

(
∂U

∂V

)
S,N

(3.20)

0 = −µ

T

(
∂U

∂S

)
V,N

+

(
∂U

∂N

)
S,V

(3.21)

于是 (
∂U

∂S

)
V,N

= T (3.22)

(
∂U

∂V

)
S,N

= −P (3.23)

(
∂U

∂N

)
S,V

= µ (3.24)

从而
dU = TdS − PdV + µdN (3.25)

T，P，µ这时作为S，V，N的函数也可以写成三个方程

T =T (S, V,N) (3.26)
P =P (S, V,N) (3.27)
µ =µ(S, V,N) (3.28)

也称作状态方程。强度量无论作为U，V，N还是S，V，N的函数，它们对
于一个热力学态都有相同的值。
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3.3 平衡条件

考虑一个由两个子系统组成的封闭系统。子系统间的边界是坚固的不可透过
的壁，但可以导热。每个子系统的体积和粒子数固定，但能量可以以热流的
形式交换，总能量守恒：U1 + U2 =常数。

我们现在想知道平衡时U1和U2的值。在平衡时U1和U2应该让S取极大值，
即dS = 0

dS =
∂S1

∂U1

dU1 +
∂S2

∂U2

dU2 (3.29)

这里V，N不变。

同时 ∂S1

∂U1
= 1

T1
， ∂S2

∂U2
= 1

T2
，dU1 = −dU2，所以

dS =

(
1

T1
− 1

T2

)
dU1 = 0 (3.30)

即T1 = T2。这即是允许能量以热的形式交换时的平衡条件。由于T是U的函
数，可以定出U1，U2。当然T和U的 函数关系并不能由热力学给出，必须通
过测量或统计力学的计算得到。

T1和T2这两个叫温度的量在平衡时相等。我们下面还可以证明如果初始
时T1 < T2，则∆U1 > 0，即热流从高温流向低温。为证明这个结论，需
要引入S的一个性质：S是广延量U，N，V的凸函数。用反证法，假如在某
个E值附近S是凹函数，则有：

S(E) < (S(E −∆E) + S(E +∆E))/2 (3.31)

即
2S(E) < S(E −∆E) + S(E +∆E) (3.32)

熵的可加性⇒ 2S(E) = S(2E)，这样

S(2E) < S(E −∆E) + S(E +∆E) (3.33)

这意味着如果将两个子系统变得不均匀反而熵会增加，熵极大值导致了不均
匀的平衡态，显然不合理，所以熵应该是凸函数。

由于熵是凸函数，所以 dS
dE与E得关系如图。

dS
dE是E的减函数，则E是关于T的

增函数，即高 温意味着内能高。这样就容易得出这样一个结论，即如果两
个子系统的初始温度分别为T i1和T i2，平衡时 温度是T f，假设T i1 < T i2，则
有T i1 < Tf < T i2，即末态温度介于两个初态温度之间。原因是如果Tf > T i2 >

T i1，则有E
f
1 + Ef

2 > Ei
1 + Ei

2，不满足能量守恒。如果 Tf < T i1 < T i2也同样
会导致能量不守恒。所以T i1 < Tf < T i2。而这导致的结果是 Ef

1 > Ei
1，E

f
2 <

Ei
2，即能量从高温体系流向低温体系。

这样我们就有了T这个函数的三个性质：平衡时两系统温度相等；平衡温度
介于两系统初始温度之间；能量从高温流向低温。 这些都与我们的直觉相
符，因此把T叫做温度。后面我们会讨论如何测量温度。
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图 3.2: 作为凸函数的熵

再考虑一个可以移动的导热壁的情形，这时U1+U2 =常数，V1+V2 =常数。
极值原理要求

dS =

(
∂S1

∂U1

)
V1

dU1 +

(
∂S1

∂V1

)
U1

dV1 +
(
∂S2

∂U2

)
V2

dU2 +

(
∂S2

∂V2

)
U2

dV2 (3.34)

而dU1 = −dU2，dV2 = −dV1，因此

dS =

(
1

T1
− 1

T2

)
dU1 +

(
P1

T1
− P2

T2

)
dV1 = 0 (3.35)

则有T1 = T2，P1 = P2。温度相等的条件前面已经得到，而压强相等是由于
壁可以移动而得到。类似于前面关于温度的分析可知初始压强高的系统体积
会变大，与直觉一致。当然我们也可以考虑一个可以移动，但绝热的壁。这
时在达到平衡的过程中，中间的壁会在两子系统间振荡。由于摩擦力和粘滞
力的存在，振荡会衰减并最终停下来，平衡后两边压强相同，但温度一般不
同。

最后再看壁是导热的，粒子可穿透的情形

dS =

(
∂S1

∂U1

)
N1

dU1+

(
∂S1

∂N1

)
U1

dN1+

(
∂S2

∂U2

)
N2

dU2+

(
∂S2

∂N2

)
U2

dN2 (3.36)

而dU1 = −dU2，dN1 = −dN2，则

dS =

(
1

T1
− 1

T2

)
dU1 −

(
µ1

T1
− µ2

T2

)
dN1 (3.37)

⇒ T1 = T2, µ1 = µ2 (3.38)

化学势的差别产生物质的流动，平衡时化学势相等。类似于温度的讨论，物
质总是从化学势高的系统流向化学势低的系统。

由此可见定义的三个强度量T，P，µ的意义在于当两个系统平衡时，相应的
强度量相等。这给出了热力学基本问题一个方便的解决方案。

将强度量表达成为热力学坐标的函数的三个方程叫做状态方程。为什么需要
状态方程？状态方程与基本方程等价。但一个具体的测量总是将被测物与仪
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器形成平衡，如温度的平衡，所以状态方程更易测量。由状态方程可以构造
热力学的基本方程，而状态方程中的量都可以在实验室中测量。所以我们可
以通过测定状态方程，进而可以给出热力学的基本方程。

3.4 可逆过程

为了测量温度，需要讨论可逆过程。考虑一个封闭系统，任何过程的发生都
来源于内部约束的某种改变。对于一个从状态A到B的过程，如果通过改变约
束还可以从B到A，那么这个过程叫可逆过程。因为封闭系统中熵不会减少，
所以SB ≥ SA （A → B的过程）和SA ≥ SB（B → A的过程），SA必然等
于SB，可逆过程的熵不变。由第三假设，趋向平衡的过程是自发的，不可逆
的，并使得熵增加。不可逆过程引起熵的增加，因而熵不变的过程一定是可
逆的。总之，封闭系统中熵不变与可逆等价。

封闭系统中不等温子系统间的传热和耗散过程都不可逆，证明如下。首先考
虑不等温子系统间的传热。假设T1 > T2，d−Q > 0。对于传热过程，dU1 =
−dU2 = −d−Q，dV = 0。不考虑粒子数的变化。于是，dS = dU1/T1 +
dU2/T2 = (1/T2 − 1/T1)d−Q > 0。封闭系统总的熵增加，过程不可逆。一个
直接的后果是“一个处于热平衡的系统不会自发地出现温度差”，因为如
果可以有这样的过程，它就会构成不等温子系统间的传热过程的逆过程，
使得不等温子系统间的传热过程可逆。这实质上就是传统上“热力学第二
定律”的Clausius表述。再考虑耗散过程。一个封闭体系中，产生耗散的
机械装置无关热力学，热力学效应存在于微观上得到能量的子系统。dS =
dU/T = d−W ′/T > 0，d−W ′为有耗散的功。此过程导致封闭系统总的熵增
加，不可逆。一个直接的后果是“不能从单一热源吸热并全部转化为功而不
产生其他影响”。因为如果可以从单一热源吸热并全部转化为功，则因为功
可以通过耗散过程全部转化为热，使得这个过程可逆。这与耗散过程不可逆
矛盾。这实质上就是传统上“热力学第二定律”的Kelvin表述。

传统的热力学对于第二定律的Kelvin和Clausius两种表述实质上对应的就是
按照微观自由度和宏观自由度的关系给出的两种不同的不可逆过程。这些结
论都反映了这样一个现象：不确定度不会减少。功代表宏观的不确定度低的
运动，热是微观上的高度不确定的运动。热的本质是增加了微观上的不确定
性。并不是热不能转化为功。只要不导致不确定度下降，热可以转化为功。
热机就是这样一个例子。

热机可以可逆地运行，如图3.3所示的卡诺循环就是一种可逆热机。

卡诺循环包括温度分别为T1和T2的两个热库和一个工作物质（一般地不是理
想气体）。工作物质首先从一个热库吸收热量。为了保证可逆，在此吸热过
程中工作物质要与热库1等温，系统总的熵不变。此过程中工作物质等温膨
胀（A → B），无限接近平衡，因而可逆。然后工作物质脱离与热库1的接
触，绝热膨胀（B → C），温度发生变化。之后，工作物质和与其等温的热
库2接触，并压缩（C → D）。最后，工作物质脱离与热库2的接触，绝热
压缩（C → D）使得与热库1再次等温，完成一个循环。这里我们取工作物
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图 3.3: 卡诺循环

质吸热和对外做功为正。由于能量守恒，W = Q1 +Q2。

首先说明Q1和Q2必须反号，即一个是吸热一个是放热。如果Q1和Q2同号，
由于热机的过程可逆，则总可以使Q1和Q2都为正。这时可以将功的一部分
取出来通过耗散过程变为热再回到热库，比如将Q1的热量回到热库1。于是
我们就发现热库2将Q2的热量全部转化为了功而没有产生其他后果。这显然
与上面Kelvin的表述矛盾。所以，工作物质与两个热库间必须一个吸热一个
放热。

|Q1|必须不等于|Q2|，即功不能为0。假如功为0，热量从一个热库全部传
递到另一热库。由于过程可逆，上述过程可以反过来进行。但这违反了
Clausius的表述，即不等温的传热不可逆。以上讨论说明，工作物质会从一
个热库吸热，从一个热库放热，并做功。如果功为正，则吸热的量大于放热
的量，热的差值作为功输出，系统对外做功，称为热机。如果功为负，吸热
小于放热，外界对系统做功，称为制冷机。

同样的热量对热库熵的产生的贡献不同。由于两个热库温度不同，为了使过
程可逆、保证总的熵不变，Q1和Q2必须反号，|Q1|必须不等于|Q2|。更进一
步，

∆S =
Q1

T1
+
Q2

T2
= 0 (3.39)

得到
|Q1|
T1

=
|Q2|
T2

(3.40)

前面讨论过温度高低与冷热的关系。这里我们以可逆性再讨论一次。如图
3.4，假设有两个系统，系统1的温度是T1，系统2的温度是T2，T1 > T2。两
系统接触后之间会有热传递。假设系统2比系统1热，即热接触后热量Q从
2传递到1，该过程不可逆，称为过程一。现在让一个卡诺热机工作在两系
统间，如图。热机从系统1吸收热量Q，将热量Q − W放给系统2，然后将
功W以耗散的方式传给系统2。这样最终结果是系统1将热量Q传递给了系统
2，该过程称为过程二。由于过程二的存在，过程一成为可逆过程，这与其
不可逆性矛盾。所以热量应该是从系统1传递到系统2，即按照上面定义的温
度高意味着更热、温度低意味着更冷，热量总是自发地从高温传向低温。
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图 3.4: 温度与冷热的对应关系

现在再花些时间讨论不可逆过程。不可逆过程伴随着熵的增加，一般地dS ≥
0，等号只在可逆过程时成立。自然界中不存在真正的可逆过程，可逆过程
是一种极限情况，所以自然界中的总的熵不断增加，尽管局部可能会减小。
如之前所诉，不可逆过程有两种。一种是通过有耗散的做功方式将宏观上的
能量转化为微观上的热运动，如摩擦生热。尽管能量守恒，但是一旦通过有
耗散的方式将能量散布在微观自由度上，这部分能量中的一部分将不再能转
化为功，成为无用的能量。我们需要的有用的能量都是宏观意义上的。这个
过程熵在增加，熵的增加意味着能量的退化。另一种不可逆过程来源于不等
温传热，导致熵的增加。实际上两种不可逆过程具有相同的实质，即从微观
上不确定度的增加。

在不等温传热的情形中，可以看到当温差趋于零时，熵增为零，因而可
逆。耗散常常可以有两种情形。其一为摩擦。其强度不依赖于速度。在此
过程中，小尺度上有很多亚稳态和亚稳态向稳态跃迁的存在。跃迁过程
伴随着能量流动。因此可逆过程中需要让摩擦趋于零。其二是阻尼。其强
度正比于速度。我们需要证明只要让速度趋于零，熵增就为零。熵的变化
率dS/dt是速度v的函数。当v趋于零时，dS/dt也趋于零。因此dS/dt ∝ v2。
总的熵变

∫
dS ∝

∫
v2dt = v

∫
vdt = vl。l是路径长度。因此当v趋于零时，总

的熵增亦为零。

3.5 经验温标

第三假设保证了每个系统都存在一个热力学坐标的函数，当两个系统热平
衡时，其函数的值相等。这个函数定义为温度。在热力学坐标张成的相空间
中，函数为定值的点构成了一族等温面（见图3.5），尽管在确定如何测量
温度之前还不知用什么数来标记每个面。空间中每个点，即每个状态，都位
于唯一的一个面上。两个面不会交叉，因为一个状态不会有两个温度。

到此为止，我们知道了温度这样一个量的存在，但是仍然没有定义测量温度
的方法。前面已经知道处于平衡的系统温度相同。于是可以选取某个特定
的系统作为温度计。测量时让温度计与待测系统接触并达到热平衡。温度
计与待测系统相比很小，这样与待测系统接触时不会引起待测系统明显变
化。在温度计的热力学坐标张成的空间中，温度T为定值的点构成了一族等
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图 3.5: 等温面

温面（见图3.6），尽管在确定如何测量温度之前还不知用什么数来标记每
个面。空间中每个点，即每个状态，都位于唯一的一个面上。两个面不会交
叉，因为一个状态不会有两个温度。

图 3.6: 经验温标

温度计需要有某个容易测量的性质，称为τ。将τ对应一定的温度值，得到
经验温标。尽管在确切知道温度计的状态方程之前无法从τ得到T，但是知
道τ和T有一一对应关系就已经足够了。τ(x1, x2,…)一般地是热力学坐标的
函数。但并不是任何一个函数τ都能做经验温标。τ(x1, x2,…)必须在这个系
统的每一个等温面上取一恒值，在不同等温面上取不同的值。一个可行的
做法是对作为温度计的系统加以约束，使其状态只在一条一维的曲线上运
动，如图3.6。曲线上每个点对应那个容易测量的量的唯一一个值，而曲线
又只与每个等温面有唯一的一个交点。这样就可以利用这个系统定义经验温
标。例如，水银温度计中水银柱的长度。又如，气体温度计中固定压强和粒
子数，测量体积。确定了一个经验温标后，它的函数g(τ)也能给出温度。一
般地一个系统会有无数种可能的热力学坐标的组合对应同样的温度。但对于
温度计，通过约束，一个温度只能唯一地对应一组热力学坐标的值，反之亦
然。

第三假设保证了定义一个经验温标是可行的。处于平衡的一些体系都有相同
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的温度。只要温度计对每一个体系都给出相同的读数即可，即使不知道读数
到底与温度如何对应。

