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Quantum absorption refrigerator with trapped ions
Gleb Maslennikov1, Shiqian Ding 1,3, Roland Hablützel1, Jaren Gan1, Alexandre Roulet 1, Stefan Nimmrichter1,

Jibo Dai1, Valerio Scarani1,2 & Dzmitry Matsukevich1,2

In recent years substantial efforts have been expended in extending thermodynamics to

single quantum systems. Quantum effects have emerged as a resource that can improve the

performance of heat machines. However in the fully quantum regime their implementation

still remains a challenge. Here, we report an experimental realization of a quantum absorption

refrigerator in a system of three trapped ions, with three of its normal modes of motion

coupled by a trilinear Hamiltonian such that heat transfer between two modes refrigerates

the third. We investigate the dynamics and steady-state properties of the refrigerator and

compare its cooling capability when only thermal states are involved to the case when

squeezing is employed as a quantum resource. We also study the performance of such a

refrigerator in the single shot regime made possible by coherence and demonstrate cooling

below both the steady-state energy and a benchmark set by classical thermodynamics.
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Thermodynamics is one of the oldest and best-established
branches of physics that sets boundaries to what can be
achieved in macroscopic systems. It also guided Planck’s

and Einstein’s first steps into quantum mechanics. Decades later,
it was realized that large quantum devices, such as masers or
lasers, can be treated with the thermodynamic formalism1,2.
Rapid progress in the experimental control of small quantum
systems revives interest in the merging of thermodynamics with
quantum mechanics3,4 and poses fundamental questions: What is
the smallest heat machine one can build5? Can quantum effects
improve the performance of a heat engine, and if so, can we use
quantum correlations as a fuel6–9?

Remarkable progress has been made recently in the minia-
turization of heat machines10 all the way to the single Brownian
particle11,12 as well as to a single atom13. While a lot of work in
this field is focused on heat engines, we consider here another
standard example of a heat machine: the absorption refrigerator.
An absorption refrigerator consists of three parts: cold, hot, and
work bodies (Fig. 1). Heat from the work body is used to cool
down the cold one, while transferring heat to the hot body. The
first such device was invented in 1850 by the Carré brothers14 and
was one of the first practical refrigerators used in the industry. In
its improved design15 it remains a popular choice of refrigeration
devices16. Absorption refrigeration in the quantum regime has
been the object of numerous theoretical studies5,8,17,18, alongside

with proposed implementations with superconducting qubits19,20,
quantum dots21, trapped ions22, or optomechanical systems23.

Here we implement a quantum absorption refrigerator utilizing
three modes of motion of trapped Ytterbium ions, an axial and
two radial ones, as the heat bodies (Fig. 1). The radial “zig-zag”
mode represents the heat body that is in contact with a cold
environment to be refrigerated, while the axial “zig-zag” mode of
higher frequency represents the ambient (hot) temperature. The
third radial “rocking” mode serves as the heat source that drives
the refrigeration of the cold mode, replacing the work reservoir of
a conventional refrigerator. We investigate the performance of the
refrigerator in the quantum regime of low mean phonon num-
bers, including the case when the thermal state of the work mode
is squeezed18. We also test whether there is an advantage when
the refrigerator is operating in the single-shot cooling regime24,25,
which relies on coherent population oscillations that can occur
among the coupled modes in the quantum system before a steady
state is reached. While this behavior can also be explained qua-
litatively in a purely classical framework26, the correct quantita-
tive predictions for the observed low-excitation regime require a
quantum description of the system.

Results
Principles of the refrigerator operation. The interaction
Hamiltonian in the system of three ions, induced by anharmo-
nicity of the Coulomb repulsion between the ions, has the
form17,27 (Supplementary Note 1).