经验温标需要依赖于一个具体的系统，因此不是我们真正希望的，下面将
介绍如何建立一个更合适的温标来得到温度T。但经验温标的引入是一个
逻辑上不可缺少的环节，将导致内能的可测性。用经验温标既可以比较二
者温度是否相同。不能在确定了热力学温度的测量方法后再讨论内能，因
为测量热力学温度已经需要内能的可测性。前面在讨论第二假设时曾经提
到内能U的可测性问题。当时没有解决的问题是怎样将待测系统与内能“尺
子”比较。经验温标提供了解决方案。利用经验温标标定的温度计分别测
量“尺子”中的每一个系统及待测系统。对“尺子”中的每一个系统会有一
个读数。当“尺子”中的某个系统的读数与待测系统的读数相同时，二者有
相同的经验温度。这里体积、物质种类和粒子数都相同。如果内能U与温度
有一一对应关系，则温度相同则内能相同。这样就得到了待测系统的内能。
同时经验温标也提供了判断绝热壁的方法。如果一个坚固的不可穿透的边界
可以保持子系统的温度不受外界影响，那个这个边界就是绝热的。而温度变
化是可以利用经验温度计进行测量的。
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物理学的历史总是从可测量量的测量展开。近代热力学开始于17世纪。气体
是最容易研究的体系。因此热力学从研究气体开始。人们发现气体有很明显
的热胀冷缩现象，因此可以做成温度计来测量温度。但需要注意的是，在物
理学中，一个理论体系包括可测量量、测量方法和可测量量间的关系，它们
需要自洽而不能有外在的帮助。以一个力学中时间的测量为例，牛顿力学中
需要时钟来测量时间，而这是因为如单摆这样的时钟在牛顿力学的意义下做
的是周期性运动，因而符合对时钟的要求。正所谓是理论决定了什么可以测
量、怎么测量。测量方法与理论框架一定是一个自洽的整体。然而正如前面
提到的，一个物质体系的具体宏观物性并不是热力学的一部分，热力学无法
告诉我们一个具体物质的性质，物质的热胀冷缩属于外部信息。所以任何依
赖于具体物质的测温方法都不是热力学理论框架中应该有的。在热力学中我
们需要一个仅仅建筑在热力学意义上的温度计，这是理论自洽的需要。这个
目标由William Thomson (Lord Kelvin) 在1848年实现。温度的单位也因此
以Kelvin命名。

17世纪的Torricelli利用水银实现了气体压强的测量。力是热力学的一部分，
因此有关力的测量，如同体积测量一样，允许出现在热力学中。压强的单位
为Pascal (Pa)。1 Pa = 1 Nm−2。17世纪的Boyle研究了气体定律，给出了恒
温下P-V的关系。我们后面会知道体积和压强、能量和温度都关于熵存在对
偶关系。而摩尔数是与体积、能量有同等地位的与摩尔数对偶的是化学势。
这个概念由Gibbs在1875-1876年间引入。

强度量以及内能、热和熵与我们日常生活的直觉一致。我们从热力学的基本
假设出发来研究如何测量这些量。

4.1 内能的测量

利用经验温标可以讨论内能U的可测性问题。当时没有解决的问题是怎样将
待测系统与内能“尺子”比较。下面将讨论的经验温标提供了解决方案。利
用经验温标标定的温度计分别测量“尺子”中的每一个系统及待测系统。
对“尺子”中的每一个系统会有一个读数。当“尺子”中的某个系统的读数
与待测系统的读数相同时，二者有相同的经验温度，即有相同的温度。这里
体积、物质种类和粒子数都相同。“尺子”中每个系统与待测系统都有相同
的S(U)关系，如图4.1所示。由前面的讨论得知，S(U)曲线上每一点的斜率
（即1/T）都不同，即U与T有一一对应关系。于是，温度相同则内能相同。
这样就得到了待测系统的内能。

内能可测后，就可以测量热了。

31
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图 4.1: 内能与温度一一对应

4.2 热力学温标

温度是国际单位制中七个基本量之一。温度来源于人对于冷热最直观的感
受，热的物体温度高，冷的物体温度低。但是冷热和温度高低并不是同一件
事。冷（cold）和热（hot）来源于热量（heat）传递。两个系统热接触后如
果之间有热量传递，放热的系统称为"热"，吸热的系统称为"冷"。在没有定
义温度及研究温度的性质之前，我们还不能将冷热与温度高低联系起来。我
们将先讨论如何基于热力学测量温度。

考虑这样一个情形：一个封闭系统中的一个传热过程由温度分别为T1和T2的
两个系统及可能需要的与热力学无关的机械装置参与。系统熵的变化分别
为dS1 = d−Q1/T1，dS2 = d−Q2/T2。为了使过程可逆需要dS1+dS2 = 0。为了
实现能量的可逆转移，系统中必须有第三个物体（工作物质）。引入第三个
物体作为中介能够保证所有的热接触和热传递是在相同温度的物体间进行。
这样的一个过程可以由可逆卡诺热机实现。从而T1/T2 = −d−Q1/− d−Q2，将
温度之比表示成热量之比。非常重要的是该关系不依赖于具体的工作物质，
而仅与两物体温度有关，这就为我们提供了一种测量温度的方法。能量，包
括热量，是可以测量的量。通过测量能量就可以定出T2/T1。由此可见可逆
过程概念的用途在于定义热力学温标。当然现实中没有真正的可逆过程，但
是两温度之比可以作为真实热机的极限。

这样定义的温度尚有一不确定的乘子。我们可以让热库2作为基准，将热
库2选作处于三相共存状态的水并将其温度定义为273.16 K。水的三相点
是指冰、水、水蒸气共存时的温度。K是取定的温度单位Kelvin。为了测量
一个系统的温度，需要用一个可逆热机工作在该系统和温度基准之间，测
量Q1和Q2。系统的温度定义为

T = 273.16
−Q2

Q1

K (4.1)

这个热力学温标是我们所期望的，它不依赖于任何具体物质，仅来源于热力
学的假设。这样定义的温度恒为正。至此我们已经有了测量温度的方法，因
此给出了热力学基本问题的解决方案。
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19世纪中叶William Thomson发展了上述的热力学温标，人们才对温度有了
真正的理解，温度的测量也不再依赖某个具体的物质。这样定义的温度是描
述热源的参数，符合我们关于温度的所有直觉经验（平衡时温度相同、热量
从高温转移到低温...），并与建立在统计力学基础上的理想气体温度计给出
的测量一致。从温度的热力学定义角度来看，可逆Carnot热机的意义在于构
造了一个温度计。当然用Carnot循环测量温度不是一个方便的方法。

上述的定义不方便测量，并且对每一个系统都需要分别根据原始的定义进行
测量得到其温度。幸运的是热力学说明两个有热接触的系统在达到热平衡后
它们会有一个量相同，这个量叫温度。这为温度测量提供了方便，提供了制
作温度计的可能。因为我们只需要知道如何测量一个特定系统的温度就可
以得到其他任意系统的温度。设想我们可以有这样一个已经根据定义标定
的温度计，它有某一个依赖于温度并容易测量的特征（如体积、压强、电阻
等），这样我们可以将这个特征与温度的关系做成表格。通过这个表格，我
们可以知道温度计的温度，从而知道与这个温度计进行热接触的被测系统的
温度。在热力学得到充分发展以前，人们已经通过直觉经验开始使用这种测
温方案，建立了经验温标。之后热力学确认了其合理性。

温度计量的近期综述可参考J. Fischer and B. Fellmuth, Rep. Prog. Phys. 68,
1043 (2005)。历史上第一个测温仪器由伽里略在十六世纪末发明。这个仪
器的核心部件是一个装有液体的管子，液面的高度随温度变化。为了将温度
测量标准化，需要指定一些温度的固定点。Fahrenheit在1724年制作了一个
水银温度计。他将冰、水和氯化铵混合物的温度定为零点，将冰水混合物的
温度取为32◦，将人体温度取为96◦，由此定义了华氏温标。Celsius使用水
银温度计在1742年将沸水的温度取为0◦，将冰融化的温度取为100◦，之间
等分100份（等分显然没有依据，暂且使用）。之后Stromer将这个定义颠
倒过来，形成了现在常用的摄氏温标。这些定义需要指定一些固定点。即使
没有定义温标，一个温度计仍然可以告诉人们两个系统的温度是否相同。因
此通过实验可以确定这些固定点的可重复性。在热力学得到充分发展后，我
们会发现其理论也会保证一些固定点的可重复性。

直接测量热力学温度极为不便。除直接基于热力学定义测量温度的方法
外，还可以利用统计力学来构造温度计。Boltzmann给出了利用微观的统
计力学计算熵的方法，即S = kB logw，有了熵就有了温度，这个温度与
热力学温度等价。如果一个多体系统简单到可以用统计力学进行很严格
的计算时，它就可以作为温度计来使用（见下图），如经典理想气体、
Fourier光谱（fts）、光谱（spectral）、全辐射（total）、噪音（noise）、
Rayleigh散射、介电常数气体温度计（dielectric-constant gas thermometry
(DCGT)）、声学气体温度计（acoustic gas thermometry (AGT)）等。理想
气体温度计是第一个得到热力学温度的温度计。这些其可测量的性质与温度
的关系能够清晰地写出来而没有任何依赖于温度的未知因素的温度计称为
主温度计（primary thermometer）。主温度计给出热力学温度。但主温度
计一般操作和维护都很复杂，因此主要作为温度标准来使用。通常在实际中
真正用来测温的更为方便的温度计称为辅助温度计（secondary thermome-
ter），如电阻温度计、热电偶等等。辅助温度计可测量的性质与温度的关系
还无法从理论上计算出来，因此需要与主温度计进行比对。
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这里还有一个细节问题：如何定出kB。kB来源于热力学的熵与统计力学的
熵之比较。也可以等效地比较热力学温度和统计力学给出的温度。统计力
学给出理想气体的状态方程是PV = kBNANT。这里假设已经对kB进行了
合适的选择使得T就是热力学温度。在热力学中已经指定水三相点的温度
是273.16 K。所以如果把一个N摩尔理想气体的温度固定在水的三相点来测
量P和V就可以决定kB。

图 4.2: 近期使用的一些主温度计（R. L. Rusby et al, BIPM Com. Cons.
Thermométrie 22 (2003)）NRC: National Research Council Canada. NIST:
National Institute of Science and Technology, USA. PTB: Physikalisch-
Technische Bundesanstalt, Germany. NPL: National Physical Laboratory,
UK. MSL: Measurement Standards Laboratory, New Zealand. IEN: Istituto
Elettrotecnico Nazionale Galileo Ferraris, Italy. UCL: University College Lon-
don.

利用主温度计精确地实现热力学温度是一个需要很多努力的工作。为了更方
便使用，Consultative Committee of Thermometry (CCT) 发展了国际温标。
该温标之后被CGPM采纳。第一个国际温标公布于1927年，称为ITS-27。目
前普遍采用的是ITS-90。

4.3 主温度计

常用的气体温度计有等体积气体温度计、声学气体温度计和介电常数气体温
度计。很多气体在水的三相点附近都接近理想气体。但真正的理想气体需要
在取密度为零的极限时才能得到（根据统计力学）：

lim
N/V→0

PV

NT
= R (4.2)

因此实际测量时一般要测量不同密度下的有关性质，然后通过插值得到零密
度极限。
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如图4.3所示，在等体积条件下，各种气体在低密度极限下对于同一固定温
度点给出相同读数。

图 4.3: 气体温度计低密度极限下的读数

声学气体温度计基于的原理是摩尔质量为M的理想气体中声速c0与热力学温
度有如下关系：

c0 =

(
γRT

M

)1/2

(4.3)

介电常数气体温度计的基本想法是利用电容测量定出气体的介电常数ϵ，并
进而利用ϵ = ϵ0 + α0N/V得到密度N/V，其中ϵ0为真空介电常数，α0为气体
分子的静电极化率。这种方法避免了实际测量密度时的一些复杂因素。

噪音温度计基于电阻R上均方电压噪音⟨U2⟩与热力学温度的如下关系（Nyquist
1928）

⟨U2⟩ = 4kBTR∆f (4.4)

上式在频率f ≪ kBT/h的条件下成立，R要求不依赖与频率，∆f是带宽，h是
Planck常数。

电子和原子核都带有磁矩。磁矩µ在磁场B中的Zeeman劈裂是∆E = µB。温
度可以从描述能级占据数的特征因子Boltzmann分布exp(−∆E/kBT )得到。

辐射功率依赖于温度，因此可用于温度测量。例如，黑体的全辐射功率
为σT 4，σ为Stefan-Boltzmann常数。

4.4 压强的测量

由dU = TdS − PdV得知P = −(∂U/∂V )S，即熵不变时内能对体积的改变
率。为了得到P的含义，需要构造一个熵不变的过程。对于一个可与外界
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相互作用的子系统，内能的变化为三项之和：dU = d−Q + d−W + d−W ′，其
中d−Q为热、d−W为无耗散的功、d−W ′为耗散功，三者是彼此独立的过程。由
于互相独立，所以可以分别分析其效应。首先看热引起的熵的变化：在没有
功时，dU = d−Q，因而熵发生变化，dS = dU/T = d−Q/T。其次，耗散过程
使熵增加：dS = dU/T = d−W ′/T。最后考虑对宏观坐标做的无耗散的功。
系统外部的用来做功的机械装置无关热力学，因而过程完成后熵没有变化。
而对于系统本身，dV和−dV两个过程互为逆过程，即无耗散的做功过程可
逆，熵不变。因为传热和耗散功两个使熵变化的过程独立，为了得到一个熵
不变的过程，必须有d−Q = 0和d−W ′ = 0。于是(dU)S = d−W，即P就是我们
通常在力学中称为压强的量。

4.5 熵的测量

上面已经讨论了温度和压强的测量，于是就可以从实验得到状态方程。那么
下面的问题就是如何从状态方程得到熵，即基本方程。

首先证明一个数学上的定理：齐次函数的Euler定理。

一个k阶的齐次函数是指f(λx1, λx2, · · · , λxn) = λkf(x1, x2, · · · , xn)。

例如f(x, y, z) = x5y2z3是10阶齐次函数，f(x, y) = x ln(y/x)是1阶齐次函
数。

根据齐次函数的定义f(λx1, · · · , λxn) = λkf(x1, · · · , xn)，两边对λ求导数得
到：

∂f

∂(λx1)

∂(λx1)

∂λ
+ · · ·+ ∂f

∂(λxn)

∂(λxn)

∂λ
= kλk−1f(x1, · · · , xn) (4.5)

⇒ x1
∂f

∂(λx1)
+ · · ·+ xn

∂f

∂(λxn)
= kλk−1f(x1, · · · , xn) (4.6)

令λ = 1有：

x1
∂f

∂x1
+ · · ·+ xn

∂f

∂xn
= kf(x1, · · · , xn) (4.7)

写成矢量的形式：

x⃗ · ∇f(x⃗) = kf(x⃗) (4.8)

例如对于一个一阶齐次函数f(x, y) = √
xy
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∂f

∂x
=

1

2

√
y

x
,

∂f

∂y
=

1

2

√
x

y
(4.9)

x · ∂f
∂x

+ y · ∂f
∂y

=
1

2
x ·
√
y

x
+

1

2
y ·
√
x

y
=

√
xy = f(x, y) (4.10)

函数S = S(U, V,N)是一个一阶的齐次函数，即

S(λU, λV, λN) = λS(U, V,N) (4.11)

为了保证真正的齐次性，N必须出现在热力学坐标中（黑体内的光子系统
是个例外，因为V的变化自动保证了N产生同样的变化），这样才能做到系
统总体改变了λ倍。如果只有V，没有N，则V变化λ倍后粒子密度发生了变
化，不是真正地使系统变化了λ倍。如果N不出现在熵的自变量中，则无法
保证熵的齐次性。

齐次性对熵的函数形式给出了限制。下面我们具体给出由于齐次性带来的结
果（欧拉方程）。由欧拉定理：

S =
∂S

∂U
U +

∂S

∂V
V +

∂S

∂N
N

=
U

T
+
PV

T
− µN

T

=
1

T
(U + PV − µN) (4.12)

类似地，如果以S作为热力学坐标，则有：

U = TS − PV + µN (4.13)

这样如果知道了P，T，µ作为U，V，N的函数，即状态方程，就可以写出
热力学的基本方程。

事实上三个状态方程并不互相独立。由于T，P，µ是强度量，U，V，N是
广延量，有

T = T (U, V,N) = T (u, v) (4.14)

P = P (U, V,N) = P (u, v) (4.15)

µ = µ(U, V,N) = µ(u, v) (4.16)

其中u = U/N，v = V /N，所以T，P，µ仅由u，v两个变量决定，T，P，µ中
只有两个是独立的。这三个量之间满足的方程叫Gibbs-Duhem关系。这个关
系的根源还在于热力学基本方程的齐次性，齐次性给出欧拉方程：

S =
1

T
(U + PV − µN) (4.17)
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而同时又有

dS =
1

T
dU +

P

T
dV − µ

T
dN (4.18)

将欧拉方程代入上式得到

d
(
U

T

)
+ d

(
PV

T

)
− d

(
µN

T

)
=

1

T
dU +

P

T
dV − µ

T
dN (4.19)

即

Ud
(
1

T

)
+ V d

(
P

T

)
−Nd

(µ
T

)
= 0 (4.20)

此式即为Gibbs-Duhem关系。它用微分形式给出了强度量之间的关系。由于
这个关系的存在，只要已知两个状态方程就可以定出热力学基本方程（有若
干待定常数）。

理想气体

以下讨论理想气体这样一个具体物质系统的状态方程和热力学基本方程。

假设我们已经知道怎样测量U、V、P这样一些量。实验给出两个状态方程：

PV = NRT, U = cNRT (4.21)

对于单原子c = 3
2
。对于双原子在很大的温度范围内c = 5

2
。

首先由Gibbs-Duhem关系求出第三个状态方程

d
(µ
T

)
=
U

N
d
(
1

T

)
+
V

N
d
(
P

T

)
(4.22)

而1/T = cNR/U，P/T = NR/V，代入上式得到

d
(µ
T

)
=
U

N
d
(
cR

N

U

)
+
V

N
d
(
R
N

V

)
⇒ (4.23)

d
(µ
T

)
= cR

U

N
d
(
N

U

)
+R

V

N
d
(
N

V

)
(4.24)

则

d
(µ
T

)
= cRd

(
ln
N

U

)
+Rd

(
ln
N

V

)
⇒ (4.25)

µ

T
= cR ln

N

U
+R ln

N

V
+ α (4.26)

α是常数，由一参考点确定。 假设在U = U0，N = N0，V = V0时，µ =
µ0，T = T0。一般地，c是温度的函数，但在高温时趋于饱和。因此，如果
将参考点的温度取得足够高，就不需考虑c对温度的依赖关系。

µ0

T0
= cR ln

N0

U0

+R ln
N0

V0
+ α (4.27)
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从而解出α，并得到

µ

T
− µ0

T0
= cR ln

(
N/U

N0/U0

)
+R ln

(
N/V

N0/V0

)
(4.28)

将 1
T
，P

T
，和 µ

T
代入欧拉方程得到

S =
1

T
· U + V · P

T
−N · µ

T

=cNR +NR−N
µ0

T0
− cNR ln

(
N/U

N0/U0

)
−NR ln

(
N/V

N0/V0

)
=N

(
(c+ 1)R− µ0

T0

)
+NR ln

((
U

U0

)c(
V

V0

)(
N

N0

)−(c+1)
)

(4.29)

令s0 = (c+ 1)R− µ0
T0
，是参考点处单位摩尔的熵，则

S = Ns0 +NR ln

((
U

U0

)c(
V

V0

)(
N

N0

)−(c+1)
)

(4.30)

一旦通过测量得到理想气体的状态方程，就可以用上面的步骤得到熵。下面
我们用上面的公式求出理想气体绝热自由 膨胀时的熵变。初始时，气体处
于2V体积中的一半，然后突然抽去中间的挡板，气体将向另一半的真空中扩
散，最后达到新的平衡态时，气体均匀分布，求熵变。

Si = Ns0 +NR ln

((
U

U0

)c(
V

V0

)(
N

N0

)−(c+1)
)

(4.31)

Sf = Ns0 +NR ln

((
U

U0

)c(
2V

V0

)(
N

N0

)−(c+1)
)

(4.32)

∆S = Sf − Si = NR ln 2 > 0 (4.33)

这与之前的计算相符。

如果是一个绝热可逆过程，则

∆S = 0 ⇒ T cV =常数 (4.34)

多组份理想气体

多组份理想气体的热力学坐标是U、V和N1, N2…。统计力学告诉我们S =
kB lnΩ，Ω是微观状态数。理想气体分子间没有相互作用，不同组分气体相
互独立地存在。因而总的状态数应为各组分气体各自状态数的乘积：Ω =
Ω1 · Ω2...。类比球和盒子的问题，N个格子中放n1个第一种球和n2个第二种
球，类似于稀薄气体忽略排除共同占据同一格子的可能，则有

Ω =
N !

(N − n1)!n1!
· N !

(N − n2)!n2!
= Ω1Ω2 (4.35)
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注意这里要求两种球不同。如果两种球相同，则有

Ω =
N !

(n1 + n2)!(N − n1 − n2)!
(4.36)

与上式不同。

总之，根据S = kB lnΩ，多组分理想气体的熵是单独占据同样体积具有
相同温度的各组分气体的熵之和（Gibbs定理）。对于理想气体，各组份
占据同一空间有相同温度但相互独立，因此满足各自的状态方程（由统
计力学确定）：PjV = NjRT，Pj称为分压。总压强P =

∑
j Pj。因此PV =

NRT，N =
∑

j Nj为总粒子数。总能量是各组份气体能量的和：U =
∑
cjNjRT。

图 4.4: 混合熵

考虑图4.4中的两个系统。左边系统中各组份气体没有混合，各自的温度和
压强都为T和P。右边系统中各组份混合，温度和总压强为T和P。两个系统
的能量、体积、粒子数、温度和压强都相同，但是熵不同，计算如下。为方
便将单一组份气体的熵写为如下形式

S = Ns0 +NR ln

((
U

U0

)c(
V

V0

)(
N

N0

)−(c+1)
)

= Ns0 +NR ln
((

T

T0

)c
V

N

N0

V0

)
(4.37)

混合前的熵为

S0 =
∑
j

Nj

(
sj0 +R ln

((
T

Tj0

)cj Vj
Nj

Nj0

Vj0

))
(4.38)

Vj = (Nj/N)V。各组份气体有各自的参考点。根据Gibbs定理，混合后的熵
为

S =
∑
j

Nj

(
sj0 +R ln

((
T

Tj0

)cj V
Nj

Nj0

Vj0

))
(4.39)

与S0的区别在于用V替代了所有的Vj。

S =
∑
j

Nj

(
sj0 +R ln

((
T

Tj0

)cj Vj
Nj

V

Vj

Nj0

Vj0

))
=
∑
j

Nj

(
sj0 +R ln

((
T

Tj0

)cj Vj
Nj

Nj0

Vj0

N

Nj

))
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=
∑
j

Nj

(
sj0 +R ln

((
T

Tj0

)cj Vj
Nj

Nj0

Vj0

)
+R ln

N

Nj

)
= S0 −R

∑
j

Nj ln
Nj

N
(4.40)

后一项称为混合熵。通过扩散的混合过程不可逆。

还可以由另一种方法得到熵。熵是状态的函数，因此一个过程中系统的熵的
变化只和初末态有关。一个系统的任何过程只要初末态相同，熵的变化就相
同（这里不考虑环境的熵的变化）。如果可以找到一个连接初末态过程，就
可以测量熵的变化。

一个方便的做法是找到一个使被研究系统中的各个子系统无限接近平衡的
过程来连结初态和末态，此时dS = dU/T + PdV /T。该形式还可以进一
步简化：由于dU = d−Q + d−W + d−W ′ = d−Q − PdV + d−W ′，我们有dS =
(d−Q + d−W ′)/T。这里的物理意义是很明确的。只有热和耗散导致了熵的增
加，无耗散的功不对熵增有贡献。对于熵增来讲，热与耗散没有区别。

由欧拉定理得到熵时，如果知道了全部的状态方程，则不需要进行积分。而
以上方法需要在一条选定的路径上对状态方程进行积分，但只需要知道这条
路径上的状态方程即可。

下面以理想气体自由膨胀、两个系统间通过热交换达到平衡及摩擦生热为例
来研究熵变。

对于气体自由扩散，初、末态内能相同，但体积不同。假设末态的体积为初
态的两倍。从初态到末态的一个可能的无限接近平衡的过程是气体缓慢的等
温膨胀。这里没有耗散，d−W ′ = 0。从状态方程可知内能相同则等温。

d−Q = −d−W = PdV (4.41)

从实验得到
PdV = NRdT (4.42)

所以
d−Q =

NRT

V
dV ⇒ dS =

NR

V
dV (4.43)

⇒ ∆S = NR ln 2 (4.44)
自由扩散有耗散，因此熵增加。

熵是状态的函数，所以我们还可以构造其他过程来得到熵。如图4.5，AB是
等温过程，AC是绝热过程，CB是等容吸热过程。VB = 2VA。熵的变化可以
通过ACB来计算。

对于AC有dS = 0和T cV = const，于是TC = TA/2
1/c。对外做功，温度下降。

对于CB

∆S =

∫ B

C

d−Q
T

= NcV

∫ B

C

dT
T

= NcV ln
TB
TC
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图 4.5: 计算理想气体自由膨胀的熵变

= NcV ln
TA
TC

= NcV ln 21/c = NR ln 2 (4.45)

与利用等温过程的结果相同。

另一个例子，两个温度分别为T1和T2的全同理想气体系统的热接触。处于末
态的系统两边温度相同，为T。根据状态方程2U = c2NRT有

T =
U

cNR
(4.46)

而
2U = U1 + U2 = cNRT1 + cNRT2 (4.47)

所以

T =
1

2
(T1 + T2) (4.48)

可以构造一个过程，假设中间的导热壁非常接近于绝热壁，热流非常小，因
此两个系统分别都处于无限接近平衡的状态。

d−Q = dU = cNRdT (4.49)

所以

∆S1 =

∫ T

T1

d−Q
T

=

∫ T

T1

dT
cNR

T
= cNR ln

T

T1
< 0 (4.50)

∆S1 =

∫ T

T2

d−Q
T

=

∫ T

T2

dT
cNR

T
= cNR ln

T

T2
> 0 (4.51)

∆S = cNR ln
T 2

T1T2
= cNR ln

(T1 + T2)
2

4T1T2
> 0 (4.52)

总的熵增加。
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第三个例子，温度为T、体积不变的热库因为摩擦生热而使内能增加了∆U，
熵增为∆U/T。

以上几个例子我们看到不可逆过程导致熵增加。

再看一个可逆的例子。考虑一体积不变的理想气体，初始温度为Ti，希望通
过可逆过程将温度变为Tf。假设Tf > Ti。 对于理想气体∆U = c∆T。 做法
如图4.6。引入一系列热库，分别依次将系统与热库接触，最后有Ti → Tf。
在与第n热库接触之后系统温度是Ti + (n − 1)∆T。然后与第(n + 1)热库
接触，温度变为Ti + n∆T，这期间d−Q = c∆T，∆S = d−Q/T = c∆T/T。
N → ∞时，总熵变是

S = c

∫ Tf

Ti

1

T
dT = c ln

Tf
Ti

(4.53)

对于一个热库dS = −d−Q/T。对所有的热库求和

S = −
∫ Tf

Ti

1

T
cdT = −c ln Tf

Ti
(4.54)

所以最后总的熵变为0，为可逆过程。将该过程反演可使Tf → Ti。

图 4.6: 可逆热交换
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5 响应函数

现在讨论对熵的二阶微分。

5.1 响应函数

响应函数是与实验密切相关的一些量，描述着材料的性质，具有直接的物理
意义。响应函数是对热力学基本方程的二次微分（一次微分是强度量）。反
映的是广延量或强度量在其中一个量变化时的另一个量的响应。有了各种响
应函数就可以得到状态方程和基本方程。事实上人们在实验中直接测量的往
往是这些响应函数。

热膨胀系数定义为

α =
1

V

(
∂V

∂T

)
P

(5.1)

是系统在定压下增加单位温度时体积的变化率。

等温压缩率定义为

κT = − 1

V

(
∂V

∂P

)
T

(5.2)

是等温下，压强增加导致的体积变化率。

摩尔定压热容

cP =
1

N

(
d−Q
dT

)
P

=
T

N

(
∂S

∂T

)
P

(5.3)

是定压下1摩尔物质温度升高1度需要的准静态热流。

一般地可以定义更多的二阶导数，但是它们之间存在一系列的关系，这使得
在不考虑粒子数变化时只有三个是独立的。我们一般选 α，κT，cP为相互独
立的基本集。这些量都是实验上的直接可测量量。响应函数的形式结构以后
会介绍，目前我们只看另两个响应函数的例子。

摩尔定容热容

cV =
1

N

(
d−Q
dT

)
V

=
T

N

(
∂S

∂T

)
V

=
1

N

(
∂U

∂T

)
V

(5.4)

这里用到了dU = d−Q− PdV = NcV dT − PdV。

S是U的凸函数，所以(
∂2S

∂U2

)
V,N

=
∂

∂U

(
∂S

∂U

)
V,N

=
∂

∂U

(
1

T

)
V,N
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= − 1

T 2

(
∂T

∂U

)
V,N

= − 1

T 2NcV
< 0 (5.5)

于是cV > 0，即等容条件下加热导致温度上升。类似有κT > 0，即等温时，
减小体积导致压强上升。

还可以定义绝热压缩率

κS = − 1

V

(
∂V

∂P

)
S

(5.6)

描述系统绝热加压时，体积的变化。

以后我们将证明cV和κS都可以用cP，α，κT表示

cV = cP − TV α2

NκT
(5.7)

κS = κT − TV α2

NcP
(5.8)

这意味着cP > cV > 0和κT > κS > 0。

响应函数描述的都是系统某些参量变化时的响应。cP，α，κT通过测量可以
制成表格，其他响应函数都可以用它们表示出来。

5.2 理想气体的响应函数

我们已经讨论过一系列理想气体的性质。基本的热力学方程是：

S = Ns0 +NR ln

[(
U

U0

)c(
V

V0

)(
N

N0

)−(c+1)
]

(5.9)

状态方程：
U = cNRT, PV = NRT (5.10)

响应函数：

α =
1

V

(
∂V

∂T

)
P

=
1

T
(5.11)

κT = − 1

V

(
∂V

∂P

)
T

=
1

P
(5.12)

cV =
1

N

(
∂U

∂T

)
V

= cR (5.13)
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根据定义和S ∼ NR ln(T c+1/P )，可得

cP = (c+ 1)R (5.14)

容易验证

cP = cV +
TV α2

NκT
= cV +R (5.15)

c在一定温度范围内为一常数，对于单原子气体c = 3/2，对于双原子气体，
如H2，O2，N2，在通常的温度范围内c = 5/2。单原子气体的内能只来源于
平动，双原子分子气体还要考虑分子的转动和振动自由度。
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6 热力学势