Ĥ ¼ �hξ âyhâwâc þ âhâ
y
wâ

y
c

� �
; ð1Þ

where âi âyi
� �

are the annihilation (creation) operators for the

corresponding harmonic oscillators labeled by i= h, w, c, and
ξ ¼ 9ω2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=mωhωwωc

p
=5z0 is the coupling rate. Here z0 ¼

5e2=16πϵ0mω2
z

� �1=3
is the equilibrium distance between the ions,

m is the ion mass, e is the ion charge, ϵ0 is the vacuum permit-
tivity, and ωz is the single ion axial trap frequency. The Hamil-
tonian (1) is valid in the rotating wave approximation when the
mode frequencies satisfy the resonance condition ωh= ωw+ ωc.
Away from this resonance condition, the energy exchange
between the modes is suppressed28,29.

The operation of the refrigerator in our system consists of three
major steps. First, the Raman beams cool down all modes to the
ground state of the trap and starting from there we selectively
prepare the modes corresponding to refrigerator bodies in the
desired states. Then, the resonant trilinear interaction is switched
on for some time by tuning the mode frequencies to satisfy the
resonance condition (Fig. 1) so that the modes start to exchange
energy while the lasers are turned off. Finally, the mode
frequencies are brought back to the initial values and the
measurement of the resulting state in one of the modes is
performed with the help of the Raman beams (Methods).

The refrigeration itself occurs during the second step and to see
how it works17, consider how the resonant interaction Hamilto-
nian (1) redistributes energy between the modes. The work mode
(w) can remove one of its excess thermal phonons only by
creating a hot mode (h) phonon and simultaneously annihilating
a phonon in the cold mode (c). Hence the transfer of energy from
(w) to (h) is always accompanied by energy transfer from (c) to
(h). This can result in the cooling of the cold mode when the
temperature of the work mode is higher than the hot mode and
energy tends to flow from the former to the latter. At some
temperatures the process is balanced by the flow of the energy in
opposite direction, leading to an equilibrium.
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Fig. 1 Experimental setup. a Direction of heat flow in the absorption
refrigerator. Energy from the work body (“rocking” radial mode) is
transferred to the hot body (“zig-zag” axial mode), which removes energy
from the cold body (“zig-zag” radial mode). The black arrows label the
motional eigenmodes utilized as heat bodies. b Schematic of the linear rf-
Paul trap with three trapped 171Yb+ ions. The Raman beams (R1, R2, and
R3) are responsible for applying the optical dipole force required for state
preparation, and for coupling the ions motional modes to the internal state
during the motional state detection. Two (gray) ions are prepared in the
2F7/2 “dark” state (see Methods). Radial confinement of the ions provided
by radiofrequency (RF) potential can be fine tuned by adjusting the offset
voltage applied to the diagonally opposite trap electrodes. The speed of this
tuning is controlled by a pair of low-pass filters (LPFs)
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For thermal states, at equilibrium the mean phonon numbers
�nðeqÞi fulfill (Methods)

1þ 1

�nðeqÞh

¼ 1þ 1

�nðeqÞw

 !
1þ 1

�nðeqÞc

 !
: ð2Þ

If the system is initially prepared away from equilibrium, under
the interaction Hamiltonian (1) the initial mean phonon numbers

�nðinÞh ; �nðinÞw ; �nðinÞc

� �
of the heat bodies can only evolve as

�nðinÞh � ϵh; �n
ðinÞ
w þ ϵw; �n

ðinÞ
c þ ϵc

� �
such that ϵc ¼ ϵw ¼ ϵh. For a

simple estimate of the achievable cooling in terms of mean
phonon numbers, we assume an idealized scenario of operation
where the states of the heat bodies remain thermal. Then the
energy flow ceases when Eq. (2) is fulfilled, i.e. for

ϵ ¼ � 1
6

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 12 nðinÞc nðinÞw � nðinÞc nðinÞh � nðinÞh nðinÞw � nðinÞh

� �r� �
;

ð3Þ

where a ¼ 1þ 2 nðinÞc � nðinÞh þ nðinÞw

� �
. Here, the system evolves

towards correlated states that are not thermal: Eq. (3) will be used
as a benchmark for comparison.