6.1 能量最小原理

热力学的基本原理可以有不同的表达方式。已经有了熵最大原理，但对于一
些问题等价的表述会更方便。不同的表述对应于不同的外部条件。熵最大原
理对应于封闭的体系，与外界没有能量、体积和物质的交换。如果只允许有
能量的交换，则有在给定熵的条件下，系统在平衡态时能量最低。

例如隔板隔开的两个子系统，通过移动隔板可以达到平衡。为了保持熵不
变，需要缓慢地移动隔板，并让隔板带动外部的一个机械装置做功，最后隔
板停在某一平衡位置。该过程可逆，熵不变。根据能量最小原理，平衡时系
统能量最低。

另一个例子是隔板由绝热壁变为导热壁。为了保持熵不变，需要不断地将内
能以热的方式传递给外界。内能降低，熵不变，最后平衡时，能量最低。

简单地讲，能量最小原理源于熵最大值原理和熵是能量的单调增函数。趋于
平衡时，熵要趋于最大值，为了保持熵恒定，需要将能量降到最低。

达到一个状态可以有各种过程。如果是封闭体系，U不变，则S最大。如果
是开放体系，可交换能量，保持熵不变，达到同样的状态时U最小。

利用能量最小原理也可以同样得到平衡条件。

考虑一个复合体系

U = U1(S1, V1, N1) + U2(S2, V2, N2) (6.1)

约束使V，N不变，但可以有热流。平衡时

dU =

(
∂U1

∂S1

)
V1,N1

dS1 +

(
∂U2

∂S2

)
V2,N2

dS2

=T1dS1 + T2dS2 = 0 (6.2)

而dS1 + dS2 = 0，所以T1 = T2。给出同样的平衡条件。

6.2 Legendre变换

在研究一个系统时，封闭的条件并不是最方便。确定一个系统的边界条件的
最方便的办法是与库进行接触，并与库达到平衡。平衡条件通常有温度，压
强和化学势。例如在与一热库达到平衡时，二者的温度相同。在实际中，最
方便的办法往往是将强度量作为条件确定下来。所以我们需要研究已知某些
强度量时，系统的热力学行为。这将涉及到Legendre变换。
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我们有时需要将系统的状态表示为T，V，N的函数，而不是S作为U，V，N的
函数。二者需要包含完全相同的信息（即可以相互唯一地决定）。由于 1

T
=

( ∂S
∂U

)V,N，似乎解出U作为T的函数代入S(U, V,N)中即可将S转化为以T、V、N为
自变量能完全描述系统热力学行为的函数，但是马上我们会看到这样会损
失信息。以理想气体为例，理想气体的熵S ∼ lnU cV N−(c+1)。温度1/T =
∂S/∂U = c/U。于是，S ∼ lnT cV N−1。再考虑另一个熵的表达式S ∼
ln(U + αV + βN)cV N−(c+1)，这显然描述的不是一个理想气体。它的温度
为1/T = ∂S/∂U = c/(U + αV + βN)，带入到熵中有S ∼ lnT cV N−1，与理
想气体完全相同。因此一旦将熵中的内能简单地代换为温度，得到的函数一
般地会失去信息。不是说S不能表示为T的函数，只是说作为T的函数，会失
去一些信息。

再如，函数f(x, y)，这个函数包含了描述某种行为的全部信息。让p = (∂f
∂x
)y，

可以解出x作为p和y的函数，再代入f(x, y)可得f(p, y)。但是事实上f(p, y)并
不与f(x, y)等价。例如f(x, y) = x2y，则P = ∂f

∂x
= 2xy，x = P

2y
，代入f(x, y)，

有f(p, y) = p2

4y
。但是另一个函数f(x, y) = (x + g(y))2y，其中g(y)仅为y的函

数，也对应于同样的f(p, y) = p2

4y
。所以f(p, y)并不包含原来f(x, y)中的全部

信息，不能与f(x, y)完全对应，原因是用f(p, y)来求f(x, y)实质上是解一个
微分方程。

图 6.1: Legendre变换

一元函数的情形会更清晰。比如一个函数Y = Y (X)，P = ∂Y
∂X
，可得到Y =

Y (P )。但实际上Y = Y (P )对应的是一族函数（如图），其中每一个都有
相同的Y = Y (P )。 因而使Y这个函数不能在代换中保留全部信息。一个具
体的解决办法是来源于这样的想法：一条曲线即可以 用曲线上每一点的坐
标表示，也可以用每一点的切线斜率和截距来表示。如图，切线形成的包
络就是曲线本身。 两种表示方法具有完全相同的信息。在(X, Y )点的斜率
是P = Y−ψ

X−0
。如果知道了ψ作为P 的函数，那么曲线也就确定下来。ψ(P )可

以这样来确定：首先由P = Y−ψ
X−0
得到ψ = Y − PX， 然后从Y = Y (X)经过

求导有P = P (X)。这样就可以把X，Y都表示为P的函数。代入到ψ = Y −
PX，即可得 到ψ(P )。ψ(P )与Y (X)具有相同的信息，二者等价。(Y,X) →
(ψ, P )的变换ψ = Y −PX称为Legendre变换。从ψ(P )还可以求出Y (X)。这
时需要先将ψ和P表示为X和Y的函数。首先，

dψ = dY − PdX −XdP = PdX − PdX −XdP = −XdP (6.3)

所以X(P, ψ) = − dψ
dP，而又有Y = XP+ψ。由于二者可以分别解出ψ(X, Y )和P (X,Y )。
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代入ψ = ψ(P )可给出Y (X)。单变量的Legendre变换可以直接推广到多个变
量。

Y = Y (X1, · · · , Xn), Pk =
∂Y

∂Xk

(6.4)

ψ = Y −
∑
k

PkXk (6.5)

6.3 热力学势

强度量都是热力学基本函数U = U(S, V,N)的导数。所以如果希望用强度量
来描述系统的热力学行为，为了与 U = U(S, V,N)等价，需要通过Legendre
变换，给出新的函数，这些函数叫热力学势。当然也可以将S = S(U, V,N)
作为基本函数，也可以得到另一些热力学势。将熵替换成温度，经过Legen-
dre变换将U变到Helmholtz势。

U = U(S, V,N), T =
∂U

∂S
(6.6)

Helmholtz势
F (T, V,N) = U − TS (6.7)

dF = −SdT − PdV + µdN (6.8)

将体积替换成压强，经过Legendre变换将U变到焓（enthalpy）。

P = −∂U
∂V

(6.9)

焓
H = U + PV (6.10)

dH = TdS + V dP + µdN (6.11)

同时将熵和体积用温度和压强替换，经过Legendre变换得到Gibbs势

T =
∂U

∂S
, P = −∂U

∂V
(6.12)

Gibbs势
G = U − TS + PV (6.13)

dG = −SdT + V dP + µdN (6.14)

同时将熵和摩尔数替换为温度和化学势，经过Legendre变换得到巨正则势

T =
∂U

∂S
, µ =

∂U

∂N
(6.15)
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巨正则势
Ω = U − TS − µN (6.16)

dΩ = −SdT − PdV −Ndµ (6.17)

6.4 理想气体的热力学势

先考虑单组份理想气体。Helmholtz势是T和V的函数。先将熵的自变量变
为T和V，

S = Ns0 +NR ln

((
U

U0

)c(
V

V0

)(
N

N0

)−(c+1)
)

= Ns0 +NR ln
((

T

T0

)c
V

V0

N0

N

)
(6.18)

所以

F = U − TS

= cNRT −Ns0T −NRT ln
((

T

T0

)c
V

V0

N0

N

)
= NRT

(
c− s0

R
− ln

((
T

T0

)c
V

V0

N0

N

))
(6.19)

Gibbs势是T和P的函数。先将熵的自变量变为T和P，

S = Ns0 +NR ln

((
U

U0

)c(
V

V0

)(
N

N0

)−(c+1)
)

= Ns0 +NR ln

((
T

T0

)c+1
P0

P

)
(6.20)

于是

G = U − TS + PV

= cNRT −Ns0T −NRT ln

((
T

T0

)c+1
P0

P

)
+NRT

= NR

(
µ0

R

T

T0
− (c+ 1)T ln

T

T0

)
+NRT ln

P

P0

= G0(T ) +NRT ln
P

P0

(6.21)

G0是温度的函数，是压强取参考值时的Gibbs势。

再考虑多组份理想气体。根据Gibbs定理，多组分理想气体的熵是单独占
据同样体积具有相同温度的各组分气体的熵之和。而F = U − TS，所以



6.5. 热力学势的最小原理 53

Helmholtz势也是单独占据同样体积具有相同温度的各组分气体的Helmholtz
势之和，即

F =
∑
j

NjRT

(
cj −

sj0
R

− ln
((

T

Tj0

)c
V

Vj0

Nj0

N

))
(6.22)

下面计算多组份理想气体的Gibbs势。为方便，取各组份的温度和压强的参
考点均为T0和P0。以温度和压强为自变量，多组份理想气体的熵为

S =
∑
j

Nj

(
sj0 +R ln

((
T

Tj0

)cj V
Nj

Nj0

Vj0

))

=
∑
j

Nj

(
sj0 +R ln

((
T

T0

)cj+1
P0

Pj

))
(6.23)

G = U − TS + PV

=
∑
j

cjNjRT − T
∑
j

(
Njsj0 +NjR ln

((
T

T0

)cj+1
P0

Pj

))
+
∑
j

NjRT

=
∑
j

NjR

(
µj0
R

T

T0
− (cj + 1)T ln

T

T0

)
+
∑
j

NjRT ln
Pj
P0

=
∑
j

(
G0
j(T ) +NjRT ln

Pj
P0

)
=
∑
j

Gj (6.24)

6.5 热力学势的最小原理

实际的体系往往是开放体系，温度、压强、化学势这些强度量往往是描述系
统更为方便的变量。例如一个过程往往是在等温等压条件下进行，如化学反
应。随着变量的改变，也需要将热力学的基本 函数做Legendre变换得到相
应的热力学势。这些热力学势以相应的强度量作为变量，可以完全等价地描
述系统的热力学行为，与最大熵和最小能量原理类似。这些热力学势在平衡
时也有一系列最小值原理。

热力学的基本问题是预言通过各种不同过程达到的平衡态的热力学坐标。平
衡态可由各种过程达到。熵作为热力学坐标的函数给出了问题的解决方案。
封闭系统的平衡态如果是通过改变内部约束达到，则平衡态时相应的强度量
相等。平衡态还可能在其他各种不同的外部条件下来达到，如等温、等 压
等。系统外部约束的产生总是来源于一个外部的环境，如热库可以保证恒
温。如果将环境与系统放在一起考虑，构成一个复合系统，则可以用熵的最
大值来确定平衡态。但这样做并不方便，因为还要考虑环境。在这些外部条
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件的约束下来解决热力学基本问题需要在熵的基础上引入一系列新的函数，
叫热力学势，将环境的影响约化为一个或几个参量，进入到热力学势中，并
作为它的自变量。在平衡态时，在熵最大的基础上可以推出热力学势的极值
定理。这类似于如果系统与可逆的热源和功源相连，通过可逆过程达到平
衡，则此时功最大，进而可以定出平衡态。这里热源和功源也是系统的一部
分。

Helmholtz势最小原理

一个与热库接触的系统，在移去内部约束后达到的平衡态使得Helmholtz势
最小。

考虑一个由系统和热库组成的复合系统，二者由导热壁相连，处于同样的
温度，体积和摩尔数不变，平衡时 熵最大。 d(S + Sr) = 0，d2(S + Sr) <
0，S和Sr分别是系统和热库的熵。而dSr = −dU

T
， d2Sr = − 1

T
d2U，从形式

上去掉热库，可以得到系统的平衡条件d(S − 1
T
U) = 0， d2(S − 1

T
U) < 0，

则F = U − TS在平衡时取最小值。 注意F最小值的平衡态只是通过改变内
部约束来达到，而没有除了与热库的热交换之外任何其他过程参与。

例（图6.2）

F = F (V1, V2, N, T ) (6.25)

dF =
∂F

∂V1
dV1 +

∂F

∂V2
dV2 = 0, dV1 = −dV2 (6.26)

所以
∂F

∂V1
=
∂F

∂V2
(6.27)

而
dF = −SdT − PdV (6.28)

所以 P = −(∂F
∂V

)T ⇒ P1 = P2，在平衡时。

图 6.2:

例（图6.2）

单组份理想气体的Helmholtz势为

F = NRT

(
c− s0

R
− ln

((
T

T0

)c
V

V0

N0

N

))
(6.29)
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对于复合系统

F = NRT

(
2c− 2s0

R
− ln

((
T

T0

)2c
V1V2
V 2
0

(
N0

N

)2
))

(6.30)

V1 + V2 =常数时，F的最小值出现在V1 = V2 = V，这时达到平衡。熵增加：

∆S = NR ln
V 2

V1V2
(6.31)

类似的最小值原理还有

焓最小原理

一个与压强库接触的系统，保持熵不变，在移去内部约束后达到的平衡态使
得焓最小。

Gibbs势最小原理

一个与热库和压强库接触的系统，在移去内部约束后达到的平衡态使Gibbs
势最小。

巨正则势最小原理

一个与热库和粒子库接触的系统，在移去内部约束后达到的平衡态使巨正则
势最小。

必须说明的是数学上可以通过Legendre定义各种势，但是其最小值原理必须
实现于某种具体的物理场景，而不是自动可以保证。在以热力学坐标张成的
空间中，一个系统的所有平衡态构成一个流形，而熵、内能以及各种势是定
义在流形上的场。对于这个流形上的一个点，所谓极值并不是将某个场的值
与位于同一个流形中的其他点进行比较，而是在讨论可以通过用热力学坐标
描述的过程达到这个点的各点所构成的另一个流形中的极值问题。

下面我们再考虑另外一类达到平衡的过程。类似于前面讨论的最大功定理，
我们除了将系统与特定的库（等温，等压，⋯⋯）接触外，还有一个外部的
可逆热源和可逆功源，可逆地除去内部约束，最终达到热平衡。达到热平衡
后对外界做的最大功， 即可逆功，是热力学势的减少，例如恒温等容条件
下d−W = −dU − dUr = −dU − TdSr = −dU + TdS = −d(U − TS) = −dF。

例（图6.2）

隔板移动时对外做功，系统始终处于准静态，求达到平衡后的可逆功。初态
的Helmholtz势

Fi = NRT

(
2c− 2s0

R
− ln

((
T

T0

)2c
V1V2
V 2
0

(
N0

N

)2
))

(6.32)

末态的Helmholtz势

Ff = NRT

(
2c− 2s0

R
− ln

((
T

T0

)2c
V 2

V 2
0

(
N0

N

)2
))

(6.33)
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V = 1
2
(V1 + V2)，平衡时两边体积相同，这可由两边压强相等确定。

W = −∆F = NRT ln
V 2

V1V2
(6.34)

事实上，这部分能量完全来自于热库，因为系统本身的温度没有变化。但这
并不与前面所说的“不能从单一热源吸取能量使之完全转化为功”矛盾，因
为系统本身发生了变化。

由于热力学势与可以得到的最大功的关系，热力学势又叫自由能。



7 最大功定理

考虑一个与外界隔绝的由几个彼此不处于热平衡、但相互绝热的物体组成的
系统。另外还需要一个重物，它不参与热力学过程，但是可以以重力势能的
方式存储能量。当系统建立热平衡后，系统可能对重物作功。 过渡到平衡
态的过程可能会通过各种不同的方式实现，最终的平衡态也会不同，特别是
能量的分配和熵会不同，系统作的功依赖于建立平衡态的过程。我们想知道
怎样建立平衡态才能从系统中得到最大的功并以重力势能的方式存储起来。
让系统最初的能量是E0，系统平衡后的内能是熵的函数E(S)。 系统做的功
是：

R = E0 − E(S) (7.1)

由于能量是熵的单调增加函数，所以如果熵有变化，功就会减少。这意味着
最大功出现在系统的熵增为0时，即平衡态通过可逆过程达到时。如果过程
不可逆，熵增加，则功会降低。例如，直接将几个系统进行热接触，得到的
功为零。

最大功的例子

一体积、摩尔数不变的理想气体系统，初始温度为T10，摩尔数为N。另一个
全同的系统，但温度为T20。如果有一个热机在两系统间运行，求最大功。

两个系统最终将达到相同的温度Tf。

∆U = 2NcRTf −NcR(T10 + T20) (7.2)

W = −∆U = NcR(T10 + T20 − 2Tf ) (7.3)

总的熵变

∆S = NcR

(
ln
Tf
T10

+ ln
Tf
T20

)
= 2NcR ln

Tf√
T10T20

(7.4)

这里用到dS = d−Q
T

= NcRdT
T
。

∆S = 0时，W最大，即Tf =
√
T10T20。

W = NcR(T10 + T20 − 2
√
T10T20) (7.5)

又一例
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58 7. 最大功定理

三个全同的理想气体体系，初始温度分别为T1 < T2 < T3。希望将其中一个
的温度尽可能升高，求可能得到的最高温度。

需要一个热机在两个温度间运行做最大功，将能量传递给第三个系统。最终
最高温度系统的温度是Th，另两个系统 的温度均为Tc，否则热机还可以运
行。由能量守恒，

Th + 2Tc = T1 + T2 + T3 = T0 (7.6)

总的熵变，

∆S = NcR ln
(
T 2
c Th

T1T2T3

)
≥ 0 (7.7)

⇒ T 2
c Th ≥ T1T2T3 (7.8)

即

(T0 − Th)
2 ≥ 4T1T2T3 (7.9)

图中阴影部分是可能的Th值。在上式取等号时Th最大，这时过程可逆，∆S =
0，Th = T ∗

图 7.1:



8 Maxwell关系

对于有r个热力学坐标的系统，有相应的r个强度量。用这2r个变量可以构造
出很多不同的热力学势，但注意一个热力学坐标不能与相应的强度量出现在
同一套r个变量中，例如P和V不能同时在变量中。所以可以构造出的热力学
势共有：C0

r（全是广延量）+C1
r（一个强度量）+· · · +Cr

r = 2r个。实际 上应
是2r − 1个，这是因为U一阶齐次函数，满足欧拉关系

U =
r∑
i=1

XiPi (8.1)

所以以全部强度量作为变量的热力学势恒为零。例如(U, V,N)的系统共有7
个热力学势，常见的有U(S)，F，H，G，Ω。每 个热力学势都有相应的极
值定理。选其中任何一个可以构造出一系列一阶微分（即状态方程）和二阶
微分（即响应函数）。热力学势相互等价，都包含一个系统的全部热力学信
息，所以只要选择其中一个就可以得到全部独立的状态方程和响应函数。例
如选择G(T, P,N)，

dG =
∂G

∂T
dT +

∂G

∂P
dP +

∂G

∂N
dN

= −SdT + V dP + µdN (8.2)

状态方程为

S = −
(
∂G

∂T

)
P,N

(8.3)

V =

(
∂G

∂P

)
V,N

(8.4)

µ =

(
∂G

∂N

)
T,P

(8.5)

可以有以下响应函数：

∂2G

∂T 2
=

∂

∂T

(
∂G

∂T

)
= −

(
∂S

∂T

)
P,N

(8.6)

∂2G

∂P 2
=

∂

∂P

(
∂G

∂P

)
=

(
∂V

∂P

)
T,N

(8.7)

∂2G

∂N2
=

∂

∂N

(
∂G

∂N

)
=

(
∂µ

∂N

)
T,P

(8.8)

∂2G

∂T∂P
=

∂

∂T

(
∂G

∂P

)
=

(
∂V

∂T

)
P,N

(8.9)
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60 8. MAXWELL关系

∂2G

∂P∂T
=

∂

∂P

(
∂G

∂T

)
= −

(
∂S

∂P

)
T,N

(8.10)

∂2G

∂T∂N
=

∂

∂T

(
∂G

∂N

)
=

(
∂µ

∂T

)
P,N

(8.11)

∂2G

∂N∂T
=

∂

∂N

(
∂G

∂T

)
= −

(
∂S

∂N

)
T,P

(8.12)

∂2G

∂P∂N
=

∂

∂P

(
∂G

∂N

)
=

(
∂µ

∂P

)
T,N

(8.13)

∂2G

∂N∂P
=

∂

∂N

(
∂G

∂P

)
=

(
∂V

∂N

)
T,P

(8.14)

共9个。它们构成一个3× 3矩阵。
∂2G
∂T 2

∂2G
∂T∂P

∂2G
∂T∂N

∂2G
∂P∂T

∂2G
∂P 2

∂2G
∂P∂N

∂2G
∂N∂T

∂2G
∂N∂P

∂2G
∂N2

 (8.15)

由于求偏微分的次序可以交换，上述矩阵为对称矩阵，并有以下的关系，称
为Maxwell关系

∂2G

∂T∂P
=

∂2G

∂P∂T
⇒
(
∂V

∂T

)
P,N

= −
(
∂S

∂P

)
T,N

(8.16)

∂2G

∂T∂N
=

∂2G

∂N∂T
⇒
(
∂µ

∂T

)
P,N

= −
(
∂S

∂N

)
T,P

(8.17)

∂2G

∂P∂N
=

∂2G

∂N∂P
⇒
(
∂µ

∂P

)
T,N

=

(
∂V

∂N

)
T,P

(8.18)

九个二阶微分只有6个是相互独立的。其中常见的三个是

cP =
T

N

(
∂S

∂T

)
P,N

= − T

N

∂2G

∂T 2
(8.19)

κT = − 1

V

(
∂V

∂P

)
T,N

= − 1

V

∂2G

∂P 2
(8.20)
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α =
1

V

(
∂V

∂T

)
P,N

=
1

V

∂2G

∂T∂P
(8.21)

由Maxwell关系， (
∂S

∂P

)
T,N

= −αV (8.22)

Maxwell关系将诸如∂S/∂P这样一些不好测量的量转化成容易测量的量。

由此可见前面提到的这三个响应函数实际上都以G为来源。另外三个是

∂2G

∂N2
=

(
∂µ

∂N

)
T,P

(8.23)

∂2G

∂T∂N
=

(
∂µ

∂T

)
P,N

(8.24)

∂2G

∂P∂N
=

(
∂µ

∂P

)
T,N

(8.25)

一般地对于有r个热力学坐标的系统会有r2个响应函数，它们构成一个r× r矩
阵。由于Maxwell关系，该矩阵对称，共有1

2
r(r + 1)个独立的元素。因而r个

热力学坐标的系统 有1
2
r(r + 1)个独立的响应函数。 响应函数是在实验中可

以经常方便测量的量，它们都是一系列的二阶导数，经过积分可以得到各种
热力学势。 另外这些响应函数往往可以直接反映出重要的物理。 以其他热
力学势作为基本函数的响应函数都可以用以某个热力学势作为基本函数而给
出的独立的响应函数来表达，这其中需要用到一些数学公式（附录B）：

如果f(x, y, z, ω) = 0，则(∂x
∂y
)z,ω = 1

(∂y/∂x)z,ω
和(∂x

∂z
)y,ω = −(∂x

∂y
)z,ω(

∂y
∂z
)x,ω

例如，以F (T, V )作为基本函数，不考虑粒子数的变化，

dF = −SdT − PdV (8.26)

状态方程，

S = −
(
∂F

∂T

)
V

(8.27)

P = −
(
∂F

∂V

)
T

(8.28)

响应函数是

∂2F

∂T 2
= −

(
∂S

∂T

)
V

= −NcV
T

(8.29)
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∂2F

∂V 2
= −

(
∂P

∂V

)
T

= −1

/(
∂V

∂P

)
T

=
1

V κT
(8.30)

∂2F

∂T∂V
= −

(
∂P

∂T

)
V

(8.31)

=

(
∂P

∂V

)
T

(
∂V

∂T

)
P

= − 1

V κT
· αV = − α

κT

由
∂2F

∂V ∂T
=

∂2F

∂T∂V
(8.32)

得到Maxwell关系 (
∂S

∂V

)
T

=

(
∂P

∂T

)
V

=
α

κT
(8.33)

响应函数的矩阵是 −NcV
T

− α
κT

− α
κT

1
V κT

 (8.34)

其中还需要将cV表示成为α、κT和cP的函数，做法如下。

S可以看成T，V的函数

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV (8.35)

即

TdS = T

(
∂S

∂T

)
V

dT + T

(
∂S

∂V

)
T

dV (8.36)

其中

T

(
∂S

∂T

)
V

= NcV (8.37)

以及基于F的Maxwell关系(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

=
α

κT
(8.38)

则
TdS = NcV dT +

Tα

κT
dV (8.39)

另外将S看做T，P的函数

dS =

(
∂S

∂T

)
P

dT +

(
∂S

∂P

)
T

dP (8.40)

即

TdS = T

(
∂S

∂T

)
P

dT + T

(
∂S

∂P

)
T

dP (8.41)
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其中

T

(
∂S

∂T

)
P

= NcP (8.42)

以及基于G的Maxwell关系 (
∂S

∂P

)
T

= −αV (8.43)

则
TdS = NcPdT − αTV dP (8.44)

由两个TdS的方程有

NcV dT +
Tα

κT
dV = NcPdT − αTV dP (8.45)

将T看成P，V的函数

dT =

(
∂T

∂V

)
P

dV +

(
∂T

∂P

)
V

dP =
1

αV
dV +

κT
α
dP (8.46)

代入得到[
(cV − cP )

N

αV
+
Tα

κT

]
dV +

[
(cV − cP )

NκT
α

+ αTV

]
dP = 0 (8.47)

dV与dP独立，所以

cP − cV = − T

N

(
∂V

∂T

)2

P

(
∂P

∂V

)
T

=
TV α2

NκT
(8.48)

于是cV表示成为α、κT和cP的函数。
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9 化学势

9.1 化学势

化学势的定义是µ = ( ∂U
∂N

)S,V或µ = −T ( ∂S
∂N

)U,V。两个有粒子相互交换的系
统，根据平衡条件，其化学势相等。化学势的差别会驱动粒子的流动，正如
温度差会驱动热流。化学势是驱动物质在不同体系间交换的力量。例如对于
气-液共存的体系，在平衡时气、液两相的化学势相等。同种流体通过多孔
筛的泄流，平衡后两边流体化学势相等。通过半透膜的渗透，可允许溶剂分
子透过，不允许溶质分子透过，平衡时两边溶剂分子化学势相等。化学势的
问题还包括：表面上分子的吸附和脱附，电化学、电池（溶液中离子的化学
势问题）， 半导体p-n结，等等。需要注意，这里两个有粒子相互交换的系
统是指空间上分开的两个系统，一般地不适用于有化学反应的系统。化学反
应中，各组份都处于同一空间。但在一特殊情况下，即各组份都可以看作理
想气体的情形，参加化学反应的每一个组份可以看作占据同一空间的一个子
系统。

热力学过程经常在等温等压环境下进行。在等温等压条件下，Gibbs自由能
是比较方便的热力学函数。我们来看Gibbs自由能与µ的关系

G = U − TS + PV (9.1)

但由Euler关系
U = TS − PV + µN (9.2)

所以G = µN或µ = G/N。 因而化学势实际上是单位摩尔的Gibbs自由能。
还可以证明化学势仅是P和T的函数：G是广延量，因此Nµ中的µ不再依赖
于广延量，即µ = µ(T, P )。

下面需要发展测量化学势的方法。温度计测量温度的方法是使温度计与被测
系统达到热平衡，此时二者温度相等。温度计的某个易于测量的性质与温度
有确定的关系。通过测量这个性质可得到温度。类似地，测量化学势需要这
样一个仪器，它的某个性质与它含有某个成份的物质的化学势有确定的关
系。当仪器与被测系统达到平衡时，可以读出那个成份的化学势。需要注意
的是，与测温不同，不同的物质需要不同的测量仪器来测量化学势。这样一
个仪器的一个常见的原理是利用吸附现象。暴露在气体或液体中的表面，在
某些位置上会吸附气体或液体中的分子。吸附和脱附过程是重要的表面现
象。考虑最简单的情形，吸附能为ϵ（ϵ < 0），统计力学给出该吸附位占据
的几率是（见图9.1）

P =
e−(ϵ−µ)/kBT

1 + e−(ϵ−µ)/kBT
(9.3)

=
1

1 + e(ϵ−µ)/kBT
(9.4)

µ是气态的化学势。 在µ → −∞时P → 0，气体的化学势很低，很少有分子
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66 9. 化学势

吸附。在µ→ ∞时P → 1。高化学势对应于高的吸附率。在µ ∼ ϵ附近P有显
著的增加。转变宽度∼ kBT。

图 9.1: 吸附位占据几率

一个吸附的例子是气体分子（O2，CO） 与血红蛋白中Fe2+的结合。Fe2+与
O2和CO的结合能分别为－0.7eV和－0.85eV（每个分子）。在室温下，
肺内O2的 化学势大约是－0.6 eV。则Fe2+被O2占据的几率是P = 1/(1 +
e−0.1/0.025) ≈ 98%。但是如果有CO存在，CO吸附 的几率由于更高的吸附能
会比O2多。O2的吸附率会下降，造成中毒。

吸附率的公式还可以写为

µ = ϵ+ kBT lnP (9.5)

因而通过测量吸附率可以测定化学势。气体传感器就是用来测定气体的化学
势。例如测量空气中CO含量的半导体传感器，使用 细的SnO2线，其电阻随
CO的吸附量的增加而降低，因而通过电学测量可以得到化学势。

嗅觉（图9.2）

Golf：嗅觉G－蛋白。分子吸附后G－蛋白被激活。G－蛋白又激活腺苷酸环
化酶（Adenylate Cyclase），将ATP转化 为AMP。AMP打开离子通道，产
生神经脉冲。不同气体有不同receptor。

另一个测量化学势的方法可用于电荷体系：接触势给出化学势之差。

9.2 理想气体的化学势

单组分单原子理想气体，如He，Ne等，无内部自由度，只有平动。

单原子理想气体的熵：

S(U, V,N) = kBNAN ln

[(
4πm

3h2

)3/2(
e

NA

)5/2

V U3/2N−5/2

]
(9.6)
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图 9.2: 嗅觉

于是

µ =− T

(
∂S

∂N

)
U,V

=− T

{
kBNA ln

[(
4πm

3h2

)3/2(
e

NA

)5/2

V U3/2N−5/2

]
− 5

2
kBNA

}

=− kBTNA ln

[(
4πm

3h2

)3/2

V U3/2N−5/2

]

=− kBTNA ln

[(
4πm

3h2

)3/2(
V

NNA

)(
U

NNA

)3/2
]

(9.7)

而

U =
3

2
kBNANT (9.8)

所以

µ = −kBTNA ln

[(
2πmkBT

h2

)3/2(
V

NNA

)]
(9.9)