Near-equilibrium operation. To explore the parameter window
of refrigeration and demonstrate the equilibrium performance of
the refrigerator, we start with all modes prepared in thermal states
(Methods) with �nðinÞh � 0:6 and various choices of �nðinÞw and �nðinÞc .
We then let the system evolve for long interaction times τ � ξ�1

(Supplementary Note 5) and average the measured mean phonon
numbers of the hot mode to get an estimate of the asymptotic
steady state value �nðssÞh (Fig. 2a–d). The cold mode is effectively
cooled in those cases where ϵh ¼ �nðinÞh � �nðssÞh is negative. Also, for
each �nðinÞw we extract from numerical fits to the data an equili-
brium value for the mean phonon number �nðeqÞc that corresponds
to ϵh ¼ 0. These points are plotted in Fig. 2e, demonstrating the
validity of Eq. (2) in our setup. Refrigeration of the cold mode can
be associated16,17 to the three data points for which the tem-
peratures Ti= ħωi[kBln(1+ 1/ni)]−1 satisfy the condition
TðeqÞ
c <TðeqÞ

h <TðeqÞ
w (here, kB is the Boltzmann constant).

Steady state away from equilibrium. We further notice in
Fig. 2a–d that experimental points systematically disagree with
Eq. (3) away from equilibrium. Indeed, numerical simulations of
the evolution generated by the Hamiltonian (1) predict (Meth-
ods) that the mean phonon numbers approach the values of a
non-thermal and correlated steady state in the long-time limit.
That is, the system effectively equilibrates around the infinite-
time average of its coherently evolving state, which we refer to as
the asymptotic steady state, and the initial distribution of thermal
energies does not recur even after interaction times much greater
than 1/ξ. This is related to the broad spectrum of incommensu-
rate energy eigenvalues of the trilinear interaction Hamiltonian26:
initially thermal states are diagonal in the three-mode Fock basis,
but in the eigenbasis of the interaction Hamiltonian they exhibit
non-diagonal elements with phases that quickly disperse and
never fully rephase. As a result, the average energies of each mode
undergo strong oscillations in a short transient time window
smaller than 1/ξ, after which they approach their long-time
average values and only small residual fluctuations remain. The
precise timing and the magnitude of the observed oscillations
depends on the initial temperatures.

If the energy of a mode in the asymptotic steady state is lower
than its initial energy, the mode is cooled down. For observation
of cooling in the “cold mode”, the initial energy of the work mode
must satisfy17,18 (see Methods section)

�nðinÞw > �nðinÞh

1þ �nðinÞc

�nðinÞc � �nðinÞh

: ð4Þ

To investigate the cooling properties away from equilibrium, we
now focus on the mean phonon number of the cold mode whose
temporal evolution is shown in Fig. 3a–f. For �nðinÞh ¼ 0:66ð4Þ and
�nðinÞc ¼ 2:63ð13Þ, we observe a nett decrease of the cold mode
mean phonon number in panels (a, b), equilibrium in (c), and an
increase in (d–f). The data points are plotted relative to their
long-time averages and show good agreement with theory. The
nett difference of the long-time average values from the initial
mean phonon numbers is shown in Fig. 3g. Again the predictions
of quantum theory match the experiment, while the prediction of
Eq. (3) disagrees with the data.

Steady state for squeezed thermal states. We next study the
influence of quantum mechanical coherence on the cooling per-
formance. There is still an ongoing intense debate on whether
coherence degrades30–32 or enhances33 the performance of heat
machines. In this work, coherence is added via squeezing the
thermal state of the work mode. Several theoretical proposals
appraise squeezing as a resource that allows heat machines to be
more efficient18,34,35 and to surpass even the Carnot limit36. We
compare the cooling performance starting from a squeezed
thermal state of the work mode18 to the case where the mode is
prepared in a thermal state with the same mean phonon number.
In the experiment, an initially thermal state of the work mode at
fixed �nðinÞw is squeezed to several values of the squeezing para-
meter37 r, which correspond to mean phonon numbers
�nðin;sqÞw ðrÞ ¼ �nðinÞw cosh(2r)+ sinh2(r). As r increases in Fig. 3h–k,
the system undergoes a transition from heating to cooling, which
can be seen from the evolution of the cold mode. We plot the
difference of final and initial mean phonon numbers in panel (l)
for direct comparison to the previously discussed thermal case in
(g). The experimental points agree with numerical predictions in
panel (l). Furthermore, simulations show that the nett change in
the mean phonon number is smaller, which implies that
squeezing of the work mode decreases the cooling performance.
For a given mean phonon number of the work mode, cooling is
most effective when no squeezing is applied at all.