通常定义λth(T ) = h√
2πmkBT

，称为热波长，相当于热运动对应的de Broglie波
长。则
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µ = kBNAT ln(nλ3th) = RT ln(nλ3th) (9.10)

n = NNA

V
是原子或分子数密度。这里能量计算的零点选在了原子静止不动的

情形。

在室温和常压下，氢原子的n−1 = 4.2 × 10−26m3，λth = 2.35 × 10−10m，
则µ = −0.32eV（这里已经除以NA，得到每个原子的µ）。在常温常压下分
子间距远远大于λth（Å的量级），即nλ3th ≪ 1(µ < 0)。化学势小于零意味着
保持等熵的条件下加入粒子，系统的能量下降。这是因为加入粒子后熵会增
加，为了保持等熵必须降低能量。如果保持室温不变，增加密度，则µ更接
近于0，意味着更容易将粒子给其他系统。一般地，增加密度总是增加化学
势。经典单原子理想气体的计算适用于nλ3th ≪ 1(µ < 0)的情形，否则需要考
虑量子修正，例如低温下。

单组分一般理想气体的化学势

µ =
G

N

= R

(
µ0

R

T

T0
− (c+ 1)T ln

T

T0

)
+RT ln

P

P0

= µ0(T ) +RT ln
P

P0

(9.11)

µ0(T )仅是T的函数，是当P = P0时的化学势。化学中常取T0 = 298.15 K和P0 =
105 Pa作为参考点，称为standard ambient temperature and pressure (SATP)。

多组分理想气体的化学势

µj =
∂G

∂Nj

= R

(
µj0
R

T

T0
− (cj + 1)T ln

T

T0

)
+RT ln

Pj
P0

= µ0
j(T ) +RT ln

Pj
P0

(9.12)

Pj是第j组分的分压：Pj = NjRT/V。

9.3 Clapeyron方程

同种物质的两相共存时，其化学势相同，这在T − P平面上给出一条共存曲
线，如图9.3。这里I为高温相，II为低温相，sI > sII。我们想知道这条曲线
满足的方程。



9.3. CLAPEYRON方程 69

图 9.3: 共存线

共存曲线有重要的意义，例如滑冰时，冰刀下面的冰压强增加，因而熔点下
降，冰熔化，提供润滑作用，如冰川的流动（注意冰-水的共存线与图中所
示有相反斜率）。又如沸腾意味着水的蒸汽压正好等于外界的气压，水的沸
点随压强下降而降低。利用相平衡条件可以求出共存线的形状。在曲线上任
一点有µI(T, P ) = µII(T, P )，所以dµI = dµII。而

dµ =
∂µ

∂T
dT +

∂µ

∂P
dP (9.13)

则 (
∂µI

∂T

)
P

+

(
∂µI

∂P

)
T

dP
dT

=

(
∂µII

∂T

)
P

+

(
∂µII

∂P

)
T

dP
dT

(9.14)

注意我们以T作为自变量，在共存线上P是T的函数。由Gibbs自由能给出
Maxwell关系：

(
∂µ

∂T

)
P,N

= −
(
∂S

∂N

)
T,P

= −s (9.15)

(
∂µ

∂P

)
T,N

=

(
∂V

∂N

)
T,P

= v (9.16)

s，v分别是单位摩尔的熵和体积，于是

dP
dT

=
sI − sII
vI − vII

(9.17)

而
T (sI − sII) = l (9.18)

l是相变潜热。
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所以
dT
dP

=
T (vI − vII)

l
(9.19)

这给出了冰点或沸点随压强的变化。对于水的固液相变vI < vII（水凝固时体
积膨胀），所以 dT

dP < 0。对于一般的气-液相变，vI > vII， dT
dP > 0。该公式

叫 Clapeyron方程。

考虑气-液相变，一般气体摩尔体积远大于液体vg ≫ vl，则 dT
dP = Tvg

l
，而vg =

RT/P，所以 dT
dP = RT 2

lP
。 再假设l为常数，则有P = P0e

−l/RT。 可以利用减
压来制冷，如He3，最低可到∼ 200 mK。

9.4 稀溶液

考虑溶剂中只有一种少量溶质的稀溶液。Gibbs自由能有四个自变量：G(T, P,N, n)。N和n分
别是溶剂和溶质的摩尔数，n≪ N。x = n/(N + n) ≪ 1是摩尔比。

展开到n的一阶，有

G(T, P,N, n) = Nµ0(T, P ) + nψ(T, P,N) (9.20)

µ0是纯溶剂的化学势。G是齐次函数，因此ψ(T, P,N) = ψ(T, P )。ψ体现溶
质与溶剂的相互作用。溶质分子间的相互作用应该体现在二次项中。上式
没有考虑混合熵的贡献，混合导致混合熵，混合熵以−TS进入到Gibbs自由
能。混合熵为

NR ln
N + n

N
+ nR ln

N + n

n
= NR ln(1 + n/N) + nR ln(1 +N/n)

≈ NR
n

N
+ nR ln(N/n)

= nR(1− lnn+ lnN) (9.21)

考虑混合熵后有

G(T, P,N, n) = Nµ0(T, P ) + nψ(T, P,N)− nRT (1− lnn+ lnN) (9.22)

溶剂的化学势是
µ(T, P ) = µ0(T, P )− xRT (9.23)

其中−xRT一项来源于混合熵。溶质的化学势是

µ′(T, P ) =
∂G

∂n
= ψ(T, P ) +RT lnx (9.24)

渗透压

让我们用热力学的方法研究半透膜渗透。
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混合带来熵的变化，并改变化学势。例如水溶液，溶质与水的相互作用会造
成一些化学势的变化。但对于稀溶液，这种变化远小于混合带来的熵变。这
种化学势的变化导致渗透压。如图半透膜只能透过水，平衡时糖溶液的液面
高度要高于水的液面（图9.4左）。一个分析渗透压的简单系统如图9.4中的
右图。

图 9.4: 半透膜

平衡时两端水的化学势相同：

µ0(T, PA) = µ(T, PB) (9.25)

µ0是纯水的化学势。

对于稀薄溶液有
µ0(T, PA) = µ0(T, PB)− xRT (9.26)

x ≪ 0是糖的摩尔比。右侧溶液有溶质，化学势下降，低于左侧纯水的化学
势。因此需要改变右侧的压强，从而改变µ0，来补偿化学势的下降，达到与
左侧相同。∂µ/∂P = v > 0，因此压强增加会导致化学势上升。所以为了补
偿溶质带来的化学势下降，需要使压强上升。另一个改变化学势的途径是改
变温度，我们在下一个例子中会用到。

将µ0(T, PB)进行Taylor展开，

µ0(T, PB) = µ0(T, PA) +

(
∂µ0

∂P

)
T

(PB − PA) (9.27)

则 (
∂µ0

∂P

)
T,N

(PB − PA) = xRT (9.28)

由Maxwell关系，( ∂µ
∂P

)T,N = ( ∂V
∂N

)T,P = v为水的摩尔体积。所以v∆P =
xRT。 该公式叫van't Hoff关系。定性地讲，加入糖后水的化学势下降，
因而需要增加压强使得两边水的化学势相同。

相变点随溶质的变化

溶质导致溶剂的化学势下降。一个后果是溶液的熔点会下降和沸点会上升。
例如在雪中撒盐会让雪熔化，水中加盐沸点会上升。这里需要注意的一点是
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盐只在水中，而不是冰和汽中，有很大的溶解度。一个直观的说法是在溶剂
中加一点溶质后会让溶剂的微观状态数增多，熵增加，这意味着形成气态
的趋势变得更弱（升高温度产生的熵增加可以用添加溶质产生的熵增加补
偿）。下面我们用化学势来分析。在讨论渗透压时知道加溶质后溶剂的化学
势的下降可以由压强上升来补偿。另一个补偿的方法是改变温度。

设外界压强为P0。在沸点，物质的饱和蒸汽压等于外界的压强。Clapeyron
方程给出的气液共存的蒸汽压曲线告诉我们在一定压强下沸点是多少。没
有溶质时气液共存线由方程µ0l(T, P ) = µg(T, P )决定。沸点的温度T0由曲线
上压强等于外界压强P0决定，即(T0, P0)满足 µ0l(T0, P0) = µg(T0, P0)。加入
溶质后，溶剂的化学势变为µ0l(T, P ) − xRT。如果溶质为不易挥发的物质
（如盐），则气态中不存在溶质成分，气态的化学势形式不变。这时对同样
的(T0, P0)，液相的化学势会低于气相：µ0l(T0, P0)−xRT < µg(T0, P0)。为了
达到新的平衡需要改变温度。为了知道温度应该是上升还是下降，需要比较
气相和液相化学势随温度变化的速度。由∂µ/∂T = −s及sl < sg得知同样的
温度上升，气相化学势的下降要快于液相。所以，提高温度会祢补−xRT带
来的化学势下降，最终使气相和液相二者的化学势相等，即沸点上升。具体
推导如下，

µ0l(T0 +∆T, P0)− xR(T0 +∆T ) = µg(T0 +∆T, P0) (9.29)

对∆T进行Taylor展开，

µ0l(T0, P0)− sl∆T − xRT0 − xR∆T = µg(T0, P0)− sg∆T (9.30)

即
(sg − sl − xR)∆T = xRT0 (9.31)

sg − sl = l/T0，l ∼ RT0是潜热。x << 1，因此与l/T0相比，xR可以忽略。
于是，

∆T =
xRT 2

0

l
(9.32)

对于熔点，情况正好相反。假设溶剂和溶质在固体状态时相分离。由∂µ/∂T =
−s及ss < sl得知同样的温度降低，液相化学势的下降要多于固相。所以，降
低温度会祢补−xRT带来的化学势下降，最终使固相和液相二者的化学势相
等，即熔点下降。

9.5 电化学电池

原子可以电离为离子和电子。这时的热力学需要考虑静电作用。相应的化学
现象称为电化学。这里最基本的事实是化学势会随所处位置的电势而变化：

µ = µi + zeNAϕ (9.33)

µi是本征的化学势，仅依赖于温度、压强等。z是化学价，e是电荷单位。

产生流J的驱动力是化学势的梯度：J ∝ −∇µ = −∇µi+zeNAE。E为电场。
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图 9.5: Daniell cell

电化学中最重要的例子是电化学电池。图9.5是一个典型的电化学电池。

在ZnSO4和CuSO4溶液中，Zn和Cu都以二价离子形式存在。电极由电子和各
自的离子组成。电子只存在于电极，不能长时间存在于溶液中。（溶液中的
自由电子会很快将金属离子还原回到电极。有一种电子可以存在于溶液中的
可能：金属离子被配体包围而无法与电子复合）金属离子即可以在电极中又
可以在溶液中。情形比较类似于半透膜。在平衡时，金属离子在电极和在溶
液中的化学势应该相等。为达到化学势相等，通常金属离子会不断地从电极
溶解到溶液中。但这个过程不能永远进行下去。电极上的多余电子和溶液中
的多余正离子会在电极附近形成一个偶极层（如图9.6）。偶极层抬高了溶
液中的电势，从而抬高了离子的化学势，最终达到与电极中离子的化学势平
衡。

图 9.6: 电偶极层

稀溶液中离子的本征化学势可以表示为

µi,aq = ψi,aq +RT lnx (9.34)

因此
ψi,aq +RT lnx+ zeNAϕ = ψi,el (9.35)
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其中ψi,el为电极中离子的化学势。于是，

ϕ = (ψi,el − ψi,aq −RT lnx)/(zeNA) = (∆ψi −RT lnx)/(zeNA) (9.36)

在Daniell cell中，两边的离子可以流过盐桥，从而保证两边的溶液等势。于
是电池的电动势为

E = E0 − RT

zeNA

ln
xZn2+

xCu2+
(9.37)

9.6 外场作用下的平衡

9.7 半导体

9.8 生物



10 相与相变

物质的一个相是指其化学组份和物理性质在空间上均匀的一个形态。一个
相可以是单组份，例如水，也可以由彼此不发生化学反应的多组份构成，例
如水和盐形成的溶液。在一定条件下，不同的相可以共存。不同相之间的转
变称为相变。相变发生在外部条件发生变化时，即强度量变化时。相变是竞
争的结果。微观上有各种不同的相互作用。不同的相互作用可能会导致不同
类型的相变。系统中两个能量尺度间的关系在强度量变化时发生变化。这
种关系变化到一定程度后，系统出现新的相。例如，微观上原子分子的相互
作用和热运动的相互竞争。控制这两个因素的参量可以是温度（也可以是
压强）。在低温时，物质倾向于形成有长程关联的有序结构，这是分子间相
互作用的结果。在高温，熵的作用占优势。这种竞争导致相变。相变可以发
生在某一温度处，即相变温度，该温度将低温相和高温相隔开。在降温过程
中，当微观上相互作用的能量与热运动能量可比拟时，相变发生，出现新的
秩序。

每个相用一个（或几个）表示其性质的量来刻画，例如气相和液相可用密度
区分。外部条件（即强度量）改变时发生相变。通常相图是代表相的性质的
量作为强度量的函数而画出的图。

10.1 气液固相变

图 10.1: P-T-V相图

原子间的相互作用使物质在低温下形成有周期结构的晶体，成为固体。固体
在平移一个晶格后保持不变，因此具有相应的对称性。在高温下，热运动占
主导地位，物质为气体状态。气体中，分子单独存在。温度降低到一定能量

75
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尺度后，固体形成。固态和气态二者之间存在一个相变。固态和气态的存在
容易理解，而有趣的是除此之外还存在一个液态。液态和气态有类似的性
质，通称为流体。有液态和气态两种流体的原因是存在另一个能量尺度，该
尺度低于形成固体的能量，但分子间由于相互作用会形成团簇，在短程上
有一定的有序结构。这就是液态。形成液态的温度高于固态。液态的密度高
于气态。气体与液体的区别在于密度，二者在对称性上没有区别。一定压强
下，升高温度，跨过气液共存线，将系统从液相变为气相。

一般流体的P-V-T相图如图10.1所示（注意这个图还不是上面提到的以性质
作为强度量函数的相图）。曲面上的任何一点代表一个平衡态。在三相之间
有三个共存区，分别气-液共存区、固-液共存区和气-固共存区。在共存区，
两相的化学势相等，即P和T满足一定的关系，这个关系与V无关。因此这
个共存面由一系列垂直于T − P面的线段组成。于是三个共存区的曲面应该
都垂直于T − P面。三个共存区之间的一条线为三相共存区，此处同时存在
气、液、固三相。由于三个化学势要相等，所以三相只能存在于一条线上，
而这条线垂直于T − P面。气液共存面的顶点C称为临界点。此处的温度、
压强和体积分别为Tc、Pc和Vc。随着温度的增加，气态和液态的密度都在变
化。在T = Tc时二者密度相同，在T > Tc时，改变压强不再有相变出现。

我们下面分别将相图投影到T − P、P − V和T − V面，来熟悉这些相。

先投影到T − P图上。如图10.2。三个两相共存区分别都投影为三条共存
线。共存线上的一点(T, P )确定，因此G也确定，但两相的比例任意。三相
共存区投影为一个点，称为三相点。气液共存线终止于临界点C。临界温度
之上加压不会出现液化。在T = Tc时气液二者密度相同。可以利用如图所示
路径使得从气态到液态的过程无需经过相变。这时没有气液分界面的出现。
这种行为的原因在于气态和液态在对称性上没有区别，区别仅在于密度。但
是在液-固共存线上不会出现临界点，该曲线不会终止，原因 是固态是晶体
与液态具有完全不同的对称性。一种对称性或者存在，或者不存在，不可能
在两种对称性间存在连续变化。