Single-shot cooling. We now focus on the single-shot cooling
method24,25. Here the interaction is switched off at the right
moment such that the evolution halts at a transient state with a
lower mean phonon number �nc than the long-time average.
Conversely, one would achieve a higher mean phonon number in
the heating regime. Both regimes can be seen in Fig. 3a–f, where
the greatest deviation of �nc from the initial �nðinÞc is consistently
reached at about 100 μs of interaction time, τ ≈ (2ξ)−1. We plot in
Fig. 4 the difference between the initial and this value for different
work mode phonon numbers �nðinÞw . The first data point at �nðinÞw ¼
1:3ð1Þ has a vanishing difference since it corresponds to the
system at thermal equilibrium according to (2). However, the
difference increases with growing �nðinÞw , and consistently exceeds
the difference from the long-time average value, demonstrating
the advantage of coherence-assisted single-shot cooling24. Note
that the cooling even exceeds the thermal equilibrium values set
by the benchmark (3). However, to demonstrate the advantages of
this method in practice, one would have to implement the tri-
linear interaction between the modes and couple each of the
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modes to its corresponding bath. The ability to cool more effi-
ciently and on a shorter timescale is related to the transient
coherence generated during the unitary time evolution under the
trilinear Hamiltonian (1). Indeed, it is easily shown that an
incoherent version of the trilinear interaction (Methods) pre-
cludes the device from cooling further than the steady-state
energy24,25.

In conclusion, we have demonstrated an implementation of an
absorption refrigerator utilizing the harmonic modes of motion in
a trapped-ion system. We have shown that the classical concept of
the absorption refrigerator can be extended to the quantum
domain. The experiment confirms our theoretical understanding
of the refrigerator dynamics and its steady-state characteristics
based on a coherent three-body interaction model. In particular,
we could observe that, starting away from equilibrium, the system
energies rapidly approach steady-state values, even in the absence

of environmental coupling. Simple arguments based on equili-
brium thermodynamics do not predict these values, although they
give the correct temperature requirements (4) for cooling. While
it was shown that utilizing squeezed states allows the refrigerator
to transition from a heating to cooling regime, hence demon-
strating that squeezing could be used as a quantum fuel, our data
also suggest a diminished performance of the refrigerator relative
to thermal operation. This leads to the surprising implication that
exploiting quantum resources does not necessarily enhance, but
may even be detrimental to the performance of heat machines—
an issue worth studying further.

Methods
Equilibrium and steady-state populations. To gain insights on the operation
of the absorption refrigerator we first consider an ideal adiabatic process
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Fig. 2 Absorption refrigeration demonstration. a–d The difference ϵh ¼ �nðinÞh � �nðssÞh of the initial hot mode phonon number and the asymptotic steady-state
value plotted against the initial cold mode phonon number, �nðinÞc for different initial �nðinÞw . The shaded curves are predictions of Eq. (3) (blue) and numerical
simulations of (1) (turquoise), taking experimental uncertainty of initial state preparation into account. The numerical simulations of (1) agree well with the
experiment. The equilibrium cold mode phonon number �nðeqÞc , which corresponds to ϵh ¼ 0 (dashed line), is determined by fitting experimental data on a–d
with the ϵh derived from numerical simulations of Eq. (1) using �nðinÞw and �nðinÞh as the fit parameters. Horizontal error bars in both panels are determined from
the calibration of the initial state preparation and vertical error bars in a–d represent one standard error of the mean (SEM) (Supplementary Notes 3 and
4). e The values of �nðeqÞc are then plotted against experimentally prepared �nðinÞw and compared to the predictions of Eq. (2). The absorption refrigeration
occurs at the region at which the cold mode temperature is the lowest (blue dots). For the magenta point, Tc > Tw > Th. The vertical error bars are the fit
errors of numerical simulations of data in a–d (Supplementary Note 4)
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that satisfies8,18

Δ _S ¼
_Qh

Th
þ

_Qw

Tw
þ

_Qc

Tc
¼ 0: ð5Þ

Here _Qi ¼ �hωi _ni is the energy per unit time flowing to the mode i from its bath at
temperature Ti. Using the canonical expression for the mean phonon number �ni for
each mode, 1=Ti ¼ kB

�hωi
ln 1þ 1=�nið Þ, and the constraint _nh ¼ � _nw ¼ � _nc implied

by the Hamiltonian (1), Eq. (5) reduces to (2). The cooling condition (4) is obtained
by noting that during cooling _nc<0 and Δ _S>0 (Second Law of Thermodynamics).

The quantum state ρ= ρh ⊗ ρw ⊗ ρc corresponding to the equilibrium
condition (2) is stationary as it commutes with the interaction Hamiltonian (1).
Conversely, if the system is prepared out of equilibrium the trilinear interaction
cannot drive it towards another equilibrium of this type. We nevertheless observe

(Fig. 3) that the unitary time evolution after long interaction time leads to an
effective equilibration38,39 of the mode energies around values corresponding to the
infinite-time average of the system state, ρ1 ¼ limt!1

1
t

R t
0 dτ ρðτÞ. We refer to this

as the asymptotic steady state, which can be computed by dephasing the initial
ensemble in the eigenbasis of (1). The resulting density operator ρ∞ is not thermal
and carries correlations between the three modes. The effective equilibration
around this state is related to the specific nonlinear coupling Hamiltonian (1),
which features a broad incommensurate energy spectrum and hence does not
support a coherent rephasing of an initially uncorrelated thermal state under
unitary evolution26.

Note that by resorting to the unitary evolution of initially prepared thermal
states, we are approximating the fast internal dynamics of an absorption
refrigerator whose thermalization rate with the reservoirs associated to each mode
is much slower. The effective equilibration we observe is an intrinsic feature that
occurs on the fast timescale 1/ξ of the internal dynamics. On the other hand, high
thermalization rates of the order of the coupling frequency ξ would thwart the
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Fig. 3 Non-equilibrium evolution of the cold mode with and without work mode squeezing. The difference Δ�ncðτÞ between the measured time evolving
�ncðτÞ and asymptotic steady-state values �nðssÞc is shown as a function of �nðinÞw for the work mode initially prepared in a purely thermal state a–f and �nðin;sqÞw for
squeezed thermal state h–k. The error bars are given by one SEM (Supplementary Note 4). The solid lines are numerical simulations of the state evolution
using experimental initial conditions. The difference ϵc ¼ �nðinÞc � �nðssÞc of the initial cold mode phonon number and the asymptotic steady-state value plotted
against �nðinÞw for thermal state g and �nðin;sqÞw for squeezed thermal l states of the work mode. The horizontal error bars are given by calibration of the initial
state preparation and the vertical error bars represent one SEM (Supplementary Notes 3 and 4). The blue shaded curves show predictions of Eq. (3), while
the turquoise shaded curves are numerical simulations of the state evolution under Hamiltonian (1). Both curves take into account the experimental
uncertainty of initial state preparation. For h–k, initial mean phonon numbers of hot and cold modes were measured before each experimental run. Taking
the average value of �nðinÞh ¼ 0:49ð3Þ to calculate the theoretical predictions of l mainly shifts the turquoise shaded line vertically compared to �nðinÞh of g
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coherent dynamics required for single-shot cooling and keep the system close to
the initial thermal state.