图 10.2: T − P平面上的投影

在临界温度之下，流体有两种密度的相（液和气），高于临界温度时，流体
只有一个相。气、液两相普遍地存在于一般的物质中，是物质的普遍特征，



10.1. 气液固相变 77

原因在于上面提到的竞争的存在。高温时分子的动能起主要作用为气相，低
温时分子间势能起主要作用为液相。高于临界温度时，Gibbs自由能不再是
由两相组合而成，而是一个统一的函数。

P−V平面上（图10.3）可以看到等温下压缩到一定体积后，气体可以开始液
化，出现气-液共存，压强不变。继续压缩，完全转变为液相。等温线上T确
定，而有化学势相等得知P也确定，所以在P − V面上共存线为垂直于P轴
的直线。温度高于Tc的等温线不存在气液共存区。共存线垂直于P轴是因为
在共存区µI(T, P ) = µII(T, P )，而P仅是T的函数，如T不变则P也不会变。
由于T和P不变，在共存区两相各自都不变，只是摩尔比发生变化。由于各
自的化学势不变且相等，所以总的G也不变。考虑到G = U − TS + PV，在
共存区摩尔比变化时，两相的U和S都会变化，因此V需要做相应的调整以保
证G不变。

图 10.3: P − V平面上的投影

对于共存区内等温线上的一点，我们可以求出气液两相的摩尔比。只考虑1
摩尔的物质，如图10.4。在温度T的等温线上，有一点的体积为v。让我们来
求气相和液相的摩尔比x。假设在温度和压强为T和P时，液相和气相的摩尔
体积分别为vl和vg，则

v = vgx+ vl(1− x) (10.1)

于是
x =

v − vl
vg − vl

(10.2)

满足杠杆原理。

下面一个问题是如何确定三相共存线上各相的摩尔比。我们发现，与两相
共存区不同，在P-T-V图的三相共存线上，一个点不能唯一地对应一个摩尔
比。例如，可以从气液共存区趋近共存线，也可以从气固共存区趋近共存
线上的同一个点，但成分不同。问题的答案在于，在共存区，系统热力学坐
标的数目要增加。对于摩尔数固定的系统的单相区，需要两个热力学坐标。
等价地，这意味着T和P完全确定了系统的状态。对于两相共存，还需要知
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图 10.4: 杠杆原理

道其中一个相的摩尔数。这等价于知道总体积。所以利用上面的杠杆原理，
P-T-V图能够完全给出两相区各相的比例。但对于三相区，这还不够，因为
热力学坐标中还需要添加其中某两个相的摩尔数，一共有三个自由度。等效
地，可以选择总的体积和熵。例如，三个相的摩尔比分别是x1、x2和x3。单
位摩尔的体积和熵分别为(v1, s1)、(v2, s2)和(v3, s3)。则

x1 + x2 + x3 = 1 (10.3)
v1x1 + v2x2 + v3x3 = v (10.4)
s1x1 + s2x2 + s3x3 = s (10.5)

于是可以定出各相的摩尔比。四维空间的相图会使三相共存区的状态唯一，
但投影到三维后就不再唯一。类似地，三维的相图投影到T − P的二维图
上，气液共存线上的点也不唯一地确定状态。

将相图投影到T − V平面上得到图10.5。在临界压强之下，在T < TV时，全
部为液体。升高温度，在T = TV时，开始汽化，不断吸热，温度保持不变，
直到全部汽化。

下面我们来看一些相变的例子。

无限接近平衡状态的相变

图10.5中的过程无限接近平衡。如果没有活塞，气化在任何温度都会进行
（见下面的非平衡相变）。有活塞后体积受到限制，只有在气液共存线上压
强相应的温度（称为沸点），才开始气化。在气化时不停地加热不会使水温
上升，而只是转化为潜热，这时温度保持不变。如果液体非常纯，则气化都
发生在液体表面。但在某些情况下，气化也可以发生在液体内部。例如，水
的内部溶有空气，一般吸附在容器壁上。水与气泡间存在蒸发，气泡内的水
蒸汽与水形成平衡，处于气-液共存线上，为饱和水蒸汽。温度越高，气泡
体积越大，浮力越大，最终脱离吸附，冲出水面，称为沸腾。我们下面证明
随着温度上升，气泡体积增加，并且气泡脱吸附时对应的温度使饱和蒸汽压
等于外部压强，即沸腾也发生在TV
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图 10.5: T − V平面上的投影

气泡中有空气和饱和水蒸气。当体积V比较小时气泡受到水的浮力小，可
以保持吸附在器壁上。气泡内部压强为pv + nRT/V，其中n为空气的摩尔
数，pv为饱和蒸汽压。外部的压强为大气压p0与表面张力造成的压强2σ/R之
和，这里忽略水造成的压强，σ为表面张力系数。在平衡时

pv +
nRT

V
= p0 + 2σ

(
4π

3

)1/3
1

V 1/3
(10.6)

将上式两边分别画在P − V图上（图10.6），两条曲线的交点给出气泡体
积。起始时饱和蒸气压低于大气压。随着温度上升，饱和蒸汽压增加。这时
交点向右移动，体积增加。饱和蒸气压趋于大气压时，体积趋于无穷大。在
达到一定体积后，浮力足以克服吸附力，气泡上升冲出水面。

图 10.6: 气泡的平衡体积

初始时，气泡很小，在微米量级。n不会变。脱吸附时气泡往往在毫米量
级。对于nRT/V这样一项，起始时大约为p0的量级，脱吸附时要减小大
约106。因此在脱吸附时此项可忽略。水的σ大约为10−2 N/m，因此在气泡
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直径为毫米量级时表面张力贡献的压强为1 ∼ 10 Pa，也远远小于p0。所以在
脱吸附时，pv = p0，对应的温度为沸点。

在密封的容器中加热液体，液面上方除液体的饱和蒸汽外还有空气，所以液
面上气体压强恒大于该液体在同温度下的饱和蒸汽压。这种情况下，有气液
共存，但无沸腾。

非平衡相变

一定压强下，气化有固定的温度。但我们通常会看到水在任何温度都在蒸
发，是因为这是一个非平衡的过程。 三维相图上的每一点对应于一种可能
的平衡态。考虑一瓶水，瓶子完全封闭，且与环境等温，如果初始时瓶子内
完全被水占满，则水处于一平衡态，可对应于相图上一点。 再看另一种情
况，初始时水只占一部分体积，上部为真空。这一体积所代表的状态不在相
图上，不是平衡态，将向 平衡态过渡。假如(V, T )代表的平衡态的点在两相
共存区，则一部分水会变为气态，最后平衡时下面是水，上面是水蒸汽。如
果初始(V, T )处于气态区，水会完全变为气态。上面的这种过程叫蒸发，由
于有潜热，蒸发会吸热。如果瓶子不封闭，相当于体积无穷大，从相图上可
知平衡时必为气态，水会全部蒸发完毕。

10.2 相变与Gibbs自由能

我们下面只考虑气液相变。在G-P-T的图上（图10.7），Gibbs自由能在每
个相都是P和T的连续函数。两个相的Gibbs自由能一般地会相交于一条线。
在线上两相处于平衡。在线之外，只有Gibbs自由能低的那个相可以稳定存
在。两个Gibbs自由能相交的线决定了相边界。在边界处，Gibbs自由能连
续，但其导数不一定连续。

图 10.7: 液态和气态的Gibbs自由能

在共存区，两相的Gibbs自由能和化学势相同，系统的Gibbs自由能在相变点



10.2. 相变与GIBBS自由能 81

处连续。对单位摩尔物质有：

dg = −sdT + vdp (10.7)

g，s，v是单位摩尔的Gibbs势、熵和体积。

s = −
(
∂g

∂T

)
P

(10.8)

v =

(
∂g

∂P

)
T

(10.9)

尽管g连续，但是g的一阶导数不一定在相变点连续（如图10.8）。注意在发
生不连续的地方高温端的一阶导数更负一些。这时因为熵是温度的增函数，
所以 (

∂g

∂T

)
I
−
(
∂g

∂T

)
II
= −(sI − sII) > 0 (10.10)

图 10.8: 相变点处的Gibbs势

在临界点，Gibbs自由能及其一阶导数都连续，因此此处的相变没有潜热。

至少有一个一阶导数不连续的相变叫一级相变 。一阶导数都连续的相变叫
连续相变，如临界点处的相变。如果对温度的一阶导数不连续，在相变点处
有s1 ̸= s2，有l = T (s2 − s1)的热量与参与相变的过程，l叫潜热。例如水汽
化和冰熔化时都要吸收热量。反之水蒸气液化，水结冰，都会放出热量。一
阶相变不一定有潜热，只有对温度的导数不连续时才有潜热。连续相变无潜
热。

气体与液体的区别在于密度，二者在对称性上没有区别，可统一称为流体，
在临界温度之下，流体有两种密度的相（液和气），高于临界温度时，流体
只有一个相。气、液两相普遍地存在于一般的物质中，是物质的普遍特征，
原因在于上述竞争的存在。高温时分子的动能起主要作用为气相，低温时分
子间势能起主要作用为液相。 研究在温度、压强已知条件下的物质的热力
学性质需要Gibbs 势G(P, T )。但为研究相变，需要引入一个新的变量摩尔密
度n，G(P, T, n)在平衡时极小，这时n取平衡时 的密度。G(P, T )就是n取平
衡时密度的Gibbs势。
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图 10.9:

一般地，T > Tc时，G的曲线只有一个极小值，T < Tc时，在液相，极值点
也有两个，高密度相为稳态，在气相，极值点有两个，低密度相为稳态。

气相与液相在宏观上的区别在于密度，两相仅在Tc之下才出现。从T < Tc的
气相出发，当T升高经过Tc 后，只存在一个极小值点。再绕过临界点降
到T < Tc，则稳态会跳到液相的极小值点。相变时分子间的势会有所 改
变，所以有潜热。发生相变时密度相应于气相和液相的Gibbs势相同，所以
当从一个极小值点跃迁到另一极小值点时， Gibbs势不变，且连续过相变
点。但是在两个极小值处Gibbs势的导数一般会完全不同，所以这种模型描
述的是一级相变。相变的来源是两个极小值点之间的跃迁，因而会造成描述
不同的相的参量（这里是密度）的不连续变化。一级相变是不连续相变，不
连续相变有潜热。在相变温度，会出现两相共存。由于潜热的存在，在完全
完成相变前，温度不变。

考虑Gibbs势的另外一种可能性。

G(T, P, η) = G0(T, P ) + a(T − Tc)η
2 + bη4 (10.11)

η是描述不同相的参量，a > 0，b > 0。与气-液相变不同，这里不出现η的三
次项。这种形式的Gibbs势可以描述 诸如超导、磁性等一大类相变。在T >
Tc时Gibbs势的最小值在η = 0，T < Tc时，Gibbs势的最小值在 η ̸= 0处：

η2 = a(Tc − T )/2b (10.12)

Gibbs势的最小值点对应的η在通过相变点Tc时连续地从0变为非0，这种相变
称为连续相变。在相变点处G同样连续变化。再来看熵S = −∂G

∂T
= S0−aη2。

在高温相S = S0。在低温相S = S0 − aη2 = S0 +
a2

2b
(T − Tc)，熵 也连续变

化，没有潜热，是连续相变。再看比热：
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图 10.10: 二级相变的Gibbs势

C = T
∂S

∂T
(10.13)

在高温相

C = T
∂S0

∂T
= C0 (10.14)

在低温相

C = C0 +
a2

2b
T (10.15)

所以比热不连续。

一般地，相变来源于热运动与相互作用的竞争。微观上有各种不同的相互作
用。不同的相互作用可能会导致不同类型的相变。

10.3 过热与成核

升高液体的温度，在相变温度TV处，气态和液态的Gibbs势相同。再升高温
度，气相称为稳态。但是液相与气相之间有一个势垒∆U，因此液相变为气
相必须克服这个势垒。否则即使T > TV，系统仍可以处于液相称为亚稳态。
势垒∆U随温度增加而变小，在Tc处完全消失。这种在TV之上存在液相的现
象称为过热。类似在降温时，气相在相变点处不一定会变成液相而是成为过
饱和蒸汽。

过热现象往往出现在没有杂质和气泡的液体中。由亚稳态变为稳态需要对系
统加以扰动，如加入杂质或机械扰动。被扰动的系统有可能会克服势垒，成
为稳态。



84 10. 相与相变

图 10.11: 过热

由亚稳态跃迁到稳态的过程一般发生在系统中的一个小的子系统中。小的系
统涨落大，有更大的几率通过热涨落而发生跃迁，从而发生连锁反应，使整
个系统发生跃迁。类似的过程还会出现在诸如过冷蒸汽、过冷 液体等系统
中。例如，过冷蒸汽，通过涨落，会在原先均匀的相中出现微小的液滴。液
滴与气相间存在界面。如果液滴足够大则界面能就会被相变产生的自由能下
降克服，从而继续长大。这种过程叫成核。成核由热涨落造成。如果有杂质
的存在，或其他扰动存在，则成核长大需要克服的势能会降低，因而更容易
转变为稳态。

可以这样估计液滴的Gibbs势

G(R) = σA− V n∆µ (10.16)

n是液态摩尔密度。其中σA是表面Gibbs势，A是表面积。 ∆µ是气液两相的
化学势之差，∆µ = µg−µl，在相变点∆µ = 0。但在过冷时，µl < µg，∆µ >
0。 V n∆µ这一项随液滴的大小增加而增加，因为系统倾向于液态。第一项
表面能随液滴尺寸变大而变大，两 项产生竞争，有一临界半径Rc，当R >
Rc时，液滴会长大，下面我们求Rc。

首先需要知道∆µ。假设离开相变温度不是很远

图 10.12: 成核

∆µ(T ) = µg − µl ≃ −
(
∂µg
∂T

− ∂µl
∂T

)
∆T (10.17)

其中偏导数取自T = TV（相变温度），∆T = TV − T。 而 ∂µ
∂T

= −s，所
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以∆µ = (sg − sl)∆T = ∆s∆T = l∆T/TV 其中l是潜热，这样

G(R) = σA− V n
l

TV
∆T (10.18)

= 4πR2σ − 4

3
πR3nl∆T/TV (10.19)

最大值出现在
Rc =

2σTV
nl∆T

(10.20)

∆T越大（越过冷）则Rc越小。如果某个涨落会产生一个大于Rc的核，则该
核将倾向于长大，最终过冷水蒸汽全部液化。成核现象普遍存在于一级相变
的系统中，如Wilson云室，人工降雨。

10.4 相共存

一个系统中可以存在不同相的共存，如三相点处气相、液相、固相共存。每
一个相显示不同的宏观行为。相共存时需要满足平衡条件：T1 = T2，P1 =
P2，和µ1 = µ2。由于Gibbs-Duhem关系，µ是P、T 的函数，因而在P −
T平面上µ1(T, P ) = µ2(T, P )决定了一条曲线，在这条曲线上两相共存。
图10.13是一个典型的P −V −T系统的相图，固、液、气三个相之间各有一
种共存线。在某一个温度改变压强或在某一个压强改变温度都可能穿过共存
线发生相变。如果希望三相共存，则需要µ1(T, P ) = µ2(T, P ) = µ3(T, P )。
这个方程将唯一地在P − T平面中决定一个点，叫三相点T。在此点，三条
共存线相交，三相点的温度唯一确定，因而可以用作温度标准（水的三相点
273.16K）。