Experimental setup. The detailed description of our setup can be found else-
where40,41. In brief, we trap three 171Yb+ ions in a linear rf-Paul trap (Fig. 1a). The
single ion trap frequencies are (ωx, ωy, ωz)= 2π × (1025.1, 937.7, 570) kHz for the
data presented in Figs. 2 and 3a–g, and (ωx, ωy, ωz)= 2π × (764.9, 701.8, 425.3) kHz
for Figs. 3h–l and 4. The radial frequencies are actively stabilized (drift < 200 Hz/
hour) and can be fine tuned by DC offset voltages applied to two diagonally
opposite trap electrodes, while the axial frequency is fixed and has negligible sys-
tematic drift. The normal modes chosen to represent the hot, work, and cold bodies
are the axial zig-zag, the radial rocking, and the radial zig-zag mode (Fig. 1b), with
frequencies ωh ¼ ffiffiffiffiffiffiffiffiffiffi

29=5
p

ωz , ωw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
x � ω2

z

p
, and ωc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
x � 12ω2

z=5
p

, respec-
tively (See Supplementary Fig. 1, Supplementary Table 2 and Supplementary
Note 2 for details).

The modes are well isolated from the environment during an experimental shot.
The heating rate of the modes is about 2 phonons/s. Fast fluctuations of the trap
frequencies lead to additional decoherence between phonon Fock states; the
smallest coherence times for superposition states of the form 0j i þ 1j ið Þ= ffiffiffi

2
p

exceed 8 ms. For the initial three-mode state 1h; 0w; 0cj i, we could even observe the
coherent energy exchange between the modes under the trilinear Hamiltonian
evolution (1) for up to 60 ms (about 200 oscillations41) without significant
reduction of the oscillation amplitude. We are thus confident that, for the
interaction times used in the experiment, the modes experience an almost pure
unitary evolution governed by the Hamiltonian (1).

A frequency-doubled, mode-locked Ti:Sapphire laser generates 250 mW with a
central wavelength of 374 nm, pulse width of 3 ps, repetition rate of 76.2 MHz, and
is used to achieve spin-motion coupling42 and to apply the optical dipole force on
the ion43. The beam is split into three paths R1, R2, and R3, as shown in Fig. 1. The
R1–R2 pair addresses axial motion, whereas R2–R3 addresses radial motion. At all
times, two of the three trapped ions are pumped into a dark metastable 2F7/2 state
and do not interact with the laser beams40. The remaining ion is always positioned
at the edge of the ion chain to enable addressing of all the modes of motion. The
positioning is accomplished by monitoring the fluorescence of the ions on an EM-
CCD camera for ≈200 ms between each 100 experimental shots. If the ion jumps to
the center, for example due to collisions with background gas, the RF signal sent to
the trap is briefly interrupted for a few μs. This melts and recrystallizes the ion
crystal, and is repeated until the bright ion is found at the edge of the chain. We use

standard optical pumping to initialize the ion in the #j i � S1=2; F ¼ 0;mF ¼ 0
			 E

state. The state "j i � S1=2; F ¼ 1;mF ¼ 0
			 E

is detected by means of resonance

fluorescence44. The optical dipole force is applied to the ion in the state

aj i � S1=2; F ¼ 1;mF ¼ þ1
			 E

.

Experimental sequence. The experiment starts with Doppler cooling of the ion
chain (6 ms) followed by Sisyphus cooling45 (15 ms) and Raman sideband cooling
of all 9 modes (≈30–40 ms). The residual mean phonon numbers after each cooling
stage are �nDoppler � 20 ! �nSisyphus � 1 ! �n0 � 0:05. The optical pumping pulse (5
μs) prepares the ions in the internal state #j i. A microwave π-pulse (5.6 μs) then
transfers the internal state from #j i to aj i, where the preparation of a thermal or
squeezed thermal state occurs (≈5–15 ms, depending on the state), and a second
microwave π-pulse brings the ions back to #j i. Another optical pumping pulse is
applied to remove the residual population in state aj i to #j i. These operations are
carried out at detunings Δ= ωa− ωb− ωc ≈−2π × 80(−2π × 40) kHz, for the high
(low) single ion trap frequencies. For all cases, the detuning Δ � ξ so that the
coupling between the modes is effectively switched off. The interaction can then be
switched on for a time τ by bringing the detuning to Δ= 0 and then switched off
again. To perform motional state detection, we drive the red sideband on the
#j i ! "j i transition for about 60 μs, followed by 1 ms long state detection of "j i.