图 10.13: 相共存线

以上讨论的都是单一组份的系统。对于一个单组份的系统，两相共存区有一
个变量可以调节，自由度为1，三相共存区的自由度为0。自由度是指可以独
立变化的强度量的数目。我们可以讨论一个一般的相共存问题：有n个组份
的系统在r个相共存时的自由度是多少？这里组份间不能发生化学反应，每
个相包含全部组份。
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系统有T, P, µ1,…µn一共n + 2个强度量。对于每个相有一个Gibbs-Duhem关
系

Ud
(
1

T

)
+ V d

(
P

T

)
−

n∑
j=1

Njd
(µj
T

)
= 0 (10.21)

一共r个Gibbs-Duhem关系。因此，自由度为f = n + 2 − r。称为Gibbs相
律。

对于单组份，n = 1。两相共存时，r = 2，f = 1。三相共存时，r = 3，f =
0。不能有四相共存。

对于两组份系统，n = 2。两相共存时，r = 2，f = 2。三相共存时，f =
1。四相共存时，f = 0。作为一个典型的两组份系统气液相变的例子，图
10.14给出了己烷和庚烷混合物的相图（注意这并不是一个真正的相图，只
是能够方便给出一个相中两组份浓度的一个方便的表示。真正的相图一个组
份的总量应该固定。）。这里压强固定为一个大气压。混合物在升高温度时
进入到气液共存区。与单组份系统不同的是，在固定压强下两组份系统的气
液共存区对应一个温度区间而不是一个温度点，共存温度大致介于两者气化
温度间。进入共存区时，气化发生，但气相中两种物质比例一般不同于总比
例。如己烷比庚烷更易挥发，所以开始时气相中己烷与庚烷的比例高于总比
例。在共存区内，温度决定了己烷和庚烷分别在气相和液相中的摩尔浓度。
由于化学势平衡，任一相中的成份比就仅是T和P的函数，所以可以方便地
在图上读出。例如庚烷总含量为75%的混合物，在温度为86◦C时进入共存
区。此时，开始出现庚烷浓度大约为50%的气相。随着温度升高，气相的比
重增加，气相中庚烷的浓度也增加。例如，在90◦C时，气相中庚烷的浓度大
约为65%。温度趋近92◦C时，系统以气相为主。在92◦C附近的共存区，庚
烷在气相中的浓度接近75%，在液相中的浓度接近90%。如果改变压强，也
会有类似共存区出现。因此在气液共存区，系统的两个自由度可以取为温度
和压强。在以温度、压强和庚烷浓度为坐标的图中，气液共存区为一个二维
的曲面。

图 10.14: 己烷和庚烷混合物的相图
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10.5 相分离

A和B两种组份混合后可能出现相分离，分成α和β两相。每一相都有A和B两
组份，但比例不同。我们来看一下这是怎么发生的。

假设两组份的摩尔数分别为NA和NB，总摩尔数N = NA + NB，摩尔比x =
NB/N。假设如果没有相分离，即两组份互溶，单位摩尔的Gibbs自由能
为g(x)。下面求如果有相分离时的单位摩尔的Gibbs自由能g′(x)。

g′ =
Nα

N
gα +

Nβ

N
gβ

=
1

xβ − xα
((xβ − x)gα + (x− xα)gβ) (10.22)

假设在一定温度下，α和β两相的摩尔比分别为xα和xβ，两相的摩尔数分别
为Nα和Nβ。则xαNα + xβNβ = xN。于是

Nα =
xβ − x

xβ − xα
N (10.23)

Nβ =
x− xα
xβ − xα

N (10.24)

两相单位摩尔的自由能分别为g(xα) = gα和g(xβ) = gβ。因此， g′(x)是定义
在(xα, xβ)区间并通过(xα, gα)和(xβ, gβ)两点的一条直线。如果g′ < g，则出现
相分离。下面我们来看如何使g′ < g。如图10.15中的Gibbs自由能，一条直
线可以与其在两点相切。该直线上的点代表相分离后的Gibbs自由能g′，并且
最低。凡是x介于xα与xβ的情形都会相分离成α和β两相，只是不同的x两相
的量不同。

图 10.15: 相分离的出现

下面我们来看怎样才能产生图10.15所示的自由能。自由能g(x) = u(x) −
Ts(x)，u和s分别为摩尔比为x的单位摩尔混合物的内能和熵。很多混合物会
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图 10.16: 混合物的内能和熵

呈现如图10.16的内能。这意味着不同的分子在一起时能量升高。但混合物
会出现混合熵（图10.16），s = −(1− x) ln(1− x)− x lnx。

于是如图10.17，不同温度下Gibbs自由能呈现不同行为。低温时，内能占优
势，二者不愿意混合。但混合熵在两端点的斜率为无穷大，因此在两端点附
近自由能出现拐点，出现相分离。高温时，熵占优，无相分离。在一定温度
下，出现相变。

图 10.17: 相分离相变

10.6 铁磁相变

在一定临界温度（居里温度Tc）无外场条件下，晶体中的有自旋或轨道磁矩
的离子通过之间的相互作用从而克服热运动而形成磁矩平行排布的磁有序结
构的现象称为铁磁相变。我们只考虑磁矩仅取上下两个方向的情形。对于一
个无外磁场的系统，上下应该等价，系统的运动方程关于上下两方向间的变
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图 10.18: 铁磁相图

换应该保持不变，即具有对上下变换的对称性。但是，在居里温度下，铁磁
系统只会选择上下其中的一个方向。这个现象称为自发对称破缺。发生破缺
的是系统的状态而不是系统的运动方程。温度是系统的一个强度量。铁磁系
统会与外磁场相互作用。因此另一个强度量为外磁场。表示系统性质的量为
磁化强度。系统的相图如图10.18所示。M作为T和B的函数，如同撕开一个
缝的一张纸。缝隙垂直于B-T平面，并关于M对称。

无外场时，系统在Tc下出现磁矩，磁矩从零增加直至到零温时饱和。有外场
时，由于外场会诱导磁矩，在温度降低时不会出现一个明确的相变点。Tc以
下，磁场过零时，磁矩的方向会发生跳变。

如同气液相变，将相图投影到B-T平面，得到类似气液相变中的相边界和临
界点。不同的是，由于上下对称，相边界为B = 0的一条线。跨过相边界，
相变发生。与气液相变不同，在铁磁相变相边界两侧的态是由对称性联系起
来的。两个相除了磁化强度的方向相反外，其他性质都相同。通常将这些由
对称性联系起来的相统称为一个相。与气液相变的另一个区别是，在铁磁相
变的相边界，Gibbs自由能对温度的导数连续，因此没有潜热。但对磁场的
导数不连续，所以仍然是一级相变。下面会讨论气液相变与铁磁相变不同之
处的来源。

10.7 相变的一般性讨论

我们将继续讨论气液相变与铁磁相变的相似性。

气液相变的相图（图10.1）看上去与铁磁相变的相图（图10.18）并不是很
类似，原因是图10.1不是用密度ρ作为T和P的函数画出的相图。对气液相变
一个更合适的相图应如图10.19所示。这个相图与铁磁相变的相图在形状上
完全类似。
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图 10.19: 气液相变相图

在该相图中气液共存面垂直于T-P平面，其在T-P平面的投影为相边界。由于
没有对称性的限制，共存面一般不是一个平面。在Tc以下，缝隙的上边缘密
度大为液态，下边缘密度小为气态。气态与液态没有对称性相联系，因此是
两个相。

一般地，各种相变看上去都有类似的相图，其共同点是系统作为强度量函数
的某个性质在一定温度下发生分岔。这个行为在微观上来源于相空间的各态
历经破缺。作为热力学微观理论基础的统计力学中有一个很基本的假设：各
态历经（ergodicity）假设。相空间中的点代表微观态。在任一时刻，系统
的状态由相空间的一个代表点表示。各态历经假设认为，代表点可以任意接
近相空间中任何被允许的点。由此可以说明一个宏观可测的物理量可以由
这个量对相空间中被允许的点的平均得到。但是对有些系统（粒子数需无限
大，称热力学极限），在一定条件下，其相空间中被允许的点分成了一些动
力学上彼此不能联通的部分，称为各态历经破缺。于是，在做平均时就不能
遍历全部点，而只能考虑一部分。这就是发生相变的微观图像。相变的发生
本质上来源于相空间中的结构。相变现象尽管司空见惯，但实质上其来源很
不平凡。有时分离的各部分由对称性相互关联，这种情况称为对称破缺，如
铁磁相变。气液相变没有对称破缺。发生对称破缺时，相空间中的各个分立
的部分由一个称为序参量的量来描述。磁化强度就是一个序参量。



11 相变的模型

11.1 气液相变

我们从理想气体的G 势来看如何写出一个一般地有相互作用的系统的Gibbs
势。对于理想气体。

G =RTN ln
(
N

V

)
+与T有关的项

=RTV n lnn （忽略与n无关的项）
=V (RTn lnn) (11.1)

图 11.1: 理想气体Gibbs势

G在1/e有唯一的一个最小值，这一点决定理想气体的摩尔密度。在有相
互作用时，一个分子受到周围分子的力，其势能为密度n的函数。对n进行
Taylor展开。首先，势能在n = 0时应为0，因此展开的0阶项为0。在密度
小时，作用力为吸引，因此1阶项为负。在密度高时相互作用为排斥。一个
分子的势能的简单形式为−an + bn2。a和b均大于0。通常a ≫ b。总的势能
为nV (−an + bn2)。势能的极小值出现2a/3b。考虑了相互作用后，Gibbs势
可写为：

G = V (RTn lnn− an2 + bn3) (11.2)

单位体积的Gibbs势：

g(n) = RTn lnn− an2 + bn3 (11.3)

第一项是热运动动能，第二项是吸引势，第三项是排斥势。一般地，一个流
体系统的Gibbs势都能近似地写为这种 形式，因为推导不依赖于势能的具体

91
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形式。推导中近似以为每一个分子都处于其他分子的平均势中，叫平均场近
似。

下图中所取参数是a = 1，b = 0.03，为方便令R = 1。 气液相变的温度
是TV = 3.05，临界温度Tc = 3.35。T < TV时，通常g有两个极小值，热运动
使物质倾向于气相，对应于低密度极小值，相互作用使系统倾向于液态，对
应于高密度极小值。但当T < TV时，高密度 极小值为最小值，所以系统处
于液态，分子间相互作用起主导作用。

图 11.2: 非理想气体Gibbs势

当温度升高到TV时，两个极小值对应的g值相同，这时发生相变。在T >
TV时，低密度的极小值g更小，系统处于气态，这时热运动占主导地位。继
续升高温度，达到Tc时，高密度的极小值点变成拐点，另存在一个 极小值
点。

对于处于平衡态的单相简单流体，需要三个自由度来描述。从Gibbs势出
发，这三个自由度是T、P、N。对于非平衡态，这三个量不再完备。比如
对于某一类非平衡态，可以加上体积V（或者密度）。这时P和V就不再是对
偶的变量。此时得到的就是上面讨论的势能曲线。对于两相共存的平衡态，
需要增加一个新的变量，也可以选总体积V。一个平衡态用T、P、N、V完
全描写。这时P和V也不是对偶的变量，而是与V1、V2对偶（与V对偶的是什
么？）。所谓G取极值，是针对给定的T、P、N、V去改变N1和N2（N1 +
N2 = N）而形成的非平衡态，进而得到化学势相等的平衡条件。

11.2 过热与成核

升高液体的温度，在相变温度TV处，气态和液态的Gibbs势相同。再升高温
度，气相称为稳态。但是液相与气相之间有一个势垒∆U，因此液相变为气
相必须克服这个势垒。否则即使T > TV，系统仍可以处于液相称为亚稳态。
势垒∆U随温度增加而变小，在Tc处完全消失。这种在TV之上存在液相的现
象称为过热。类似在降温时，气相在相变点处不一定会变成液相而是成为过
饱和蒸汽。

过热现象往往出现在没有杂质和气泡的液体中。由亚稳态变为稳态需要对系
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图 11.3: 过热

统加以扰动，如加入杂质或机械扰动。被扰动的系统有可能会克服势垒，成
为稳态。

由亚稳态跃迁到稳态的过程一般发生在系统中的一个小的子系统中。小的系
统涨落大，有更大的几率通过热涨落而发生跃迁，从而发生连锁反应，使整
个系统发生跃迁。类似的过程还会出现在诸如过冷蒸汽、过冷 液体等系统
中。例如，过冷蒸汽，通过涨落，会在原先均匀的相中出现微小的液滴。液
滴与气相间存在界面。如果液滴足够大则界面能就会被相变产生的自由能下
降克服，从而继续长大。这种过程叫成核。成核由热涨落造成。如果有杂质
的存在，或其他扰动存在，则成核长大需要克服的势能会降低，因而更容易
转变为稳态。

可以这样估计液滴的Gibbs势

G(R) = σA− V n∆µ (11.4)

n是液态摩尔密度。其中σA是表面Gibbs势，A是表面积。 ∆µ是气液两相的
化学势之差，∆µ = µg−µl，在相变点∆µ = 0。但在过冷时，µl < µg，∆µ >
0。 V n∆µ这一项随液滴的大小增加而增加，因为系统倾向于液态。第一项
表面能随液滴尺寸变大而变大，两 项产生竞争，有一临界半径Rc，当R >
Rc时，液滴会长大，下面我们求Rc。

首先需要知道∆µ。假设离开相变温度不是很远

图 11.4: 成核
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∆µ(T ) = µg − µl ≃ −
(
∂µg
∂T

− ∂µl
∂T

)
∆T (11.5)

其中偏导数取自T = TV（相变温度），∆T = TV − T。 而 ∂µ
∂T

= −s，所
以∆µ = (sg − sl)∆T = ∆s∆T = l∆T/TV 其中l是潜热，这样

G(R) = σA− V n
l

TV
∆T (11.6)

= 4πR2σ − 4

3
πR3nl∆T/TV (11.7)

最大值出现在
Rc =

2σTV
nl∆T

(11.8)

∆T越大（越过冷）则Rc越小。如果某个涨落会产生一个大于Rc的核，则该
核将倾向于长大，最终过冷水蒸汽全部液化。成核现象普遍存在于一级相变
的系统中，如Wilson云室，人工降雨。

11.3 二级相变

考虑Gibbs势的另外一种可能性。

G(T, P, η) = G0(T, P ) + a(T − Tc)η
2 + bη4 (11.9)

η是描述不同相的参量，a > 0，b > 0。与气-液相变不同，这里不出现η的三
次项。这种形式的Gibbs势可以描述 诸如超导、磁性等一大类相变。在T >
Tc时Gibbs势的最小值在η = 0，T < Tc时，Gibbs势的最小值在 η ̸= 0处：

η2 = a(Tc − T )/2b (11.10)

图 11.5: 二级相变的Gibbs势

Gibbs势的最小值点对应的η在通过相变点Tc时连续地从0变为非0，这种相变
称为连续相变。在相变点处G同样连续变化。再来看熵S = −∂G

∂T
= S0−aη2。
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在高温相S = S0。在低温相S = S0 − aη2 = S0 +
a2

2b
(T − Tc)，熵 也连续变

化，没有潜热，是连续相变。再看比热：

C = T
∂S

∂T
(11.11)

在高温相

C = T
∂S0

∂T
= C0 (11.12)

在低温相

C = C0 +
a2

2b
T (11.13)

所以比热不连续。

一般地，相变来源于热运动与相互作用的竞争。微观上有各种不同的相互作
用。不同的相互作用可能会导致不同类型的相变。