Each experimental shot takes at most 70 ms, and the experiment is divided into
groups of 100 single shots. Between subsequent groups, the experiment may be
interrupted if additional adjustments are required. For instance, we regularly check
whether the resonance condition Δ= 0 still holds. For that we measure the avoided
crossing between the modes29 and, if necessary, adjust the DC offset voltages so
that the frequency splitting between the eigenstates near resonance is minimized. If
no intervention is needed, the experiment is continued until the desired amount of
data for a given interaction time τ is collected. The typical number of experimental
shots per point is on the order of N= 7000 in Figs. 2, 3, and can be as high as
20,000 for the data in Fig. 4. A single time evolution dataset plotted in the upper
panels in Fig. 3 thus takes around 2 h of experimental time. Technical
interventions, such as re-positioning of the bright ion to the edge of the chain,
frequent checks of the resonance condition, and adjustment of the trap frequencies
can triple the amount of experimental time. For the data presented in Fig. 4, we
alternate experimental shots between τ= 0 and τ ≈ (2ξ)−1. This allows us to
minimize the effect of systematic errors such as slow trap frequency drifts, which
are inevitably acquired during the long data taking employed for Figs. 2, 3. In the
following, we describe all stages of the experiment in detail.

State preparation. In order to prepare a thermal state, we transfer the bright ion
into the state aj i and excite its motion with modulated optical dipole force. The
force along the axial (radial) direction is applied by a running optical lattice formed
by two linearly polarized beams R1 and R2 (R3 and R2) with orthogonal polar-
izations (Fig. 1a)40,43. The frequency difference between these two beams is set to
match the frequency of the target mode while the phase of one of the beams is
changed randomly every 100 μs step. The motional state of all three ions undergoes
a random walk in phase space, which leads to a thermal state if the number of steps
is large enough46. Typically we apply from 7 to 40 steps for state preparation. The
final mean phonon number of the thermal state �n after N steps is

�n ¼ �n0 þ N �m; ð6Þ

where �n0 is the mean phonon number after sideband cooling, and �m is the mean
phonon number of a coherent state after applying a single 100 μs step to the initial
vacuum state (Supplementary Note 3).

The squeezed thermal state is generated by application of the squeezing
operator ŜðzÞ ¼ exp z�â2 � zây2

� �
=2

� �
to a thermal state37,47 where z= reiθ and r

is squeezing parameter. Experimentally, the squeezing operation is realized by
applying an optical dipole force produced by an optical lattice running at twice the
mode frequency40,43,48. The squeezing parameter r is linearly proportional to the
duration of this step (see Supplementary Note 3).

Energy exchange. After preparing the motional modes we adjust the offset vol-
tages applied to trap electrodes via third order RC low pass filters (LPF) with a 3 dB
point at 11 kHz. This brings the modes to resonance (Δ= 0) with a delay of 25 μs
which is much smaller than 1/ξ. The coupling rate is measured to be ξ= 2π × 2.64
(5) kHz for data presented in Figs. 2 and 3a–g, and ξ= 2π × 1.89(4) kHz for
Figs. 3h–l and 4. After interacting for time τ, the offset voltages are reverted back to
initial values and the motional modes are decoupled. The motional states are then
mapped onto the internal state of the ion for state analysis48,49.

Motional state detection. State detection of a mode of interest, after some
interaction time τ, can be done by measuring the probability p↑(τ) to find the
detection ion in the “bright” internal state "j i, after driving a red motional sideband
between #j i and "j i with a pulse of fixed duration trsb. This probability is depen-
dent on the population distribution p(n, τ), and has the form

p"ðτÞ ¼ aþ υ
X1
n¼0

pðn; τÞ 1� cos
ffiffiffi
n

p
Ω trsbð Þð Þ

2
e�γ

ffiffi
n

p
trsb ; ð7Þ

with Ω the Rabi frequency of the red sideband, a the background contribution to
the state detection probability, and γ is the decoherence rate between motional
states. The factor υ is defined as the probability to detect an ion in the state "j i after
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Long time average predicted by equation (1)

Equation (3)

Fig. 4 Absorption refrigerator operating in the single shot regime. The
difference �nðinÞc � �ncðτÞ between the measured initial phonon number and
the mean phonon number at interaction time τ that gives the strongest
cooling (colored points), is shown for several �nðinÞw . The uncertainty in the x-
axis is the error of the fit to the measured initial work population, while the
uncertainty in the y-axis represents one standard error of the mean
(Supplementary Note 4). The blue shaded region corresponds to values
predicted by (3), while the turquoise shaded region is the long-time
average predicted by numerical simulations. Both shaded regions take the
experimental uncertainty of �nðinÞi into account
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a π pulse on a blue sideband transition, 0; #j i ! 1; "j i, where the first index
corresponds to the motional Fock state. The values of trsb= 2π/(3Ω) (trsb= π/(3Ω))
were chosen to maximize the sensitivity of p↑(τ) to the mean phonon number
variations around 0.6 (2.7) for the measurements performed on the hot (cold)
mode. For this choice of detection pulse time and detuning from resonance, the
contribution of adjacent “spectator” modes to the detected signal p↑(τ) is negligible.

Typically, the population distribution is expected to have some analytic time-
independent form. In this case the detection pulse duration trsb solely defines p↑(τ)
and one can compute the inverse function p�1

" ðτÞ that links the measured ion
brightness p↑exp(τ) to mean phonon number �nðτÞ. However in our experiment,
during the interaction the states evolve away from their initial thermal (or squeezed
thermal) population distribution. Then p(n, τ) is not known a-priori. We therefore

compute for each given set of initial states �nðinÞh ; �nðinÞw ; �nðinÞc

� �
the expected spin-flip

probability p↑th(τ) and the mean phonon number �nthðτÞ during the state evolution,
by numerically solving (1). In order to obtain the best estimate for the experimental
mean phonon numbers, we determine �nexpðτÞ from the experimentally measured
spin-flip probability p↑exp(τ) using:

�nexpðτÞ � �nthðτÞ þ
∂�nthðτÞ
∂p"thðτÞ

p"expðτÞ � p"thðτÞ
h i

: ð8Þ

The partial derivative in (8) is approximated by

∂�nthðτÞ
∂p"thðτÞ

�
�nth τ; �nðinÞi þ δ
� �

� �nth τ; �nðinÞi � δ
� �

p"th τ; �nðinÞi þ δ
� �

� p"th τ; �nðinÞi � δ
� � ;

where �nðinÞi is the initial population of the mode and δ is a small but finite deviation

from �nðinÞi . For example, if the cold mode is the mode of interest, numerical

simulations of �ncðτÞ would be carried out for �nðinÞc ± δ with fixed �nðinÞh and �nðinÞw . We
have tested that the value of the partial derivative in Eq. (8) is robust to the choice
of δ in Eq. (8), and to the changes of the phonon number distribution due to
variations of the detuning Δ from resonance (∂�nthðτÞ=∂p"thðτÞ changes less than
1% for Δ= 200 Hz). Also, Eq. (7) does not include off-resonant contributions of
the carrier transition which Rabi frequency depends on the population of the
excited modes. However, we have estimated that this effect gives systematic errors
of less than 1% to the reconstructed mean phonon numbers.

Numerical simulation. The interaction Hamiltonian (1) couples Fock states of the
form

nh;N � nh;M � nhj i : 0 � nh � minðN;MÞf g ð9Þ

with fixed integers N and M. This basis spans a finite-dimensional Hilbert space.
The evolution of the three-mode state is then computed by diagonalizing the
Hamiltonian in each of the contributing subspaces, up to a cutoff for both N and
M. For all the simulations presented in this paper, the cutoff has been chosen to
ignore terms in the initial density matrix smaller than 10−4. We also implemented
an incoherent version of the interaction by integrating the master equation
∂tρ ¼ �ξin Ĥ; Ĥ; ρ


 �
 �
, which describes an exponential decay of coherences in the

eigenbasis of the Hamiltonian at the rate 2ξin. The fully dephased asymptotic state
of this master equation predicts the infinite-time average phonon numbers of the
coherently evolving state. However, the incoherent model does not reproduce the
single-shot cooling behavior26.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon request.
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